ZL40235LDG1 [MICROCHIP]

Clock Driver;
ZL40235LDG1
型号: ZL40235LDG1
厂家: MICROCHIP    MICROCHIP
描述:

Clock Driver

驱动 逻辑集成电路
文件: 总50页 (文件大小:1929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
ZL40235  
Low Skew, Low Additive Jitter 3 x 5 LVPECL/LVDS/HCSL  
Fanout Buffer with one LVCMOS output  
Ordering Information  
Features  
ZL40235LDG1  
ZL40235LDF1  
40 pin QFN  
40 pin QFN  
Trays  
Tape and Reel  
3 to 1 input Multiplexer: Two inputs accept any  
differential (LVPECL, HCSL, LVDS, SSTL, CML,  
LVCMOS) or a single ended signal and the third  
input accepts a crystal or a single ended signal  
Package size: 6 x 6 mm  
-40 C to +85 C  
Five differential LVPECL/LVDS/HCSL outputs and  
one LVCMOS output  
Applications  
Ultra-low additive jitter: 24fs (integration band 12kHz  
General purpose clock distribution  
Low jitter clock trees  
to 20MHz at 625MHz clock frequency)  
Supports clock frequencies from 0 to 1.6GHz  
Logic translation  
Supports 2.5V or 3.3V power supplies for LVPECL,  
Clock and data signal restoration  
LVDS or HCSL outputs  
Wired communications: OTN, SONET/SDH, GE, 10 GE,  
FC and 10G FC  
Supports 1.5V, 1,8V, 2.5V or 3.3V power supplies  
for LVCMOS output  
PCI Express generation 1/2/3/4 clock distribution  
Wireless communications  
Embedded Low Drop Out (LDO) Voltage regulator  
provides superior Power Supply Noise Rejection  
High performance microprocessor clock distribution  
Test Equipment  
Maximum output to output skew of 40ps  
Device controlled via SPI or hardware pins  
SEL  
OE  
SPI Slave  
LVCMOS_OE/  
SPI_CS_b  
SPI_CS_b  
Registers:  
xtal_buf_gain[7:0]  
Bank A  
xtal_drive_level[7:0]  
xtal_load_cap[7:0]  
input_select[1:0]  
IN_SEL0  
SPI_CLK  
IN_SEL0/  
SPI_CLK  
OUT0_p  
OUT0_n  
output_drive_low  
driver_type[7:0] (diff)  
driver_type[9:8] (diff)  
cmos_div[2:0] (cmos)  
output_enable (cmos)  
driver_strength (cmos)  
Device ID  
IN_SEL1/  
SPI_SDI  
IN_SEL1  
SPI_SDIO  
OUT1_p  
OUT1_n  
SPI_SDO  
Bank  
B
OUT2_p  
OUT2_n  
OUT_TYPE_SEL0  
OUT_TYPE_SEL1  
OUT3_p  
OUT3_n  
IN0_p  
IN0_n  
OUT4_p  
OUT4_n  
IN1_p  
IN1_n  
DIV  
OUT_LVCMOS  
1to8  
ZL40235  
XOUT  
XIN  
Figure 1. Functional Block Diagram  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
1
 
 
 
Data Sheet  
ZL40235  
Table of Contents  
Features.....................................................................................................................................1  
Applications................................................................................................................................1  
Table of Contents ......................................................................................................................2  
Pin Diagram ...............................................................................................................................5  
Pin Descriptions.........................................................................................................................6  
Functional Description ...............................................................................................................9  
Clock Inputs ...............................................................................................................................9  
Clock Outputs ..........................................................................................................................12  
Crystal Oscillator Input.............................................................................................................13  
Termination of unused inputs and outputs ..............................................................................13  
Power Consumption ................................................................................................................13  
Power Supply Filtering.............................................................................................................14  
Power Supplies and Power-up Sequence...............................................................................14  
Host Interface ..........................................................................................................................14  
Typical device performance.....................................................................................................19  
Register Map ...........................................................................................................................23  
AC and DC Electrical Characteristics......................................................................................29  
Absolute Maximum Ratings.....................................................................................................29  
Recommended Operating Conditions .....................................................................................29  
Change History........................................................................................................................48  
Package Outline ......................................................................................................................49  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
2
 
Data Sheet  
ZL40235  
List of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Functional Block Diagram........................................................................................................................................... 1  
Pin Diagram ................................................................................................................................................................ 5  
Input driven by a single ended output ........................................................................................................................ 9  
Input driven by DC coupled LVPECL output................................................................................................................. 9  
Input driven by DC coupled LVPECL output (alternative termination)...................................................................... 10  
Input driven by AC coupled LVPECL output............................................................................................................... 10  
Input driven by HCSL output ..................................................................................................................................... 10  
Input driven by LVDS output ..................................................................................................................................... 11  
Input driven by AC coupled LVDS .............................................................................................................................. 11  
Input driven by an SSTL output ................................................................................................................................. 11  
Termination for LVCMOS outputs............................................................................................................................. 12  
Driving a load via transformer.................................................................................................................................. 12  
Crystal Oscillator Circuit in Hardware Controlled Mode........................................................................................... 13  
Power Supply Filtering .............................................................................................................................................. 14  
SPI slave interface..................................................................................................................................................... 16  
Serial Peripheral Interface Functional Waveform LSB First Mode ......................................................................... 17  
Serial Peripheral Interface Functional Waveform MSB First Mode ....................................................................... 17  
Example of the Burst Mode Operation ..................................................................................................................... 18  
156.25MHz LVPECL................................................................................................................................................... 19  
1.5GHz LVPECL.......................................................................................................................................................... 19  
156.25MHz LVDS ...................................................................................................................................................... 19  
1.5GHz LVDS ............................................................................................................................................................. 19  
100MHz HCSL............................................................................................................................................................ 19  
250MHz HCSL............................................................................................................................................................ 19  
I/O delay vs temperature.......................................................................................................................................... 20  
PSNR vs noise frequency........................................................................................................................................... 20  
100MHz LVPECL Phase Noise................................................................................................................................... 20  
100MHz LVDS Phase Noise ....................................................................................................................................... 20  
156.25MHz LVDS Phase Noise in Xtal mode............................................................................................................. 20  
100MHz HCSL Phase Noise ....................................................................................................................................... 20  
156.25MHz LVPECL Phase Noise............................................................................................................................... 21  
625MHz LVPECL Phase Noise.................................................................................................................................... 21  
156.25MHz LVDS Phase Noise .................................................................................................................................. 21  
625MHz LVDS Phase Noise ....................................................................................................................................... 21  
Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate ................................................................................. 22  
Output clock noise floor vs input clock slew-rate ..................................................................................................... 22  
Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate ................................................................................. 22  
Output clock noise floor vs input clock slew-rate ..................................................................................................... 22  
Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate ................................................................................. 22  
Output clock noise floor vs input clock slew-rate ..................................................................................................... 22  
Differential Input Voltage Levels .............................................................................................................................. 30  
Differential Output Voltage Levels ........................................................................................................................... 34  
SPI (Serial Peripheral Interface) Timing - LSB First Mode ......................................................................................... 46  
SPI (Serial Peripheral Interface) Timing - MSB First Mode........................................................................................ 46  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
ZL40235  
October 2018  
3
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
List of Tables  
Table 1 Pin Description................................................................................................................................................................................... 6  
Table 2 Input clock selection ........................................................................................................................................................................ 15  
Table 3 Output Type Selection...................................................................................................................................................................... 15  
Table 4 Register Map ................................................................................................................................................................................... 23  
Table 5 Absolute Maximum Ratings*........................................................................................................................................................... 29  
Table 6 Recommended Operating Conditions* ............................................................................................................................................ 29  
Table 7 Current consumption ....................................................................................................................................................................... 29  
Table 8 Input Characteristics* ...................................................................................................................................................................... 30  
Table 9 Crystal Oscillator Characteristics* ................................................................................................................................................... 31  
Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V* ................................................................................................................ 31  
Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V* ................................................................................................................ 32  
Table 12 LVCMOS Output Characteristics for VDDO = 3.3V* ....................................................................................................................... 32  
Table 13 LVCMOS Output Characteristics for VDDO = 2.5V* ....................................................................................................................... 33  
Table 14 LVPECL Output Characteristics for VDDO = 3.3V* ......................................................................................................................... 34  
Table 15 LVPECL Output Characteristics for VDDO = 2.5V* ......................................................................................................................... 35  
Table 16 LVDS Outputs for VDDO = 3.3V*.................................................................................................................................................... 36  
Table 17 LVDS Outputs for VDDO = 2.5V*.................................................................................................................................................... 37  
Table 18 HCSL Outputs for VDDO = 3.3V* .................................................................................................................................................... 38  
Table 19 HCSL Outputs for VDDO = 2.5V* .................................................................................................................................................... 39  
Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*......................................................................................................................... 40  
Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*........................................................................................................................... 40  
Table 22 LVDS Output Phase Noise with 25 MHz XTAL ................................................................................................................................ 41  
Table 23 HCSL Output Phase Noise with 25 MHz XTAL ................................................................................................................................ 41  
Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*....................................................................................................................... 42  
Table 25 LVPECL Output Phase Noise with 125 MHz XTAL*......................................................................................................................... 42  
Table 26 LVDS Output Phase Noise with 125 MHz XTAL .............................................................................................................................. 43  
Table 27 HCSL Output Phase Noise with 125 MHz XTAL .............................................................................................................................. 43  
Table 28 LVCMOS Output Phase Noise with 156.25 MHz XTAL* ................................................................................................................. 44  
Table 29 LVPECL Output Phase Noise with 156.25 MHz XTAL*.................................................................................................................... 44  
Table 30 LVDS Output Phase Noise with 156.25 MHz XTAL ......................................................................................................................... 45  
Table 31 HCSL Output Phase Noise with 156.25 MHz XTAL ......................................................................................................................... 45  
Table 32 AC Electrical Characteristics* - SPI (Serial Peripheral Interface) Timing........................................................................................ 46  
Table 33 6x6mm QFN Package Thermal Properties ..................................................................................................................................... 47  
ZL40235  
October 2018  
4
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Pin Diagram  
The device is packaged in a 6 x 6 mm 40-pin QFN.  
Pin#1  
Corner  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
2
30  
GND  
GND  
NC1  
29  
OUT2_p  
3
4
28  
27  
NC2  
OUT2_n  
VDDO_B  
VDDO_A  
OUT0_p  
5
26  
25  
OUT3_p  
OUT3_n  
Exposed GND Pad 4.3 x 4.3 mm  
6
7
OUT0_n  
VDDO_A  
24  
23  
VDDO_B  
OUT4_p  
8
OUT1_p  
OUT1_n  
GND  
22  
21  
OUT4_n  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Figure 2. Pin Diagram  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
5
Data Sheet  
ZL40235  
Pin Descriptions  
All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I  
input, IPU input with 300kinternal pull-up resistor, IPD input with 300kinternal pull-down resistor, IAPU input  
with 31kinternal pull-up resistor, IAPD input with 30kinternal pull-down resistor, IAPU/APD input with 60k  
internal pull-up and pull-down resistors (30 kequivalent), O output, I/O Input/Output pin, NC No connect, P –  
power supply pin.  
Table 1 Pin Description  
#
Name  
I/O  
Description  
Input Reference  
IAPD  
IAPU/APD  
IAPD  
IN0_p  
IN0_n  
IN1_p  
IN1_n  
16  
17  
35  
34  
Input Differential or Single Ended References 0 and 1  
Input frequency range 0Hz to 1.6GHz.  
IAPU/APD  
Non- inverting inputs (_p) are pulled down with internal 30kpull-down resistors.  
Inverting inputs (_n) are biased at VDD/2 with 60kpull-up and pull-down resistors  
to keep inverting input voltages at VDD/2 when inverting inputs are left floating  
(device fed with a single ended reference).  
Output Clocks  
O
Ultra-Low Additive Jitter Differential LVPECL/HCSL/LVDS Outputs 0 to 4  
5
6
8
9
29  
28  
26  
25  
23  
22  
OUT0_p  
OUT0_n  
OUT1_p  
OUT1_n  
OUT2_p  
OUT2_n  
OUT3_p  
OUT3_n  
OUT4_p  
OUT4_n  
Output frequency range 0 to 1.6GHz  
In SPI bus controlled mode (SEL pin pulled high on the power up) type  
(LVPECL/HCSL/LVDS/High-Z) of each output is programmable via SPI bus  
In Hardware control mode (SEL pin pulled low on the power up) type  
(LVPECL/HCSL/LVDS/High-Z) of each output bank is controlled via  
OUTA/B_TYPE_SEL0/1 pins  
O
Ultra-Low Additive Jitter LVCMOS Output  
37  
OUT_LVCMOS  
Output frequency range 0 to 250MHz  
Control  
IPD  
32  
SEL  
Select control.  
When this pin is low, the device is controlled via hardware pins, IN_SEL0/1 and OE.  
When this pin is high, the device is controlled via SPI port.  
Any change of SEL pin value requires power cycle. Hence, SEL pin cannot be  
changed on the fly.  
ZL40235  
October 2018  
6
© 2018 Microsemi Corporation  
 
Data Sheet  
ZL40235  
IPD  
15  
IN_SEL0/SPI_CLK  
Input Select 0 or Clock for Serial Interface. When SEL pin is low this pin is Input  
Select 0 hardware control input pin and it is pulled-down with 300 kresistor. When  
SEL pin is high this pin provides clock for serial micro-port interface and it is pulled-  
up with 300 kresistor.  
or  
IPU  
IN_SEL1 IN_SEL0  
OUTN  
Input 0 (IN0)  
0
0
1
1
0
1
0
1
Input 1 (IN1)  
Crystal Oscillator or overdrive  
Crystal Bypass  
IPD  
18  
19  
33  
39  
IN_SEL1/SPI_SDI  
IC1/SPI_SDO  
IC2  
Input Select 1 or Serial Interface Input. When SEL pin is low this pin is Input  
Select 1 hardware control pin and it is pulled-down with 300 kresistor. When SEL  
pin is high this pin is serial interface input stream and it is pulled-up with 300 k  
resistor. The serial data stream holds the access command, the address and the  
write data bits.  
or  
IPU  
I/O  
Internal Connection 1 or Serial Interface Output.  
When SEL pin is low this pin in an internal connection. Leave open.  
When SEL pin is high this pin is Serial interface output stream. As an output the  
serial stream holds the read data bits.  
IPD  
Internal Connection 2. This pin should be left open.  
IPD  
LVCMOS_OE/  
SPI_CS_b  
LVCMOS Output Enable or Chip Select for Serial Interface.  
or  
IPU  
When SEL pin is low this pin is LVCMOS Output Enable hardware control input and  
it is pulled-down with 300 kresistor.  
When SEL pin is high this pin is serial interface chip select and it is pulled-up with  
300 kresistor--this is an active low signal.  
IPD  
11  
40  
OUT_TYPE_SEL0/  
Output Signal Type:  
IC3  
OUT_TYPE_SEL1/  
IC4  
When SEL pin is low these two pins Selects Type for all outputs  
OUT_TYPE_SEL1  
OUT_TYPE_SEL0  
Output 0 to 4  
LVPECL  
0
0
1
1
0
1
0
1
LVDS  
HCSL  
High-Z (Disabled)  
When SEL pin is high these two pins are unused and should be left unconnected.  
ZL40235  
October 2018  
7
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Crystal Oscillator  
13  
XIN  
I
Crystal Oscillator Input or crystal bypass mode or crystal overdrive mode  
If crystal oscillator is not used pull down this pin or connect it to ground.  
14  
XOUT  
O
Crystal Oscillator Output  
No Connect  
2
3
NC1  
NC2  
NC  
No Connect (not connected to the die) Leave unconnected or connect to GND for  
mechanical support  
Power and Ground  
12  
36  
VDD  
P
P
Positive Supply Voltage. Connect to 3.3V or 2.5V supply.  
4
7
VDDO_A  
VDDO_B  
Positive Supply Voltage for Differential Outputs Bank A Connect 3.3V or 2.5V  
power supply. VDDO_A does not have to be connected to the same voltage level as  
VDD or VDDO_B.  
These pins power up differential outputs OUT0_p/n and OUT1_p/n.  
24  
27  
P
Positive Supply Voltage for Differential Outputs Bank B Connect 3.3V or 2.5V  
power supply. VDDO_B does not have to be connected to the same voltage level as  
VDD or VDDO_A.  
These pins power up differential outputs OUT2_p/n, OUT3_p/n and OUT4_p/n.  
38  
VDD_LVCMOS  
GND  
P
P
Positive Supply Voltage for LVCMOS Output Connect 3.3V, 2.5V, 1.8V or 1.5V  
power supply  
1
Ground Connect to ground  
10  
20  
21  
30  
31  
E-Pad  
GND  
P
Ground. Connect to ground  
ZL40235  
October 2018  
8
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Functional Description  
The ZL40235 is a programmable or hardware pin controlled low additive jitter, low power 3 x 5 LVPECL/HCSL/LVDS  
fanout buffer.  
Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML) or single ended (LVPECL or  
LVCMOS) format and the third input can accept a single ended signal or it can be used to build a crystal oscillator by  
connecting an external crystal resonator between its XIN and XOUT pins. All the other components for building  
crystal oscillator are built in device such as load capacitance, series and shunt resistors.  
The ZL40235 has five LVPECL/HCSL/LVDS outputs which can be powered from 3.3V or 2.5V supply. Each output  
can be independently enabled/disabled via SPI bus. The type of each output driver can be programmed to be  
LVPECL, HCSL or LVDS. Hence, the device can be configured to support application where different signal formats  
are needed.  
The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature  
range -40°C to +85°C.  
Clock Inputs  
The following blocks diagram shows how to terminate different signals fed to the ZL40235 inputs.  
Figure 3 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be  
100each and Ro + Rs should be 50so that the transmission line is terminated at both ends with characteristic  
impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series  
resistor RS should be increased. This will reduce the voltage swing at the input but this should be fine as long as the  
input voltage swing requirement is not violated (Table 8). The source resistors of Rs = 270could be used for  
standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of  
(3.3V/2) *(1/(270+ 50)) = 5.16mA.  
For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence,  
the ratio R1/R2 should be equal to the ratio R3/R4.  
Vdd  
Vdd  
Vdd  
Vdd  
Optional AC coupling  
capacitor  
R3  
R1  
0.1 µF  
Rs  
Ro  
Z0 = 50 Ω  
Ro + Rs = Z0  
R1/R2 = R3/R4  
Example:  
R1 = R2 = 100Ω  
R3 = R4 = 1kΩ  
R2  
MSCC Device  
0.1 µF  
R4  
Rs = 270Ω for standard LVCMOS output  
Figure 3. Input driven by a single ended output  
VDD  
VDD  
VDD  
VDD  
RUP  
RUP  
Z0 = 50 Ω  
Z0 = 50 Ω  
LVPECL  
RDWN  
RDWN  
MSCC Device  
VDD  
3.3V  
RUP  
127 Ω  
RDWN  
82 Ω  
2.5V 250 Ω  
62.5 Ω  
Figure 4. Input driven by DC coupled LVPECL output  
ZL40235  
October 2018  
9
© 2018 Microsemi Corporation  
 
Data Sheet  
ZL40235  
VDD  
VDD  
Z0 = 50 Ω  
Z0 = 50 Ω  
LVPECL  
LVPECL  
50 Ω  
50 Ω  
MSCC Device  
VDD  
3.3V  
2.5V  
RDWN  
50 Ω  
22 Ω  
RDWN  
Figure 5. Input driven by DC coupled LVPECL output (alternative termination)  
VDD  
VDD  
VDD  
100 Ω  
VDD  
100 Ω  
10 nF  
10 nF  
Z0 = 50 Ω  
Z0 = 50 Ω  
LVPECL  
200 Ω  
200 Ω  
100 100 Ω  
MSCC Device  
Figure 6. Input driven by AC coupled LVPECL output  
VDD  
VDD  
VDD  
1 kΩ  
1 kΩ  
VDD  
33 Ω  
33 Ω  
1µF  
1µF  
Z0 = 50 Ω  
Z0 = 50 Ω  
HCSL  
50 Ω  
50 Ω  
1 kΩ  
1 kΩ  
MSCC Device  
50Ω resistors can be alternatively  
connected at the source after 33Ω  
series resistors.  
Figure 7. Input driven by HCSL output  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
10  
Data Sheet  
ZL40235  
VDD  
MSCC Device  
VDD  
Z0 = 50 Ω  
Z0 = 50 Ω  
100 Ω  
LVDS  
Figure 8. Input driven by LVDS output  
VDD  
VDD  
10 kΩ  
10 nF  
VDD  
10 kΩ  
VDD  
Z0 = 50 Ω  
Z0 = 50 Ω  
100 Ω  
LVDS  
10 nF  
10 kΩ  
MSCC Device  
10 kΩ  
Figure 9. Input driven by AC coupled LVDS  
VDD  
VDD  
VDD  
120 Ω  
120 Ω  
VDD  
Z0 = 60 Ω  
Z0 = 60 Ω  
SSTL  
120 120 Ω  
MSCC Device  
Input driven by SSTL driver  
Figure 10.  
Input driven by an SSTL output  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
11  
Data Sheet  
ZL40235  
Clock Outputs  
LVCMOS output OUT10 require only series termination resistor whose value is depending on LVCMOS output  
voltage as shown in Figure 11.  
VDDO  
3.3V  
2.5V  
1.8V  
1.5V  
Rs  
VDDO  
35Ω  
30Ω  
20Ω  
10Ω  
VDD = VDDO  
Rs  
LVCMOS  
Z0 = 50 Ω  
MSCC Device  
Figure 11.  
Termination for LVCMOS outputs  
Differential outputs LVPECL and LVDS should have same termination as corresponding outputs described in  
previous section. HCSL outputs should be terminated with 33series resistors at the source and 50shunt resistors  
at the source or at the end on the transmission line. AC coupling and re-biasing is not required at the outputs when  
driving native HCSL receivers.  
The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to  
convert from the differential to the single ended output (for example driving an oscilloscope 50input), a resistor  
larger than 10should be added at the center tap of the primary winding to achieve optimum jitter performance as  
shown in Figure 12. This is to provide a nominal common mode impedance of 10or higher which is typical for  
differential terminations.  
Add resistor to the ground or leave open  
VDD  
2 : 1  
Z0 = 50 Ω  
10 nF  
Z0 = 50 Ω  
Z0 = 50 Ω  
24.9 Ω  
LVPECL  
10 nF  
50 Ω  
200 Ω  
200 Ω  
Figure 12.  
Driving a load via transformer  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
12  
 
Data Sheet  
ZL40235  
Crystal Oscillator Input  
The crystal oscillator circuit can work with crystal resonators from 8MHz to 160MHz. To be able support crystal  
resonators with different characteristics all internal components are programmable.  
The load capacitors can be programmed from 0 to 21.75 pF (4pF default) with resolution of 0.25pF which not only  
meets load requirement for most crystal resonator but also allows for fine tuning of the crystal resonator frequency.  
The amplifier gain can be adjusted in five steps and series resistor can be adjusted as parallel combination of seven  
different resistors: 0Ω, 10.5Ω, 21Ω, 42Ω, 84Ω, 161Ω and 312Ω (84Ω default). Although the first resistor is 0Ω the  
series resistance Rs will be slightly higher than 0Ω due to parasitic resistance of the switch which connects resistor.  
Hence the minimum series resistance is achieved when all seven resistors are connected in parallel. The shunt  
resistor is fixed and its value is 500k.  
In Hardware Controlled mode the capacitive load is set at 4pF, internal series resistance to 84and they cannot be  
changed. For Crystal requiring higher load or series resistance additional capacitance and/or series resistance can be  
added externally as shown in the Figure 13.  
C1  
XIN  
Crystal  
Rs  
XOUT  
C2  
Load capacitors C1 and C2  
should be as per crystal  
specification  
MSCC Device  
Figure 13.  
Crystal Oscillator Circuit in Hardware Controlled Mode  
Termination of unused inputs and outputs  
Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by 1kresistor. Unused outputs  
should be left unconnected.  
Power Consumption  
The device total power consumption can be calculated as:  
P = P + PXTAL + P + P  
+ P  
T
S
C
O _ DIF  
O _ LVCMOS  
Where:  
The core power when XTAL is not used. The  
current is specified in Table 7. .If XTAL is running  
this power should be set to zero.  
P =VDD IS  
S
The core power when XTAL is used. The current  
is provided in Table 7. If XTAL is not used this  
power should be set to zero.  
PXTAL =VDD I DD_ XTAL  
P =VDDO I DD _ CM  
Common output power shared among all ten  
outputs. The current IDD_CM is specified in Table 7.  
C
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
13  
 
 
Data Sheet  
Output power where output currents are specified  
ZL40235  
in Table 7.  
P
=VDDO (IDD_ LVDS N1  
O_ DIF  
N1, N2 and N3 are number of enabled LVPECL,  
LVDS and HSCL outputs respectively and  
N1+N2+N3 is less or equal to 5.  
+ IDD_ LVPECL N2 + IDD_ HCSL N3)  
Dynamic LVCMOS output power. IDD is specified  
in Table 7. If LVCMOS output is disabled this  
term is equal to zero.  
P
O_ LVCMOS =VDD_ LVCMOS (IDD f /100MHz  
+VDD_ LVCMOS CLOAD f )  
Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors  
from the power consumption.  
PD = P N1 PLVPECL N2 P  
N3 PHCSL  
T
LVDS  
Where N1, N2 and N3 are number of enabled LVPECL, LVDS and HSCL outputs respectively. Since there are five  
differential outputs N1 + N2 + N3 is less or equal to 5.  
2 /50 +  
(
VOL VB  
)
2 /50  
VB /50  
VOH and VOL are the output high and low voltages  
respectively for LVPECL output  
P
=
(
VOH VB  
)
LVPECL  
+
(
VOH VB VB /50 +  
)
(
VOL VB  
)
VB is LVPECL bias voltage equal to VDD 2V  
=VSW 2 /100  
VSW is voltage swing of LVDS output.  
P
LVDS  
VSW is voltage swing of HCSL output. 50is  
termination resistance and 33is series resistance  
of the HCSL output.  
P
=
(
VSW /50  
)
2   
(
33 + 50  
)
HCSL  
Power Supply Filtering  
Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series  
resistance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V  
minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce  
the power noise from adjacent digital components on the board each power supply could be further insulated with low  
resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise  
generated from the device. Following figure shows recommended decoupling for each power pin.  
Board Supply  
10uF  
Ferrite Bead  
1uF  
VDD or VDDO  
0.1uF  
Figure 14.  
Power Supply Filtering  
Power Supplies and Power-up Sequence  
The device has four different power supplies: VDD, VDDO_A, VDDO_B and VDD_LVCMOS which are mutually  
independent. Voltages supported by each of these power supplies are specified in Table 1.  
The device is not sensitive to the power-up sequence. For example, commonly used sequence where higher voltage  
comes up before or at the same time as the lower voltages can be used (or any other sequence)  
Host Interface  
ZL30235 can be controlled via hardware pins (SEL pin tied low) or via SPI port (SEL pin tied high). The mode shall be  
selected during power up and it cannot be changed on the fly.  
ZL40235  
October 2018  
14  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Hardware Control Mode  
In this mode, ZL40235 is controlled via Input Select (IN_SEL0/1) pins which select which one of three inputs is fed to  
the output and show in Table 2 and OUT_TYPE_SEL0/1 pins which select signal level (LVPECL, LVDS, HCSL or Hi-  
Z) as shown in Table 3.  
All input control pins have low input threshold voltage so they can be driven from the device with low output voltage  
(FPGA/CPLD). Supported voltages are between 1.2V and VDD (2.5V or 3.3V).  
Table 2 Input clock selection  
IN_SEL1  
IN_SEL0  
Selected Input  
IN0_p, IN0_n  
IN1_p, IN1_n  
XIN  
0
0
1
0
1
X
Table 3 Output Type Selection  
OUT_TYPE_SEL1  
OUT_TYPE_SEL0  
Output  
LVPECL  
0
0
1
1
0
1
0
1
LVDS  
HCSL  
High-Z (Output Disabled)  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
15  
 
 
Data Sheet  
ZL40235  
SPI Control Mode  
ZL40235 is controlled via four pin SPI slave interface as shown in the following figure.  
SCK  
SI  
MSCC Device  
SO  
CS_b  
Figure 15.  
SPI slave interface  
All SPI input pins have low threshold voltage so they can be driven from low output voltage SPI master device.  
Supported voltages are between 1.2V and VDD (2.5V or 3.3V). This allows device to be controlled from an FPGA  
with low voltage I/O supply.  
The serial peripheral interface supports half-duplex processor mode which means that during a write cycle to the  
device, output data from the SO pin must be ignored. Similarly, the input data on the SI pin is ignored by the device  
during a read cycle.  
The SPI interface supports two modes of access: Most Significant bit (MSb) first transmission or Least Significant bit  
(LSb) first transmission. The mode is automatically selected based on the state of SCK pin when the CS_b pin is  
active. If the SCK pin is low during CS_b activation, then MSb first timing is selected. If the SCK pin is high during  
CS_b activation, then LSb first timing is assumed.  
The SPI port expects 1-bit to differentiate between read and write operation followed by 7-bit addressing and 8-bit  
data transmission. During SPI access, the CS_b pin must be held low until the operation is complete. Burst read/write  
mode is also supported by leaving the chip select signal CS_b is low after a read or a write. The address will be  
automatically incremented after each data byte is read or written.  
Functional waveforms for the LSb and MSb first mode, and burst mode are shown in Figure 16 and Figure 17  
respectively. Figure 18 shows an example of burst mode operation which allows user to read or write consecutive  
location in the register map.  
ZL40235  
October 2018  
16  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
cs_b  
sck  
Read from the device  
si  
Rd A0 A1 A2 A3 A4 A5 A6  
X
X
X
X
X
X
X
X
so  
D0 D1 D2 D3 D4 D5 D6 D7  
Write to the device  
D0 D1 D2 D3 D4 D5 D6 D7  
Wr A0 A1 A2 A3 A4 A5 A6  
si  
X
X
X
X
X
X
X
X
so  
Command/Address  
Data  
Figure 16.  
Serial Peripheral Interface Functional Waveform LSB First Mode  
cs_b  
sck  
Read from the device  
Rd A6 A5 A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
si  
so  
D7 D6 D5 D4 D3 D2 D1 D0  
Write to the device  
si  
Wr A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
Command/Address  
Data  
so  
Figure 17.  
Serial Peripheral Interface Functional Waveform MSB First Mode  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
17  
Data Sheet  
ZL40235  
cs_b  
Address +0  
Data  
Address +1  
Data  
Address +2  
Data  
Address +N  
Data  
Address  
Figure 18.  
Example of the Burst Mode Operation  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
18  
Data Sheet  
ZL40235  
Typical device performance  
The following plots show typical device performances  
Figure 19.  
156.25MHz LVPECL  
Figure 20.  
Figure 22.  
Figure 24.  
1.5GHz LVPECL  
1.5GHz LVDS  
250MHz HCSL  
Figure 21.  
156.25MHz LVDS  
Figure 23.  
100MHz HCSL  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
19  
Data Sheet  
ZL40235  
Figure 25.  
I/O delay vs temperature  
Figure 26.  
PSNR vs noise frequency  
Figure 28.  
100MHz LVDS Phase Noise  
Figure 27.  
100MHz LVPECL Phase Noise  
Figure 29.  
156.25MHz LVDS Phase Noise in  
Xtal mode  
Figure 30.  
100MHz HCSL Phase Noise  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
20  
Data Sheet  
ZL40235  
Figure 31.  
156.25MHz LVPECL Phase Noise  
Figure 32.  
625MHz LVPECL Phase Noise  
Figure 33.  
156.25MHz LVDS Phase Noise  
Figure 34.  
625MHz LVDS Phase Noise  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
21  
Data Sheet  
ZL40235  
Figure 35.  
Output RMS jitter (12kHz to  
Figure 36.  
Output clock noise floor vs input  
clock slew-rate  
20MHz) vs input clock slew-rate  
Figure 37.  
Output RMS jitter (12kHz to  
Figure 38.  
Output clock noise floor vs input  
clock slew-rate  
20MHz) vs input clock slew-rate  
Figure 39.  
Output RMS jitter (12kHz to  
Figure 40.  
Output clock noise floor vs input  
clock slew-rate  
20MHz) vs input clock slew-rate  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
22  
Data Sheet  
ZL40235  
Register Map  
The device is controlled by accessing registers through the serial interface. The following table provides a summary  
of the registers available for the configuration of the device.  
Table 4 Register Map  
Address  
SPI A[6:0]  
Hex (0x)  
00  
Name  
Data D[7:0]  
XTALBG  
XTALDL  
XTALLC  
XTALNR  
-
xtal_buf_gain[7:0]  
xtal_drive_level[7:0]  
xtal_load_cap[7:0]  
xtal_normal_run  
Not used  
01  
02  
03  
04  
05  
INSEL  
input_select[1:0]  
output_drive_low  
06  
OUTLOW  
DRVTYPEA  
-
07  
{driver_type[5:4], 4’bxxxx} (differential output 1 and 0)  
08  
Not used  
09  
DRVTYPEB  
-
{driver_type[17:12], 2’bxx} (differential output 4, 3, and 2)  
0A  
Not used  
0B  
CMOSDIV  
cmos_div[2:0] (cmos)  
0C  
CMOSOUTEN output_enable (cmos)  
CMOSDRVSTR driver_strength (cmos)  
0D  
0E  
-
Not used  
0F/11  
11  
Reserved  
DEVID  
Leave as default  
Device ID  
12 to 1F  
Reserved  
Leave as default  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
23  
Data Sheet  
ZL40235  
Address  
XTALBG  
Bit  
0x00  
Hex  
XTAL Buffer Gain  
Description  
Name  
Type Reset  
7:0  
Programs crystal buffer (inverting amplifier) gain.  
RW  
FF  
xtal_buf_gain[7:0] Every bit pair (bits: 01, 23, 45, 67) of this register correspond to  
additional equal gain block which can be added (bits set) or  
removed (bits cleared).  
Minimum gain is 0x00 (default) and 0xFF is maximum gain  
When reference input mode is “bypass XTAL mode” or  
“differential input modes” with HIGH xtal_normal_run bit, the  
buffer is disabled and follows “Input Selection”.  
When xtal_normal_run bit is LOW, XTAL buffer is in the “xtal  
forced run” mode and keep running.  
8’b0000_0000: default crystal buffer strength.  
8’b0000_0011: enable additional buffer strength  
8’b0000_1100: enable additional buffer strength  
8’b0011_0000: enable additional buffer strength  
8’b1100_0000: enable additional buffer strength  
Address  
XTALDL  
Bit  
0x01  
Hex  
XTAL Drive Level  
Name  
Description  
Type Reset  
RW 04  
7:0  
Internal damping resistance of crystal circuit to limit external  
xtal_drive_level[7:0] crystal’s drive level uW.  
The value of damping resistor is determined by crystal’s  
motion resistance of crystal’s equivalent circuit.  
Drive level should be lower than crystal manufacturer’s  
specification.  
Crystal’s equivalent values should be requested to the  
manufacturer, (motion resistance and shunt capacitance).  
The selected resistors are connected to XOUT.  
Multiple bit combinations available by 7-bit control.  
Because they use parallel connections, 0xFF is the smallest  
resistance and 0x01 is the highest resistance.  
8’b0000_0000: disable all resistors  
8’b0000_0001: 312 Ohm resistor  
8’b0000_0010: 161 Ohm resistor  
8’b0000_0100: 84 Ohm resistor  
8’b0000_1000: 42 Ohm resistor  
8’b0001_0000: 21 Ohm resistor  
8’b0010_0000: 10.5 Ohm resistor  
8’b0100_0000: 0 Ohm connection  
8’b1000_0000: not used  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
24  
Data Sheet  
ZL40235  
Address  
XTALLC  
Bit  
0x02  
Hex  
XTAL Load Capacitance 0  
Description  
Name  
Type Reset  
7:0  
xtal_load_cap[7:0]  
Internal load capacitance of crystal circuit (0 pF to 21.75 pF  
with the resolution of 0.25 pF).  
RW  
40  
XIN and XOUT have each capacitor connected to GND.  
Multiple bit combinations available between 8 capacitors.  
8’b0000_0000: disable all xtal load capacitors  
8’b0000_0001: enable capacitor 0.25 pF  
8’b0000_0010: enable capacitor 0.5 pF  
8’b0000_0100: enable capacitor 1 pF  
8’b0000_1000: enable capacitor 2 pF  
8’b0001_0000: enable capacitor 2 pF  
8’b0010_0000: enable capacitor 4 pF  
8’b0100_0000: enable capacitor 4 pF  
8’b1000_0000: enable capacitor 8 pF  
Address  
XTALNR  
Bit  
0x03  
Bin  
XTAL Normal Run  
Description  
Name  
Type  
Reset  
7:1  
Reserved  
Reserved  
R
1111111  
0
xtal_normal_run  
When this bit is set high crystal oscillator circuit is running  
only if input_select[1:0] register at address 0x05 selects  
crystal mode (2’b10). This value is recommended because  
it provides best jitter performance--XO circuit is running only  
when it is needed.  
RW  
1
When this bit is set low the crystal oscillator will keep  
running even if crystal oscillator is not selected in  
input_select[1:0] register at address 0x05. This mode  
should only be used when fast switching between input  
references and crystal oscillator is required.  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
25  
Data Sheet  
ZL40235  
Address  
INSEL  
Bit  
0x05  
Bin  
Input Select Register  
Description  
Name  
Type  
Reset  
7:2  
Reserved  
Reserved  
R
111111  
1:0  
input_select[1:0]  
Input reference clock selection.  
RW  
00  
Proper external coupling and termination are required.  
2’b00: differential input from IN0_p and IN0_n  
2’b01: differential input from IN1_p and IN1_n  
2’b10: fundamental XTAL mode with XIN and  
XOUT (Use internal crystal oscillator circuits)  
or XTAL overdrive mode (single-ended clock  
signal fed to XIN)  
2’b11: XTAL bypass mode (single-ended clock signal  
with XIN and disabled internal crystal buffer  
circuit in the analog block)  
Address  
OUTLOW  
Bit  
0x06  
Hex  
Output Drive Low  
Description  
Reserved  
Name  
Type  
Reset  
7:1  
0
Reserved  
output_drive_low  
R
1111111  
0
Forces all disabled outputs to drive low in LVPECL mode. RW  
1’b1: All differential outputs that are disabled in  
DRVTYPE registers (addresses 0x07, 0x08, 0x09  
and 0x0A) will drive low in LVPECL mode. Hence,  
LVPECL biasing/termination resistors are required  
for proper functionality of this feature.  
1’b0: This feature is ignored and all outputs that are  
disabled in DRVTYPE registers (addresses 0x07,  
0x08, 0x09 and 0x0A) will stay in disabled (high-Z)  
mode.  
Address  
DRVTYPEA  
Bit  
0x07  
Bin  
Output Type Select Bank-A  
Name  
Description  
Type Reset  
7:6  
driver_type[7:6]  
Output driver type of differential OUT1.  
RW  
11  
The same description as for OUT0.  
4:3  
driver_type[5:4]  
Output driver type of differential OUT0.  
RW  
11  
2’b00: LVPECL outputs  
2’b01: LVDS outputs  
2’b10: HCSL outputs  
2’b11: outputs disabled (Disabled state is dependent on  
“out_drive_low” control bit of register OUTLOW.”)  
3:0  
Reserved  
Reserved  
RO  
X
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
26  
Data Sheet  
ZL40235  
Address  
DRVTYPEB  
Bit  
0x09  
Bin  
Output Type Select Bank-B  
Description  
Name  
Type Reset  
7:6  
driver_type[17:16]  
Output driver type of differential OUT4.  
RW  
RW  
RW  
11  
11  
11  
The same description as for OUT0.  
5:4  
3:2  
driver_type[15:14]  
driver_type[13:12]  
Output driver type of differential OUT3.  
The same description as for OUT0.  
Output driver type of differential OUT2.  
The same description as for OUT0.  
Reserved  
1:0  
Reserved  
RO  
X
Address  
CMOSDIV  
Bit  
0x0B  
Bin  
Type Reset  
CMOS Output Divider  
Description  
Name  
7:3  
Reserved  
Reserved  
R
11111  
2:0  
cmos_div[2:0]  
Integer divider from a selected input reference clock for  
OUT_LVCMOS (1 to 8).  
RW  
000  
3’b000: division ratio = 1  
3’b001: division ratio = 2  
3’b010: division ratio = 3  
3’b011: division ratio = 4  
3’b100: division ratio = 5  
3’b101: division ratio = 6  
3’b110: division ratio = 7  
3’b111: division ratio = 8  
Address  
CMOSOUTEN  
Bit  
0x0C  
Bin  
LVCMOS Output Enable  
Description  
Name  
Type  
Reset  
7:1  
Reserved  
Reserved  
R
1111111  
0
output_enable  
Output enable of OUT_LVCMOS.  
RW  
1
Disabled state is dependent on “out_drive_low” control  
bit.  
1’b0: Disable OUT_LVCMOS output  
1’b1: Enable OUT_LVCMOS output  
Address  
0x0D  
Bin  
CMOSDRVSTR  
CMOS Driver Strength  
Description  
Bit  
Name  
Type  
Reset  
7:1  
Reserved  
Reserved  
R
1111111  
0
driver_strength  
OUT_LVCMOS output strength.  
RW  
0
1’b0: low strength  
1’b1: high strength  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
27  
Data Sheet  
ZL40235  
Address  
DEVID  
0x11  
Bin  
Device Identification  
Bit  
Name  
Description  
Type Reset  
7
Unused  
Unused  
R
0
6:5  
4:0  
Reserved  
dev_id  
Reserved  
Device ID  
R
11  
RO  
00010  
5’h02: ZL40235  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
28  
Data Sheet  
ZL40235  
AC and DC Electrical Characteristics  
Absolute Maximum Ratings  
Table 5 Absolute Maximum Ratings*  
Parameter  
Sym.  
VDD /VDDO  
VDD /VDDO  
TST  
Min.  
-0.5  
-0.5  
-55  
Typ.  
Max.  
4.6  
Units  
V
Notes  
1
2
3
Supply voltage (3.3V)  
Supply voltage (2.5V)  
Storage temperature  
3.5  
V
125  
°C  
* Exceeding these values may cause permanent damage  
* Functional operation under these conditions is not implied  
* Voltages are with respect to ground (GND) unless otherwise stated  
Recommended Operating Conditions  
Table 6 Recommended Operating Conditions*  
Characteristics  
Sym.  
VDD /VDDO/VDD_LVCMOS  
VDD /VDDO/VDD_LVCMOS  
VDD_LVCMOS  
Min.  
3.135  
2.375  
1.6  
Typ.  
3.30  
2.50  
1.8V  
1.5  
Max.  
Units Notes  
1
2
3
4
5
6
Supply voltage 3.3V  
Supply voltage 2.5V  
Supply voltage 1.8V  
Supply voltage 1.5V  
3.465  
2.625  
2
V
V
V
VDD_LVCMOS  
1.35  
-40  
1.65  
V
Operating temperature  
Input voltage  
TA  
25  
85  
°C  
V
VDD-IN  
- 0.3  
VDD + 0.3  
* Voltages are with respect to ground (GND) unless otherwise stated  
* The device core supports two power supply modes (3.3V and 2.5V)  
Table 7 Current consumption  
Characteristics  
Sym.  
Is_3.3V  
Min.  
Typ.  
163  
Max.  
197  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Notes  
VDD= 3.3V+5%  
VDD = 2.5V+5%  
VDD= 3.3V+5%  
VDD= 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
VDDO= 3.3V+5%  
1
2
3
Core device current (all outputs and XTAL disabled)  
Is_2.5V  
153  
187  
Core device current (all outputs disabled) XTAL circuit  
enabled with 25MHz Crystal connected between XIN and  
XOUT  
IDD_XTAL_3.3V  
IDD_XTAL_2.5V  
IDD_CM_3.3V  
IDD_CM_2.5V  
IDD_3.3V  
128  
154  
124  
150  
13.44  
12.18  
4.08  
15.05  
13.65  
4.74  
Common output current  
Dynamic LVCMOS current for high strength output (f =  
100MHz)  
4
5
IDD_2.5V  
IDD_3.3V  
IDD_2.5V  
mA  
mA  
mA  
VDDO= 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
2.90  
2.38  
1.74  
3.29  
2.68  
1.96  
Needs to be scaled for different frequencies by f/100MHz  
Dynamic LVCMOS current for low strength output (f =  
100MHz)  
Needs to be scaled for different frequencies by f/100MHz  
IDD_LVPECL_3.3V  
IDD_LVPECL_2.5V  
IDD_LVDSL_3.3V  
IDD_LVDS_2.5V  
IDD_HCSL_3.3V  
IDD_HCSL_2.5V  
mA  
mA  
mA  
mA  
mA  
mA  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
19.36  
19.38  
6.73  
23.26  
22.17  
8.00  
6
7
8
Current dissipation per LVPECL output  
Current dissipation per LVDS output  
Current dissipation per HCSL output  
6.87  
7.83  
16.43  
17.14  
19.87  
19.18  
ZL40235  
October 2018  
29  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 8 Input Characteristics*  
Characteristics  
CMOS high-level input voltage for control inputs  
CMOS low-level input voltage for control inputs  
Sym.  
VCIH  
VCIL  
IIL  
Min.  
Typ.  
Max.  
Units  
V
Notes  
1
2
1.05  
0.45  
50  
V
CMOS input leakage current for control inputs (includes current due to pull  
down resistors)  
-25  
µA  
VI = VDD or 0 V  
3
4
5
Differential input common mode voltage for IN0_p/n and IN1_p/n  
VCM  
VID  
1
2
V
V
Differential input voltage difference for IN0_p/n and IN1_p/n  
f ≤ 1GHz **  
0.15  
1.3  
Differential input voltage difference for IN0_p/n and IN1_p/n for  
1GHz < f 1.6GHz **  
VID  
0.35  
-150  
1.3  
V
6
Differential input leakage current for IN0_p/n and IN1_p/n (includes  
current due to pull-up and pull-down resistors)  
IIL  
150  
µA  
VI = 2V or 0V  
7
8
9
VSI  
VSIC  
VSID  
-0.3  
1
2.7  
2
V
V
V
VDD = 3.3V or  
2.5V  
Single ended input voltage for IN0_p and IN1_p  
VDD = 3.3V or  
2.5V  
Single ended input common mode voltage (IN0_p/n and IN1_p/n)  
0.3  
1.3  
VDD = 3.3V or  
2.5V  
10 Single ended input voltage swing for IN0_p and IN1_p  
11 Input frequency (differential)  
12 Input frequency (LVCMOS)  
13 Input duty cycle  
fIN  
fIN_CMOS  
dc  
0
0
1600  
250  
MHz  
MHz  
35%  
65%  
14 Input slew rate  
slew  
RPU/RPD  
RPD  
2
V/ns  
dBc  
15 Input pull-up/ pull-down resistance  
16 Input pull-down resistance for INx_p  
60kΩ  
30kΩ  
-84  
fIN = 100 MHz  
fIN = 200 MHz  
fIN = 400 MHz  
fIN = 800 MHz  
-82  
Input multiplexer isolation IN0_p/n to IN1_p/n and vice versa  
Power on both inputs 0dBm, fOFFSET > 50kHz  
17  
Iso  
-71  
-67  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
* Input mux isolation is measured as amplitude of fOFFSET spur in dBc on the output clock phase noise plot  
**Input differential voltage is calculated as VID = VIH-VIL where VIH and VIL are input voltage high and low respectively. It should not be confused with VID = 2 * (VIH  
VIL) used in some datasheets. Please refer to Figure 41.  
-
V
IH - VIL  
VIH  
VID = VIH - VIL  
VCM  
VIL  
0
2 * VID  
VIL - VIH  
0
Figure 41.  
Differential Input Voltage Levels  
ZL40235  
October 2018  
30  
© 2018 Microsemi Corporation  
 
Data Sheet  
ZL40235  
Table 9 Crystal Oscillator Characteristics*  
Characteristics  
Sym.  
mode  
f
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
3
4
5
6
7
Mode of oscillation  
Frequency  
Fundamental  
8
0
160  
MHz  
pF  
pF  
On chip load capacitance in SPI controlled mode  
On chip load capacitance in pin controlled mode  
On chip series resistor in SPI controlled mode  
On chip series resistor in pin controlled mode  
On chip shunt resistor  
CL  
21.75  
Programmable  
Fixed  
4
RS  
R
0
312  
Programmable  
Fixed  
84  
500  
kΩ  
Functional but  
may not meet  
AC  
parameters  
Frequency in overdrive mode(1)  
Frequency in bypass mode(2)  
fOV  
0.1  
250  
250  
MHz  
MHz  
Minimum  
depends on  
AC coupling  
Capacitor  
(0.1uF  
8
9
assumed)  
Functional but  
may not meet  
AC  
fBP  
0
parameters  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
(1)  
(2)  
Maximum input level is 2V  
Maximum output level is VDD  
Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
-71.75  
-84.45  
-82.11  
-95.16  
-97.77  
-79.23  
-77.15  
-76.75  
-80.44  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 100 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
1
2
3
PSRR for LVPECL output  
PSRRLVPECL  
dBc  
PSRR for LVDS output  
PSRR for HCSL output  
PSRRLVDS  
dBc  
dBc  
PSRRHCSL  
* Values are over Recommended Operating Conditions  
* Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp  
* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot  
ZL40235  
October 2018  
31  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
-73.68  
-78.88  
-71.82  
-90.04  
-79.99  
-73.45  
-92.16  
-74.08  
-91.88  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 100 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
1
2
3
PSRR for LVPECL output  
PSRRLVPECL  
dBc  
PSRR for LVDS output  
PSRR for HCSL output  
PSRRLVDS  
dBc  
dBc  
PSRRHCSL  
* Values are over Recommended Operating Conditions  
* Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp  
* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot  
Table 12 LVCMOS Output Characteristics for VDDO = 3.3V*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
DC  
1
2
3
4
5
Output high voltage (1mA load)  
VOH  
VDDO-0.1  
V
Measurement  
DC  
Output low voltage (1mA load)  
VOL  
IOH  
IOL  
0.1  
V
Measurement  
DC  
Output High Current (Load adjusted to Vout = VDDO/2)  
Output Low Current (Load adjusted to Vout = VDDO/2)  
Output impedance  
30  
34  
15  
mA  
mA  
Measurement  
DC  
Measurement  
DC  
RO  
Measurement  
6
7
8
9
Rise time (20% to 80%)  
Fall time (20% to 80%)  
Output frequency  
tr  
tf  
220  
320  
310  
365  
250  
2.07  
ps  
ps  
FO  
tIOD  
tEN  
TDIS  
0
MHz  
ns  
1.07  
1.28  
Input to output delay  
10 Output enable time  
11 Output disable time  
3
3
cycles  
cycles  
46  
56  
80  
Input Clock  
25MHz  
12 Additive RMS jitter in 1MHz to 5MHz band  
13 Additive RMS jitter in 12kHz to 5MHz band  
14 Additive RMS jitter in 1MHz to 20MHz band  
15 Additive RMS jitter in 12kHz to 20MHz band  
16 Additive RMS jitter in 1MHz to 20MHz band  
17 Additive RMS jitter in 12kHz to 20MHz band  
18  
Tj_1M_5M  
Tj_12K_5M  
Tj_1M_20M  
Tj_12k_20M  
Tj_1M_20M  
Tj_12k_20M  
fs  
fs  
90  
79  
Input Clock  
25MHz  
60  
Input Clock  
125MHz  
fs  
65  
86  
Input Clock  
125MHz  
fs  
61  
94  
Input Clock  
156.25MHz  
fs  
66  
100  
-162  
-156  
-153  
Input Clock  
156.25MHz  
fs  
-165  
-160  
-158  
Input clock:  
25 MHz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Input clock:  
125 MHz  
19 Noise floor  
NF  
Input clock:  
156.25 MHz  
20  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
32  
Data Sheet  
ZL40235  
Table 13 LVCMOS Output Characteristics for VDDO = 2.5V*  
Characteristics  
Output high voltage (1mA load)  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
DC  
1
2
3
4
5
VOH  
VDDO-0.1  
V
Measurement  
DC  
Output low voltage (1mA load)  
VOL  
IOH  
IOL  
0.1  
V
Measurement  
DC  
Output High Current (Load adjusted to Vout = VDDO/2)  
Output Low Current (Load adjusted to Vout = VDDO/2)  
Output impedance  
21  
25  
15  
mA  
mA  
Measurement  
DC  
Measurement  
DC  
RO  
Measurement  
6
7
8
9
Rise time (20% to 80%)  
Fall time (20% to 80%)  
Output frequency  
tr  
tf  
225  
320  
310  
365  
250  
2.30  
3
ps  
ps  
FO  
tIOD  
tEN  
TDIS  
0
MHz  
ns  
Input to output delay  
1.10  
1.41  
10 Output enable time  
11 Output disable time  
cycles  
cycles  
3
51  
62  
104  
Input Clock  
25MHz  
12 Additive RMS jitter in 1MHz to 5MHz band  
13 Additive RMS jitter in 12kHz to 5MHz band  
14 Additive RMS jitter in 1MHz to 20MHz band  
15 Additive RMS jitter in 12kHz to 20MHz band  
16 Additive RMS jitter in 1MHz to 20MHz band  
17 Additive RMS jitter in 12kHz to 20MHz band  
18  
Tj_1M_5M  
Tj_12k_5M  
Tj_1M_20M  
Tj_12k_20M  
Tj_1M_20M  
Tj_12k_20M  
fs  
111  
81  
Input Clock  
25MHz  
fs  
fs  
64  
Input Clock  
125MHz  
70  
88  
Input Clock  
125MHz  
fs  
62  
94  
Input Clock  
156.25MHz  
fs  
68  
100  
-161  
-155  
-153  
Input Clock  
156.25MHz  
fs  
-164  
-159  
-158  
Input clock:  
25 MHz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Input clock:  
125 MHz  
19 Noise floor  
NF  
Input clock:  
156.25 MHz  
20  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
33  
Data Sheet  
ZL40235  
Table 14 LVPECL Output Characteristics for VDDO = 3.3V*  
Characteristics  
Sym.  
VLVPECL_OH  
VLVPECL_OL  
VLVPECL_SW  
VLVPECL_SW  
VCM  
Min.  
1.9  
1.2  
0.6  
0
Typ.  
2.08  
1.36  
0.72  
0.02  
1.72  
Max.  
2.4  
1.7  
0.9  
0.07  
2.1  
800  
1600  
170  
1600  
40  
Units  
V
Notes  
1
2
3
4
5
7
8
9
Output high voltage  
Output low voltage  
DC Measurement  
DC Measurement  
DC Measurement  
V
Output differential swing**  
V
Variation of VLVPECL_SW for complementary output states  
Common mode output  
V
1.6  
V
Output frequency when VLVPECL_SW 0.6V  
Output frequency when VLVPECL_SW 0.4V  
Rise or fall time (20% to 80%)  
FMAX_0.6VSW  
FMAX_0.4VSW  
tr, tf  
MHz  
MHz  
ps  
110  
10 Output frequency  
FO  
0
MHz  
ps  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
14 Output enable time  
15 Output disable time  
tOOSK  
tDOOSK  
120  
1.1  
3
ps  
tIOD  
0.73  
0.87  
ns  
tEN  
cycles  
cycles  
fs  
tDIS  
3
68  
50  
96  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
Input clock: 625 MHz  
16 Additive RMS jitter in 1MHz to 20MHz band  
17 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
64  
fs  
20  
32  
fs  
71  
101  
70  
fs  
55  
fs  
25  
39  
fs  
-161  
-160  
-155  
-159  
-155  
-151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
18 Noise floor  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. . Please refer to Figure 42.  
VOH  
V
OL  
-
VOH  
VCM  
VOL  
V
SW = VOH - VOL  
0
2 * VSW  
0
VOL - VOH  
Figure 42.  
Differential Output Voltage Levels  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
34  
 
Data Sheet  
ZL40235  
Table 15 LVPECL Output Characteristics for VDDO = 2.5V*  
Characteristics  
Sym.  
VLVPECL_OH  
VLVPECL_OL  
VLVPECL_SW  
VLVPECL_SW  
VCM  
Min.  
1.1  
0.4  
0.6  
0
Typ.  
1.28  
0.57  
0.71  
0.02  
0.92  
Max.  
1.7  
0.9  
0.9  
0.05  
1.2  
800  
1600  
170  
1600  
40  
Units  
V
Notes  
1
2
3
4
5
7
8
9
Output high voltage  
Output low voltage  
DC Measurement  
DC Measurement  
DC Measurement  
V
Output differential swing**  
V
Variation of VLVPECL_SW for complementary output states  
Common mode output  
V
0.8  
V
Output frequency when VLVPECL_SW 0.6V  
Output frequency when VLVPECL_SW 0.4V  
Rise or fall time (20% to 80%)  
FMAX_0.6VSW  
FMAX_0.4VSW  
tr, tf  
MHz  
MHz  
ps  
120  
10 Output frequency  
FO  
0
MHz  
ps  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
14 Output enable time  
15 Output disable time  
tOOSK  
tDOOSK  
120  
1.1  
3
ps  
tIOD  
0.75  
0.87  
ns  
tEN  
cycles  
cycles  
fs  
tDIS  
3
65  
50  
91  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
Input clock: 625 MHz  
16 Additive RMS jitter in 1MHz to 20MHz band  
17 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
64  
fs  
20  
30  
fs  
69  
99  
fs  
54  
75  
fs  
26  
41  
fs  
-161  
-160  
-155  
-159  
-156  
-151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
18 Noise floor  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. Please refer to Figure 42.  
ZL40235  
October 2018  
35  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 16 LVDS Outputs for VDDO = 3.3V*  
Characteristics  
Sym.  
VLVDS_OH  
VLVDS_OL  
VLVDS_SW  
VLVDS_SW  
VCM  
Min.  
1.3  
1.0  
0.25  
0
Typ.  
1.39  
Max.  
1.47  
1.15  
0.39  
0.01  
1.3  
Units  
V
Notes  
1
2
3
4
5
6
7
8
9
Output high voltage  
Output low voltage  
DC Measurement  
DC Measurement  
DC Measurement  
1.07  
V
Output differential swing**  
0.32  
V
Variation of VLVDS_SW for complementary output states  
Common mode output  
0.002  
1.23  
V
1.15  
0
V
Variation of VCM for complementary output states  
Output frequency when VLVDS_SW 250mV  
Output frequency when VLVDS_SW 200mV  
Rise or fall time (20% to 80%)  
VCM  
0.001  
0.01  
800  
1600  
170  
1600  
20  
V
FMAX_0.25VSW  
FMAX_0.2VSW  
tr, tf  
MHz  
MHz  
ps  
110  
10 Output frequency  
FO  
0
MHz  
ps  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
tOOSK  
tDOOSK  
130  
1.1  
ps  
tIOD  
0.76  
-24  
0.86  
ns  
Single ended outputs  
shorted to GND  
14 Output Short Circuit Current Single Ended  
15 Output Short Circuit Current Differential  
IS  
24  
24  
mA  
mA  
Complementary outputs  
shorted  
ISD  
-24  
16 Output enable time  
17 Output disable time  
tEN  
3
cycles  
cycles  
fs  
tDIS  
3
110  
63  
144  
81  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
Input clock: 625 MHz  
18 Additive RMS jitter in 1MHz to 20MHz band  
19 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
fs  
21  
33  
fs  
115  
73  
150  
102  
40  
fs  
fs  
26  
fs  
-158  
-158  
-154  
-156  
-155  
-151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
20 Noise floor  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. Please refer to Figure 42.  
ZL40235  
October 2018  
36  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 17 LVDS Outputs for VDDO = 2.5V*  
Characteristics  
Sym.  
VLVDS_OH  
VLVDS_OL  
VLVDS_SW  
VLVDS_SW  
VCM  
Min.  
1.3  
0.97  
0.25  
0
Typ.  
1.4  
Max.  
1.5  
Units  
V
Notes  
1
2
3
4
5
6
7
8
9
Output high voltage  
Output low voltage  
DC Measurement  
DC Measurement  
DC Measurement  
1.05  
0.35  
0.001  
1.23  
0.001  
1.13  
0.44  
0.01  
1.3  
V
Output differential swing**  
V
Variation of VLVDS_SW for complementary output states  
Common mode output  
V
1.15  
0
V
Variation of VCM for complementary output states  
Output frequency when VLVDS_SW 250mV  
Output frequency when VLVDS_SW 200mV  
Rise or fall time (20% to 80%)  
VCM  
0.01  
800  
1600  
170  
1600  
20  
V
FMAX_0.25VSW  
FMAX_0.2VSW  
tr, tf  
MHz  
MHz  
ps  
110  
10 Output frequency  
FO  
0
MHz  
ps  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
tOOSK  
tDOOSK  
130  
1.12  
ps  
tIOD  
0.78  
-24  
0.86  
ns  
Single ended outputs  
shorted to GND  
14 Output Short Circuit Current Single Ended  
15 Output Short Circuit Current Differential  
IS  
24  
24  
mA  
mA  
Complementary outputs  
shorted  
ISD  
-24  
16 Output enable time  
17 Output disable time  
tEN  
3
cycles  
cycles  
fs  
tDIS  
3
107  
62  
140  
77  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 625 MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
Input clock: 625 MHz  
18 Additive RMS jitter in 1MHz to 20MHz band  
19 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
fs  
20  
31  
fs  
111  
66  
146  
83  
fs  
fs  
24  
36  
fs  
-158  
-159  
-155  
-156  
-155  
-151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
20 Noise floor  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. Please refer to Figure 42.  
ZL40235  
October 2018  
37  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 18 HCSL Outputs for VDDO = 3.3V*  
Characteristics  
Sym.  
VHCSL_OH  
VHCSL_OL  
VHCSL_SW  
VHCSL_SW  
VCM  
Min.  
0.6  
Typ.  
0.85  
0
Max.  
1.1  
Units  
Notes  
1
2
3
4
5
6
7
8
9
Output high voltage  
Output low voltage  
V
V
DC Measurement  
DC Measurement  
DC Measurement  
-0.05  
0.6  
0.05  
1.1  
Output differential swing**  
0.85  
0.003  
0.43  
0.002  
0.384  
V
Variation of VHCSL_SW for complementary output states  
Common mode output  
0
0.05  
0.55  
0.05  
0.447  
0.127  
400  
309  
21  
V
0.28  
0
V
Variation of VCM for complementary output states  
Absolute Crossing Voltage  
VCM  
V
VCROSS  
∆VCROSS  
FMAX  
0.320  
V
Total Variation of VCROSS  
V
Output frequency  
0
MHz  
ps  
10 Rise or fall time (20% to 80%)  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
tr, tf  
143  
0.90  
20  
tOOSK  
ps  
tDOOSK  
tIOD  
129  
1.08  
3
ps  
0.73  
ns  
14 Output enable time  
tEN  
cycles  
cycles  
15 Output disable time  
tDIS  
3
Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz,  
40  
16  
TjPCIe_3.0  
fs  
Input clock: 100MHz  
CDR = 10MHz)  
73  
53  
104  
69  
fs  
fs  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
17 Additive RMS jitter in 1MHz to 20MHz band  
18 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
77  
112  
100  
-159  
-155  
fs  
Tj_12k_20M  
64  
fs  
-161  
-159  
dBc/Hz  
dBc/Hz  
19 Noise floor  
NF  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. Please refer to Figure 42.  
ZL40235  
October 2018  
38  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 19 HCSL Outputs for VDDO = 2.5V*  
Characteristics  
Sym.  
VHCSL_OH  
VHCSL_OL  
VHCSL_SW  
VHCSL_SW  
VCM  
Min.  
0.6  
Typ.  
0.83  
0
Max.  
1.1  
Units  
Notes  
1
2
3
4
5
6
7
8
9
Output high voltage  
Output low voltage  
V
V
DC Measurement  
DC Measurement  
DC Measurement  
-0.05  
0.5  
0.05  
1.1  
Output differential swing**  
0.83  
0.003  
0.42  
0.002  
0.316  
V
Variation of VHCSL_SW for complementary output states  
Common mode output  
0
0.05  
0.55  
0.05  
0.372  
0.108  
400  
162  
21  
V
0.28  
0
V
Variation of VCM for complementary output states  
Absolute Crossing Voltage  
VCM  
V
VCROSS  
∆VCROSS  
FMAX  
0.260  
V
Total Variation of VCROSS  
V
Output frequency  
0
MHz  
ps  
10 Rise or fall time (20% to 80%)  
11 Output to output skew  
12 Device to device output skew  
13 Input to output delay  
tr, tf  
125  
0.92  
20  
tOOSK  
ps  
tDOOSK  
tIOD  
129  
1.10  
3
ps  
0.76  
ns  
14 Output enable time  
tEN  
cycles  
cycles  
15 Output disable time  
tDIS  
3
Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz,  
40  
16  
TjPCIe_3.0  
fs  
Input clock: 100MHz  
CDR = 10MHz)  
68  
52  
95  
66  
fs  
fs  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 100 MHz  
Input clock: 156.25MHz  
Input clock: 100 MHz  
Input clock: 156.25 MHz  
17 Additive RMS jitter in 1MHz to 20MHz band  
18 Additive RMS jitter in 12kHz to 20MHz band  
Tj_1M_20M  
72  
102  
71  
fs  
Tj_12k_20M  
56  
fs  
-161  
-160  
-158  
-153  
dBc/Hz  
dBc/Hz  
19 Noise floor  
NF  
* Values are over Recommended Operating Conditions  
**Output differential swing is calculated as VSW = VOH-VOL. It should not be confused with VSW = 2 * (VOH-VOL) used in some datasheets. Please refer to Figure 42.  
ZL40235  
October 2018  
39  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*  
Characteristics  
Min.  
Typ.  
103  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
1
Jitter RMS in 12kHz to 5MHz band  
117  
fs  
VDD = 2.5V; VDDO = 2.5V  
-75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@5MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@5MHz, VDD = 2.5V; VDDO = 2.5V  
-107  
-132  
-150  
-162  
-166  
-166  
-70  
2
Noise floor  
-102  
-130  
-149  
-161  
-165  
-165  
* Values are over Recommended Operating Conditions  
Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*  
Characteristics  
Min.  
Typ.  
265  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
1
Jitter RMS in 12kHz to 5MHz band  
213  
fs  
VDD = 2.5V; VDDO = 2.5V  
-75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@5MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@5MHz, VDD = 2.5V; VDDO = 2.5V  
-107  
-133  
-152  
-157  
-158  
-157  
-71  
2
Noise floor  
-103  
-130  
-151  
-158  
-160  
-159  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
40  
Data Sheet  
ZL40235  
Table 22 LVDS Output Phase Noise with 25 MHz XTAL  
Characteristics  
Min.  
Typ.  
178  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
1
Jitter RMS in 12kHz to 5MHza band  
190  
fs  
VDD = 2.5V; VDDO = 2.5V  
-75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@5MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@5MHz, VDD = 2.5V; VDDO = 2.5V  
-107  
-133  
-154  
-161  
-161  
-160  
-68  
2
Noise floor  
-103  
-130  
-152  
-161  
-160  
-159  
* Values are over Recommended Operating Conditions  
Table 23 HCSL Output Phase Noise with 25 MHz XTAL  
Characteristics  
Min.  
Typ.  
269  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
1
Jitter RMS in 12kHz to 20MHz band  
228  
fs  
VDD = 2.5V; VDDO = 2.5V  
-76  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@5MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@5MHz, VDD = 2.5V; VDDO = 2.5V  
-107  
-133  
-152  
-157  
-157  
-157  
-73  
2
Noise floor  
-105  
-131  
-151  
-158  
-159  
-159  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
41  
Data Sheet  
ZL40235  
Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*  
Characteristics  
Min.  
Typ.  
92  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
105  
-58  
fs  
VDD = 2.5V; VDDO = 2.5V  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-90  
-118  
-136  
-150  
-158  
-159  
-53  
2
Noise floor  
-86  
-113  
-134  
-148  
-157  
-158  
* Values are over Recommended Operating Conditions  
Table 25 LVPECL Output Phase Noise with 125 MHz XTAL*  
Characteristics  
Min.  
Typ.  
76  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
86  
fs  
VDD = 2.5V; VDDO = 2.5V  
-58  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-90  
-118  
-140  
-154  
-159  
-161  
-54  
2
Noise floor  
-86  
-114  
-137  
-152  
-158  
-160  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
42  
Data Sheet  
ZL40235  
Table 26 LVDS Output Phase Noise with 125 MHz XTAL  
Characteristics  
Min.  
Typ.  
98  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
100  
-57  
fs  
VDD = 2.5V; VDDO = 2.5V  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-90  
-118  
-140  
-152  
-157  
-158  
-54  
2
Noise floor  
-86  
-114  
-137  
-153  
-157  
-158  
* Values are over Recommended Operating Conditions  
Table 27 HCSL Output Phase Noise with 125 MHz XTAL  
Characteristics  
Min.  
Typ.  
83  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
85  
fs  
VDD = 2.5V; VDDO = 2.5V  
-58  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-90  
-118  
-140  
-152  
-158  
-160  
-54  
2
Noise floor  
-86  
-114  
-137  
-153  
-158  
-159  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
43  
Data Sheet  
ZL40235  
Table 28 LVCMOS Output Phase Noise with 156.25 MHz XTAL*  
Characteristics  
Min.  
Typ.  
79  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
88  
fs  
VDD = 2.5V; VDDO = 2.5V  
-53  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-81  
-111  
-135  
-149  
-157  
-159  
-53  
2
Noise floor  
-82  
-113  
-135  
-148  
-156  
-158  
* Values are over Recommended Operating Conditions  
Table 29 LVPECL Output Phase Noise with 156.25 MHz XTAL*  
Characteristics  
Min.  
Typ.  
61  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
68  
fs  
VDD = 2.5V; VDDO = 2.5V  
-52  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-80  
-111  
-140  
-153  
-159  
-161  
-53  
2
Noise floor  
-81  
-114  
-140  
-151  
-158  
-160  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
44  
Data Sheet  
ZL40235  
Table 30 LVDS Output Phase Noise with 156.25 MHz XTAL  
Characteristics  
Min.  
Typ.  
79  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
76  
fs  
VDD = 2.5V; VDDO = 2.5V  
-52  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-81  
-111  
-138  
-148  
-157  
-159  
-52  
2
Noise floor  
-82  
-113  
-140  
-151  
-157  
-159  
* Values are over Recommended Operating Conditions  
Table 31 HCSL Output Phase Noise with 156.25 MHz XTAL  
Characteristics  
Min.  
Typ.  
72  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12kHz to 20MHz  
band  
1
72  
fs  
VDD = 2.5V; VDDO = 2.5V  
-53  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@10MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@10MHz, VDD = 2.5V; VDDO = 2.5V  
-86  
-114  
-139  
-148  
-157  
-160  
-53  
2
Noise floor  
-86  
-115  
-140  
-151  
-157  
-160  
* Values are over Recommended Operating Conditions  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
45  
Data Sheet  
ZL40235  
Table 32 AC Electrical Characteristics* - SPI (Serial Peripheral Interface) Timing  
Characteristics  
Sym.  
tcyc  
Min.  
124  
62  
Typ.  
Max.  
Units  
ns  
Notes  
1
2
sck period  
sck pulse width low  
sck pulse width high  
tclkl  
ns  
3
tclkh  
trxs  
62  
ns  
See  
Figure 43&  
Figure 44  
4
si setup (write) from sck rising edge  
si hold (write) from sck falling edge  
10  
ns  
5
trxh  
10  
ns  
6
so delay (read) from sck falling edge  
cs_b to output high impedance  
txd  
25  
60  
ns  
7
tohz  
tcssi  
tcshi  
tcssm  
tcshm  
ns  
8
cs_b setup from sck falling edge (LSB first)  
cs_b hold from sck falling edge (LSB first)  
cs_b setup from sck falling edge (MSB first)  
cs_b hold from sck falling edge (MSB first)  
20  
10  
20  
10  
ns  
See Figure 43  
See Figure 44  
9
ns  
10  
11  
ns  
ns  
* Values are over Recommended Operating Conditions  
* For LSB first mode timing diagram, refer to Figure 43  
* For MSB first mode timing diagram, refer to Figure 44  
* Values shown are proposed for the data sheet, these values are to be confirmed  
si  
txrs  
txrh  
sck  
cs_b  
so  
tcssi  
tclkh  
tclkl  
tcyc  
tcshi  
txd  
tohz  
Figure 43.  
SPI (Serial Peripheral Interface) Timing - LSB First Mode  
si  
sck  
txrs  
txrh  
tcssm  
tclkh  
tclkl  
tcyc  
tcshm  
cs_b  
so  
txd  
tohz  
Figure 44.  
SPI (Serial Peripheral Interface) Timing - MSB First Mode  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
46  
 
 
Data Sheet  
ZL40235  
Table 33 6x6mm QFN Package Thermal Properties  
Parameter  
Maximum Ambient Temperature  
Symbol  
Condition  
Value  
Units  
TA  
TJMAX  
85  
C  
C  
Maximum Junction Temperature  
125  
22.2  
17.6  
15.8  
7.2  
still air  
1m/s airflow  
2.5m/s airflow  
Junction to Ambient Thermal Resistance(1) (Note 1)  
JA  
C/W  
Junction to Board Thermal Resistance  
Junction to Case Thermal Resistance  
Junction to Pad Thermal Resistance(2)  
JB  
JC  
JP  
C/W  
C/W  
C/W  
14.3  
3.9  
Still air  
Still air  
Junction to Top-Center Thermal Characterization Parameter  
0.2  
C/W  
JT  
(1)  
(2)  
Theta-JA (JA) is the thermal resistance from junction to ambient when the package is mounted on an 4-layer JEDEC standard test board and dissipating  
maximum power  
Theta-JP (JP) is the thermal resistance from junction to the center exposed pad on the bottom of the package)  
ZL40235  
October 2018  
47  
© 2018 Microsemi Corporation  
Data Sheet  
ZL40235  
Change History  
June 2017 was the first release of the document.  
July 2017 release changes:  
Modified power calculation in the Power Consumption section.  
August 2017 release changes:  
Modified “Input driven by HCSL output” figure.  
Modified additive jitter for 156.25MHz input clock.  
Added Figure 41 and Figure 42.  
October 2018 release changes:  
Added note in pinout to tie XIN pin when crystal circuit is not used  
Removed Figures 13, 15 and 16 due to inaccuracy  
Fixed typo in Table 3  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
48  
Data Sheet  
ZL40235  
Package Outline  
ZL40235  
October 2018  
© 2018 Microsemi Corporation  
49  
Data Sheet  
ZL40235  
Microsemi Corporation, a wholly owned subsidiary Microchip Technology Inc. (Nasdaq:  
MCHP), offers a comprehensive portfolio of semiconductor and system solutions for  
communications, defense & security, aerospace and industrial markets. Products include  
high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs,  
SoCs and ASICs; power management products; timing and synchronization devices and  
precise time solutions, setting the world's standard for time; voice processing devices; RF  
solutions; discrete components; enterprise storage and communication solutions, security  
technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs  
and midspans; as well as custom design capabilities and services. Microsemi is  
headquartered in Aliso Viejo, California. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or  
the suitability of its products and services for any particular purpose, nor does Microsemi assume any  
liability whatsoever arising out of the application or use of any product or circuit. The products sold  
hereunder and any other products sold by Microsemi have been subject to limited testing and should not  
be used in conjunction with mission-critical equipment or applications. Any performance specifications are  
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and  
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s  
responsibility to independently determine suitability of any products and to test and verify the same. The  
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the  
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly  
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
©
2017 Microsemi Corporation. All information itself or anything described by such information. Information provided in this document is  
rights reserved. Microsemi and the proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
Microsemi logo are trademarks of document or to any products and services at any time without notice.  
Microsemi Corporation. All other  
trademarks and service marks are the  
property of their respective owners.  
ZL40235  
October 2018  
50  
© 2018 Microsemi Corporation  

相关型号:

ZL40241LDF1

Clock Driver
MICROCHIP

ZL40241LDF1

Low Skew Clock Driver,
MICROSEMI

ZL40241LDG1

Clock Driver
MICROCHIP

ZL40241LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40252LDF1

Low Skew Clock Driver,
MICROSEMI

ZL40253LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40264LDF1

Clock Driver
MICROCHIP

ZL40264LDG1

Clock Driver
MICROCHIP

ZL40272

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDF1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDG1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40293LDF1

Low Skew Clock Driver, 4000/14000/40000 Series, 40 True Output(s), 0 Inverted Output(s), CMOS
MICROCHIP