BUL146U [MOTOROLA]

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin;
BUL146U
型号: BUL146U
厂家: MOTOROLA    MOTOROLA
描述:

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin

晶体 晶体管 功率双极晶体管 开关 局域网
文件: 总10页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUL146/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Bipolar Power Transistor  
For Switching Power Supply Applications  
*Motorola Preferred Device  
The BUL146/BUL146F have an applications specific state–of–the–art die designed  
for use in fluorescent electric lamp ballasts to 130 Watts and in Switchmode Power  
supplies for all types of electronic equipment. These high voltage/high speed  
transistors offer the following:  
POWER TRANSISTOR  
6.0 AMPERES  
700 VOLTS  
40 and 100 WATTS  
Improved Efficiency Due to Low Base Drive Requirements:  
— High and Flat DC Current Gain  
— Fast Switching  
— No Coil Required in Base Circuit for Turn–Off (No Current Tail)  
Full Characterization at 125°C  
Parametric Distributions are Tight and Consistent Lot–to–Lot  
Two Package Choices: Standard TO–220 or Isolated TO–220  
BUL146F, Isolated Case 221D, is UL Recognized to 3500 V  
: File #E69369  
RMS  
MAXIMUM RATINGS  
Rating  
Symbol  
BUL146  
BUL146F  
400  
Unit  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
Vdc  
Vdc  
Vdc  
Adc  
V
700  
9.0  
CES  
EBO  
BUL146  
CASE 221A–06  
TO–220AB  
V
Collector Current — Continuous  
— Peak(1)  
I
C
6.0  
15  
I
CM  
Base Current — Continuous  
— Peak(1)  
I
4.0  
8.0  
Adc  
V
B
I
BM  
RMS Isolated Voltage(2)  
(for 1 sec, R.H. < 30%,  
Test No. 1 Per Fig. 22a  
Test No. 2 Per Fig. 22b  
Test No. 3 Per Fig. 22c  
V
4500  
3500  
1500  
ISOL  
T
C
= 25°C)  
Total Device Dissipation  
Derate above 25°C  
(T = 25°C)  
C
P
D
100  
0.8  
40  
0.32  
Watts  
W/°C  
Operating and Storage Temperature  
T , T  
– 65 to 150  
°C  
J
stg  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
BUL44  
BUL44F  
Unit  
BUL146F  
CASE 221D–02  
ISOLATED TO–220 TYPE  
UL RECOGNIZED  
Thermal Resistance — Junction to Case  
R
R
1.25  
62.5  
3.125  
62.5  
°C/W  
θJC  
θJA  
— Junction to Ambient  
Maximum Lead Temperature for Soldering  
Purposes: 1/8from Case for 5 Seconds  
T
L
260  
°C  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
400  
Vdc  
µAdc  
µAdc  
C
CEO(sus)  
Collector Cutoff Current (V  
Collector Cutoff Current (V  
= Rated V  
, I = 0)  
I
CEO  
100  
CE  
CEO  
B
= Rated V  
, V  
= 0)  
I
100  
500  
100  
CE  
CES EB  
CES  
(T = 125°C)  
C
Collector Cutoff Current (V  
CE  
= 500 V, V  
EB  
= 0)  
(T = 125°C)  
C
Emitter Cutoff Current (V  
EB  
= 9.0 Vdc, I = 0)  
I
100  
µAdc  
C
EBO  
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.  
(continued)  
(2) Proper strike and creepage distance must be provided.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage (I = 1.3 Adc, I = 0.13 Adc)  
V
0.82  
0.93  
1.1  
1.25  
Vdc  
Vdc  
C
B
BE(sat)  
Base–Emitter Saturation Voltage (I = 3.0 Adc, I = 0.6 Adc)  
C
B
Collector–Emitter Saturation Voltage (I = 1.3 Adc, I = 0.13 Adc)  
V
0.22  
0.20  
0.30  
0.30  
0.5  
0.5  
0.7  
0.7  
C
B
CE(sat)  
(T = 125°C)  
C
Collector–Emitter Saturation Voltage (I = 3.0 Adc, I = 0.6 Adc)  
C
B
(T = 125°C)  
C
DC Current Gain (I = 0.5 Adc, V  
= 5.0 Vdc)  
= 1.0 Vdc)  
= 1.0 Vdc)  
h
FE  
14  
30  
20  
20  
13  
12  
20  
34  
C
CE  
CE  
CE  
(T = 125°C)  
C
DC Current Gain (I = 1.3 Adc, V  
12  
12  
8.0  
7.0  
10  
C
(T = 125°C)  
C
DC Current Gain (I = 3.0 Adc, V  
C
(T = 125°C)  
C
DC Current Gain (I = 10 mAdc, V  
C
= 5.0 Vdc)  
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V  
= 10 Vdc, f = 1.0 MHz)  
= 10 Vdc, I = 0, f = 1.0 MHz)  
f
14  
95  
MHz  
pF  
C
CE  
T
Output Capacitance (V  
CB  
C
150  
1500  
E
OB  
Input Capacitance (V  
EB  
= 8.0 V)  
C
1000  
pF  
IB  
2.5  
6.5  
1.0 µs  
3.0 µs  
1.0 µs  
3.0 µs  
(I = 1.3 Adc  
(T = 125°C)  
C
C
Dynamic Saturation Voltage:  
Determined 1.0 µs and  
3.0 µs respectively after  
I
V
= 300 mAdc  
B1  
0.6  
2.5  
= 300 V)  
CC  
(T = 125°C)  
C
V
V
CE(dsat)  
rising I reaches 90% of  
B1  
3.0  
7.0  
(I = 3.0 Adc  
final I  
B1  
(T = 125°C)  
C
C
I
= 0.6 Adc  
= 300 V)  
(see Figure 18)  
B1  
0.75  
1.4  
V
CC  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
Turn–On Time  
(I = 1.3 Adc, I = 0.13 Adc  
t
on  
t
off  
t
on  
t
off  
100  
90  
200  
ns  
µs  
ns  
µs  
C
B1  
= 0.65 Adc, V  
I
= 300 V)  
(T = 125°C)  
C
B2  
CC  
Turn–Off Time  
1.35  
1.90  
2.5  
(T = 125°C)  
C
Turn–On Time  
Turn–Off Time  
(I = 3.0 Adc, I = 0.6 Adc  
90  
100  
150  
C
B1  
B1  
= 1.5 Adc, V  
I
= 300 V)  
(T = 125°C)  
C
CC  
1.7  
2.1  
2.5  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
clamp  
= 300 V, V = 15 V, L = 200 µH)  
CC  
Fall Time  
(I = 1.3 Adc, I = 0.13 Adc  
t
fi  
115  
120  
200  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
B1  
= 0.65 Adc)  
I
(T = 125°C)  
C
B2  
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.35  
1.75  
2.5  
(T = 125°C)  
C
t
c
200  
210  
350  
(T = 125°C)  
C
(I = 3.0 Adc, I = 0.6 Adc  
t
fi  
85  
100  
150  
C
B2  
B1  
I
= 1.5 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.75  
2.25  
2.5  
(T = 125°C)  
C
t
175  
200  
300  
c
fi  
(T = 125°C)  
C
(I = 3.0 Adc, I = 0.6 Adc  
t
80  
210  
180  
C
B2  
B1  
I
= 0.6 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
t
si  
2.6  
4.5  
3.8  
(T = 125°C)  
C
t
c
230  
400  
350  
(T = 125°C)  
C
2
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
= 5 V  
CE  
T
= 125°C  
T = 125°C  
J
V
= 1 V  
J
CE  
T
= 25°C  
T
= 25°C  
J
J
T
= – 20°C  
J
T
= – 20°C  
10  
10  
J
1
0.01  
1
0.01  
0.1  
1
10  
0.1  
I , COLLECTOR CURRENT (AMPS)  
C
1
10  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2
1
10  
1
T
= 25°C  
J
I
= 1 A  
2 A  
3 A  
5 A  
6 A  
C
I
/I = 10  
C B  
0.1  
T
T
= 25°C  
= 125°C  
J
J
I
/I = 5  
C B  
0
0.01  
0.01  
0.1  
1
10  
0.01  
0.1  
I COLLECTOR CURRENT (AMPS)  
C
1
10  
I
, BASE CURRENT (mA)  
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
1.2  
10000  
1000  
T
= 25°C  
J
1.1  
1
C
ib  
f = 1 MHz  
0.9  
0.8  
0.7  
0.6  
100  
10  
1
C
ob  
T
= 25°C  
J
T
= 125°C  
I
I
/I = 5  
/I = 10  
C B  
J
C B  
0.5  
0.4  
0.01  
0.1  
1
10  
1
10  
100  
1000  
I
, COLLECTOR CURRENT (AMPS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
C
CE  
Figure 5. Base–Emitter Saturation Region  
Figure 6. Capacitance  
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
1000  
800  
600  
400  
4000  
3500  
I = I /2  
B(off) C  
CC  
PW = 20 µs  
I
V
= I /2  
C
B(off)  
CC  
I
I
/I = 5  
T
T
= 25°C  
= 125°C  
C B  
J
J
V = 300 V  
= 300 V  
/I = 10  
C B  
PW = 20 µs  
I
/I = 5  
C B  
3000  
2500  
2000  
1500  
1000  
T
= 125°C  
J
I
/I = 10  
C B  
200  
0
T
= 25°C  
J
500  
0
0
2
4
6
8
0
2
4
6
8
I
, COLLECTOR CURRENT (AMPS)  
I
, COLLECTOR CURRENT (AMPS)  
C
C
Figure 7. Resistive Switching, t  
Figure 8. Resistive Switching, t  
off  
on  
2500  
2000  
4000  
3500  
3000  
2500  
T
T
= 25  
= 125  
°
C
I
= I /2  
I
= I /2  
C
CC  
= 300 V  
J
J
B(off) C  
B(off)  
°C  
V
V
L
= 15 V  
V
V
L
= 15 V  
CC  
= 300 V  
I
/I = 5  
C B  
Z
C
Z
C
I
= 3 A  
= 200  
µH  
= 200 µH  
C
1500  
2000  
1500  
1000  
500  
0
1000  
500  
0
I = 1.3 A  
C
T
T
= 25  
= 125  
°
C
°C  
J
J
I
/I = 10  
C B  
0
1
2
3
4
5
6
7
8
3
4
5
6
7
I
COLLECTOR CURRENT (AMPS)  
h
, FORCED GAIN  
C
FE  
Figure 9. Inductive Storage Time, t  
Figure 10. Inductive Storage Time, t (h  
si FE  
)
si  
250  
200  
250  
200  
150  
100  
50  
I
= I /2  
= 15 V  
= 300 V  
B(off)  
CC  
Z
C
C
t
c
V
V
L
t
= 200  
µH  
c
t
fi  
150  
100  
t
fi  
I
= I /2  
C
B(off)  
CC  
Z
C
50  
0
V
V
L
= 15 V  
T
T
= 25°C  
= 300 V  
T
T
= 25°C  
= 125  
J
J
J
J
= 125°C  
= 200  
µH  
°C  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 11. Inductive Switching, t and t  
fi  
Figure 12. Inductive Switching, t and t  
c
c
fi  
I /I = 5  
C B  
I /I = 10  
C B  
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
130  
120  
110  
100  
90  
250  
I
= 1.3 A  
C
I
= 1.3 A  
C
I
= 3 A  
200  
150  
C
I
= I /2  
C
= 15 V  
= 300 V  
= 200 µH  
B(off)  
CC  
Z
C
V
V
L
I
= 3 A  
C
80  
I
= I /2  
= 15 V  
= 300 V  
100  
50  
B(off) C  
CC  
Z
C
V
V
L
70  
60  
T
T
= 25°C  
T
T
= 25°C  
= 125  
J
J
J
J
= 125°C  
°C  
= 200  
µH  
3
4
5
6
7
8
9
10  
11 12  
13 14  
15  
3
4
5
6
7
8
9
10  
11 12  
13  
14 15  
h
, FORCED GAIN  
h
, FORCED GAIN  
FE  
FE  
Figure 13. Inductive Fall Time  
Figure 14. Inductive Cross–Over Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
7
100  
10  
DC (BUL146)  
5 ms  
T
125°C  
/I 4  
= 500 µH  
C
6
I
L
C B  
1 ms  
10  
µs  
1 µs  
C
5
4
EXTENDED  
SOA  
1
3
2
V
BE(off)  
DC (BUL146F)  
0.1  
– 5 V  
1
0
0 V  
–1, 5 V  
600  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
0.01  
10  
100  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
1000  
0
200  
400  
800  
V
V
CE  
CE  
Figure 15. Forward Bias Safe Operating Area  
Figure 16. Reverse Bias Switching Safe Operating Area  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
1,0  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate. The data of Figure 15 is based  
SECOND BREAKDOWN  
DERATING  
0,8  
0,6  
0,4  
on T = 25°C; T  
Second breakdown pulse limits are valid for duty cycles to  
is variable depending on power level.  
C
J(pk)  
10% but must be derated when T > 25°C. Second break-  
C
down limitations do not derate the same as thermal limita-  
tions. Allowable current at the voltages shown in Figure 15  
may be found at any case temperature by using the appropri-  
THERMAL DERATING  
ate curve on Figure 17. T  
may be calculated from the  
0,2  
0,0  
J(pk)  
data in Figure 20 and 21. At any case temperatures, thermal  
limitations will reduce the power that can be handled to val-  
ues less than the limitations imposed by second breakdown.  
For inductive loads, high voltage and current must be sus-  
tained simultaneously during turn–off with the base–to–emit-  
ter junction reverse–biased. The safe level is specified as a  
reverse–biased safe operating area (Figure 16). This rating  
is verified under clamped conditions so that the device is  
never subjected to an avalanche mode.  
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 17. Forward Bias Power Derating  
5
Motorola Bipolar Power Transistor Device Data  
10  
5
4
V
CE  
90% I  
I
C
9
8
7
6
5
C
t
fi  
3
dyn 1 µs  
t
si  
2
dyn 3 µs  
1
t
10% I  
C
c
V
I
10% V  
0
CLAMP  
CLAMP  
–1  
–2  
–3  
–4  
–5  
4
90% I  
B
90% I  
B
1
B
3
2
1
0
1 µs  
3 µs  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
MTP8P10  
MUR105  
MJE210  
100  
3 W  
150  
3 W  
V
PEAK  
CE  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I
1
B
I
MPF930  
+10 V  
out  
I
B
A
I
2
B
50  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
RBSOA  
L = 500  
RB2 = 0  
COMMON  
MTP12N10  
150  
3 W  
L = 200  
µH  
µH  
RB2 =  
RB2 = 0  
500 µF  
V
= 20 VOLTS  
V
= 15 VOLTS  
V
= 15 VOLTS  
CC  
(pk) = 100 mA  
CC  
RB1 SELECTED FOR  
DESIRED I  
CC  
RB1 SELECTED  
FOR DESIRED I  
I
C
1 µF  
1
1
B
B
–V  
off  
Table 1. Inductive Load Switching Drive Circuit  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL THERMAL RESPONSE  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
R
(t) = r(t) R  
JC θJC  
0.1  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
0.02  
t
READ TIME AT t  
1
1
t
T
– T = P  
R (t)  
(pk) θJC  
2
J(pk)  
C
SINGLE PULSE  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 20. Typical Thermal Response (Z  
(t)) for BUL146  
θJC  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
R
(t) = r(t) R  
JC θJC  
0.1  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
0.02  
t
READ TIME AT t  
1
1
t
2
T
– T = P R (t)  
J(pk)  
C
(pk) θJC  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.1  
0.01  
0.01  
1
10  
100  
1000  
10000  
100000  
t, TIME (ms)  
Figure 21. Typical Thermal Response (Z  
θJC  
(t)) for BUL146F  
7
Motorola Bipolar Power Transistor Device Data  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
CLIP  
CLIP  
0.107  
MIN  
0.107MIN  
PACKAGE  
LEADS  
LEADS  
LEADS  
HEATSINK  
0.110 MIN  
HEATSINK  
HEATSINK  
Figure 22a. Screw or Clip Mounting Position Figure 22b. Clip Mounting Position  
for Isolation Test Number 1 for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
* Measurement made between leads and heatsink with all leads shorted together.  
MOUNTING INFORMATION**  
4–40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
HEATSINK  
NUT  
Figure 23a. Screw–Mounted  
Figure 23b. Clip–Mounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw  
.
torque of 6 to 8 in lbs is sufficientto provide maximum power dissipation capability. The compression washer helps to maintain a constant  
pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additionaltests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affectingthepackage.  
.
However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in lbs  
of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
8
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
L
R
J
3. EMITTER  
4. COLLECTOR  
V
G
T
U
V
D
N
Z
0.080  
2.04  
BUL44  
CASE 221A–06  
TO–220AB  
ISSUE Y  
SEATING  
–T–  
PLANE  
–B–  
C
NOTES:  
F
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
S
Q
H
U
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MIN  
MAX  
0.629  
0.402  
0.189  
0.034  
0.129  
MIN  
15.78  
10.01  
4.60  
MAX  
15.97  
10.21  
4.80  
A
K
0.621  
0.394  
0.181  
0.026  
0.121  
1
2 3  
0.67  
0.86  
STYLE 2:  
3.08  
3.27  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
–Y–  
0.100 BSC  
2.54 BSC  
0.123  
0.018  
0.500  
0.045  
0.129  
0.025  
0.562  
0.060  
3.13  
0.46  
3.27  
0.64  
12.70  
1.14  
14.27  
1.52  
G
N
J
0.200 BSC  
5.08 BSC  
R
0.126  
0.107  
0.096  
0.259  
0.134  
0.111  
0.104  
0.267  
3.21  
2.72  
2.44  
6.58  
3.40  
2.81  
2.64  
6.78  
L
D 3 PL  
U
M
M
0.25 (0.010)  
B
Y
BUL44F  
CASE 221D–02  
(ISOLATED TO–220 TYPE)  
ISSUE D  
9
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUL146/D  

相关型号:

BUL146U2

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146UA

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL146W

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146WD

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL147

POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS
MOTOROLA

BUL147

POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS
ONSEMI

BUL147/D

SWITCHMODE NPN Bipolar Power Transistor For Switching Power Supply Applications
ETC

BUL14716

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL14716A

Power Bipolar Transistor, 10A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL147A

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI