BAV99RWT1 [MOTOROLA]

SC-70/SOT-323 Dual Series Switching Diode; SC - 70 / SOT- 323双系列开关二极管
BAV99RWT1
型号: BAV99RWT1
厂家: MOTOROLA    MOTOROLA
描述:

SC-70/SOT-323 Dual Series Switching Diode
SC - 70 / SOT- 323双系列开关二极管

整流二极管 开关
文件: 总6页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BAV99WT1/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Devices  
The BAV99WT1 is a smaller package, equivalent to the BAV99LT1.  
Suggested Applications  
3
ESD Protection  
1
Polarity Reversal Protection  
Data Line Protection  
Inductive Load Protection  
Steering Logic  
2
ANODE  
1
CATHODE  
2
3
MAXIMUM RATINGS (EACH DIODE)  
Rating  
CATHODE/ANODE  
Symbol  
Value  
70  
Unit  
Vdc  
mAdc  
mAdc  
V
BAV99WT1  
CASE 419–02, STYLE 9  
SC–70/SOT–323  
Reverse Voltage  
V
R
Forward Current  
I
F
215  
500  
70  
Peak Forward Surge Current  
Repetitive Peak Reverse Voltage  
I
FM(surge)  
CATHODE  
ANODE  
2
V
RRM  
1
(1)  
Average Rectified Forward Current  
I
715  
mA  
F(AV)  
(averaged over any 20 ms period)  
Repetitive Peak Forward Current  
Non–Repetitive Peak Forward Current  
3
I
450  
mA  
A
CATHODE/ANODE  
FRM  
I
BAV99RWT1  
CASE 419–02, STYLE 10  
SC–70/SOT–323  
FSM  
t = 1.0  
s
2.0  
1.0  
0.5  
t = 1.0 ms  
t = 1.0 S  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
Total Device Dissipation  
(1)  
T = 25°C  
A
P
200  
mW  
D
FR–5 Board,  
Derate above 25°C  
1.6  
625  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
mW/°C  
°C/W  
Thermal Resistance Junction to Ambient  
Junction and Storage Temperature  
R
417  
JA  
T , T  
J stg  
65 to +150  
°C  
1. FR–5 = 1.0  
0.75  
0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
DEVICE MARKING  
BAV99WT1 = A7  
BAV99RWT1 = F7  
Thermal Clad is a trademark of the Bergquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (EACH DIODE)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Reverse Breakdown Voltage (I  
= 100 µA)  
V
70  
Vdc  
Adc  
(BR)  
(BR)  
Reverse Voltage Leakage Current (V = 70 Vdc)  
I
R
2.5  
30  
50  
R
(V = 25 Vdc, T = 150°C)  
R
J
J
(V = 70 Vdc, T = 150°C)  
R
Diode Capacitance  
(V = 0, f = 1.0 MHz)  
C
V
1.5  
pF  
D
R
Forward Voltage (I = 1.0 mAdc)  
715  
855  
1000  
1250  
mVdc  
F
F
(I = 10 mAdc)  
F
(I = 50 mAdc)  
F
(I = 150 mAdc)  
F
Reverse Recovery Time (I = I = 10 mAdc, i  
= 1.0 mAdc) (Figure 1) R = 100  
t
rr  
6.0  
ns  
V
F
R
R(REC)  
L
Forward Recovery Voltage (I = 10 mA, t = 20 ns)  
V
FR  
1.75  
F
r
820  
+10 V  
2 k  
0.1 µF  
I
F
t
t
t
r
p
I
F
100 µH  
t
rr  
t
10%  
90%  
0.1  
µF  
DUT  
50  
OUTPUT  
PULSE  
GENERATOR  
50 INPUT  
SAMPLING  
OSCILLOSCOPE  
i
= 1 mA  
R(REC)  
I
R
V
R
OUTPUT PULSE  
(I = I = 10 mA; measured  
INPUT SIGNAL  
F
R
at i  
= 1 mA)  
R(REC)  
Notes: 1. A 2.0 kvariable resistor adjusted for a Forward Current (I ) of 10 mA.  
F
Notes: 2. Input pulse is adjusted so I  
R(peak)  
is equal to 10 mA.  
Notes: 3. t » t  
rr  
p
Figure 1. Recovery Time Equivalent Test Circuit  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
CURVES APPLICABLE TO EACH DIODE  
100  
10  
10  
T
= 150  
°
C
C
A
T
= 125  
°
A
1.0  
0.1  
T
= 85°C  
T = 85°C  
A
A
T
= 25°C  
A
1.0  
0.1  
T
= 55  
°C  
A
0.01  
T
= 40  
°C  
A
T
= 25  
°C  
A
0.001  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
10  
20  
V , REVERSE VOLTAGE (VOLTS)  
R
30  
40  
50  
V , FORWARD VOLTAGE (VOLTS)  
F
Figure 2. Forward Voltage  
Figure 3. Leakage Current  
0.68  
0.64  
0.60  
0.56  
0.52  
0
2
4
6
8
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 4. Capacitance  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
INFORMATION FOR USING THE SC–70/SOT–323 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SC–70/SOT–323  
SC–70/SOT–323 POWER DISSIPATION  
The power dissipation of the SC–70/SOT–323 is a function  
SOLDERING PRECAUTIONS  
of the pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SC–70/SOT–323  
package, P can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 200 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
625°C/W  
P
=
= 200 milliwatts  
D
The 625°C/W for the SC–70/SOT–323 package assumes  
the use of the recommended footprint on a glass epoxy  
printed circuit board to achieve a power dissipation of 200  
milliwatts. There are other alternatives to achieving higher  
power dissipation from the SC–70/SOT–323 package.  
Another alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a board  
material such as Thermal Clad, an aluminum core board, the  
power dissipation can be doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
A
L
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
3
2. CONTROLLING DIMENSION: INCH.  
B
S
INCHES  
MILLIMETERS  
1
2
DIM  
A
B
C
D
G
H
J
MIN  
MAX  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
N
J
C
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
0.05 (0.002)  
V
K
H
STYLE 9:  
PIN 1. ANODE  
2. CATHODE  
3. CATHODE–ANODE  
STYLE 10:  
PIN 1. CATHODE  
2. ANODE  
CASE 419–02  
ISSUE H  
SC–70/SOT–323  
3. ANODE–CATHODE  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BAV99WT1/D  

相关型号:

BAV99RWT1G

Dual Series Switching Diodes
ONSEMI

BAV99RWT3

0.715A, 70V, 2 ELEMENT, SILICON, SIGNAL DIODE, CASE 419-02, SC-70, 3 PIN
MOTOROLA

BAV99S

Silicon Switching Diode Array (For high-speed switching applications Connected in series Internal galvanic isolated Diodes in one package)
INFINEON

BAV99S

HIGH SPEED SWITCHING DIODE ARRAY
PANJIT

BAV99S

High-speed switching diodes
NXP

BAV99S

250mW High Speed Switching Array
TSC

BAV99S

Surface Mount Fast Switching Diodes
LGE

BAV99S

High-speed switching diodeProduction
NEXPERIA

BAV99S,115

DIODE ARRAY GP 100V 200MA 6TSSOP
ETC

BAV99S,125

DIODE 0.2 A, 100 V, 4 ELEMENT, SILICON, SIGNAL DIODE, PLASTIC, SC-88, 6 PIN, Signal Diode
NXP

BAV99S,135

BAV99 series - High-speed switching diodes TSSOP 6-Pin
NXP

BAV99S,165

DIODE 0.2 A, 100 V, 4 ELEMENT, SILICON, SIGNAL DIODE, PLASTIC, SC-88, 6 PIN, Signal Diode
NXP