BUL147/D [ETC]

SWITCHMODE NPN Bipolar Power Transistor For Switching Power Supply Applications ; 开关模式NPN双极功率晶体管开关电源的应用\n
BUL147/D
型号: BUL147/D
厂家: ETC    ETC
描述:

SWITCHMODE NPN Bipolar Power Transistor For Switching Power Supply Applications
开关模式NPN双极功率晶体管开关电源的应用\n

晶体 开关 晶体管
文件: 总8页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
BUL147  
SWITCHMODE  
NPN Bipolar Power Transistor  
For Switching Power Supply Applications  
POWER TRANSISTOR  
8.0 AMPERES  
700 VOLTS  
45 and 125 WATTS  
The BUL147 have an applications specific state–of–the–art die  
designed for use in electric fluorescent lamp ballasts to 180 Watts and  
in Switchmode Power supplies for all types of electronic equipment.  
These high–voltage/high–speed transistors offer the following:  
Improved Efficiency Due to Low Base Drive Requirements:  
High and Flat DC Current Gain  
Fast Switching  
No Coil Required in Base Circuit for Turn–Off (No Current  
Tail)  
Parametric Distributions are Tight and Consistent Lot–to–Lot  
Two Package Choices: Standard TO–220 or Isolated TO–220  
MAXIMUM RATINGS  
Rating  
Symbol  
BUL147  
Unit  
BUL147  
CASE 221A–09  
TO–220AB  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
400  
700  
9.0  
Vdc  
Vdc  
Vdc  
Adc  
V
CES  
EBO  
V
Collector Current — Continuous  
— Peak(1)  
I
C
8.0  
16  
I
I
CM  
Base Current — Continuous  
— Peak(1)  
I
B
4.0  
8.0  
Adc  
BM  
Total Device Dissipation  
Derate above 25°C  
(T = 25°C)  
C
P
D
125  
1.0  
Watts  
W/°C  
Operating and Storage Temperature  
THERMAL CHARACTERISTICS  
Rating  
T , T  
– 65 to 150  
°C  
J
stg  
Symbol  
BUL44  
Unit  
Thermal Resistance — Junction to Case  
— Junction to Ambient  
R
R
1.0  
62.5  
°C/W  
θ
JC  
JA  
θ
Maximum Lead Temperature for Soldering  
T
L
260  
°C  
Purposes: 1/8from Case for 5 Seconds  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
May, 2001 – Rev. 4  
BUL147/D  
BUL147  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
400  
Vdc  
µAdc  
µAdc  
C
CEO(sus)  
Collector Cutoff Current (V = Rated V  
, I = 0)  
I
CEO  
100  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
EB  
I
100  
500  
100  
CE  
CES  
CES  
(T = 125°C)  
C
Collector Cutoff Current (V = 500 V, V = 0)  
(T = 125°C)  
C
CE  
EB  
Emitter Cutoff Current (V = 9.0 Vdc, I = 0)  
I
100  
µAdc  
EB  
C
EBO  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage (I = 2.0 Adc, I = 0.2 Adc)  
V
0.82  
0.92  
1.1  
1.25  
Vdc  
C
B
BE(sat)  
Base–Emitter Saturation Voltage (I = 4.5 Adc, I = 0.9 Adc)  
C
B
Collector–Emitter Saturation Voltage  
(I = 2.0 Adc, I = 0.2 Adc)  
V
Vdc  
CE(sat)  
0.25  
0.3  
0.35  
0.35  
0.5  
0.5  
0.7  
0.8  
C
B
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc)  
C
B
(T = 125°C)  
C
DC Current Gain (I = 1.0 Adc, V = 5.0 Vdc)  
h
FE  
14  
8.0  
7.0  
10  
10  
30  
12  
11  
18  
20  
34  
C
CE  
(T = 125°C)  
C
DC Current Gain (I = 4.5 Adc, V = 1.0 Vdc)  
C
CE  
(T = 125°C)  
C
DC Current Gain (I = 2.0 Adc, V = 1.0 Vdc) (T = 25°C to 125°C)  
C
CE  
C
DC Current Gain (I = 10 mAdc, V = 5.0 Vdc)  
C
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V = 10 Vdc, f = 1.0 MHz)  
f
14  
MHz  
pF  
C
CE  
T
Output Capacitance (V = 10 Vdc, I = 0, f = 1.0 MHz)  
C
100  
175  
2500  
CB  
E
ob  
Input Capacitance (V = 8.0 V)  
C
1750  
pF  
EB  
ib  
1.0  
µs  
3.0  
5.5  
(I = 2.0 Adc  
C
(T = 125°C)  
C
Dynamic Saturation Volt-  
age:  
I
B1  
= 200 mAdc  
3.0  
µs  
0.8  
1.4  
V
CC  
= 300 V)  
Determined 1.0 µs and  
3.0 µs respectively after  
(T = 125°C)  
C
V
Volts  
CE(dsat)  
1.0  
µs  
3.3  
8.5  
rising I reaches 90% of  
B1  
(I = 5.0 Adc  
C
(T = 125°C)  
C
final I  
B1  
I
B1  
= 0.9 Adc  
(see Figure 18)  
3.0  
µs  
0.4  
1.0  
V
CC  
= 300 V)  
(T = 125°C)  
C
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.  
http://onsemi.com  
2
BUL147  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
Turn–On Time  
(I = 2.0 Adc, I = 0.2 Adc  
t
on  
t
off  
t
on  
t
off  
200  
190  
350  
ns  
µs  
ns  
µs  
C
B1  
I
B2  
= 1.0 Adc, V = 300 V)  
(T = 125°C)  
C
CC  
Turn–Off Time  
1.0  
1.6  
2.5  
(T = 125°C)  
C
Turn–On Time  
Turn–Off Time  
(I = 4.5 Adc, I = 0.9 Adc  
85  
100  
150  
C
B1  
I
B1  
= 2.25 Adc, V = 300 V)  
(T = 125°C)  
C
CC  
1.5  
2.0  
2.5  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 µH)  
CC  
clamp  
Fall Time  
(I = 2.0 Adc, I = 0.2 Adc  
t
fi  
100  
120  
180  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
B1  
I
B2  
= 1.0 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.3  
1.9  
2.5  
(T = 125°C)  
C
t
c
210  
230  
350  
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc  
t
fi  
80  
100  
150  
C
B1  
I
B2  
= 2.25 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.6  
2.1  
3.2  
(T = 125°C)  
C
t
c
170  
200  
300  
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc  
t
fi  
60  
150  
180  
C
B1  
I
B2  
= 0.9 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
t
si  
2.6  
4.3  
3.8  
(T = 125°C)  
C
t
c
200  
330  
350  
(T = 125°C)  
C
http://onsemi.com  
3
BUL147  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
CE  
= 5 V  
V
CE  
= 1 V  
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
T = 25°C  
J
T = -Ă20°C  
J
T = -Ă20°C  
J
10  
10  
1
0.01  
1
0.01  
0.1  
1
10  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2
1.5  
1
10  
1
T = 25°C  
J
I = 1 A  
C
3 A  
5 A  
8 A  
10 A  
I /I = 10  
C B  
0.1  
0.5  
0
I /I = 5  
C B  
T = 25°C  
T = 125°C  
J
J
0.01  
0.01  
0.01  
0.1  
1
10  
0.1  
1
10  
I , BASE CURRENT (AMPS)  
B
I COLLECTOR CURRENT (AMPS)  
C
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
1.3  
1.2  
1.1  
1
10000  
1000  
C
T = 25°C  
J
f = 1 MHz  
ib  
C
ob  
0.9  
0.8  
0.7  
0.6  
100  
10  
1
T = 25°C  
J
I /I = 5  
C B  
I /I = 10  
T = 125°C  
J
0.5  
0.4  
C B  
0.01  
0.1  
1
10  
1
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
Figure 5. Base–Emitter Saturation Region  
Figure 6. Capacitance  
http://onsemi.com  
4
BUL147  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
600  
500  
400  
300  
200  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
I
= I /2  
B(off) C  
= 300 V  
I
= I /2  
B(off) C  
= 300 V  
T = 25°C  
T = 125°C  
J
I /I = 5  
C B  
I /I = 10  
J
V
V
CC  
CC  
C B  
PW = 20 µs  
PW = 20 µs  
I /I = 5  
C B  
T = 125°C  
J
T = 25°C  
J
I /I = 10  
C B  
100  
0
500  
0
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Resistive Switching, ton  
Figure 8. Resistive Switching, toff  
3500  
3000  
2500  
2000  
1500  
1000  
4000  
3500  
I
= I /2  
B(off) C  
= 15 V  
T = 25°C  
T = 125°C  
J
I
= I /2  
B(off) C  
= 15 V  
J
V
CC  
V = 300 V  
V
CC  
V = 300 V  
Z
Z
I /I = 5  
C B  
3000  
2500  
2000  
1500  
1000  
500  
L = 200 µH  
L = 200 µH  
C
C
I = 2 A  
C
500  
0
T = 25°C  
T = 125°C  
J
J
I /I = 10  
C B  
I = 4.5 A  
C
0
1
2
3
4
5
6
7
8
3
4
5
6
7
8
9
10 11 12 13 14 15  
h , FORCED GAIN  
FE  
I COLLECTOR CURRENT (AMPS)  
C
Figure 9. Inductive Storage Time, tsi  
Figure 10. Inductive Storage Time, tsi(hFE)  
300  
250  
200  
150  
100  
250  
200  
I
= I /2  
B(off) C  
= 15 V  
T = 25°C  
T = 125°C  
J
J
t
c
V
CC  
V = 300 V  
Z
t
c
L = 200 µH  
C
t
fi  
150  
100  
50  
I
= I /2  
B(off) C  
= 15 V  
V
CC  
V = 300 V  
50  
0
t
fi  
T = 25°C  
T = 125°C  
J
J
Z
L = 200 µH  
C
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Inductive Switching, tc and tfi  
IC/IB = 5  
Figure 12. Inductive Switching, tc and tfi  
IC/IB = 10  
http://onsemi.com  
5
BUL147  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
180  
160  
140  
120  
100  
300  
250  
200  
150  
I
= I /2  
B(off) C  
= 15 V  
T = 25°C  
T = 125°C  
J
I
= I /2  
B(off) C  
= 15 V  
I = 2 A  
C
J
V
CC  
V = 300 V  
V
CC  
V = 300 V  
Z
Z
I = 2 A  
C
L = 200 µH  
L = 200 µH  
C
C
I = 4.5 A  
C
100  
50  
80  
60  
T = 25°C  
T = 125°C  
J
J
I = 4.5 A  
C
3
4
5
6
7
8
9
10 11 12 13 14 15  
3
4
5
6
7
8
9
10 11 12 13 14 15  
h , FORCED GAIN  
FE  
h
FE  
, FORCED GAIN  
Figure 13. Inductive Fall Time  
Figure 14. Inductive Crossover Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
9
100  
10  
1
DC (BUL147)  
5 ms  
T
125°C  
C
8
I /I 4  
C B  
1 ms  
10 µs  
1 µs  
L = 500 µH  
C
7
6
5
4
3
2
EXTENDED  
SOA  
0.1  
-Ă5 V  
1
0
V
= 0 V  
400  
-1, 5 V  
600  
BE(off)  
0.01  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
0
100  
200  
300  
500  
700  
800  
V
CE  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 16. Reverse Bias Switching Safe Operating Area  
Figure 15. Forward Bias Safe Operating Area  
There are two limitations on the power handling ability of a tran-  
sistor: average junction temperature and second breakdown. Safe  
operating area curves indicate IC – VCE limits of the transistor that  
must be observed for reliable operation; i.e., the transistor must not  
be subjected to greater dissipation than the curves indicate. The data  
of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on  
power level. Second breakdown pulse limits are valid for duty cycles  
to 10% but must be derated when TC > 25°C. Second breakdown li-  
mitations do not derate the same as thermal limitations. Allowable  
current at the voltages shown in Figure 15 may be found at any case  
temperature by using the appropriate curve on Figure 17. TJ(pk) may  
be calculated from the data in Figure 20 and NO TAG. At any case  
temperatures, thermal limitations will reduce the power that can be  
handled to values less than the limitations imposed by second break-  
down. For inductive loads, high voltage and current must be sus-  
tained simultaneously during turn–off with the base–to–emitter  
junction reverse–biased. The safe level is specified as a reverse–  
biased safe operating area (Figure 16). This rating is verified under  
clamped conditions so that the device is never subjected to an ava-  
lanche mode.  
1.0  
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
THERMAL DERATING  
0.2  
0.0  
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 17. Forward Bias Power Derating  
http://onsemi.com  
6
BUL147  
10  
5
4
V
CE  
90% I  
I
C
C
9
8
7
6
5
t
fi  
3
dyn 1 µs  
t
si  
2
dyn 3 µs  
1
t
c
10% I  
C
V
10% V  
CLAMP  
0
CLAMP  
-1  
-2  
-3  
-4  
-5  
4
3
2
1
0
90% I  
B
I
B
90% I 1  
B
1 µs  
3 µs  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I PEAK  
C
100 µF  
1 µF  
MTP8P10  
MUR105  
MJE210  
100 Ω  
3 W  
150 Ω  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I 1  
B
I
MPF930  
+10 V  
out  
I
B
A
I 2  
B
50 Ω  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
L = 200 µH  
RB2 = 0  
RBSOA  
L = 500 µH  
RB2 = 0  
MTP12N10  
150 Ω  
3 W  
RB2 = ∞  
500 µF  
V
CC  
I (pk) = 100 mA  
= 20 VOLTS  
V
= 15 VOLTS  
V
= 15 VOLTS  
CC  
CC  
RB1 SELECTED FOR  
DESIRED I 1  
RB1 SELECTED  
FOR DESIRED I 1  
C
1 µF  
B
B
-V  
off  
COMMON  
Table 1. Inductive Load Switching Drive Circuit  
TYPICAL THERMAL RESPONSE  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
JC  
= 1.0°C/W MAX  
θ
JC  
JC  
0.1  
θ
0.05  
0.02  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
t
2
T
- T = P  
C
R (t)  
θ
JC  
J(pk)  
(pk)  
SINGLE PULSE  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 20. Typical Thermal Response (ZθJC(t)) for BUL147  
http://onsemi.com  
7
BUL147  
PACKAGE DIMENSIONS  
TO–220AB  
CASE 221A–09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
2
3
U
H
G
H
J
K
L
L
R
J
N
Q
R
S
T
V
G
D
U
V
Z
N
0.080  
2.04  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
BUL147/D  

相关型号:

BUL14716

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL14716A

Power Bipolar Transistor, 10A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL147A

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AJ

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AJ

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL147AK

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL147AN

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AS

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AU

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL147BA

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI