MT90823 [MITEL]

3V Large Digital Switch; 3V大型数字交换机
MT90823
型号: MT90823
厂家: MITEL NETWORKS CORPORATION    MITEL NETWORKS CORPORATION
描述:

3V Large Digital Switch
3V大型数字交换机

文件: 总34页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT90823  
3V Large Digital Switch  
DS5064  
ISSUE 3  
January 2000  
Features  
2,048 × 2,048 channel non-blocking switching  
at 8.192 Mb/s  
Ordering Information  
MT90823AP  
84 Pin PLCC  
100 Pin MQFP  
100 Pin LQFP  
120 Pin PBGA  
Per-channel variable or constant throughput  
delay  
MT90823AL  
MT90823AB  
MT90823AG  
Automatic identification of ST-BUS/GCI  
interfaces  
-40 to +85°C  
Accept ST-BUS streams of 2.048, 4.096 or  
8.192 Mb/s  
Description  
Automatic frame offset delay measurement  
Per-stream frame delay offset programming  
Per-channel high impedance output control  
Per-channel message mode  
The MT90823 Large Digital Switch has  
a
non-blocking switch capacity of: 2,048 x 2,048  
channels at a serial bit rate of 8.192 Mb/s; 1,024 x  
1,024 channels at 4.096 Mb/s; and 512 x 512  
channels at 2.048 Mb/s. The device has many  
features that are programmable on a per stream or  
per channel basis, including message mode, input  
offset delay and high impedance output control.  
Control interface compatible to Motorola  
non-multiplexed CPUs  
Connection memory block programming  
3.3V local I/O with 5V tolerant inputs and  
TTL-compatible outputs  
Per stream input delay control is particularly useful  
for managing large multi-chip switches that transport  
both voice channel and concatenated data channels.  
IEEE-1149.1 (JTAG) Test Port  
Applications  
Medium and large switching platforms  
In addition, the input stream can be individually  
calibrated for input frame offset using a dedicated  
pin.  
CTI application  
Voice/data multiplexer  
Digital cross connects  
ST-BUS/GCI interface functions  
Support IEEE 802.9a standard  
V
V
SS  
ODE  
TMS  
TDI TDO TCK TRST  
IC  
RESET  
DD  
Test Port  
Loopback  
STo0  
STo1  
STo2  
STo3  
STo4  
STo5  
STo6  
STo7  
STo8  
STo9  
STo10  
STo11  
STo12  
STo13  
STo14  
STo15  
STi0  
STi1  
STi2  
Serial  
to  
Parallel  
to  
STi3  
STi4  
Output  
MUX  
STi5  
Parallel  
Multiple Buffer  
Data Memory  
STi6  
Serial  
STi7  
Converter  
STi8  
Converter  
STi9  
STi10  
STi11  
STi12  
STi13  
STi14  
STi15  
Connection  
Memory  
Internal  
Registers  
Timing  
Unit  
Microprocessor Interface  
AS/ IM DS/  
CLK F0i FE/ WFPS  
HCLK  
CS R/W  
/WR  
D15-D8/ CSTo  
AD7-AD0  
A7-A0 DTA  
ALE  
RD  
Figure 1 - Functional Block Diagram  
1
MT90823 CMOS  
10  
8
6
4
2
84  
82  
80  
78  
76  
STi0  
STi1  
STi2  
STi3  
STi4  
STi5  
STi6  
STi7  
STi8  
CSTo  
DTA  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
13  
73  
15  
17  
19  
21  
23  
25  
27  
29  
31  
71  
69  
67  
65  
63  
61  
59  
57  
55  
STi9  
D8  
84 PIN PLCC  
STi10  
STi11  
STi12  
STi13  
STi14  
STi15  
F0i  
VSS  
VDD  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
VSS  
FE/HCLK  
VSS  
CLK  
VDD  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
DTA  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
STi0  
STi1  
STi2  
STi3  
STi4  
STi5  
STi6  
STi7  
STi8  
82  
84  
86  
88  
90  
92  
94  
96  
D8  
100 PIN MQFP  
(14mm x 20mm x 2.75mm)  
VSS  
VDD  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
VSS  
STi9  
STi10  
STi11  
STi12  
STi13  
STi14  
STi15  
F0i  
98  
99  
FE/HCLK  
VSS  
CLK  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
Figure 2 - PLCC and MQFP Pin Connections  
2
CMOS MT90823  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1
A
VSS VSS STo14 STo12STo10 STo9 STo7 STo5 STo4 STo2 STo0 VSS VSS  
VSS VSS STo15 STo13STo11 STo8 VSS STo6 STo3 STo1 ODE VSS VSS  
B
C
D
E
F
STi1 VSS VDD VSS VDD VSS VDD VSS VDD VSS DTA  
STi0  
CSTo  
D15  
D13  
D11  
D9  
STi3 VDD  
STi5 VSS  
STi7 VDD  
STi9 VSS  
STi11 VDD  
STi13 VSS  
STi15 VDD  
D14  
VDD  
STi2  
VSS D12  
VDD D10  
VSS D8  
STi4  
TOP VIEW  
PBGA  
STi6  
G
H
J
STi8  
(23mm x 23mm x 2.13mm)  
(Ball Pitch = 1.5mm)  
VDD AD6  
VSS AD4  
VDD AD2  
STi10  
STi12  
STi14  
AD7  
AD5  
AD3  
AD1  
VSS  
IM  
K
L
FE/HCLKVSS VDD VSS VDD VSS VDD VSS VDD  
AD0  
F0i  
VSS VSS TDI TCK IC  
CLK TMS TDO TRST RESETA0  
VSS  
A6 R/W/RWAS/ALEVSS  
A5 A7 DS/RD CS  
M
N
WFPSA1  
A2  
A4  
A3  
1
- A1 corner is identified by metallized markings.  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
76  
NC  
50  
NC  
NC  
NC  
STi0  
STi1  
STi2  
STi3  
STi4  
STi5  
STi6  
STi7  
STi8  
78  
80  
CSTo  
DTA  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
48  
46  
82  
84  
86  
88  
90  
44  
42  
100 PIN LQFP  
40  
38  
36  
34  
D8  
STi9  
(14mm x 14mm x 1.4mm)  
(Pin Pitch = 0.50mm)  
STi10  
STi11  
STi12  
STi13  
STi14  
STi15  
F0i  
VSS  
VDD  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
VSS  
NC  
92  
94  
32  
30  
28  
26  
FE/HCLK  
VSS  
96  
CLK  
VDD  
NC  
98  
100  
NC  
NC  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
Figure 3 - PBGA and LQFP Pin Connections  
3
MT90823 CMOS  
Pin Description  
Pin #  
Name  
Description  
84  
100  
100  
120  
PLCC MQFP LQFP  
BGA  
1, 11, 31, 41,  
30, 54 56, 66,  
64, 75 76, 99  
28,  
38,  
53,  
63,  
73,  
96  
A1,A2,A12,A13,  
B1,B2,B7,B12,  
B13,C3,C5,C7,  
C9,C11,E3,E11  
G3,G11,J3,J11,  
L3,L5,L7,L9,L11,  
M2,M12,M13,N1  
VSS  
Ground.  
2, 32, 5, 40,  
37,  
C4,C6,C8,C10,  
VDD  
+3.3 Volt Power Supply.  
63  
67  
64,98 D3,D11,F3,F11,  
H3,H11,K3,K11,  
L4,L6,L8,L10  
3 - 10 68-75  
65 -  
72  
B6,A6,A5,B5,A4, STo8 - 15 ST-BUS Output 8 to 15 (5V Tolerant Three-state  
B4,A3,B3  
Outputs): Serial data Output stream. These streams  
may have data rates of 2.048, 4.096 or 8.192 Mb/s,  
depending upon the value programmed at bits DR0 - 1  
in the IMS register.  
12 -  
27  
81-96  
97  
78 - C1,C2,D1,D2,E1, STi0 - 15 ST-BUS Input 0 to 15 (5V Tolerant Inputs): Serial  
93  
E2,F1,F2,G1,G2,  
H1,H2,J1,J2,K1,  
K2  
data input stream. These streams may have data rates  
of 2.048, 4.096 or 8.192 Mb/s, depending upon the  
value programmed at bits DR0 - 1 in the IMS register.  
28  
94  
L1  
F0i  
Frame Pulse (5V Tolerant Input): When the WFPS  
pin is low, this input accepts and automatically  
identifies frame synchronization signals formatted  
according to ST-BUS and GCI specifications. When the  
WFPS pin is high, this pin accepts a negative frame  
pulse which conforms to WFPS formats.  
29  
31  
98  
95  
97  
L2  
FE/HCLK Frame Evaluation / HCLK Clock (5V Tolerant Input):  
When the WFPS pin is low, this pin is the frame  
measurement input. When the WFPS pin is high, the  
HCLK (4.096MHz clock) is required for frame alignment  
in the wide frame pulse (WFP) mode.  
100  
N1  
CLK  
Clock (5V Tolerant Input): Serial clock for shifting data  
in/out on the serial streams (STi/o 0 - 15). Depending  
upon the value programmed at bits DR0 - 1 in the IMS  
register, this input accepts a 4.096, 8.192 or 16.384  
MHz clock.  
33  
34  
35  
6
7
8
3
4
5
N2  
M3  
N3  
TMS  
TDI  
Test Mode Select (3.3V Input with internal pull-up):  
JTAG signal that controls the TAP controller state  
transitions.  
Test Serial Data In (3.3V Tolerant Input with internal  
pull-up): JTAG serial test instructions and data are  
shifted in on this pin.  
TDO  
Test Serial Data Out (3.3V Output): JTAG serial data  
is output on this pin on the falling edge of TCK. This pin  
is held in high impedance state when JTAG scan is not  
enabled.  
4
CMOS MT90823  
Pin Description (continued)  
Pin #  
Name  
Description  
84  
100  
100  
120  
PLCC MQFP LQFP  
BGA  
36  
37  
9
6
7
M4  
TCK  
Test Clock (5V Tolerant Input): Provides the clock to  
the JTAG test logic.  
10  
N4  
TRST  
Test Reset (3.3V Input with internal pull-up):  
Asynchronously initializes the JTAG TAP controller by  
putting it in the Test-Logic-Reset state. This pin should  
be pulsed low on power-up, or held low, to ensure that  
the MT90823 is in the normal functional mode.  
38  
39  
11  
12  
8
9
M5  
N5  
IC  
Internal Connection (3.3V Input with internal  
pull-down): Connect to VSS for normal operation. This  
pin must be low for the MT90823 to function normally  
and to comply with IEEE 1149 (JTAG) boundary scan  
requirements.  
RESET Device Reset (5V Tolerant Input): This input (active  
LOW) puts the MT90823 in its reset state to clear the  
device internal counters, registers and bring STo0 - 15  
and microport data outputs to a high impedance state.  
The time constant for a power up reset circuit must be a  
minimum of five times the rise time of the power supply.  
In normal operation, the RESET pin must be held low  
for a minimum of 100nsec to reset the device.  
40  
13  
14-21  
22  
10  
M6  
WFPS  
Wide Frame Pulse Select (5V Tolerant Input): When  
1, enables the wide frame pulse (WFP) Frame  
Alignment interface. When 0, the device operates in  
ST-BUS/GCI mode.  
41 -  
48  
11 -  
18  
N6,M7,N7,N8,  
M8,N9,M9,N10  
A0 - A7 Address 0 - 7 (5V Tolerant Input): When  
non-multiplexed CPU bus operation is selected, these  
lines provide the A0 - A7 address lines to the internal  
memories.  
49  
19  
N11  
DS/RD Data Strobe / Read (5V Tolerant Input): For Motorola  
multiplexed bus operation, this input is DS. This active  
high DS input works in conjunction with CS to enable  
the read and write operations.  
For Motorola non-multiplexed CPU bus operation, this  
input is DS. This active low input works in conjunction  
with CS to enable the read and write operations.  
For multiplexed bus operation, this input is RD. This  
active low input sets the data bus lines (AD0-AD7,  
D8-D15) as outputs.  
50  
23  
20  
M10  
R/W / WR Read/Write / Write (5V Tolerant Input): In the cases  
of Motorola non-multiplexed and multiplexed bus  
operations, this input is R/W. This input controls the  
direction of the data bus lines (AD0 - AD7, D8-D15)  
during a microprocessor access.  
For multiplexed bus operation, this input is WR. This  
active low input is used with RD to control the data bus  
(AD0 - 7) lines as inputs.  
5
MT90823 CMOS  
Pin Description (continued)  
Pin #  
Name  
Description  
84  
100  
100  
120  
PLCC MQFP LQFP  
BGA  
51  
52  
24  
25  
21  
22  
N12  
CS  
Chip Select (5V Tolerant Input): Active low input used  
by a microprocessor to activate the microprocessor  
port of MT90823.  
M11  
AS/ALE Address Strobe or Latch Enable (5V Tolerant Input):  
This input is used if multiplexed bus operation is  
selected via the IM input pin. For Motorola  
non-multiplexed bus operation, connect this pin to  
ground.  
53  
26  
23  
N13  
IM  
CPU Interface Mode (5V Tolerant Input): When IM is  
high, the microprocessor port is in the multiplexed  
mode. When IM is low, the microprocessor port is in  
non-multiplexed mode.  
55 -  
62  
32-39  
29 -  
36  
L12,L13,K12,  
K13,J12,J13,  
H12,H13  
AD0 - 7 Address/Data Bus 0 to 7 (5V Tolerant I/O): These  
pins are the eight least significant data bits of the  
microprocessor port. In multiplexed mode, these pins  
are also the input address bits of the microprocessor  
port.  
65 -  
72  
42-49  
50  
39 -  
46  
G12,G13,F12,  
F13,E12,E13,  
D12,D13  
D8 - 15 Data Bus 8-15 (5V Tolerant I/O): These pins are the  
eight most significant data bits of the microprocessor  
port.  
73  
47  
C12  
DTA  
Data Transfer Acknowledgement (5V tolerant  
Three-state Output): Indicates that a data bus transfer  
is complete. When the bus cycle ends, this pin drives  
HIGH and then tri-states, allowing for faster bus cycles  
with a weaker pull-up resistor. A pull-up resistor is  
required to hold a HIGH level when the pin is tri-stated.  
74  
76  
55  
57  
48  
54  
C13  
B11  
CSTo  
ODE  
Control Output (5V Tolerant Output). This is a 4.096,  
8.192 or 16.384 Mb/s output containing 512, 1024 or  
2048 bits per frame respectively. The level of each bit is  
determined by the CSTo bit in the connection memory.  
See External Drive Control Section.  
Output Drive Enable (5V Tolerant Input): This is the  
output enable control for the STo0-15 serial outputs.  
When ODE input is low and the OSB bit of the IMS  
register is low, STo0-15 are in a high impedance state.  
If this input is high, the STo0-15 output drivers are  
enabled. However, each channel may still be put into a  
high impedance state by using the per channel control  
bit in the connection memory.  
77 -  
84  
58-65  
55 - A11,B10,A10,B9, STo0 - 7 Data Stream Output 0 to 7 (5V Tolerant Three-state  
62  
A9,A8,B8,A7  
Outputs): Serial data Output stream. These streams  
have selectable data rates of 2.048, 4.096 or 8.192 Mb/  
s.  
6
CMOS MT90823  
Pin Description (continued)  
Pin #  
Name  
Description  
84  
100  
100  
120  
PLCC MQFP LQFP  
BGA  
-
1 - 4,  
27 -  
30,  
1 - 2,  
24 -  
27,  
NC  
No connection.  
51 -  
54  
49 -  
52,  
77 -  
80  
74 -  
77,  
99 -  
100  
Device Overview  
Functional Description  
The MT90823 Large Digital Switch is capable of  
switching up to 2,048 × 2,048 channels. The  
MT90823 is designed to switch 64 kb/s PCM or N x  
64 kb/s data. The device maintains frame integrity in  
data applications and minimum throughput delay for  
voice applications on a per channel basis.  
A functional Block Diagram of the MT90823 is shown  
in Figure 1.  
Data and Connection Memory  
For all data rates, the received serial data is  
converted  
to  
parallel  
format  
by  
internal  
The serial input streams of the MT90823 can have a  
bit rate of 2.048, 4.096 or 8.192 Mbit/s and are  
arranged in 125µs wide frames, which contain 32, 64  
or 128 channels, respectively. The data rates on  
input and output streams are identical.  
serial-to-parallel converters and stored sequentially  
in the data memory. Depending upon the selected  
operation programmed in the interface mode select  
(IMS) register, the useable data memory may be as  
large as 2,048 bytes. The sequential addressing of  
the data memory is performed by an internal counter,  
which is reset by the input 8 kHz frame pulse (F0i) to  
mark the frame boundaries of the incoming serial  
data streams.  
By using Mitel’s message mode capability, the  
microprocessor can access input and output  
time-slots on a per channel basis. This feature is  
useful for transferring control and status information  
for external circuits or other ST-BUS devices. The  
MT90823 automatically identifies the polarity of the  
frame synchronization input signal and configures its  
serial streams to be compatible to either ST-BUS or  
GCI formats.  
Data to be output on the serial streams may come  
from either the data memory or connection memory.  
Locations in the connection memory are associated  
with particular ST-BUS output channels. When a  
channel is due to be transmitted on an ST-BUS  
output, the data for this channel can be switched  
either from an ST-BUS input in connection mode, or  
from the lower half of the connection memory in  
message mode. Data destined for a particular  
channel on a serial output stream is read from the  
data memory or connection memory during the  
previous channel time-slot. This allows enough time  
for memory access and parallel-to-serial conversion.  
Two different microprocessor bus interfaces can be  
selected through the Input Mode pin (IM):  
Non-multiplexed or Multiplexed. These interfaces  
provide compatibility with multiplexed and Motorola  
multiplexed/non-multiplexed buses.  
The frame offset calibration function allows users to  
measure the frame offset delay using a frame  
evaluation pin (FE). The input offset delay can be  
programmed for individual streams using internal  
frame input offset registers, see Table 11.  
Connection and Message Modes  
In the connection mode, the addresses of the input  
source data for all output channels are stored in the  
connection memory. The connection memory is  
mapped in such  
corresponds to an output channel on the output  
The internal loopback allows the ST-BUS output data  
to be looped around to the ST-BUS inputs for  
diagnostic purposes.  
a
way that each location  
7
MT90823 CMOS  
streams. For details on the use of the source  
address data (CAB and SAB bits), see Table 13 and  
Table 14. Once the source address bits are  
programmed by the microprocessor, the contents of  
the data memory at the selected address are  
transferred to the parallel-to-serial converters and  
then onto an ST-BUS output stream.  
The MT90823 provides two different interface timing  
modes controlled by the WFPS pin. If the WFPS pin  
is low, the MT90823 is in ST-BUS/GCI mode. If the  
WFPS pin is high, the MT90823 is in the wide frame  
pulse (WFP) frame alignment mode.  
In ST-BUS/GCI mode, the input 8 kHz frame pulse  
can be in either ST-BUS or GCI format. The  
MT90823 automatically detects the presence of an  
input frame pulse and identifies it as either ST-BUS  
or GCI. In ST-BUS format, every second falling edge  
of the master clock marks a bit boundary and the  
data is clocked in on the rising edge of CLK, three  
quarters of the way into the bit cell, see Figure 11. In  
GCI format, every second rising edge of the master  
clock marks the bit boundary and data is clocked in  
on the falling edge of CLK at three quarters of the  
way into the bit cell, see Figure 12.  
By having several output channels connected to the  
same input source channel, data can be broadcasted  
from one input channel to several output channels.  
In message mode, the microprocessor writes data to  
the connection memory locations corresponding to  
the output stream and channel number. The lower  
half (8 least significant bits) of the connection  
memory content is transferred directly to the  
parallel-to-serial converter. This data will be output  
on the ST-BUS streams in every frame until the data  
is changed by the microprocessor.  
Wide Frame Pulse (WFP) Frame Alignment  
Timing  
The five most significant bits of the connection  
memory controls the following for an output channel:  
message or connection mode; constant or variable  
delay; enables/tristate the ST-BUS output drivers;  
and, enables/disable the loopback function. In ad-  
dition, one of these bits allows the user to control the  
CSTo output.  
When the device is in WFP frame alignment mode,  
the CLK input must be at 16.384 MHz, the FE/HCLK  
input is 4.096 MHz and the 8 kHz frame pulse is in  
ST-BUS format. The timing relationship between  
CLK, HCLK and the frame pulse is defined in Figure  
13.  
If an output channel is set to a high-impedance state  
through the connection memory, the ST-BUS output  
When the WFPS pin is high, the frame alignment  
evaluation feature is disabled, but the frame input  
offset registers may still be programmed to  
compensate for the varying frame delays on the  
serial input streams.  
will be in a high impedance state for the duration of  
that channel. In addition to the per-channel control,  
all channels on the ST-BUS outputs can be placed in  
a high impedance state by either pulling the ODE  
input pin low or programming the output standby  
(OSB) bit in the interface mode selection register to  
low. This action overrides the individual per-channel  
programming by the connection memory bits.  
Switching Configurations  
The MT90823 maximum non-blocking switching  
configurations is determined by the data rates  
selected for the serial inputs and outputs. The  
switching configuration is selected by two DR bits in  
the IMS register. See Table 8 and Table 9.  
The connection memory data can be accessed via  
the microprocessor interface through the D0 to D15  
pins. The addressing of the device internal registers,  
data and connection memories is performed through  
the address input pins and the Memory Select (MS)  
bit of the control register. For details on device  
addressing, see Software Control and Control  
Register bits description (Tables 4, 6 and 7).  
2.048 Mb/s Serial Links (DR0=0, DR1=0)  
When the 2.048 Mb/s data rate is selected, the  
device is configured with 16-input/16-output data  
streams each having 32 64 kb/s channels. This  
mode requires a CLK of 4.094 MHz and allows a  
maximum non-blocking capacity of 512 x 512  
channels.  
Serial Data Interface Timing  
The master clock frequency must always be twice  
the data rate. The master clock (CLK) must be either  
at 4.096, 8.192 or 16.384 MHz for serial data rate of  
2.048, 4.096 or 8.192 Mb/s respectively. The input  
and output stream data rates will always be identical.  
4.096 Mb/s Serial Links (DR0=1, DR1=0)  
When the 4.096 Mb/s data rate is selected, the  
device is configured with 16-input/16-output data  
streams each having 64 64 kb/s channels. This  
8
CMOS MT90823  
mode requires a CLK of 8.192 MHz and allows a  
maximum non-blocking capacity of 1,024 x 1,024  
channels.  
The SFE bit must be set to zero before starting a  
new measurement cycle.  
In ST-BUS mode, the falling edge of the frame  
measurement signal (FE) is evaluated against the  
falling edge of the ST-BUS frame pulse. In GCI  
mode, the rising edge of FE is evaluated against the  
rising edge of the GCI frame pulse. See Table 10 and  
Figure 3 for the description of the frame alignment  
register.  
8.192 Mb/s Serial Links (DR0=0, DR1=1)  
When the 8.192 Mb/s data rate is selected, the  
device is configured with 16-input/16-output data  
streams each having 128 64 kb/s channels. This  
mode requires a CLK of 16.384 MHz and allows a  
maximum non-blocking capacity of 2,048 x 2,048  
channels. Table  
1
summarizes the switching  
configurations and the relationship between different  
serial data rates and the master clock frequencies.  
This feature is not available when the WFP Frame  
Alignment mode is enabled (i.e., when the WFPS pin  
is connected to VDD).  
Serial  
Interface  
Data Rate  
Master Clock  
Required  
(MHz)  
Matrix  
Channel  
Capacity  
Memory Block Programming  
The MT90823 provides users with the capability of  
initializing the entire connection memory block in two  
frames. Bits 11 to 15 of every connection memory  
location will be programmed with the pattern stored  
in bits 5 to 9 of the IMS register.  
2 Mb/s  
4 Mb/s  
8 Mb/s  
4.096  
8.192  
512 x 512  
1,024 x 1,024  
2,048 x 2,048  
16.384  
Table 1- Switching Configuration  
Input Frame Offset Selection  
The block programming mode is enabled by setting  
the memory block program (MBP) bit of the control  
register high. When the block programming enable  
(BPE) bit of the IMS register is set to high, the block  
programming data will be loaded into the bits 11 to  
15 of every connection memory location. The other  
connection memory bits (bit 0 to bit 10) are loaded  
with zeros. When the memory block programming is  
complete, the device resets the BPE bit to zero.  
Input frame offset selection allows the channel  
alignment of individual input streams to be offset with  
respect to the output stream channel alignment (i.e.  
F0i). This feature is useful in compensating for  
variable path delays caused by serial backplanes of  
variable lengths, which may be implemented in large  
centralized and distributed switching systems.  
Loopback Control  
Each input stream can have its own delay offset  
value by programming the frame input offset (FOR)  
registers. Possible adjustment can range up to +4  
master clock (CLK) periods forward with resolution of  
1/2 clock period. The output frame offset cannot be  
offset or adjusted. See Figure 4, Table 11 and Table  
12 for delay offset programming.  
The loopback control (LPBK) bit of each connection  
memory location allows the ST-BUS output data to  
be looped backed internally to the ST-BUS input for  
diagnostic purposes.  
If the LPBK bit is high, the associated ST-BUS output  
channel data is internally looped back to the ST-BUS  
input channel (i.e., data from STo n channel m routes  
to the STi n channel m internally); if the LPBK bit is  
low, the loopback feature is disabled. For proper  
per-channel loopback operation, the contents of  
frame delay offset registers must be set to zero.  
Serial Input Frame Alignment Evaluation  
The MT90823 provides the frame evaluation (FE)  
input to determine different data input delays with  
respect to the frame pulse F0i.  
Delay Through the MT90823  
A measurement cycle is started by setting the start  
frame evaluation (SFE) bit low for at least one frame.  
Then the evaluation starts when the SFE bit in the  
IMS register is changed from low to high. Two frames  
later, the complete frame evaluation (CFE) bit of the  
frame alignment register (FAR) changes from low to  
high. This signals that a valid offset measurement is  
ready to be read from bits 0 to 11 of the FAR register.  
The switching of information from the input serial  
streams to the output serial streams results in a  
throughput delay. The device can be programmed to  
perform time-slot interchange functions with different  
throughput delay capabilities on a per-channel basis.  
For voice application, select variable throughput  
9
MT90823 CMOS  
delay to ensure minimum delay between input and  
output data. In wideband data applications, select  
constant throughput delay to maintain the frame  
integrity of the information through the switch.  
In the MT90823, the minimum throughput delay  
achievable in the constant delay mode is one frame.  
For example, in 2 Mb/s mode, when input time-slot  
31 is switched to output time-slot 0. The maximum  
delay of 94 time-slots occurs when time-slot 0 in a  
frame is switched to time-slot 31 in the frame. See  
Table 3.  
The delay through the device varies according to the  
type of throughput delay selected in the V/C bit of the  
connection memory.  
Microprocessor Interface  
Variable Delay Mode (V/C bit = 0)  
The MT90823 provides a parallel microprocessor  
interface for non-multiplexed or multiplexed bus  
structures. This interface is compatible with Motorola  
non-multiplexed and multiplexed buses.  
The delay in this mode is dependent only on the  
combination of source and destination channels. It is  
independent of input and output streams. The  
minimum delay achievable in the MT90823 is three  
time-slots. When the input channel data is switched  
to the same output channel (channel n, frame p), it  
will be output in the following frame (channel n,  
frame p+1). The same frame delay occurs if the input  
channel n is switched to output channel n+1 or n+2.  
When input channel n is switched to output channel  
n+3, n+4,..., the new output data will appear in the  
same frame. Table 2 shows the possible delays for  
the MT90823 in the variable delay mode.  
If the IM pin is low, the MT90823 microprocessor  
interface assumes Motorola non-multiplexed bus  
mode. If the IM pin is high, the device micro-  
processor interface accepts two different timing  
modes (mode1 and mode2) which allows direct  
connection to multiplexed microprocessors.  
The microprocessor interface automatically identifies  
the type of microprocessor bus connected to the  
MT90823. This circuit uses the level of the DS/RD  
input pin at the rising edge of AS/ALE to identify the  
appropriate bus timing connected to the MT90823. If  
DS/RD is high at the falling edge of AS/ALE, then the  
mode 1 multiplexed timing is selected. If DS/RD is  
low at the falling edge of AS/ALE, then the mode 2  
multiplexed bus timing is selected.  
Constant Delay Mode (V/C bit = 1)  
In this mode, frame integrity is maintained in all  
switching configurations by using a multiple data  
memory buffer. Input channel data written into the  
data memory buffers during frame n will be read out  
during frame n+2.  
Delay for Variable Throughput Delay Mode  
(m - output channel number)  
(n - input channel number))  
Input Rate  
m < n  
m = n, n+1, n+2  
m > n+2  
2.048 Mb/s  
4.096 Mb/s  
8.192 Mb/s  
32 - (n-m) time-slots  
64 - (n-m) time-slots  
128 - (n-m) time-slots  
m-n + 32 time-slots  
m-n + 64 time-slots  
m-n + 128 time-slots  
m-n time-slots  
m-n time-slots  
m-n time-slots  
Table 2 - Variable Throughput Delay Value  
Delay for Constant Throughput Delay Mode  
(m - output channel number)  
Input Rate  
(n - input channel number))  
2.048 Mb/s  
4.096 Mb/s  
8.192 Mb/s  
32 + (32 - n) + (m - 1) time-slots  
64 + (64 - n) + (m- 1) time-slots  
128 + (128 - n) + (m- 1) time-slots  
Table 3 - Constant Throughput Delay Value  
10  
CMOS MT90823  
For multiplexed operation, the 8-bit data and address  
(AD0-AD7), 8-bit Data (D8-D15), Address strobe/  
Address latch enable (AS/ALE), Data strobe/Read  
(DS/RD), Read/Write /Write (R/W / WR), Chip select  
(CS) and Data transfer acknowledge (DTA) signals  
are required. See Figure 13 and Figure 14 for  
multiplexed parallel microport timing.  
an internal memory subsections corresponding to  
input or output ST-BUS streams.  
The data in the IMS register consists of block  
programming bits (BPD0-BPD4), block programming  
enable bit (BPE), output standby bit (OSB), start  
frame evaluation bit (SFE) and data rate selection  
bits (DR0, DR1). The block programming and the  
block programming enable bits allows users to  
program the entire connection memory, (see Memory  
Block Programming section). If the ODE pin is low,  
the OSB bit enables (if high) or disables (if low) all  
ST-BUS output drivers. If the ODE pin is high, the  
contents of the OSB bit is ignored and all ST-BUS  
output drivers are enabled.  
For the Motorola non-multiplexed bus, the 16-bit data  
bus (AD0-AD7, D8-D15), 8-bit address bus (A0-A7)  
and 4 control lines (CS, DS, R/W and DTA) signals  
are required. See Figure 15 for Motorola non-  
multiplexed microport timing.  
The MT90823 microport provides access to the  
internal registers, connection and data memories. All  
locations provide read/write access except for the  
data memory and the frame alignment register which  
are read only.  
Connection Memory Control  
The contents of the CSTo bit of each connection  
memory location are output on the CSTo pin once  
every frame. The CSTo pin is a 4.096, 8.192 or  
16.384 Mb/s output carrying 512, 1,024 or 2,048 bits  
respectively. If the CSTo bit is set high, the  
corresponding bit on the CSTo output is transmitted  
high. If the CSTo bit is low, the corresponding bit on  
the CSTo output is transmitted low. The contents of  
the CSTo bits of the connection memory are  
transmitted sequentially via the CSTo pin and are  
synchronous with the data rates on the other ST-BUS  
streams.  
Memory Mapping  
The address bus on the microprocessor interface  
selects the MT90823 internal registers and memory.  
If the A7 address input is low, then the control (CR),  
interface mode selection (IMS), frame alignment  
(FAR) and frame input offset (FOR) registers are  
addressed by A6 to A0 as shown in Table 4.  
If the A7 address input is high, then the remaining  
address input lines are used to select up to 128  
memory subsection locations. The number selected  
corresponds to the maximum number of channels  
per input or output stream. The address input lines  
and the stream address bits (STA) of the control  
register allow access to the entire data and  
connection memories.  
The CSTo bit is output one channel before the  
corresponding channel on the ST-BUS. For example,  
in 2Mb/s mode, the contents of the CSTo bit in  
position 0 (STo0, CH0) of the connection memory is  
output on the first clock cycle of channel 31 via CSTo  
pin. The contents of the CSTo bit in position 32  
(STo1, CH0) of the connection memory is output on  
the second clock cycle of channel 31 via CSTo pin.  
The control and IMS registers together control all the  
major functions of the device. The IMS register  
should be programmed immediately after system  
power-up to establish the desired switching  
configuration (see “Serial Data Interface Timing”  
and “Switching Configurations” ).  
When either the ODE pin or the OSB bit is high, the  
OE bit of each connection memory location enables  
(if high) or disables (if low) the output drivers for an  
individual ST-BUS output stream and channel. Table  
5 details this function.  
The control register controls switching operations in  
the MT90823. It selects the internal memory  
locations that specify the input and output channels  
selected for switching.  
The connection memory message channel (MC) bit  
(if high) enables message mode in the associated  
ST-BUS output channel. When message mode is  
enabled, only the lower half (8 least significant bits)  
of the connection memory is transferred to the  
ST-BUS outputs.  
The data in the control register consists of the  
memory block programming bit (MBP), the memory  
select bit (MS) and the stream address bits (STA).  
The memory block programming bit allows users to  
program the entire connection memory block, (see  
“Memory Block Programming” ). The memory select  
bit controls the selection of the connection memory  
or the data Memory. The stream address bits define  
If the MC bit is low, the contents of the connection  
memory stream address bit (SAB) and channel  
address bit (CAB) defines the source information  
(stream and channel) of the time-slot that will be  
switched to the output.  
11  
MT90823 CMOS  
Bit V/C (Variable/Constant Delay) of each connection  
memory location allows the per-channel selection  
between variable and constant throughput delay  
modes.  
back to the ST-BUS input channel (i.e., SToN  
channel m data loops back to STi N channel m).  
If the LPBK bit is low, the loopback feature is  
disabled. For proper per-channel loopback operation,  
the contents of the frame delay offset registers must  
be set to zero.  
The loopback bit should be used for diagnostic  
purpose only; this bit should be set to zero for normal  
operation. If all LPBK bits are set high for all  
connection memory locations, the associated  
ST-BUS output channel data is internally looped  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Location  
Control Register, CR  
(Note 1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Interface Mode Selection Register, IMS  
Frame Alignment Register, FAR  
Frame Input Offset Register 0, FOR0  
Frame Input Offset Register 1, FOR1  
Frame Input Offset Register 2, FOR2  
Frame Input Offset Register 3, FOR3  
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
1
.
0
1
Ch 0  
Ch 1  
.
Ch 30  
Ch 31  
(Note 2)  
(Note 3)  
(Note 4)  
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
1
.
0
1
Ch 32  
Ch 33  
.
Ch 62  
Ch 63  
1
1
1
1
1
1
1
1
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
0
.
1
1
0
1
.
0
1
Ch 64  
Ch 65  
.
Ch 126  
Ch 127  
Notes:  
1. Bit A7 must be high for access to data and connection memory positions. Bit A7 must be low for access to registers.  
2. Channels 0 to 31 are used when serial interface is at 2Mb/s mode.  
3. Channels 0 to 63 are used when serial interface is at 4Mb/s mode.  
4. Channels 0 to 127 are used when serial interface is at 8Mb/s mode.  
Table 4 - Internal Register and Address Memory Mapping  
OE bit in Connection  
ODE pin  
OSB bit in IMS register  
ST-BUS Output Driver Status  
Memory  
0
Don’t Care  
Don’t Care  
Per Channel  
High Impedance  
1
1
1
0
0
1
0
1
High Impedance  
Enable  
Don’t care  
Enable  
Table 5 - Output High Impedance Control  
12  
CMOS MT90823  
To prevent two ST-BUS outputs from driving the  
same stream simultaneously, the microprocessor  
should program the desired active paths through the  
switch and put all other channels into a high  
impedance state during the initialization routine by  
using the block programming mode. In addition, the  
loopback bits in the connection memory should be  
cleared for normal operation.  
Initialization of the MT90823  
During power up, the TRST pin should be pulsed low,  
or held low continuously, to ensure that the MT90863  
is in the normal functional mode. A 5K pull-down  
resistor can be connected to this pin so that the  
device will not enter the JTAG test mode during  
power up.  
When this process is complete, the microprocessor  
controlling the matrices can bring the ODE pin or  
OSB bit high to relinquish the high impedance state  
control to the OE bit in the connection memory.  
Upon power up, the contents of the connection  
memory can be in any state and the ODE pin should  
be held low to keep all ST-BUS outputs in a high  
impedance state until the microprocessor has  
initialized the switching matrix.  
Read/Write Address:  
Reset Value:  
00 ,  
H
0000 .  
H
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
MBP  
MS STA3 STA2 STA1 STA0  
Bit  
Name  
Description  
15 - 6  
5
Unused  
MBP  
Must be zero for normal operation.  
Memory Block Program. When 1, the connection memory block programming  
feature is ready for the programming of Connection Memory high bits, bit 11 to bit 15.  
When 0, this feature is disabled.  
4
MS  
Memory Select. When 0, connection memory is selected for read or write operations.  
When 1, the data memory is selected for read operations and connection memory is  
selected for write operations. (No microprocessor write operation is allowed for the  
data memory.)  
3 - 0  
STA3-0  
Stream Address Bits. The binary value expressed by these bits refers to the input or  
output data stream, which corresponds to the subsection of memory made accessible  
for subsequent operations. (STA3 = MSB, STA0 = LSB)  
Table 6 - Control (CR) Register Bits  
Input/Output  
Data Rate  
Valid Address Lines  
2.048 Mb/s  
4.096 Mb/s  
8.192 Mb/s  
A4, A3, A2, A1, A0  
A5, A4, A3, A2, A1, A0  
A6, A5, A4 A3, A2, A1, A0  
Table 7 - Valid Address lines for Different Bit Rates  
13  
MT90823 CMOS  
Read/Write Address:  
Reset Value:  
01 ,  
H
0000 .  
H
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BPD  
3
BPD BPD  
BPD  
0
BPD  
4
0
0
0
0
0
0
BPE OSB SFE  
DR1  
DR0  
2
1
Bit  
Name  
Description  
15-10  
9-5  
Unused  
BPD4-0  
Must be zero for normal operation.  
Block Programming Data. These bits carry the value to be loaded into the  
connection memory block whenever the memory block programming feature is  
activated. After the MBP bit in the control register is set to 1 and the BPE bit is set to  
1, the contents of the bits BPD4- 0 are loaded into bit 15 to bit 11 of the connection  
memory. Bit 10 to bit 0 of the connection memory are set to 0.  
4
BPE  
Begin Block programming Enable. A zero to one transition of this bit enables the  
memory block programming function. The BPE and BPD4-0 bits in the IMS register  
have to be defined in the same write operation. Once the BPE bit is set high, the  
device requires two frames to complete the block programming. After the  
programming function has finished, the BPE bit returns to zero to indicate the  
operation is completed. When the BPE = 1, the BPE or MBP can be set to 0 to abort  
the programming operation.  
When BPE = 1, the other bits in the IMS register must not be changed for two frames  
to ensure proper operation.  
3
2
OSB  
SFE  
Output standby. When ODE = 0 and OSB = 0, the output drivers of STo0 to STo15  
are in high impedance mode. When ODE = 0 and OSB = 1, the output driver of STo0  
to STo15 function normally. When ODE = 1, STo0 to STo15 output drivers function  
normally.  
Start Frame Evaluation. A zero to one transition in this bit starts the frame evaluation  
procedure. When the CFE bit in the FAR register changes from zero to one, the  
evaluation procedure stops. To start another frame evaluation cycle, set this bit to zero  
for at least one frame.  
1 - 0  
DR1-0  
Data Rate Select. Input/Output data rate selection. See Table 9 for detailed  
programming.  
Table 8 - Interface Mode Selection (IMS) Register Bits  
DR1  
DR0  
Data Rate Selected  
Master Clock Required  
0
0
1
1
0
1
0
1
2.048 Mb/s  
4.096 Mb/s  
8.192 Mb/s  
Reserved  
4.096 MHz  
8.192 MHz  
16.384 MHz  
Reserved  
Table 9 - Serial Data Rate Selection (16 input x 16 output)  
14  
CMOS MT90823  
Read Address:  
Reset Value:  
02 ,  
H
0000 .  
H
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
CFE  
FD11 FD10 FD9  
FD8  
FD7  
FD6  
FD5  
FD4  
FD3  
FD2  
FD1  
FD0  
0
Bit  
Name  
Description  
Must be zero for normal operation.  
15 - 13  
12  
Unused  
CFE  
Complete Frame Evaluation. When CFE = 1, the frame evaluation is  
completed and bits FD10 to FD0 bits contains a valid frame alignment offset.  
This bit is reset to zero, when SFE bit in the IMS register is changed from 1 to  
0.  
11  
FD11  
Frame Delay Bit 11. The falling edge of FE (or rising edge for GCI mode) is  
sampled during the CLK-high phase (FD11 = 1) or during the CLK-low phase  
(FD11 = 0). This bit allows the measurement resolution to 1/2 CLK cycle.  
10 - 0  
FD10-0  
Frame Delay Bits. The binary value expressed in these bits refers to the  
measured input offset value. These bits are reset to zero when the SFE bit of  
the IMS register changes from 1 to 0. (FD10 = MSB, FD0 = LSB)  
Table 10 - Frame Alignment (FAR) Register Bits  
ST-BUS Frame  
CLK  
Offset Value  
FE Input  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
(FD[10:0] = 06 )  
H
(FD11 = 0, sample at CLK low phase)  
GCI Frame  
CLK  
Offset Value  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FE Input  
(FD[10:0] = 09 )  
H
(FD11 = 1, sample at CLK high phase)  
Figure 4 - Example for Frame Alignment Measurement  
15  
MT90823 CMOS  
Read/Write Address:  
03 for FOR0 register,  
H
04 for FOR1 register,  
H
05 for FOR2 register,  
H
06 for FOR3 register,  
H
Reset value:  
0000 for all FOR registers.  
H
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OF32  
OF31  
OF30 DLE3 OF22  
OF21 OF20  
DLE2 OF12  
OF11 OF10  
DLE1 OF02  
OF01 OF00  
DLE0  
FOR0 register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OF72  
OF71  
OF70 DLE7 OF62  
OF61 OF60  
DLE6 OF52  
OF51 OF50  
DLE5 OF42  
OF41 OF40  
DLE4  
FOR1 register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OF112 OF111 OF110 DLE11 OF102 OF101 OF100 DLE10 OF92  
OF91 OF90  
DLE9 OF82  
OF81 OF80  
DLE8  
FOR2 register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OF152 OF151 OF150 DLE15 OF142 OF141 OF140 DLE14 OF132 OF131 OF130 DLE13 OF122 OF121 OF120 DLE12  
FOR3 register  
Name  
Description  
(Note 1)  
OFn2, OFn1, OFn0  
Offset Bits 2,1 & 0. These three bits define how long the serial interface receiver takes  
to recognize and store bit 0 from the STi input pin: i.e., to start a new frame. The input  
frame offset can be selected to +4 clock periods from the point where the external  
frame pulse input signal is applied to the F0i input of the device. See Figure 4.  
DLEn  
Data Latch Edge.  
ST-BUS mode: DLEn =0, if clock rising edge is at the 3/4 point of the bit cell.  
DLEn =1, if when clock falling edge is at the 3/4 of the bit cell.  
GCI mode:  
DLEn =0, if clock falling edge is at the 3/4 point of the bit cell.  
DLEn =1, if when clock rising edge is at the 3/4 of the bit cell.  
Note 1: n denotes an input stream number from 0 to 15.  
Table 11 - Frame Input Offset (FOR) Register Bits  
16  
CMOS MT90823  
Measurement Result from  
Frame Delay Bits  
Corresponding  
Offset Bits  
Input Stream  
Offset  
FD11  
FD2  
FD1  
FD0  
OFn2  
OFn1  
OFn0  
DLEn  
No clock period shift (Default)  
+ 0.5 clock period shift  
+1.0 clock period shift  
+1.5 clock period shift  
+2.0 clock period shift  
+2.5 clock period shift  
+3.0 clock period shift  
+3.5 clock period shift  
+4.0 clock period shift  
+4.5 clock period shift  
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
Table 12 - Offset Bits (OFn2, OFn1, OFn0, DLEn) and Frame Delay Bits (FD11, FD2-0)  
ST-BUS F0i  
CLK  
offset=0, DLE=0  
offset=1, DLE=0  
offset=0, DLE=1  
offset=1, DLE=1  
STi Stream  
Bit 7  
Bit 7  
STi Stream  
STi Stream  
STi Stream  
Bit 7  
Bit 7  
denotes the 3/4 point of the bit cell  
GCI F0i  
CLK  
offset=0, DLE=0  
offset=1, DLE=0  
offset=0, DLE=1  
offset=1, DLE=1  
Bit 0  
Input Stream  
Bit 0  
Input Stream  
Input Stream  
Input Stream  
Bit 0  
Bit 0  
denotes the 3/4 point of the bit cell  
Figure 5 - Examples for Input Offset Delay Timing  
17  
MT90823 CMOS  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
V/C  
MC CSTo  
OE  
SAB3 SAB2 SAB1 SAB0 CAB6 CAB5 CAB4 CAB3 CAB2 CAB1 CAB0  
LPBK  
Bit  
Name  
Description  
15  
LPBK  
Per Channel Loopback. This bit should be use for diagnostic purpose only.  
Set this bit to zero for normal operation. When loopback bit is set for all  
memory location, the STi n channel m data comes from STo n channel m. For  
proper per channel loopback operations, set the delay offset register bits  
OFn[2:0] to zero for the streams which are in the loopback mode.  
14  
13  
V/C  
MC  
Variable /Constant Throughput Delay. This bit is used to select between  
the variable (low) and the constant delay (high) modes on a per-channel  
basis.  
Message Channel. When 1, the contents of the connection memory are  
output on the corresponding output channel and stream. Only the lower byte  
(bit 7 - bit 0) will be output to the ST-BUS output pins. When 0, the contents of  
the connection memory are the data memory address of the switched input  
channel and stream.  
12  
11  
CSTo  
OE  
Control ST-BUS output. This bit is output on the CSTo pin one channel early.  
The CSTo bit for stream 0 is output first.  
Output Enable. This bit enables the ST-BUS output drivers on a per-channel  
basis.  
When 1, the output driver functions normally. When 0, the output driver is in a  
high-impedance state.  
10 - 8,  
7
(Note 1)  
SAB3-0  
CAB6-0  
Source Stream Address Bits. The binary value is the number of the data  
stream for the source of the connection.  
6 - 0  
Source Channel Address Bits. The binary value is the number of the  
(Note 1)  
channel for the source of the connection.  
Note 1: If bit 13 (MC) of the corresponding connection memory location is 1 (device in message mode), then these entire 8 bits  
(SAB0, CAB6 - CAB0) are output on the output channel and stream associated with this location.  
Table 13 - Connection Memory Bits  
Data Rate  
CAB Bits Used to Determine the Source Channel of the Connection  
2.048 Mb/s  
4.096 Mb/s  
8.192 Mb/s  
CAB4 to CAB0 (32 channel/input stream)  
CAB5 to CAB0 (64 channel/input stream)  
CAB6 to CAB0 (128 channel/input stream)  
Table 14 - CAB Bits Programming for Different Data Rates  
18  
CMOS MT90823  
Test Reset (TRST)  
Resets the JTAG scan structure. This pin is  
internally pulled to VDD.  
JTAG Support  
The MT90823 JTAG interface conforms to the IEEE  
1149.1  
Boundary-Scan  
standard  
and  
the  
Instruction Register  
Boundary-Scan Test (BST) design-for-testability  
technique it specifies. The operation of the  
boundary-scan circuitry is controlled by an external  
test access port (TAP) Controller.  
In accordance with the IEEE 1149.1 standard, the  
MT90823 uses public instructions. The MT90823  
JTAG Interface contains a two-bit instruction register.  
Instructions are serially loaded into the instruction  
register from the TDI when the TAP Controller is in  
its shifted-IR state. Subsequently, the instructions  
are decoded to achieve two basic functions: to select  
the test data register that may operate while the  
instruction is current, and to define the serial test  
data register path, which is used to shift data  
between TDI and DO during data register scanning.  
Test Access Port (TAP)  
The Test Access Port (TAP) provides access to the  
many test functions of the MT90823. It consists of  
three input pins and one output pin. The following  
pins comprise the TAP.  
Test Clock Input (TCK)  
TCK provides the clock for the test logic. The  
TCK does not interfere with any on-chip clock  
and thus remains independent. The TCK  
permits shifting of test data into or out of the  
Boundary-Scan register cells concurrently with  
the operation of the device and without  
interfering with the on-chip logic.  
Test Data Register  
As specified in IEEE 1149.1, the MT90823 JTAG  
Interface contains three test data registers:  
The Boundary-Scan Register  
The Boundary-Scan register consists of a  
series of Boundary-Scan cells arranged to form  
a scan path around the boundary of the  
MT90823 core logic.  
Test Mode Select Input (TMS)  
The logic signals received at the TMS input are  
interpreted by the TAP Controller to control the  
test operations. The TMS signals are sampled  
at the rising edge of the TCK pulse. This pin is  
internally pulled to Vdd when it is not driven  
from an external source.  
The Bypass Register  
The Bypass register is a single stage shift  
register that provides a one-bit path from TDI to  
its TDO.  
Test Data Input (TDI)  
Serial input data applied to this port is fed  
either into the instruction register or into a test  
data register, depending on the sequence  
previously applied to the TMS input. Both  
The Device Identification Register  
The device identification register is a 32-bit  
register with the register contain of:  
registers are described in  
a
subsequent  
MSB  
LSB  
section. The received input data is sampled at  
the rising edge of TCK pulses. This pin is  
internally pulled to Vdd when it is not driven  
from an external source.  
0000 0000 1000 0010 0011 0001 0100 1011  
The LSB bit in the device identification register is  
the first bit clocked out.  
Test Data Output (TDO)  
Depending on the sequence previously applied  
to the TMS input, the contents of either the  
instruction register or data register are serially  
shifted out towards the TDO. The data out of  
the TDO is clocked on the falling edge of the  
TCK pulses. When no data is shifted through  
the boundary scan cells, the TDO driver is set  
to a high impedance state.  
The MT90823 boundary scan register contains 118  
bits. Bit 0 in Table 15 Boundary Scan Register is the  
first bit clocked out. All tristate enable bits are active  
high.  
19  
MT90823 CMOS  
Boundary Scan Bit 0 to Bit 117  
Boundary Scan Bit 0 to Bit 117  
Device Pin  
Device Pin  
Output  
Scan  
Cell  
Input  
Scan  
Cell  
Output  
Scan  
Cell  
Input  
Scan  
Cell  
Tristate  
Control  
Tristate  
Control  
STo7  
STo6  
STo5  
STo4  
STo3  
STo2  
STo1  
STo0  
0
2
4
6
8
10  
12  
14  
1
3
5
7
9
11  
13  
15  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
73  
74  
75  
76  
77  
78  
79  
80  
ODE  
CSTo  
DTA  
16  
WFPS  
RESET  
CLK  
81  
82  
83  
84  
85  
17  
18  
19  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
20  
23  
26  
29  
32  
35  
38  
41  
21  
24  
27  
30  
33  
36  
39  
42  
22  
25  
28  
31  
34  
37  
40  
43  
FE/HCLK  
F0i  
STi15  
STi14  
STi13  
STi12  
STi11  
STi10  
STi9  
STi8  
STi7  
STi6  
STi5  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
D8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
44  
47  
50  
53  
56  
59  
62  
65  
45  
48  
51  
54  
57  
60  
63  
66  
46  
49  
52  
55  
58  
61  
64  
67  
STi4  
STi3  
STi2  
STi1  
IM  
AS/ALE  
CS  
68  
69  
70  
71  
72  
STi0  
STo15  
STo14  
STo13  
STo12  
STo11  
STo10  
STo9  
102  
104  
106  
108  
110  
112  
114  
116  
103  
105  
107  
109  
111  
113  
115  
117  
R/W / WR  
DS/RD  
STo8  
Table 15: Boundary Scan Register Bits  
Table 15: Boundary Scan Register Bits  
20  
CMOS MT90823  
Figure 6 illustrates how four MT90823 devices can  
be used to form non-blocking switches for up to 4096  
channels with data rate of 8.192 Mb/s.  
Applications  
Switch Matrix Architectures  
Serial Input Frame Alignment Evaluation  
The MT90823 is an ideal device for medium to large  
size switch matrices where voice and grouped data  
channels are transported within the same frame. In  
such applications, the voice samples have to be time  
interchanged with a minimum delay while maintain-  
ing the integrity of grouped data. To ensure the  
integrity of grouped data during switching and to  
provide a minimum delay for voice connections, the  
MT90823 provides per-channel selection between  
variable and constant throughput delay. This can be  
selected by the V/C bit of the Connection Memory.  
The MT90823 is capable of performing frame  
alignment evaluation. The frame pulse under  
evaluation is connected to the FE (frame measure-  
ment) pin. An external multiplexer is required to  
select one of the frame pulses related to the different  
input streams. The block diagram at Figure 7 shows  
a switch matrix that performs frame alignment  
evaluation for 16 frame pulses.  
16 Streams  
16 Streams  
MT90823  
#1  
IN  
OUT  
16 Streams  
16 Streams  
MT90823  
#2  
MT90823  
#3  
Bit Rate  
(IN/OUT)  
Size of  
Switch Matrix  
2.048 Mb/s 1,024 - Channel Switch  
4.096 Mb/s 2,048 - Channel Switch  
8.192 Mb/s 4,096 - Channel Switch  
MT90823  
#4  
Figure 6 - Switch Matrix with Serial Stream at Various Bit Rates  
STi0  
STi1  
STi2  
MT90823  
Frame Alignment  
Evaluation circuit  
STo[0:15]  
STi15  
External  
Mux  
FE  
input  
CLK  
FP  
FP STi0  
FP STi1  
Central  
Timing Source  
FP STi2  
FP STi15  
Note:  
1. Use the external mux to select one of the serial frame pulses.  
2. To start a measurement cycle, set the Start Frame Evaluation (SFE) bit in the IMS register low for at least 1 frame.  
3. Frame evaluation starts when the SFE bit is changed from low to high.  
4. Two frames later, the Complete Frame Evaluation (CFE) bit of the Frame Alignment Register (FAR) changes from low to  
high to signal the CPU that a valid offset measurement is ready to be read from bit [11:0] of the FAR register.  
5. The SFE bit must be set to zero before a new measurement cycle started.  
Figure 7 - Serial Input Frame Alignment Evaluation for Various Frame Pulses  
21  
MT90823 CMOS  
Wide Frame Pulse (WFP) Frame Alignment  
Mode  
x 4,096 channel switch modules. Figure 6 shows the  
implementation of the individual 4,096 x 4,096  
channel switch modules from four MT90823 devices.  
When the device is in the wide frame pulse mode  
and if the input data streams are sampled at 3/4 bit  
time, the device can operate in the HMVIP and  
MVIP-90 environment. When input data streams are  
sampled at half-bit time as specified in the HMVIP  
and MVIP-90 standard, the device can only operate  
with data rate of 2 Mb/s. Refer to the ST-BUS output  
Figure 10 shows an eight-stream trunk card using  
MT8986 Multi-rate Digital Switches to concentrate  
32-channel 2.048 Mb/s ST-BUS (DSTi and DSTo)  
streams at each E1/T1 trunk onto four 128-channel  
8.192 Mb/s streams.  
delay parameter, t  
Electrical Characteristic table.  
, as specified in the AC  
SOD  
The DACS switching matrix that formerly required  
256 MT8986 devices in a square (16 x 16)  
configuration can now be provided by 64 MT8986  
and 16 MT90823 devices (see Figure 8).  
The MT90823 is designed to accept a common  
frame pulse F0i, the 4.096 MHz and 16.384 MHz  
clocks required by the HMVIP standards. To enable  
the Wide Frame Pulse Frame Alignment Mode, the  
WFPS pin has to be set to HIGH and the DR1 and  
DR0 bits set for 8.192Mb/s data rate operation.  
Digital Access Cross-Connect System  
Figure 8 illustrates the use of MT90823 devices to  
construct a 256 E1/T1 Digital Access Cross- connect  
System (DACS). The system consists of 32 trunk  
cards each having eight E1 or T1 trunk interfaces for  
a total of 256 trunks. Each trunk card uses two  
MT8986 Multi-rate Digital Switches. The central  
switching block uses 16 MT90823 devices.  
The block diagram at Figure 9 shows how an 8,192 x  
8,192 channel switch can be constructed from 4,096  
Each line represents a stream  
TC0  
that consists of  
E1  
E1  
128 channels at 8.192Mb/s  
0
8 x E1/T1  
Trunk Card  
7
8,192 x 8,192 channel  
Switch Matrix  
TC1  
E1  
8
8 x E1/T1  
Trunk Card  
E1  
15  
Sixteen MT90823  
(8 Mb/s mode)  
64 input streams  
x
64 output streams  
(See Figure 9)  
TC31  
E1  
E1  
247  
8 x E1/T1  
Trunk Card  
(Figure 10)  
255  
Figure 8 - 256 E1/T1 Digital Access Cross-Connect System (DACS)  
22  
CMOS MT90823  
32 Streams  
IN  
4,096 x 4,096  
Switch Matrix  
(Figure 6)  
4,096 x 4,096  
Switch Matrix  
(Figure 6)  
32 Streams  
OUT  
32 Streams  
4,096 x 4,096  
Switch Matrix  
(Figure 6)  
4,096 x 4,096  
Switch Matrix  
(Figure 6)  
32 Streams  
Figure 9 - 8,192 x 8,192 Channel Switch Matrix  
DSTo  
DSTi  
STi0  
E1  
E1  
E1/T1 Trunk 0  
MT8986  
2 Mb/s  
to  
0
STi1  
STo0  
STo1  
256-channel out  
DSTo  
DSTi  
8 Mb/s  
STi7  
(8.192 Mb/s per channel)  
E1/T1 Trunk 1  
1
STo0  
STo1  
MT8986  
8 Mb/s  
to  
STi0  
STi1  
256-channel in  
DSTo  
DSTi  
E1  
E1/T1 Trunk 7  
2 Mb/s  
7
STo7  
(8.192 Mb/s per channel)  
Figure 10 - Trunk Card Block Diagram  
23  
MT90823 CMOS  
Absolute Maximum Ratings*  
Parameter  
Sym  
Min  
Max  
Units  
1
2
3
4
5
6
Supply Voltage  
V
-0.3  
5.0  
V
V
DD  
Voltage on any 3.3V Tolerant pin I/O (other than supply pins)  
Voltage on any 5V Tolerant pin I/O (other than supply pins)  
Continuous Current at digital outputs  
V
VSS - 0.3  
VSS - 0.3  
V
+ 0.3  
DD  
I
V
5.5  
20  
V
I
I
mA  
W
°C  
o
Package power dissipation (PLCC & PQFP)  
Storage temperature  
P
T
1
D
- 65  
+125  
S
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied  
Recommended Operating Conditions - Voltages are with respect to ground (V ) unless otherwise stated.  
ss  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
4
Operating Temperature  
Positive Supply  
TOP  
VDD  
VIH  
-40  
3.0  
+85  
3.6  
°C  
V
Input High Voltage  
0.7VDD  
VDD  
5.5  
V
400mV noise margin  
400mV noise margin  
Input High Voltage on 5V Tolerant  
Inputs  
VIH  
V
5
Input Low Voltage  
VIL  
VSS  
0.3VDD  
V
DC Electrical Characteristics - Voltages are with respect to ground (V ) unless otherwise stated.  
ss  
Characteristics  
Sym  
Min  
Typ  
Max  
Units Test Conditions  
1
@ 2 Mb/s  
12  
20  
45  
15  
26  
70  
mA  
Supply Current  
I
Output unloaded  
DD  
@ 4 Mb/s  
@ 8 Mb/s  
mA  
mA  
V
I
N
P
U
T
S
2
3
4
Input High Voltage  
Input Low Voltage  
V
0.7VDD  
IH  
V
0.3VDD  
V
IL  
Input Leakage (input pins)  
Input Leakage (with pull-up or  
pull-down)  
I
I
15  
50  
µA  
µA  
IL  
0<VV  
See  
DD  
BL  
Note 1  
5
6
7
8
Input Pin Capacitance  
Output High Voltage  
Output Low Voltage  
C
10  
pF  
V
I
V
0.8VDD  
I
I
= -10mA  
= 10mA  
OH  
OH  
OL  
O
U
T
P
U
T
V
0.4  
5
V
OL  
OZ  
High Impedance Leakage  
I
µA  
0 < V < V  
Note 1  
See  
DD  
S
9
Output Pin Capacitance  
C
10  
pF  
O
Note:  
1. Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (V)  
AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels  
Characteristics  
CMOS Threshold  
Sym  
Level  
Units  
Conditions  
1
2
3
V
0.5VDD  
0.7VDD  
0.3VDD  
V
V
V
CT  
Rise/Fall Threshold Voltage High  
Rise/Fall Threshold Voltage Low  
V
HM  
V
LM  
24  
CMOS MT90823  
AC Electrical Characteristics - Frame Pulse and CLK  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Notes  
tFPW  
1
Frame pulse width (ST-BUS, GCI)  
Bit rate = 2.048 Mb/s  
26  
26  
26  
295  
145  
80  
ns  
ns  
ns  
WFPS Pin = 0  
Bit rate = 4.096 Mb/s  
Bit rate = 8.192 Mb/s  
tFPS  
tFPH  
tCP  
2
3
4
Frame Pulse Setup time before  
CLK falling (ST-BUS or GCI)  
5
ns  
WFPS Pin = 0  
WFPS Pin = 0  
Frame Pulse Hold Time from CLK  
falling (ST-BUS or GCI)  
10  
ns  
CLK Period  
Bit rate = 2.048 Mb/s  
Bit rate = 4.096 Mb/s  
Bit rate = 8.192 Mb/s  
190  
110  
55  
300  
150  
70  
ns  
ns  
ns  
WFPS Pin = 0  
WFPS Pin = 0  
WFPS Pin = 0  
tCH  
5
6
CLK Pulse Width High  
Bit rate = 2.048 Mb/s  
Bit rate = 4.096 Mb/s  
Bit rate = 8.192 Mb/s  
85  
50  
20  
150  
75  
40  
ns  
ns  
ns  
tCL  
CLK Pulse Width Low  
Bit rate = 2.048 Mb/s  
Bit rate = 4.096 Mb/s  
Bit rate = 8.192 Mb/s  
85  
50  
20  
150  
75  
40  
ns  
ns  
ns  
tr, tf  
7
8
Clock Rise/Fall Time  
10  
ns  
ns  
tHFPW  
Wide frame pulse width  
Bit rate = 8.192 Mb/s  
195  
5
295  
WFPS Pin = 1  
WFPS Pin = 1  
WFPS Pin = 1  
WFPS Pin = 1  
WFPS Pin = 1  
tHFPS  
tHFPH  
tHCP  
9
Frame Pulse Setup Time before  
HCLK falling  
150  
150  
300  
150  
ns  
ns  
ns  
ns  
10 Frame Pulse Hold Time from  
HCLK falling  
10  
190  
85  
11 HCLK (4.096MHz) Period  
Bit rate = 8.192 Mb/s  
tHCH  
12 HCLK (4.096MHz) Pulse Width  
High  
Bit rate = 8.192 Mb/s  
tHCL  
13 HCLK (4.096MHz) Pulse Width  
Low  
85  
150  
ns  
WFPS Pin = 1  
Bit rate = 8.192 Mb/s  
tHr, tHf  
tDIF  
14 HCLK Rise/Fall Time  
10  
10  
ns  
ns  
15 Delay between falling edge of  
HCLK and falling edge of CLK  
-10  
WFPS Pin = 0 or 1  
25  
MT90823 CMOS  
AC Electrical Characteristics - Serial Streams for ST-BUS and GCI Backplanes  
Characteristic  
Sti Set-up Time  
Sym  
tSIS  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
0
ns  
ns  
tSIH  
Sti Hold Time  
10  
tSOD  
Sto Delay - Active to Active  
30  
40  
ns  
ns  
CL=30pF  
CL=200pF  
4
5
6
STo delay - Active to High-Z  
Sto delay - High-Z to Active  
t
t
32  
32  
32  
RL=1K, CL=200pF, See Note 1  
RL=1K, CL=200pF, See Note 1  
RL=1K, CL=200pF, See Note 1  
DZ  
ZD  
Output Driver Enable (ODE)  
Delay  
t
ns  
ODE  
7
CSTo Output Delay  
t
30  
40  
ns  
ns  
CL=30pF  
CL=200pF  
XCD  
Note:  
1. High Impedance is measured by pulling to the appropriate rail with R , with timing corrected to cancel time taken to discharge C .  
L
L
t
FPW  
F0i  
V
CT  
t
t
CH  
t
t
t
t
CP  
FPS  
r
FPH  
CL  
V
V
HM  
TT  
LM  
CLK  
V
t
t
SOD  
f
Bit 0, Last Ch (Note1)  
Bit 7, Channel 0  
Bit 6, Channel 0  
Bit 5, Channel 0  
STo  
V
CT  
t
t
SIS  
SIH  
STi  
Bit 0, Last Ch (Note1)  
Bit 7, Channel 0  
Bit 6, Channel 0  
Bit 5, Channel 0  
V
CT  
Note 1:  
2.048 Mb/s mode, last channel = ch 31,  
4.196 Mb/s mode, last channel = ch 63,  
8.192 Mb/s mode, last channel = ch 127.  
Figure 11 - ST-BUS Timing for 2.048 Mb/s and High Speed Serial Interface at 4.096 Mb/s  
or 8.192 Mb/s, when WFPS pin = 0.  
26  
CMOS MT90823  
t
FPW  
F0i  
V
CT  
t
t
CH  
t
t
t
CP  
FPS  
FPH  
t
r
CL  
V
V
V
HM  
CT  
LM  
CLK  
t
SOD  
t
f
Bit 7, Last Ch (Note1)  
Bit 0, Channel 0  
Bit 1, Channel 0  
Bit 2, Channel 0  
Bit 2, Channel 0  
STo  
V
CT  
CT  
t
t
SIS  
SIH  
STi  
Bit 7, Last Ch (Note1)  
Bit 0, Channel 0  
Bit 1, Channel 0  
V
Note 1:  
2Mb/s mode, last channel = ch 31,  
4Mb/s mode, last channel = ch 63,  
8Mb/s mode, last channel = ch 127  
Figure 12 - GCI Timing at 2.048 Mb/s and High Speed Serial Interface  
at 4.096 Mb/s or 8.192 Mb/s, when WFPS pin = 0  
t
HFPW  
t
t
HFPH  
HFPS  
V
CT  
F0i  
t
HCP  
t
t
HCH  
HCL  
HCLK  
V
V
V
HM  
CT  
LM  
4.096MHz  
t
t
DIF  
Hf  
t
CP  
Hr  
t
t
t
CL  
t
r
CH  
CLK  
16.384MHz  
V
CT  
t
t
SOD  
f
V
V
Bit 1, Ch 127  
Bit 0, Ch 127  
Bit 7, Ch 0  
Bit 6, Ch 0  
Bit 5, Ch 0  
Bit 4, Ch 0  
STo  
STi  
CT  
t
SIS  
t
SIH  
Bit 1, Ch 127  
Bit 0, Ch 127  
Bit 7, Ch 0  
Bit 6, Ch 0  
Bit 5, Ch 0  
Bit 4, Ch 0  
CT  
Figure 13 - WFP Bus Timing for High Speed Serial Interface (8.192Mb/s), when WFPS pin = 1  
Note:  
1. High Impedance is measured by pulling to the appropriate rail with R , with timing corrected to cancel time taken to discharge C .  
L
L
27  
MT90823 CMOS  
CLK  
V
V
CT  
CT  
(ST-BUS or)  
(WFPS mode)  
V
CT  
ODE  
STo  
t
t
ODE  
ODE  
CLK  
(GCI mode)  
V
Valid Data  
HiZ  
HiZ  
CT  
t
DZ  
V
HiZ  
Valid Data  
HiZ  
STo  
STo  
CT  
Figure 15 - Output Driver Enable (ODE)  
t
ZD  
V
Valid Data  
CT  
t
XCD  
V
CSTo  
CT  
Figure 14 - Serial Output and External Control  
28  
CMOS MT90823  
AC Electrical Characteristics - Multiplexed Bus Timing (Mode 1)  
Characteristics  
ALE pulse width  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
4
5
6
7
8
9
t
20  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALW  
Address setup from ALE falling  
Address hold from ALE falling  
RD active after ALE falling  
Data setup from DTA Low on Read  
CS hold after RD/WR  
t
ADS  
ADH  
t
3
t
3
ALRD  
t
5
C =150pF  
L
DDR  
t
5
CSRW  
RD pulse width (fast read)  
CS setup from RD  
t
45  
0
RW  
t
CSR  
DHR  
Data hold after RD  
t
10  
20  
C =150pF, R =1K,  
L
L
Note 1.  
10 WR pulse width (fast write)  
11 WR delay after ALE falling  
12 CS setup from WR  
t
45  
3
ns  
ns  
ns  
ns  
ns  
ns  
WW  
t
ALWR  
t
0
CSW  
DSW  
SWD  
DHW  
13 Data setup from WR (fast write)  
14 Valid Data Delay on write (slow write)  
15 Data hold after WR inactive  
t
t
20  
122  
t
5
16 Acknowledgment Delay:  
Reading/Writing Registers  
Reading/Writing Memory @ 2Mb/s  
@ 4Mb/s  
t
AKD  
43/43  
ns  
ns  
ns  
ns  
C =150pF  
L
760/750  
400/390  
220/210  
C =150pF  
L
C =150pF  
L
@ 8Mb/s  
C =150pF  
L
17 Acknowledgment Hold Time  
t
22  
ns  
C =150pF, R =1K,  
AKH  
L
L
Note 1.  
Note:  
1. High Impedance is measured by pulling to the appropriate rail with R , with timing corrected to cancel time taken to discharge C .  
L
L
t
ALW  
V
V
CT  
ALE  
t
t
ADS  
ADH  
AD0-AD7  
D8-D15  
HiZ  
HiZ  
DATA  
HiZ  
ADDRESS  
CT  
t
t
ALRD  
CSRW  
CS  
RD  
V
CT  
t
t
t
CSR  
RW  
V
CT  
CT  
t
DHR  
WW  
V
WR  
t
CSW  
t
DHW  
t
SWD  
t
DSW  
t
t
ALWR  
DDR  
t
AKH  
DTA  
V
CT  
t
AKD  
Figure 16 - Multiplexed Bus Timing (Mode 1)  
29  
MT90823 CMOS  
AC Electrical Characteristics - Multiplexed Bus Timing (Mode 2)  
Characteristics  
AS pulse width  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
4
5
6
7
8
t
20  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ASW  
Address setup from AS falling  
Address hold from AS falling  
Data setup from DTA Low on Read  
CS hold after DS falling  
t
ADS  
ADH  
DDR  
t
3
t
5
C =150pF  
L
t
0
CSH  
CS setup from DS rising  
t
0
CSS  
Data hold after write  
t
5
DHW  
Data setup from DS -Write (fast  
write)  
t
20  
DWS  
9
Valid Data Delay on write (slow write)  
t
t
122  
20  
ns  
ns  
ns  
ns  
SWD  
RWS  
RWH  
10 R/W setup from DS rising  
11 R/W hold after DS falling  
12 Data hold after read  
60  
5
t
t
10  
C =150pF, R =1K,  
DHR  
L
L
Note 1  
13 DS delay after AS falling  
t
10  
ns  
DSH  
14 Acknowledgment Delay:  
Reading/Writing Registers  
Reading/Writing Memory @ 2Mb/s  
@ 4Mb/s  
t
AKD  
43/43  
ns  
ns  
ns  
ns  
C =150pF  
L
760/750  
400/390  
220/210  
C =150pF  
L
C =150pF  
L
@ 8Mb/s  
C =150pF  
L
15 Acknowledgment Hold Time  
t
22  
ns  
C =150pF, RL=1K,  
AKH  
L
Note 1  
Note 1. High Impedance is measured by pulling to the appropriate rail with R , with timing corrected to cancel time taken to discharge C .  
L
L
DS  
V
CT  
t
RWS  
t
RWH  
R/W  
V
CT  
t
t
DSH  
ASW  
V
CT  
AS  
t
t
t
ADS  
t
DWS  
ADH  
DHW  
t
SW  
AD0-AD7  
D8-D15  
WR  
DATA  
V
HiZ  
HiZ  
HiZ  
ADDRESS  
CT  
t
DHR  
AD0-AD7  
D8-D15  
RD  
DATA  
V
HiZ  
ADDRESS  
CT  
t
CSH  
t
CSS  
V
CS  
CT  
t
t
AKH  
DDR  
t
AKD  
DTA  
V
CT  
Figure 17 - Multiplexed Bus Timing (Mode2)  
30  
CMOS MT90823  
AC Electrical Characteristics - Motorola Non-Multiplexed Bus Mode  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
4
5
6
7
8
CS setup from DS falling  
R/W setup from DS falling  
Address setup from DS falling  
CS hold after DS rising  
t
0
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
RWS  
t
ADS  
CSH  
RWH  
t
0
R/W hold after DS rising  
Address hold after DS rising  
Data setup from DTA Low on Read  
Data hold on read  
t
2
t
2
ADH  
DDR  
DHR  
t
2
ns C =150pF  
L
t
10  
20  
ns C =150pF, R =1K  
L
L
Note 1  
9
Data setup on write (fast write)  
t
t
0
5
ns  
ns  
ns  
DSW  
SWD  
DHW  
10 Valid Data Delay on write (slow write)  
11 Data hold on write  
122  
t
12 Acknowledgment Delay:  
Reading/Writing Registers  
Reading/Writing Memory @ 2Mb/s  
@ 4Mb/s  
t
AKD  
43/43  
ns C =150pF  
L
760/750  
400/390  
220/210  
ns C =150pF  
L
ns C =150pF  
L
@ 8Mb/s  
ns C =150pF  
L
13 Acknowledgment Hold Time  
t
22  
ns C =150pF, RL=1K,  
AKH  
L
Note 1  
Note:  
1. High Impedance is measured by pulling to the appropriate rail with R , with timing corrected to cancel time taken to discharge C .  
L
L
V
DS  
CS  
CT  
t
t
CSH  
CSS  
V
CT  
t
t
RWH  
RWS  
V
CT  
R/W  
t
t
ADS  
ADH  
V
VALID ADDRESS  
CT  
A0-A7  
t
DHR  
AD0-AD7  
D8-D15  
READ  
V
VALID READ DATA  
CT  
t
t
DHW  
DSW  
t
SWD  
AD0-AD7  
D8-D15  
WRITE  
V
VALID WRITE DATA  
CT  
t
DDR  
V
CT  
DTA  
t
AKD  
t
AKH  
Figure 18 - Motorola Non-Multiplexed Bus Timing  
31  
Package Outlines  
Pin #1 Corner  
Ø1.00(3X) REF.  
1
2 3 4 5 6 7 8 9 10 11 12 13  
A
B
C
D
E
F
G
H
Ø
0.75 ± 0.15 (169X)  
J
13 12 11 10 9  
8
7
6
5 4 3 2 1  
K
L
M
A
B
C
D
E
F
N
3.00*45 ° (4x)  
20.00 REF  
G
H
J
K
L
M
N
B
1.50  
18.00  
30 ° Typ.  
A
23.00 ± 0.20  
C
Seating Plane  
Note: All governing dimensions are in millimetres for design purposes  
Ball Gate Array  
120-BGA  
144-BGA  
160-BGA  
MT90823  
MT90863  
MT90826  
Package Outlines  
F
A
G
D
1
D
2
D
H
E
E
1
e: (lead coplanarity)  
A
Notes:  
1
1) Not to scale  
2) Dimensions in inches  
3) (Dimensions in millimeters)  
I
E
2
4) For D & E add for allowable Mold Protrusion 0.010"  
20-Pin  
28-Pin  
44-Pin  
68-Pin  
84-Pin  
Dim  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.200  
(5.08)  
0.165  
(4.20)  
0.200  
(5.08)  
A
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.130  
(3.30)  
0.090  
(2.29)  
0.130  
(3.30)  
A1  
0.385  
0.395  
0.485  
0.495  
0.685  
0.695  
0.985  
0.995  
1.185  
1.195  
D/E  
(9.78) (10.03) (12.32) (12.57) (17.40) (17.65) (25.02) (25.27) (30.10) (30.35)  
0.350 0.356 0.450 0.456 0.650 0.656 0.950 0.958 1.150 1.158  
(8.890) (9.042) (11.430) (11.582) (16.510) (16.662) (24.130) (24.333) (29.210) (29.413)  
D1/E1  
D2/E2  
0.290  
(7.37)  
0.330  
(8.38)  
0.390  
0.430  
0.590  
0.630  
0.890  
0.930  
1.090  
1.130  
(9.91) (10.92) (14.99) (16.00) (22.61) (23.62) (27.69) (28.70)  
0
0.004  
0
0.004  
0.032  
0
0.004  
0.032  
0
0.004  
0.032  
0
0.004  
0.032  
e
F
0.026  
0.032  
0.026  
0.026  
0.026  
0.026  
(0.661) (0.812) (0.661) (0.812) (0.661) (0.812) (0.661) (0.812) (0.661) (0.812)  
0.013 0.021 0.013 0.021 0.013 0.021 0.013 0.021 0.013 0.021  
(0.331) (0.533) (0.331) (0.533) (0.331) (0.533) (0.331) (0.533) (0.331) (0.533)  
G
H
I
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
Plastic J-Lead Chip Carrier - P-Suffix  
General-10  
http://www.mitelsemi.com  
World Headquarters - Canada  
Tel: +1 (613) 592 2122  
Fax: +1 (613) 592 6909  
North America  
Tel: +1 (770) 486 0194  
Fax: +1 (770) 631 8213  
Asia/Pacific  
Tel: +65 333 6193  
Fax: +65 333 6192  
Europe, Middle East,  
and Africa (EMEA)  
Tel: +44 (0) 1793 518528  
Fax: +44 (0) 1793 518581  
Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively “Mitel”) is believed to be reliable. However, Mitel assumes no  
liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of  
patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or  
service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever.  
Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or  
other intellectual property rights owned by Mitel.  
This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or  
contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this  
publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or  
service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific  
piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or  
data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in  
any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel’s  
conditions of sale which are available on request.  
M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation  
Mitel Semiconductor is an ISO 9001 Registered Company  
Copyright 1999 MITEL Corporation  
All Rights Reserved  
Printed in CANADA  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MT90823AB

3V Large Digital Switch
ZARLINK

MT90823AB

3V Large Digital Switch
MITEL

MT90823AB1

3V Large Digital Switch
ZARLINK

MT90823AG

3V Large Digital Switch
ZARLINK

MT90823AG

3V Large Digital Switch
MITEL

MT90823AL

3V Large Digital Switch
ZARLINK

MT90823AL

3V Large Digital Switch
MITEL

MT90823AL1

3V Large Digital Switch
ZARLINK

MT90823AP

3V Large Digital Switch
ZARLINK

MT90823AP

3V Large Digital Switch
MITEL

MT90823AP1

3V Large Digital Switch
ZARLINK

MT90826

Quad Digital Switch
ZARLINK