BUL147 [ONSEMI]

POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS; 功率晶体管8.0安培700伏45和125瓦
BUL147
型号: BUL147
厂家: ONSEMI    ONSEMI
描述:

POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS
功率晶体管8.0安培700伏45和125瓦

晶体 晶体管
文件: 总10页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUL147/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Bipolar Power Transistor  
For Switching Power Supply Applications  
*Motorola Preferred Device  
POWER TRANSISTOR  
8.0 AMPERES  
700 VOLTS  
45 and 125 WATTS  
The BUL147/BUL147F have an applications specific state–of–the–art die designed  
for use in electric fluorescent lamp ballasts to 180 Watts and in Switchmode Power  
supplies for all types of electronic equipment. These high–voltage/high–speed  
transistors offer the following:  
Improved Efficiency Due to Low Base Drive Requirements:  
— High and Flat DC Current Gain  
— Fast Switching  
— No Coil Required in Base Circuit for Turn–Off (No Current Tail)  
Parametric Distributions are Tight and Consistent Lot–to–Lot  
Two Package Choices: Standard TO–220 or Isolated TO–220  
BUL147F, Isolated Case 221D, is UL Recognized to 3500 V  
: File #E69369  
RMS  
MAXIMUM RATINGS  
Rating  
Symbol  
BUL147  
BUL147F  
400  
Unit  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
Vdc  
Vdc  
Vdc  
Adc  
V
700  
9.0  
CES  
EBO  
V
BUL147  
CASE 221A–06  
TO–220AB  
Collector Current — Continuous  
— Peak(1)  
I
C
8.0  
16  
I
CM  
Base Current — Continuous  
— Peak(1)  
I
4.0  
8.0  
Adc  
B
I
BM  
RMS Isolated Voltage(2)  
(for 1 sec, R.H. < 30%,  
Test No. 1 Per Fig. 22a  
Test No. 2 Per Fig. 22b  
Test No. 3 Per Fig. 22c  
V
ISOL  
4500  
3500  
1500  
Volts  
T
C
= 25°C)  
Total Device Dissipation  
Derate above 25°C  
(T = 25°C)  
C
P
D
125  
1.0  
45  
0.36  
Watts  
W/°C  
Operating and Storage Temperature  
T , T  
– 65 to 150  
°C  
J
stg  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
BUL44  
BUL44F  
Unit  
BUL147F  
CASE 221D–02  
ISOLATED TO–220 TYPE  
UL RECOGNIZED  
Thermal Resistance — Junction to Case  
R
θJC  
R
θJA  
1.0  
62.5  
2.78  
62.5  
°C/W  
— Junction to Ambient  
Maximum Lead Temperature for Soldering  
Purposes: 1/8from Case for 5 Seconds  
T
L
260  
°C  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
400  
Vdc  
µAdc  
µAdc  
C
CEO(sus)  
Collector Cutoff Current (V  
= Rated V  
, I = 0)  
I
CEO  
100  
CE  
CE  
CEO  
B
Collector Cutoff Current (V  
= Rated V  
, V  
= 0)  
I
100  
500  
100  
CES EB  
CES  
(T = 125°C)  
C
Collector Cutoff Current (V  
CE  
= 500 V, V  
EB  
= 0)  
(T = 125°C)  
C
Emitter Cutoff Current (V  
EB  
= 9.0 Vdc, I = 0)  
I
100  
µAdc  
C
EBO  
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.  
(continued)  
(2) Proper strike and creepage distance must be provided.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage (I = 2.0 Adc, I = 0.2 Adc)  
V
0.82  
0.92  
1.1  
1.25  
Vdc  
Vdc  
C
B
BE(sat)  
Base–Emitter Saturation Voltage (I = 4.5 Adc, I = 0.9 Adc)  
C
B
Collector–Emitter Saturation Voltage  
(I = 2.0 Adc, I = 0.2 Adc)  
V
CE(sat)  
0.25  
0.3  
0.35  
0.35  
0.5  
0.5  
0.7  
0.8  
C
B
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc)  
C
B
(T = 125°C)  
C
DC Current Gain (I = 1.0 Adc, V  
= 5.0 Vdc)  
= 1.0 Vdc)  
h
FE  
14  
8.0  
7.0  
10  
10  
30  
12  
11  
18  
20  
34  
C
CE  
CE  
CE  
(T = 125°C)  
C
DC Current Gain (I = 4.5 Adc, V  
C
(T = 125°C)  
C
DC Current Gain (I = 2.0 Adc, V  
= 1.0 Vdc) (T = 25°C to 125°C)  
C
C
DC Current Gain (I = 10 mAdc, V  
= 5.0 Vdc)  
C
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V  
= 10 Vdc, f = 1.0 MHz)  
= 10 Vdc, I = 0, f = 1.0 MHz)  
f
14  
MHz  
pF  
C
CE  
T
Output Capacitance (V  
CB  
C
100  
175  
2500  
E
ob  
Input Capacitance (V  
EB  
= 8.0 V)  
C
1750  
pF  
ib  
3.0  
5.5  
1.0 µs  
3.0 µs  
1.0 µs  
3.0 µs  
(I = 2.0 Adc  
C
(T = 125°C)  
C
Dynamic Saturation Voltage:  
Determined 1.0 µs and  
3.0 µs respectively after  
I
V
= 200 mAdc  
B1  
0.8  
1.4  
= 300 V)  
CC  
(T = 125°C)  
C
V
Volts  
CE(dsat)  
rising I reaches 90% of  
B1  
3.3  
8.5  
(I = 5.0 Adc  
final I  
B1  
C
(T = 125°C)  
C
I
= 0.9 Adc  
= 300 V)  
(see Figure 18)  
B1  
0.4  
1.0  
V
CC  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
Turn–On Time  
(I = 2.0 Adc, I = 0.2 Adc  
t
on  
t
off  
t
on  
t
off  
200  
190  
350  
ns  
µs  
ns  
µs  
C
B1  
= 1.0 Adc, V  
I
= 300 V)  
(T = 125°C)  
C
B2  
CC  
Turn–Off Time  
1.0  
1.6  
2.5  
(T = 125°C)  
C
Turn–On Time  
Turn–Off Time  
(I = 4.5 Adc, I = 0.9 Adc  
85  
100  
150  
C
B1  
B1  
= 2.25 Adc, V  
I
= 300 V)  
(T = 125°C)  
C
CC  
1.5  
2.0  
2.5  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
clamp  
= 300 V, V = 15 V, L = 200 µH)  
CC  
Fall Time  
(I = 2.0 Adc, I = 0.2 Adc  
t
fi  
100  
120  
180  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
B1  
I
= 1.0 Adc)  
(T = 125°C)  
C
B2  
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.3  
1.9  
2.5  
(T = 125°C)  
C
t
c
210  
230  
350  
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc  
t
fi  
80  
100  
150  
C
B2  
B1  
= 2.25 Adc)  
I
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.6  
2.1  
3.2  
(T = 125°C)  
C
t
c
170  
200  
300  
(T = 125°C)  
C
(I = 4.5 Adc, I = 0.9 Adc  
t
fi  
60  
150  
180  
C
B2  
B1  
I
= 0.9 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
t
si  
2.6  
4.3  
3.8  
(T = 125°C)  
C
t
c
200  
330  
350  
(T = 125°C)  
C
3–2  
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
= 5 V  
V
= 1 V  
CE  
T
= 125°C  
T = 125°C  
J
CE  
J
T
= 25°C  
T = 25°C  
J
J
T
= – 20°C  
J
T
= – 20°C  
10  
10  
J
1
0.01  
1
0.01  
0.1  
1
10  
0.1  
I , COLLECTOR CURRENT (AMPS)  
C
1
10  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2
1.5  
1
10  
1
T
= 25°C  
J
I
= 1 A  
3 A  
5 A  
8 A  
10 A  
C
I
/I = 10  
C B  
0.1  
0.5  
0
I
/I = 5  
C B  
T
T
= 25°C  
= 125°C  
J
J
0.01  
0.01  
0.1  
1
10  
0.01  
0.1  
I COLLECTOR CURRENT (AMPS)  
C
1
10  
I
, BASE CURRENT (AMPS)  
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
1.3  
1.2  
1.1  
1
10000  
1000  
C
T
= 25°C  
ib  
J
f = 1 MHz  
C
ob  
0.9  
0.8  
0.7  
0.6  
100  
10  
1
T
= 25°C  
J
I
I
/I = 5  
C B  
T
= 125°C  
J
0.5  
0.4  
/I = 10  
C B  
0.01  
0.1  
1
10  
1
10  
100  
I
, COLLECTOR CURRENT (AMPS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
C
CE  
Figure 5. Base–Emitter Saturation Region  
Figure 6. Capacitance  
3–3  
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
600  
500  
400  
300  
200  
4000  
3500  
3000  
I
V
= I /2  
C
I
V
= I /2  
= 300 V  
B(off)  
CC  
B(off) C  
CC  
T
T
= 25°C  
= 125°C  
I
I
/I = 5  
J
J
C B  
= 300 V  
/I = 10  
C B  
PW = 20  
µs  
PW = 20 µs  
I
/I = 5  
C B  
T
= 125°C  
J
2500  
2000  
1500  
1000  
T
= 25°C  
J
I
/I = 10  
C B  
100  
0
500  
0
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 7. Resistive Switching, t  
on  
Figure 8. Resistive Switching, t  
off  
3500  
3000  
2500  
2000  
1500  
1000  
4000  
3500  
I
V
V
L
= I /2  
C
CC  
= 300 V  
T
T
= 25°C  
= 125°C  
I
= I /2  
C
B(off)  
= 15 V  
J
J
B(off)  
CC  
Z
C
V
V
L
= 15 V  
= 300 V  
= 200 µH  
Z
C
I
/I = 5  
C B  
3000  
2500  
2000  
1500  
1000  
500  
= 200 µH  
I
= 2 A  
C
500  
0
T
T
= 25°C  
J
J
I
/I = 10  
C B  
= 125°C  
I
= 4.5 A  
8
C
7
0
1
2
3
4
5
6
7
8
3
4
5
6
9
10  
11 12  
13 14  
15  
I
COLLECTOR CURRENT (AMPS)  
h
, FORCED GAIN  
C
FE  
Figure 9. Inductive Storage Time, t  
Figure 10. Inductive Storage Time, t (h  
si FE  
)
si  
300  
250  
200  
150  
100  
250  
200  
I
= I /2  
C
CC  
= 300 V  
T
T
= 25°C  
B(off)  
J
J
t
c
V
V
L
= 15 V  
= 125°C  
Z
C
t
= 200 µH  
c
t
fi  
150  
100  
I
= I /2  
C
B(off)  
CC  
Z
C
V
V
L
= 15 V  
50  
0
50  
0
t
fi  
T
T
= 25°C  
= 125°C  
= 300 V  
J
J
= 200  
µH  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 11. Inductive Switching, t and t  
fi  
Figure 12. Inductive Switching, t and t  
fi  
c
c
I /I = 5  
C B  
I /I = 10  
C B  
3–4  
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
180  
160  
140  
120  
100  
300  
I
= I /2  
= 15 V  
= 300 V  
= 200 µH  
T
T
= 25  
= 125  
°
C
I
= I /2  
= 15 V  
= 300 V  
= 200 µH  
I
= 2 A  
B(off)  
CC  
Z
C
C
J
J
B(off) C  
CC  
Z
C
C
V
V
L
°C  
V
V
L
250  
200  
150  
I
= 2 A  
C
I
= 4.5 A  
C
100  
50  
80  
60  
T
T
= 25°C  
J
J
= 125°C  
I
= 4.5 A  
5
C
4
3
6
7
8
9
10  
11 12  
13 14  
15  
3
4
5
6
7
8
9
10 11  
12  
13  
14  
15  
h
, FORCED GAIN  
h , FORCED GAIN  
FE  
FE  
Figure 13. Inductive Fall Time  
Figure 14. Inductive Crossover Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
9
100  
10  
1
DC (BUL147)  
5 ms  
T
125°C  
/I 4  
= 500 µH  
C
8
I
L
C B  
1 ms  
10  
µs  
1 µs  
7
6
5
4
3
2
C
EXTENDED  
SOA  
DC (BUL147F)  
0.1  
– 5 V  
700  
1
0
V
= 0 V  
–1, 5 V  
600  
BE(off)  
0.01  
10  
100  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
1000  
0
100  
V
200  
300 400  
500  
800  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 15. Forward Bias Safe Operating Area  
Figure 16. Reverse Bias Switching Safe Operating Area  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
1.0  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipation  
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
than the curves indicate. The data of Figure 15 is based on T  
C
= 25°C; T  
is variable depending on power level. Second  
J(pk)  
breakdown pulse limits are valid for duty cycles to 10% but  
must be derated when T > 25°C. Second breakdown limita-  
C
tions do not derate the same as thermal limitations. Allowable  
current at the voltages shown in Figure 15 may be found at  
any case temperature by using the appropriate curve on Fig-  
THERMAL DERATING  
ure 17. T  
may be calculated from the data in Figure 20  
J(pk)  
0.2  
0.0  
and 21. At any case temperatures, thermal limitations will re-  
duce the power that can be handled to values less than the  
limitations imposed by second breakdown. For inductive  
loads, high voltage and current must be sustained simulta-  
neously during turn–off with the base–to–emitter junction re-  
verse–biased. The safe level is specified as a reverse–biased  
safe operating area (Figure 16). This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode.  
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 17. Forward Bias Power Derating  
3–5  
Motorola Bipolar Power Transistor Device Data  
10  
5
4
V
CE  
90% I  
I
C
9
8
7
6
5
C
t
fi  
3
dyn 1 µs  
t
si  
2
dyn 3 µs  
1
t
10% I  
C
c
V
I
10% V  
0
CLAMP  
CLAMP  
–1  
–2  
–3  
–4  
–5  
4
90% I  
B
90% I  
B
1
B
3
2
1
0
1 µs  
3 µs  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
MTP8P10  
MUR105  
MJE210  
100  
3 W  
150  
3 W  
V
PEAK  
CE  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I
1
B
I
MPF930  
+10 V  
out  
I
B
A
I
2
B
50  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
RBSOA  
L = 500  
RB2 = 0  
COMMON  
MTP12N10  
150  
3 W  
L = 200  
µH  
µH  
RB2 =  
RB2 = 0  
500 µF  
V
= 20 VOLTS  
V
= 15 VOLTS  
V
= 15 VOLTS  
CC  
(pk) = 100 mA  
CC  
RB1 SELECTED FOR  
DESIRED I  
CC  
RB1 SELECTED  
FOR DESIRED I  
I
C
1 µF  
1
1
B
B
–V  
off  
Table 1. Inductive Load Switching Drive Circuit  
3–6  
Motorola Bipolar Power Transistor Device Data  
TYPICAL THERMAL RESPONSE  
1
D = 0.5  
0.2  
0.1  
P
R
R
(t) = r(t) R  
θ
(pk)  
θ
θ
JC  
JC  
JC  
°C/W MAX  
0.1  
= 1.0  
0.05  
0.02  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
t
2
T
– T = P  
C
R
(t)  
JC  
J(pk)  
(pk)  
θ
SINGLE PULSE  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 20. Typical Thermal Response (Z  
(t)) for BUL147  
θJC  
1
D = 0.5  
0.2  
P
R
(t) = r(t) R  
θJC  
= 2.78°C/W MAX  
(pk)  
θ
JC  
JC  
0.1  
R
0.1  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
t
1
READ TIME AT t  
1
t
2
T
– T = P  
R
(t)  
JC  
J(pk)  
C
(pk)  
θ
DUTY CYCLE, D = t /t  
1 2  
0.02  
SINGLE PULSE  
0.1  
0.01  
0.01  
1
10  
100  
1000  
10000  
100000  
t, TIME (ms)  
Figure 21. Typical Thermal Response (Z  
θJC  
(t)) for BUL147F  
3–7  
Motorola Bipolar Power Transistor Device Data  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
CLIP  
CLIP  
0.107  
MIN  
0.107MIN  
PACKAGE  
LEADS  
LEADS  
LEADS  
HEATSINK  
0.110 MIN  
HEATSINK  
HEATSINK  
Figure 22a. Screw or Clip Mounting Position Figure 22b. Clip Mounting Position  
for Isolation Test Number 1 for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
* Measurement made between leads and heatsink with all leads shorted together.  
MOUNTING INFORMATION**  
4–40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
HEATSINK  
NUT  
Figure 23a. Screw–Mounted  
Figure 23b. Clip–Mounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw  
.
torque of 6 to 8 in lbs is sufficientto provide maximum power dissipation capability. The compression washer helps to maintain a constant  
pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additionaltests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affectingthepackage.  
.
However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in lbs  
of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
3–8  
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
L
R
J
3. EMITTER  
4. COLLECTOR  
V
G
T
U
V
D
N
Z
0.080  
2.04  
BUL44  
CASE 221A–06  
TO–220AB  
ISSUE Y  
SEATING  
–T–  
PLANE  
–B–  
C
NOTES:  
F
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
S
Q
H
U
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MIN  
MAX  
0.629  
0.402  
0.189  
0.034  
0.129  
MIN  
15.78  
10.01  
4.60  
MAX  
15.97  
10.21  
4.80  
A
K
0.621  
0.394  
0.181  
0.026  
0.121  
1
2 3  
0.67  
0.86  
STYLE 2:  
3.08  
3.27  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
–Y–  
0.100 BSC  
2.54 BSC  
0.123  
0.018  
0.500  
0.045  
0.129  
0.025  
0.562  
0.060  
3.13  
0.46  
3.27  
0.64  
12.70  
1.14  
14.27  
1.52  
G
N
J
0.200 BSC  
5.08 BSC  
R
0.126  
0.107  
0.096  
0.259  
0.134  
0.111  
0.104  
0.267  
3.21  
2.72  
2.44  
6.58  
3.40  
2.81  
2.64  
6.78  
L
D 3 PL  
U
M
M
0.25 (0.010)  
B
Y
BUL44F  
CASE 221D–02  
(ISOLATED TO–220 TYPE)  
ISSUE D  
3–9  
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUL147/D  

相关型号:

BUL147/D

SWITCHMODE NPN Bipolar Power Transistor For Switching Power Supply Applications
ETC

BUL14716

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL14716A

Power Bipolar Transistor, 10A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL147A

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AF

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AJ

10A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL147AJ

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL147AK

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL147AN

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AS

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL147AU

8A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI