BC856BWT1 [MOTOROLA]

CASE 419-02, STYLE 3 SOT-323/SC-70; CASE 419-02 ,花柱3 SOT- 323 / SC- 70
BC856BWT1
型号: BC856BWT1
厂家: MOTOROLA    MOTOROLA
描述:

CASE 419-02, STYLE 3 SOT-323/SC-70
CASE 419-02 ,花柱3 SOT- 323 / SC- 70

晶体 小信号双极晶体管
文件: 总8页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BC856AWT1/D  
SEMICONDUCTOR TECHNICAL DATA  
PNP Silicon  
COLLECTOR  
3
These transistors are designed for general purpose amplifier  
applications. They are housed in the SOT–323/SC–70 which is  
designed for low power surface mount applications.  
1
Motorola Preferred Devices  
BASE  
2
EMITTER  
MAXIMUM RATINGS  
Rating  
Symbol BC856 BC857 BC858  
Unit  
V
3
CollectorEmitter Voltage  
CollectorBase Voltage  
EmitterBase Voltage  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
V
V
V
–65  
–80  
–45  
–50  
–30  
–30  
CEO  
CBO  
EBO  
1
V
2
–5.0  
–100  
–5.0  
–100  
–5.0  
–100  
V
CASE 419–02, STYLE 3  
SOT–323/SC–70  
I
C
mAdc  
Symbol  
Max  
Unit  
Total Device Dissipation FR5 Board, (1)  
= 25°C  
P
D
150  
mW  
T
A
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
833  
°C/W  
°C  
JA  
T , T  
J stg  
55 to +150  
BC856AWT1 = 3A; BC856BWT1 = 3B; BC857AWT1 = 3E; BC857BWT1 = 3F;  
BC858AWT1 = 3J; BC858BWT1 = 3K; BC858CWT1 = 3L  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Breakdown Voltage  
(I = –10 mA)  
C
BC856 Series  
BC857 Series  
BC858 Series  
V
–65  
–45  
–30  
V
(BR)CEO  
CollectorEmitter Breakdown Voltage  
BC856 Series  
BC857 Series  
BC858 Series  
V
–80  
–50  
–30  
V
V
V
(BR)CES  
(BR)CBO  
(BR)EBO  
(I = –10 µA, V  
C EB  
= 0)  
CollectorBase Breakdown Voltage  
(I = –10 A)  
C
BC856 Series  
BC857 Series  
BC858 Series  
V
V
–80  
–50  
–30  
EmitterBase Breakdown Voltage  
(I = –1.0 A)  
E
BC856 Series  
BC857 Series  
BC858 Series  
–5.0  
–5.0  
–5.0  
Collector Cutoff Current (V  
Collector Cutoff Current (V  
= –30 V)  
= –30 V, T = 150°C)  
I
–15  
–4.0  
nA  
µA  
CB  
CB  
CBO  
A
1. FR–5 = 1.0 x 0.75 x 0.062 in  
Thermal Clad is a registered trademark of the Bergquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain  
(I = –10 µA, V  
BC856A, BC857A, BC585A  
BC856A, BC857A, BC858A  
BC858C  
h
FE  
90  
150  
270  
= –5.0 V)  
CE  
C
(I = –2.0 mA, V  
C CE  
= –5.0 V) BC856A, BC857A, BC858A  
BC856B, BC857B, BC858B  
BC858C  
125  
220  
420  
180  
290  
520  
250  
475  
800  
CollectorEmitter Saturation Voltage  
(I = –10 mA, I = –0.5 mA)  
V
V
V
V
V
CE(sat)  
–0.3  
–0.65  
C
B
(I = –100 mA, I = –5.0 mA)  
C
B
BaseEmitter Saturation Voltage  
(I = –10 mA, I = –0.5 mA)  
BE(sat)  
–0.7  
–0.9  
C
C
B
B
(I = –100 mA, I = –5.0 mA)  
BaseEmitter On Voltage  
V
BE(on)  
(I = –2.0 mA, V  
(I = –10 mA, V  
C
= –5.0 V)  
= –5.0 V)  
–0.6  
–0.75  
–0.82  
C
CE  
CE  
SMALLSIGNAL CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
100  
4.5  
10  
MHz  
pF  
T
(I = –10 mA, V  
C CE  
= –5.0 Vdc, f = 100 MHz)  
Output Capacitance  
(V = –10 V, f = 1.0 MHz)  
C
ob  
CB  
Noise Figure  
(I = –0.2 mA, V  
NF  
dB  
= –5.0 Vdc, R = 2.0 k,  
C
CE  
S
f = 1.0 kHz, BW = 200 Hz)  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
BC857/BC858  
2.0  
1.5  
–1.0  
–0.9  
T
= 25°C  
A
V
T
= –10 V  
CE  
= 25  
V
@ I /I = 10  
C B  
BE(sat)  
°C  
–0.8  
–0.7  
–0.6  
–0.5  
–0.4  
–0.3  
–0.2  
–0.1  
0
A
1.0  
0.7  
0.5  
V
@ V = –10 V  
CE  
BE(on)  
0.3  
0.2  
V
@ I /I = 10  
C B  
CE(sat)  
–0.2  
–0.5 –1.0 –2.0  
–5.0 –10 –20  
–50 –100 –200  
–0.1  
–1.0  
I , COLLECTOR CURRENT (mAdc)  
C
–10  
–100  
–0.2  
–0.5  
–2.0  
–5.0  
–20  
–50  
I
, COLLECTOR CURRENT (mAdc)  
C
Figure 1. Normalized DC Current Gain  
Figure 2. “Saturation” and “On” Voltages  
1.0  
–2.0  
–1.6  
–1.2  
–0.8  
–0.4  
–55°C to +125°C  
T
= 25°C  
A
1.2  
1.6  
2.0  
2.4  
2.8  
I
=
I
= –50 mA  
I
C
= –200 mA  
= –100 mA  
C
C
–10 mA  
I
C
I
= –20 mA  
C
0
–0.02  
–0.1  
–1.0  
, BASE CURRENT (mA)  
–10 –20  
–0.2  
–1.0  
I , COLLECTOR CURRENT (mA)  
C
–10  
–100  
I
B
Figure 3. Collector Saturation Region  
Figure 4. Base–Emitter Temperature Coefficient  
10  
400  
300  
C
ib  
7.0  
T
= 25°C  
A
200  
150  
5.0  
V
= –10 V  
CE  
= 25°C  
T
A
100  
80  
C
ob  
3.0  
2.0  
60  
40  
30  
1.0  
20  
–0.6  
–1.0  
–2.0  
–4.0 –6.0  
–10  
–20 –30 –40  
–1.0  
–2.0 –3.0  
I , COLLECTOR CURRENT (mAdc)  
C
–5.0  
–10  
–20 –30  
–50  
–0.4  
–0.5  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 5. Capacitances  
Figure 6. Current–Gain – Bandwidth Product  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
BC856  
–1.0  
–0.8  
–0.6  
T
= 25°C  
J
V
= –5.0 V  
CE  
= 25°C  
T
A
V
@ I /I = 10  
C B  
BE(sat)  
2.0  
1.0  
0.5  
V
@ V  
= –5.0 V  
BE  
CE  
–0.4  
–0.2  
0
0.2  
V
@ I /I = 10  
C B  
CE(sat)  
–0.1 –0.2  
–1.0 –2.0  
–10 –20  
–100 –200  
–50  
–0.2  
–0.5 –1.0 –2.0  
–5.0 –10 –20  
–50 –100 –200  
–5.0  
I
, COLLECTOR CURRENT (AMP)  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 7. DC Current Gain  
Figure 8. “On” Voltage  
–2.0  
–1.6  
–1.2  
–0.8  
–0.4  
0
–1.0  
–1.4  
–1.8  
–2.2  
–2.6  
–3.0  
–100 mA –200 mA  
I
=
–20 mA  
–50 mA  
C
–10 mA  
θ
for V  
BE  
VB  
–55  
°
C to 125  
°
C
T
= 25°C  
J
–0.02 –0.05 –0.1 –0.2  
–0.5 –1.0 –2.0  
–5.0 –10 –20  
–0.2  
–0.5 –1.0 –2.0  
–5.0 –10 –20  
–50 –100 –200  
I
, BASE CURRENT (mA)  
I , COLLECTOR CURRENT (mA)  
C
B
Figure 9. Collector Saturation Region  
Figure 10. Base–Emitter Temperature Coefficient  
40  
20  
V
= –5.0 V  
CE  
500  
T
= 25°C  
J
C
ib  
200  
100  
50  
10  
8.0  
6.0  
4.0  
C
ob  
20  
2.0  
–0.1 –0.2  
–0.5 –1.0 –2.0  
–5.0  
–10 –20  
–50 –100  
–1.0  
–10  
I , COLLECTOR CURRENT (mA)  
C
–100  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 11. Capacitance  
Figure 12. Current–Gain – Bandwidth Product  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
SINGLE PULSE  
0.05  
Z
R
Z
(t) = r(t) R  
JC  
0.1  
θ
θ
JC  
C/W MAX  
(t) = r(t) R  
0.1  
0.07  
0.05  
= 83.3°  
θ
JC  
P
(pk)  
SINGLE PULSE  
θ
JA  
θ
JA  
R
= 200°C/W MAX  
t
θ
JA  
1
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
t
0.03  
0.02  
2
DUTY CYCLE, D = t /t  
1 2  
READ TIME AT t  
1
T
– T = P  
R (t)  
θJC  
J(pk)  
C
(pk)  
0.01  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0 k  
2.0 k  
5.0 k  
10 k  
t, TIME (ms)  
Figure 13. Thermal Response  
–200  
1 s  
3 ms  
–100  
–50  
The safe operating area curves indicate I –V  
limits of the  
CE  
C
transistor that must be observed for reliable operation. Collector load  
lines for specific circuits must fall below the limits indicated by the  
applicable curve.  
T
= 25°C  
T
= 25°C  
J
A
The data of Figure 14 is based upon T  
= 150°C; T or T is  
C A  
J(pk)  
variable depending upon conditions. Pulse curves are valid for duty  
cyclesto10%providedT 150°C. T maybecalculatedfrom  
BC558  
BC557  
BC556  
J(pk)  
J(pk)  
–10  
the data in Figure 13. At high case or ambient temperatures, thermal  
limitations will reduce the power that can be handled to values less  
than the limitations imposed by the secondary breakdown.  
–5.0  
BONDING WIRE LIMIT  
THERMAL LIMIT  
SECOND BREAKDOWN LIMIT  
–2.0  
–1.0  
–5.0  
–10  
–30 –45 –65 –100  
V
, COLLECTOR–EMITTER VOLTAGE (V)  
CE  
Figure 14. Active Region Safe Operating Area  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
INFORMATION FOR USING THE SOT–323/SC–70 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SOT–323/SC–70  
SOT–323/SC–70 POWER DISSIPATION  
The power dissipation of the SOT–323/SC–70 is a function  
SOLDERING PRECAUTIONS  
of the pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
values provided on the data sheet for the SOT–323/SC–70  
A
package, P can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 150 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
833°C/W  
P
=
= 150 milliwatts  
D
The 833°C/W for the SOT–323/SC–70 package assumes  
the use of the recommended footprint on a glass epoxy  
printed circuit board to achieve a power dissipation of  
150 milliwatts. There are other alternatives to achieving  
higher power dissipation from the SOT–323/SC–70  
package. Another alternative would be to use a ceramic  
substrate or an aluminum core board such as Thermal  
Clad . Using a board material such as Thermal Clad, an  
aluminum core board, the power dissipation can be doubled  
using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
A
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3
INCHES  
MILLIMETERS  
B
S
DIM  
A
B
C
D
G
H
J
MIN  
MAX  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
1
2
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
J
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
N
C
V
0.05 (0.002)  
K
H
STYLE 3:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 419–02  
ISSUE G  
SOT–323/SC–70  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BC856AWT1/D  

相关型号:

BC856BWT1G

General Purpose Transistors
ONSEMI

BC856BWT3

Small Signal Bipolar Transistor, 0.1A I(C), 65V V(BR)CEO, 1-Element, PNP, Silicon
MOTOROLA

BC856BWT3

100mA, 65V, PNP, Si, SMALL SIGNAL TRANSISTOR, SC-70, 3 PIN
ONSEMI

BC856C

Switching and Amplifier Applications
FAIRCHILD

BC856C

PNP Small Signal Transistor310mW
MCC

BC856C

Small Signal Bipolar Transistor, 0.1A I(C), 65V V(BR)CEO, 1-Element, PNP, Silicon, TO-236, ROHS COMPLIANT, PLASTIC PACKAGE-3
DIOTEC

BC856C

65V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
TI

BC856C-7-F

Small Signal Bipolar Transistor, 0.1A I(C), 65V V(BR)CEO, 1-Element, PNP, Silicon, ROHS COMPLIANT, PLASTIC PACKAGE-3
DIODES

BC856C-TP

PNP Small Signal Transistor310mW
MCC

BC856CD87Z

Small Signal Bipolar Transistor, 0.1A I(C), 65V V(BR)CEO, 1-Element, PNP, Silicon
FAIRCHILD

BC856CL99Z

Small Signal Bipolar Transistor, 0.1A I(C), 65V V(BR)CEO, 1-Element, PNP, Silicon
FAIRCHILD

BC856CLT1

PNP Silicon General Purpose Transistors
ETC