BUH150 [MOTOROLA]

POWER TRANSISTOR 15 AMPERES 700 VOLTS 150 WATTS; 功率晶体管15安培700伏150瓦
BUH150
型号: BUH150
厂家: MOTOROLA    MOTOROLA
描述:

POWER TRANSISTOR 15 AMPERES 700 VOLTS 150 WATTS
功率晶体管15安培700伏150瓦

晶体 晶体管
文件: 总10页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUH150/D  
SEMICONDUCTOR TECHNICAL DATA  
POWER TRANSISTOR  
15 AMPERES  
700 VOLTS  
150 WATTS  
The BUH150 has an application specific state–of–art die designed for use in  
150 Watts Halogen electronic transformers.  
This power transistor is specifically designed to sustain the large inrush current  
during either the start–up conditions or under a short circuit across the load.  
This High voltage/High speed product exhibits the following main features:  
Improved Efficiency Due to the Low Base Drive Requirements:  
— High and Flat DC Current Gain h  
— Fast Switching  
FE  
Robustness Thanks to the Technology Developed to Manufacture  
this Device  
Motorola “6 SIGMA” Philosophy Provides Tight and Reproducible  
Parametric Distributions  
CASE 221A–06  
TO–220AB  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
700  
700  
10  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Base Breakdown Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
CBO  
V
V
CES  
EBO  
V
Collector Current — Continuous  
— Peak (1)  
I
C
15  
25  
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
6
12  
Adc  
B
I
BM  
*Total Device Dissipation @ T = 25 C  
C
*Derate above 25°C  
P
D
150  
1.2  
Watt  
W/ C  
Operating and Storage Temperature  
T , T  
65 to 150  
C
J
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance  
— Junction to Case  
— Junction to Ambient  
C/W  
R
θJC  
R
θJA  
0.85  
62.5  
Maximum Lead Temperature for Soldering Purposes:  
1/8from case for 5 seconds  
T
L
260  
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
400  
700  
10  
460  
860  
12.3  
Vdc  
Vdc  
CEO(sus)  
Collector–Base Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
Emitter–Base Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
µAdc  
µAdc  
µAdc  
µAdc  
CE CEO  
B
Collector Cutoff Current  
(V = Rated V , V  
@ T = 25°C  
I
100  
1000  
C
CES  
CBO  
= 0)  
= 0)  
@ T = 125°C  
CE CES EB  
C
Collector Base Current  
(V = Rated V  
@ T = 25°C  
I
100  
1000  
C
, V  
@ T = 125°C  
CB CBO EB  
C
Emitter–Cutoff Current  
(V = 9 Vdc, I = 0)  
I
100  
EBO  
EB  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
C
V
1
1.25  
Vdc  
Vdc  
BE(sat)  
C
B
Collector–Emitter Saturation Voltage  
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
V
0.16  
0.15  
0.4  
0.4  
C
CE(sat)  
@ T = 125°C  
C
B
C
(I = 10 Adc, I = 2 Adc)  
@ T = 25°C  
0.45  
2
1
5
Vdc  
Vdc  
C
B
C
(I = 20 Adc, I = 4 Adc)  
@ T = 25°C  
C
C
B
DC Current Gain (I = 20 Adc, V  
= 5 Vdc)  
= 5 Vdc)  
@ T = 25°C  
h
FE  
4
2.5  
7
4.5  
C
CE  
C
@ T = 125°C  
C
DC Current Gain (I = 10 Adc, V  
@ T = 25°C  
8
6
12  
10  
C
CE  
C
@ T = 125°C  
C
DC Current Gain (I = 2 Adc, V  
CE  
= 1 Vdc)  
@ T = 25°C  
12  
14  
20  
22  
C
C
@ T = 125°C  
C
DC Current Gain (I = 100 mAdc, V  
C
= 5 Vdc)  
@ T = 25°C  
10  
20  
CE  
C
DYNAMIC SATURATION VOLTAGE  
Dynamic Saturation  
@ T = 25°C  
V
1.5  
2.8  
2.4  
5
V
V
V
V
C
CE(dsat)  
I
= 5 Adc, I = 1 Adc  
B1  
C
Voltage:  
Determined 3 µs after  
rising I reaches  
V
= 300 V  
CC  
@ T = 125°C  
C
B1  
@ T = 25°C  
C
I
C
= 10 Adc, I = 2 Adc  
B1  
90% of final I  
B1  
(see Figure 19)  
V
CC  
= 300 V  
@ T = 125°C  
C
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
23  
MHz  
pF  
T
(I = 1 Adc, V  
C CE  
= 10 Vdc, f = 1 MHz)  
Output Capacitance  
(V = 10 Vdc, I = 0, f = 1 MHz)  
C
100  
150  
ob  
CB  
Input Capacitance  
(V = 8 Vdc, f = 1 MHz)  
E
C
1300  
1750  
pF  
ib  
EB  
2
Motorola Bipolar Power Transistor Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 40 µs)  
Turn–on Time  
Storage Time  
Fall Time  
@ T = 25°C  
t
200  
5.3  
240  
5.6  
100  
6.1  
320  
6.5  
300  
6.5  
350  
7
ns  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
C
on  
I
= 2 Adc, I = 0.2 Adc  
B1  
C
@ T = 25°C  
t
s
C
I
= 0.2 Adc  
= 300 Vdc  
B2  
CC  
@ T = 25°C  
t
f
C
V
Turn–off Time  
Turn–on Time  
Storage Time  
Fall Time  
@ T = 25°C  
t
off  
t
on  
C
@ T = 25°C  
200  
7.5  
500  
8
C
I
I
= 2 Adc, I = 0.4 Adc  
B1  
C
@ T = 25°C  
t
s
C
I
= 0.4 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
f
C
V
CC  
Turn–off Time  
Turn–on Time  
@ T = 25°C  
t
off  
t
on  
C
@ T = 25°C  
450  
800  
650  
C
= 5 Adc, I = 0.5 Adc  
@ T = 125°C  
C
B1  
= 0.5 Adc  
= 300 Vdc  
C
I
B2  
Turn–off Time  
Turn–on Time  
Turn–off Time  
@ T = 25°C  
t
off  
t
on  
t
off  
2.5  
3.9  
3
µs  
ns  
µs  
C
V
CC  
@ T = 125°C  
C
@ T = 25°C  
500  
900  
700  
2.75  
C
I
= 10 Adc, I = 2 Adc  
B1  
@ T = 125°C  
C
C
I
= 2 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
2.25  
2.75  
C
V
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 µH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
110  
160  
250  
8
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
fi  
@ T = 125°C  
C
I
= 2 Adc  
= 0.2 Adc  
= 0.2 Adc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
6.5  
8
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
235  
240  
350  
250  
7.5  
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
110  
170  
C
@ T = 125°C  
C
I
C
= 2 Adc  
= 0.4 Adc  
= 0.4 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
6
7.8  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
250  
270  
350  
150  
3.75  
350  
175  
2.75  
350  
C
c
fi  
@ T = 125°C  
C
@ T = 25°C  
t
110  
140  
C
@ T = 125°C  
C
I
C
= 5 Adc  
= 0.5 Adc  
= 0.5 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
3.25  
4.6  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
275  
450  
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
110  
160  
C
@ T = 125°C  
C
I
I
I
= 10 Adc  
= 2 Adc  
= 2 Adc  
C
B1  
B2  
Storage Time  
Crossover Time  
@ T = 25°C  
t
si  
2.3  
2.8  
C
@ T = 125°C  
C
@ T = 25°C  
t
c
250  
475  
C
@ T = 125°C  
C
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
= 1 V  
V
= 3 V  
CE  
CE  
T
= 125°C  
T
= 125°C  
J
J
T
= 20°C  
T = 20°  
J
C
J
10  
10  
T = 25°C  
J
T
= 25°C  
J
1
0.001  
1
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 3 Volt  
100  
10  
1
V
= 5 V  
I
/I = 5  
CE  
C B  
T
= 125°C  
J
T
= 125°C  
J
T
= 20°C  
J
T
= 25°C  
T
= 25°C  
10  
J
J
T
= 20°C  
0.1  
0.01  
J
1
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
I , COLLECTOR CURRENT (AMPS)  
C
1
10  
100  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 3. DC Current Gain @ 5 Volt  
Figure 4. Collector–Emitter Saturation Voltage  
10  
1
1.5  
1
I
/I = 10  
I
/I = 5  
C B  
C B  
T
= 20°C  
J
T
= 125°C  
J
T
= 25  
°
C
J
0.1  
0.5  
0
T
= 125°  
C
J
T
= 25°C  
J
0.01  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
I
0.1  
1
10  
100  
I
, COLLECTOR CURRENT (AMPS)  
, COLLECTOR CURRENT (AMPS)  
C
C
Figure 5. Collector–Emitter Saturation Voltage  
Figure 6. Base–Emitter Saturation Region  
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
1.5  
1
2
T
= 25°C  
J
I
/I = 10  
C B  
1.5  
1
T
= 20°C  
J
T
= 25  
°
C
J
20 A  
0.5  
0
15 A  
V
T
= 125  
°
C
0.5  
0
CE(sat)  
J
(I = 1 A)  
10 A  
C
8 A  
5 A  
1
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
10  
100  
I
, COLLECTOR CURRENT (AMPS)  
I , BASE CURRENT (A)  
B
C
Figure 7. Base–Emitter Saturation Region  
Figure 8. Collector Saturation Region  
10000  
1000  
900  
800  
700  
600  
T
= 25°C  
T
f
= 25°C  
J
J
= 1 MHz  
BVCER @ 10 mA  
(test)  
C
(pF)  
ib  
BVCER(sus) @ 200 mA  
C
(pF)  
ob  
100  
10  
500  
400  
1
10  
, REVERSE VOLTAGE (VOLTS)  
100  
10  
100  
1000  
V
R
()  
R
BE  
Figure 9. Capacitance  
Figure 10. Resistive Breakdown  
5
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
12  
10  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
T
= 25  
= 125  
°
C
I
= I  
= 300 V  
I
= I  
= 300 V  
J
J
B1 B2  
B1 B2  
°C  
V
V
CC  
PW = 20  
CC  
PW = 40  
I
/I = 10  
C B  
µ
s
µ
s
25°C  
8
6
4
125°C  
I
/I = 5  
C B  
125°C  
600  
400  
2
0
I
/I = 10  
C B  
25  
°C  
I
/I = 5  
200  
0
C B  
0
3
6
9
12  
15  
15  
15  
0
5
10  
I , COLLECTOR CURRENT (AMPS)  
C
15  
10  
10  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 11. Resistive Switching, t  
on  
Figure 12. Resistive Switch Time, t  
off  
8
7
6
5
4
3
2
1
0
8
7
I
/I = 5  
I
= I  
I
/I = 10  
I
V
V
L
= I  
C B  
B1 B2  
C B  
B1 B2  
V
V
L
= 15 V  
= 300 V  
= 15 V  
CC  
CC  
= 300 V  
= 200  
Z
C
Z
C
6
5
4
3
2
= 200  
µH  
µ
H
T
T
= 125°C  
T
T
= 125°C  
= 25°C  
J
J
J
J
1
0
= 25°C  
1
3
5
7
9
11  
13  
1
4
7
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 13. Inductive Storage Time, t  
si  
Figure 13 Bis. Inductive Storage Time, t  
si  
550  
450  
350  
250  
800  
700  
I
V
V
= I  
T
T
= 125°C  
= 25°C  
B1 B2  
J
J
I
V
V
= I  
T
T
= 125°C  
= 25°C  
B1 B2  
C
C
= 15 V  
CC  
= 15 V  
= 300 V  
CC  
= 300 V  
Z
C
Z
C
600  
500  
400  
300  
200  
L
= 200 µH  
L
= 200 µH  
t
c
t
c
t
fi  
t
fi  
150  
50  
100  
0
1
3
5
7
9
11  
13  
0
2
4
6
8
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 14. Inductive Storage Time,  
Figure 15. Inductive Storage Time,  
t & t @ I /I = 5  
t & t @ I /I = 10  
c fi C B  
c
fi C B  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
5
4
3
2
200  
T
T
= 125°C  
= 25°C  
J
J
I
= 5 A  
C
150  
100  
I
= 5 A  
C
I
= I  
I
= I  
B1 B2  
Boff B2  
50  
0
I
= 10 A  
C
V
V
L
= 15 V  
V
V
L
= 15 V  
1
0
CC  
= 300 V  
CC  
= 300 V  
I
= 10 A  
C
T
T
= 125°C  
= 25°C  
Z
C
Z
J
J
= 200 µH  
= 200  
µH  
C
2
4
6
8
10  
3
4
5
6
7
8
9
10  
h
, FORCED GAIN  
h
, FORCED GAIN  
FE  
FE  
Figure 16. Inductive Storage Time  
Figure 17. Inductive Fall Time  
800  
I
V
V
= I  
T
T
= 125°C  
= 25°C  
B1 B2  
J
J
700  
600  
500  
400  
= 15 V  
= 300 V  
CC  
Z
C
L
= 200 µH  
I
= 10 A  
C
I
= 5 A  
C
300  
200  
100  
3
4
5
6
7
8
9
10  
h
, FORCED GAIN  
FE  
Figure 18. Inductive Crossover Time  
7
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
I
C
9
8
7
6
5
4
CE  
90% I  
C
t
dyn 1 µs  
fi  
t
si  
dyn 3 µs  
10% I  
C
V
10% V  
90% I  
0 V  
clamp  
clamp  
t
c
90% I  
B
3
2
1
0
I
B1  
B
1 µs  
I
B
3 µs  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 19. Dynamic Saturation Voltage  
Measurements  
Figure 20. Inductive Switching Measurements  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
100  
3 W  
MTP8P10  
MUR105  
150  
3 W  
V
PEAK  
CE  
V
MTP8P10  
CE  
R
MPF930  
B1  
I
1
B
MPF930  
I
+10 V  
out  
I
B
A
I
2
B
50  
R
B2  
MJE210  
COMMON  
MTP12N10  
150  
3 W  
V
Inductive Switching  
L = 200  
RBSOA  
L = 500 µH  
(BR)CEO(sus)  
L = 10 mH  
500 µF  
µ
H
R
=
R
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
B2  
B2  
B2  
1
µF  
V
I
= 20 Volts  
V
R
V
CC  
CC  
B1  
CC  
= 100 mA  
R selected for  
C(pk)  
B1  
–V  
off  
desired I  
B1  
desired I  
B1  
TYPICAL THERMAL RESPONSE  
1
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
THERMAL DERATING  
0.2  
0
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 21. Forward Bias Power Derating  
8
Motorola Bipolar Power Transistor Device Data  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
T
may be calculated from the data in Figure 24. At any  
J(pk)  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turn–off with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating  
area (Figure 23). This rating is verified under clamped  
conditions so that the device is never subjected to an  
avalanche mode.  
down. Safe operating area curves indicate I V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate. The data of Figure 22 is based  
on T = 25°C; T  
Second breakdown pulse limits are valid for duty cycles to  
is variable depending on power level.  
C
J(pk)  
10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
Figure 22 may be found at any case temperature by using  
the appropriate curve on Figure 21.  
100  
16  
GAIN  
5
T
L
125  
°C  
C
C
14  
12  
10  
8
1 µs  
= 4 mH  
10  
µ
s
10  
1
5 ms  
1 ms  
DC  
6
–5 V  
0.1  
4
0 V  
–1.5 V  
2
0
0.01  
1
10  
100  
1000  
300  
400  
V , COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
500  
600  
700  
800  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 22. Forward Bias Safe Operating Area  
Figure 23. Reverse Bias Safe Operating Area  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
= 0.83  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
0.02  
t
1
READ TIME AT t  
1
t
2
T
– T = P  
C
R
(t)  
JC  
J(pk)  
(pk)  
θ
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.1  
0.01  
0.01  
1
10  
100  
1000  
t, TIME (ms)  
Figure 24. Typical Thermal Response (Z  
θJC  
(t)) for BUH150  
9
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUH150/D  

相关型号:

BUH150/D

SWITCHMODE? NPN Silicon Planar Power Transistor
ETC

BUH150AF

TRANSISTOR 15 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUH150AN

15A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN
ONSEMI

BUH150AU

TRANSISTOR 15 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUH150BC

15A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN
ONSEMI

BUH150BD

15A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN
ONSEMI

BUH150BS

15A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN
ONSEMI

BUH150BU

TRANSISTOR 15 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUH150DW

暂无描述
ONSEMI

BUH150G

SWITCHMODE NPN Silicon Planar Power Transistor
ONSEMI

BUH2M20AP

HIGH VOLTAGE NPN SILICON POWER TRANSISTOR
STMICROELECTR

BUH313

Silicon NPN Power Transistors
SAVANTIC