ZL40241LDF1 [MICROSEMI]

Low Skew Clock Driver,;
ZL40241LDF1
型号: ZL40241LDF1
厂家: Microsemi    Microsemi
描述:

Low Skew Clock Driver,

驱动 逻辑集成电路
文件: 总23页 (文件大小:764K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
ZL40241  
Ten LVCMOS Output Low Additive Jitter Fanout Buffer  
Ordering Information  
Features  
ZL40241LDG1  
ZL40241LDF1  
32 Pin QFN  
32 pin QFN  
Trays  
Tape and Reel  
3 to 1 input Multiplexer: Two inputs accept any  
differential (LVPECL, HCSL, LVDS, SSTL, CML,  
LVCMOS) or a single ended signal and the third  
input accepts a crystal or a single ended signal  
Package size: 5 x 5 mm  
-40 C to +85 C  
Ten 1.5V/1.8V/2.5V/3.3V LVCMOS outputs  
Supports frequencies from 0 to 200MHz  
Supports crystals from 8MHz to 60MHz  
Ultra-low additive jitter: 17fs (12kHz to 20MHz)  
Ultra-low noise floor of -170dBc/Hz  
Applications  
General purpose clock distribution  
Low jitter clock trees  
Logic translation  
Clock and data signal restoration  
Wired and Wireless communications  
High performance microprocessor clock distribution  
Medical Imaging  
Supports 2.5V or 3.3V power supplies  
Output to output skew of 30ps (typical)  
Input to output delay of 2ns (typical)  
Test equipment  
ZL40241  
OUT0  
Synchronous OE  
OE  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
SEL0  
SEL1  
IN0_p  
IN0_n  
00  
IN1_p  
IN1_n  
01  
10  
11  
XOUT  
XIN  
Figure 1. Functional Block Diagram  
ZL40241  
Confidential  
1
February 2017  
© 2017 Microsemi Corporation  
 
 
Data Sheet  
ZL40241  
Table of Contents  
Features.....................................................................................................................................1  
Table of Contents ......................................................................................................................2  
Pin Diagram ...............................................................................................................................5  
Pin Descriptions.........................................................................................................................6  
Functional Description ...............................................................................................................8  
Clock Inputs ...............................................................................................................................8  
Clock Outputs ..........................................................................................................................11  
Crystal Oscillator Input.............................................................................................................11  
Termination of unused inputs and outputs ..............................................................................12  
Power Consumption ................................................................................................................13  
Power Supply Filtering.............................................................................................................15  
Device Control .........................................................................................................................15  
AC and DC Electrical Characteristics......................................................................................17  
Absolute Maximum Ratings.....................................................................................................17  
Recommended Operating Conditions .....................................................................................17  
Package Outline ......................................................................................................................22  
ZL40241  
Confidential  
2
February 2017  
© 2017 Microsemi Corporation  
 
Data Sheet  
ZL40241  
List of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Functional Block Diagram........................................................................................................................................... 1  
Pin Diagram ................................................................................................................................................................ 5  
Input driven by a single ended output ........................................................................................................................ 8  
Input driven by DC coupled LVPEVCL output .............................................................................................................. 8  
Input driven by DC coupled LVPEVCL output (alternative termination)...................................................................... 9  
Input driven by AC coupled LVPECL output................................................................................................................. 9  
Input driven by HCSL output ....................................................................................................................................... 9  
Input driven by LVDS output ..................................................................................................................................... 10  
Input driven by AC coupled LVDS .............................................................................................................................. 10  
Input driven by an SSTL output ................................................................................................................................. 10  
Termination for 3.3V LVPECL outputs....................................................................................................................... 11  
Crystal Oscillator Circuit............................................................................................................................................ 11  
Phase Noise Plot with 25MHz Crystal ....................................................................................................................... 12  
Device power consumption per output for VDD = VDDO = 3.465V............................................................................... 13  
Device power consumption per output for VDD = VDDO = 2.625V............................................................................... 14  
Dynamic supply current per output for different output supply voltages ................................................................ 14  
Power Supply Filtering .............................................................................................................................................. 15  
OE Output Disable .................................................................................................................................................... 15  
OE Output Enable ..................................................................................................................................................... 16  
ZL40241  
Confidential  
3
February 2017  
© 2017 Microsemi Corporation  
Data Sheet  
ZL40241  
List of Tables  
Table 1 · Pin Descriptions............................................................................................................................................................................... 6  
Table 2 · Absolute Maximum Ratings*......................................................................................................................................................... 17  
Table 3 · Recommended Operating Conditions* .......................................................................................................................................... 17  
Table 4 · Current consumption ..................................................................................................................................................................... 17  
Table 5 · Input Characteristics* .................................................................................................................................................................... 18  
Table 6 · Crystal Oscillator Characteristics* ................................................................................................................................................. 18  
Table 7 · LVCMOS Output Characteristics* .................................................................................................................................................. 19  
Table 8 · LVCMOS Output Additive Jitter and Phase Noise*......................................................................................................................... 20  
Table 9 · LVCMOS Output Jitter Phase Noise with 25MHz XTAL*................................................................................................................. 21  
Table 10 · 5x5mm QFN Package Thermal Properties ................................................................................................................................... 21  
ZL40241  
Confidential  
4
February 2017  
© 2017 Microsemi Corporation  
Preliminary Data Sheet  
ZL40241  
Pin Diagram  
The device is packaged in a 5x5mm 32-pin QFN.  
Pin#1  
Corner  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
2
OUT9  
VDDO  
OUT0  
VDDO  
23  
22  
OUT1  
GND  
OUT8  
GND  
3
21  
4
5
6
Exposed GND Pad 3.10 x 3.10 mm  
OUT2  
OUT7  
VDDO  
OUT6  
OUT5  
20  
19  
VDDO  
OUT3  
OUT4  
7
8
18  
17  
9
10  
11  
12  
13  
14  
15  
16  
Figure 2. Pin Diagram  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
5
Preliminary Data Sheet  
ZL40241  
Pin Descriptions  
All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I  
input, IPU input with 300kinternal pull-up resistor, IPD input with 300kinternal pull-down resistor, IAPU input  
with 30kinternal pull-up resistor, IAPD input with 30kinternal pull-down resistor, IAPU/APD input biased at VDD/2  
with 60kinternal pull-up and 60kpull-down resistors, O output, I/O Input/Output pin, P power supply pin.  
Table 1 · Pin Descriptions  
#
Name  
I/O  
Description  
Input Reference  
IAPD  
IAPU/APD  
IAPD  
IN0_p  
IN0_n  
IN1_p  
IN1_n  
Input Differential or Single Ended References 0 and 1  
13  
14  
28  
27  
Input frequency range 0Hz to 200MHz.  
IAPU/APD  
Non inverting inputs (_p) are pulled down with internal 30kpull-down resistors.  
Inverting inputs (_n) are biased at VDD/2 with 60kpull-up and pull-down resistors  
to keep inverting input voltages at VDD/2 when inverting inputs are left floating  
(device fed with a single ended reference).  
Output Clocks  
Ultra Low Additive Jitter LVCMOS Outputs 0 to 9  
O
1
3
5
7
8
17  
18  
20  
22  
24  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
Output frequency range 0 to 200MHz  
Control  
IPD  
30  
29  
IN_SEL0  
IN_SEL1  
Input select pins. Logic level on these pins selects which input will be passed to  
the output.  
IN_SEL1 IN_SEL0  
OUTN  
Input 0 (IN0)  
0
0
1
1
0
1
0
1
Input 1 (IN1)  
Crystal Oscillator or overdrive  
Crystal Bypass  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
6
Preliminary Data Sheet  
ZL40241  
IPD  
31  
OE  
Output Enable When high outputs are enabled. When low outputs are high-Z.  
Crystal Oscillator  
11  
XIN  
I
Crystal Oscillator Input or crystal bypass mode or crystal overdrive mode  
Crystal Oscillator Output  
12  
XOUT  
O
Power and Ground  
Positive Supply Voltage. Connect to 3.3V or 2.5V supply. VDD voltage must be  
higher or equal to VDDO.  
10  
VDD  
P
P
Positive Supply Voltage for LVCMOS Outputs Connect 3.3V, 2.5V, 1.8V or 1.5V  
power supply  
2
6
19  
23  
VDDO  
GND  
Ground Connect to ground  
4
P
9
15  
16  
21  
25  
26  
32  
Ground. Connect to ground  
E-Pad  
GND  
P
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
7
Preliminary Data Sheet  
ZL40241  
Functional Description  
The ZL40241 is a pin controlled low additive jitter, low power 3 x 10 LVCMOS fanout buffer.  
Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML ) or single ended (LVPECL or  
LVCMOS) format and the third input can accept a single ended signal or it can be used to build a crystal oscillator by  
connecting an external crystal resonator between its XIN and XOUT pins. .  
The ZL40241 has ten LVCMOS outputs which can be powered from 3.3V, 2.5V, 1.8V or 1.5V supply. Output can be  
synchronously enabled/disabled via OE pin.  
The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature  
range -40°C to +85°C.  
Clock Inputs  
The following blocks diagram shows how to terminate different signals fed to the ZL40241 inputs.  
Figure 3 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be  
100each so that the transmission line is terminated with matched impedance (50). However, if the driving  
strength of the output driver is not sufficient resistor values should be increased  
VDD  
VDD  
VDD  
VDD  
1 k  
R1  
Rs  
Ro  
Z0 = 50  
Ro + Rs = Z0  
R2  
1 kΩ  
MSCC Device  
0.1 µF  
Figure 3. Input driven by a single ended output  
VDD  
VDD  
VDD  
VDD  
RUP  
RUP  
Z0 = 50  
Z0 = 50  
LVPECL  
RDWN  
RDWN  
MSCC Device  
VDD  
3.3V  
2.5V 250 Ω  
RUP  
125 Ω  
RDWN  
84 Ω  
62.5 Ω  
Figure 4. Input driven by DC coupled LVPEVCL output  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
8
 
Preliminary Data Sheet  
ZL40241  
VDD  
VDD  
Z0 = 50  
Z0 = 50 Ω  
LVPECL  
LVPECL  
50 Ω  
50  
MSCC Device  
50 Ω  
Figure 5. Input driven by DC coupled LVPEVCL output (alternative termination)  
VDD  
VDD  
VDD  
100  
VDD  
100 Ω  
10 nF  
10 nF  
Z0 = 50  
Z0 = 50 Ω  
LVPECL  
200 Ω  
200 Ω  
100 100 Ω  
MSCC Device  
Figure 6. Input driven by AC coupled LVPECL output  
VDD  
VDD  
33  
33 Ω  
Z0 = 50  
Z0 = 50 Ω  
HCSL  
50 Ω  
50 Ω  
MSCC Device  
Figure 7. Input driven by HCSL output  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
9
Preliminary Data Sheet  
ZL40241  
VDD  
MSCC Device  
VDD  
Z0 = 50  
Z0 = 50  
100 Ω  
LVDS  
Figure 8. Input driven by LVDS output  
VDD  
VDD  
10 K  
10 nF  
VDD  
10 K  
VDD  
Z0 = 50 Ω  
Z0 = 50 Ω  
100 Ω  
LVDS  
10 nF  
10K Ω  
MSCC Device  
10 KΩ  
Figure 9. Input driven by AC coupled LVDS  
VDD  
VDD  
VDD  
120  
120 Ω  
VDD  
Z0 = 60 Ω  
Z0 = 60 Ω  
SSTL  
120 120 Ω  
MSCC Device  
Input driven by SSTL driver  
Figure 10.  
Input driven by an SSTL output  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
10  
Preliminary Data Sheet  
ZL40241  
Clock Outputs  
LVCMOS outputs require only series termination resistor whose value is depending on LVCMOS output voltage as  
shown in Figure 11.  
VDDO  
3.3V  
2.5V  
1.8V  
1.5V  
Rs  
VDDO  
33  
30  
20Ω  
10Ω  
VDD = VDDO  
Rs  
LVCMOS  
Z0 = 50 Ω  
MSCC Device  
Figure 11.  
Termination for 3.3V LVPECL outputs  
Crystal Oscillator Input  
The crystal oscillator circuit can work with crystal resonators from 8MHz to 60MHz. Load capacitors C1 and C2 shall  
be selected as per crystal vendor recommendation. Shunt resistor is implemented inside the device.  
C1  
XIN  
Crystal  
XOUT  
C2  
Load capacitors C1 and C2  
should be as per crystal  
specification  
MSCC Device  
Figure 12.  
Crystal Oscillator Circuit  
The phase noise plot for 25MHz crystal is shown in Figure 13. The phase noise floor of the device is  
below -170dBc/Hz as can be seen on the figure.  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
11  
 
Preliminary Data Sheet  
ZL40241  
Figure 13.  
Phase Noise Plot with 25MHz Crystal  
Termination of unused inputs and outputs  
Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by 1kresistor. Unused outputs  
should be left unconnected.  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
12  
Preliminary Data Sheet  
ZL40241  
Power Consumption  
The total device power consumption can be calculated as:  
P P PXTAL P P  
T
S
C
D
Where:  
is static power consumed by input buffers. If  
XTAL is running this power should be set to  
zero. where the static current (IS) is specified  
in Table 4 ·  
P VDD IS  
S
is power consumption of XTAL circuit. The  
current of the XTAL circuit is provided in  
Table 4 · If XTAL is not used the power  
consumption is equal to zero.  
P
VDD I DD _ XTAL  
XTAL  
Common output power shared among all ten  
outputs. The current (IDDC is specified in  
Table 4 · ,  
P VDDO I DDC  
C
P VDDO (IDD nf /100MHzVDDO CLOAD f n)  
Dynamic power where dynamic current (IDD  
)
D
is specified in Table 4 · , CLOAD is capacitive  
load driven by an output, f is frequency of the  
output clock and n is number of active  
outputs.  
The power consumption for different clock frequencies and power supply voltages can be quickly estimated from  
Figure 14, Figure 15 and Figure 15.  
45.0  
CL=2 pF, P_avg (mW)  
40.0  
CL = 8 pF, P_avg (mW)  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
Freq (MHz)  
Figure 14.  
Device power consumption per output for VDD = VDDO = 3.465V  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
13  
 
Preliminary Data Sheet  
ZL40241  
25.0  
20.0  
15.0  
10.0  
5.0  
CL=2 pF, P_avg (mW)  
CL = 8 pF, P_avg (mW)  
0.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
Freq (MHz)  
Figure 15.  
Device power consumption per output for VDD = VDDO = 2.625V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VDDO=3.465 V  
VDDO=2.625 V  
VDDO=2.00 V  
VDDO=1.65 V  
0.0  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Frequency (MHz)  
Figure 16.  
Dynamic supply current per output for different output supply voltages  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
14  
Preliminary Data Sheet  
ZL40241  
Power Supply Filtering  
Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series  
resistance (ESR) and minimum series inductance (ESL). For example 0402 X5R Ceramic Capacitors with 6.3V  
minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce  
the power noise from adjacent digital components on the board each power supply could be further insulted with low  
resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise  
generated from the device. Following figure shows recommended decoupling for each power pin.  
Board Supply  
10uF  
Ferrite Bead  
1uF  
VDD or VDDO  
0.1uF  
Figure 17.  
Power Supply Filtering  
Device Control  
ZL40241 is controlled via Output Enable (OE) and Input Select (SEL0/1) input pins. Output is disabled synchronously  
on the falling edge of the input (t2) as shown in Figure 18.  
INX_n  
INX_p  
INX_p - INX_n  
OE  
OUT[9:0]  
t1  
t2  
Figure 18.  
OE Output Disable  
Outputs can be enabled by toggling OE pin high. As soon as OE pin goes high (t1) the outputs will go from high-Z to  
low and will start to track the input after the first falling edge (t2) of the input signal as shown in Figure 19.  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
15  
 
Preliminary Data Sheet  
ZL40241  
INX_n  
INX_p  
INX_p - INX_n  
OE  
OUT[9:0]  
t1  
t2  
Figure 19.  
OE Output Enable  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
16  
Preliminary Data Sheet  
ZL40241  
AC and DC Electrical Characteristics  
Absolute Maximum Ratings  
Table 2 · Absolute Maximum Ratings*  
Parameter  
Sym.  
VDD /VDDO  
VDD /VDDO  
VDDO  
Min.  
-0.5  
-0.5  
-0.5  
-0.5  
-55  
Typ.  
Max.  
4.6  
Units  
Notes  
1
2
3
4
5
Supply voltage (3.3V)  
Supply voltage (2.5V)  
Supply voltage (1.8V)  
Supply voltage (1.5V)  
Storage temperature  
V
V
4.6  
2.5  
V
VDDO  
2.0  
V
TST  
125  
°C  
* Exceeding these values may cause permanent damage  
* Functional operation under these conditions is not implied  
* Voltages are with respect to ground (GND) unless otherwise stated  
Recommended Operating Conditions  
Table 3 · Recommended Operating Conditions*  
Characteristics  
Sym.  
VDD /VDDO  
VDD /VDDO  
VDDO  
Min.  
3.135  
2.375  
1.6  
Typ.  
3.30  
2.50  
1.8V  
1.5  
Max.  
3.465  
2.625  
2
Units  
Notes  
1
2
3
4
5
6
Supply voltage 3.3V  
Supply voltage 2.5V  
Supply voltage 1.8V  
Supply voltage 1.5V  
V
V
V
VDDO  
1.35  
-40  
1.65  
Operating temperature  
Input voltage  
TA  
25  
85  
°C  
V
VDD-IN  
- 0.3  
VDD + 0.3  
* Voltages are with respect to ground (GND) unless otherwise stated  
* The device supports two power supply modes (3.3V and 2.5V)  
Table 4 · Current consumption  
Characteristics  
Static device current  
Sym.  
Is_3.3V  
Min.  
Typ.  
15  
Max.  
18  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Notes  
VDD= 3.465V  
VDD = 2.625V  
VDD= 3.465V  
VDD= 2.625V  
VDDO= 3.465V  
VDDO= 2.625V  
VDDO= 2V  
1
2
Is_2.5V  
12  
15  
IDD_XTAL_3.3V  
IDD_XTAL_2.5V  
IDD_3.3V  
24  
27  
Device current with 25MHz XTAL input  
18  
20  
4.2  
3.0  
2.1  
1.6  
2.3  
1.7  
1.2  
0.9  
3.8  
1.9  
1.2  
1
4.7  
3.5  
2.4  
1.8  
3.0  
1.8  
1.3  
1.0  
8.0  
3.3  
1.7  
1.4  
Dynamic current per output (f = 100MHz) (1)(2)  
Needs to be scaled for different frequencies by  
f/100MHz, Driving Strength = 1 (registers 0x09, 0x0A)  
IDD_2.5V  
3
4
5
IDD_1.8V  
IDD_1.5V  
VDDO= 1.65V  
VDDO= 3.465V  
VDDO= 2.625V  
VDDO= 2V  
IDD_3.3V  
Dynamic current per output (f = 100MHz) (1)(2)  
Needs to be scaled for different frequencies by  
f/100MHz, Driving Strength = 0 (registers 0x09, 0x0A)  
IDD_2.5V  
IDD_1.8V  
IDD_1.5V  
VDDO= 1.65V  
VDDO= 3.465V  
VDDO= 2.625V  
VDDO= 2V  
IDDC_3.3V  
IDDC_2.5V  
IDDC_1.8V  
IDDC_1.5V  
Common output current(3)  
VDDO= 1.65V  
(1)  
(2)  
Needs to be scaled for different frequencies by f/100MHz  
To calculate total power consumption use following formula: P = (Is + IDD_XTAL ) * VDD + (IDDC + IDD * n * f/100MHz + VDDO * CLOAD * f * n) * VDDO, where  
IDD_XTAL: should be set to zero if XTAL is not used or Is should be set to zero if XTAL is used.  
n: number of active outputs  
f: frequency of the clock  
CLOAD: is capacitive load driven by an output.  
(3)  
This current is consumed by device whenever one or more outputs are enabled. It is independent of the number of active outputs  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
17  
Preliminary Data Sheet  
ZL40241  
Table 5 · Input Characteristics*  
Characteristics  
Sym.  
VCIH  
VCIL  
IIL  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
3
CMOS high-level input voltage for SEL0/1 and OE  
CMOS low-level input voltage for SEL0/1 and OE  
CMOS input leakage current for SEL0/1 and OE(1)  
Differential input common mode voltage for IN0_p/n and IN1_p/n  
1.20  
V
V
0.45  
10  
-40  
0.5  
µA  
V
VI = VDD or 0 V  
VCM  
VDD –  
0.85  
4
5
6
Differential input voltage difference for IN0_p/n and IN1_p/n  
Differential input leakage current for IN0_p/n and IN1_p/n(2)  
VID  
IIL  
0.15  
-200  
2
1.3  
V
µA  
V
100  
VI = VDD or 0 V  
VSIH  
VDD +  
0.3V  
VDD = 3.3V+/-  
5%  
7
Single ended input high voltage for IN_0_p and IN_1_p  
VSIH  
VSIL  
VSIL  
1.6  
-0.3  
-0.3  
VDD +  
0.3V  
V
V
VDD = 2.5V+/-  
5%  
1.3  
0.9  
VDD = 3.3V+/-  
5%  
8
9
Single ended input high voltage for IN_0_p and IN_1_p  
Input frequency  
V
VDD = 2.5V+/-  
5%  
fIN  
0
200  
MHz  
dc  
35%  
65%  
@200MHz; for  
lower  
frequencies  
duty cycle can  
be scaled  
10 Input duty cycle  
proportionally  
11 Input slew rate  
slew  
2
V/ns  
12  
13  
Input pull-up/ pull-down resistance (INx_n)  
Input pull-down resistance (INx_p)  
RPU/RPD  
RPD  
60kΩ  
30kΩ  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
(1) CMOS input leakage is due to 300kΩ pull-up/pull-down resistors  
(2) Differential Input leakage is due to 60kΩ pull-up/pull-down resistors INx_n and due to 30kΩ pull-down resistor for INx_p  
Table 6 · Crystal Oscillator Characteristics*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
3
4
Mode of oscillation  
Frequency  
mode  
Fundamental  
f
8
60  
MHz  
MΩ  
pF  
On chip shunt resistor  
On chip capacitance  
R
C
0.5  
12  
Functional but  
may not meet AC  
parameters  
Minimum depends  
on AC coupling  
Capacitor (0.1uF  
assumed)  
5
6
Frequency in overdrive mode(1)  
Frequency in bypass mode(2)  
fOV  
0.1  
200  
200  
MHz  
MHz  
Functional but  
may not meet AC  
parameters  
fBP  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
(1)  
(2)  
Maximum input level is 2V  
Maximum output level is VDD  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
18  
Preliminary Data Sheet  
ZL40241  
Table 7 · LVCMOS Output Characteristics*  
Characteristics  
Sym.  
VOH  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
VOL  
RO  
Min.  
Typ.  
Max.  
Units  
V
Notes  
0.8*VDDO  
0.8*VDDO  
0.7*VDDO  
0.7*VDDO  
VDDO = 3.3V±5%  
VDDO = 2.5V±5%  
VDDO = 1.8V±10%  
VDDO = 1.5V±10%  
VDDO = 3.3V±5%  
VDDO = 2.5V±5%  
VDDO = 1.8V±10%  
VDDO = 1.5V±10%  
VDDO = 3.3V  
V
1
2
3
4
Output high voltage  
V
V
0.2*VDDO  
0.2*VDDO  
0.3*VDDO  
0.3*VDDO  
V
V
Output low voltage  
V
V
17  
21  
RO  
VDDO = 2.5V  
Output impedance  
RO  
30  
VDDO = 1.8V  
RO  
42  
VDDO = 1.5V  
tr, tf  
tr, tf  
tr, tf  
tr, tf  
FO  
3.19  
1.72  
1.64  
1.20  
0
5.14  
3.74  
2.52  
1.96  
6.33  
4.61  
3.32  
2.54  
200  
V/ns  
V/ns  
V/ns  
V/ns  
MHz  
VDDO = 3.3V±5%  
VDDO = 2.5V±5%  
VDDO = 1.8V±10%  
VDDO = 1.5V±10%  
Output slew rate-- rise or fall (20% to 80%)  
5
6
7
8
9
Output frequency  
Output Duty Cycle  
50.26%  
53.18%  
2
Input. duty-cycle 50%  
Output enable or disable time  
Output to output skew  
Device to device output skew  
Cycle  
ps  
tOOSK  
tDOOSK  
tIOD  
27  
1.6  
ns  
1.15  
1.57  
75  
2.09  
2.27  
2.54  
2.77  
ns  
VDD = 3.3V  
VDD = 2.5V  
10 Input to output delay  
tIOD  
ns  
11 Input multiplexer isolation  
iso  
dB  
tested with 125MHz clocks  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
* Load 50 Ohm to VDDO/2  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
19  
Preliminary Data Sheet  
ZL40241  
Table 8 · LVCMOS Output Additive Jitter and Phase Noise*  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
VDD = 3.3V, VDDO = 3.3V  
fin = 125MHz, single ended input  
17  
fs-RMS  
VDD = 2.5V, VDDO = 1.5V to 2.5V  
fin = 125MHz, single ended input  
31  
fs-RMS  
fs-RMS  
fs-RMS  
fs-RMS  
fs-RMS  
fs-RMS  
fs-RMS  
1
System level additive jitter(1)  
VDD = 3.3V, VDDO = 3.3V  
fin = 125MHz, differential input  
22  
VDD = 2.5V, VDDO = 1.5V to 2.5V  
fin = 125MHz, differential input  
37  
VDD = 3.3V, VDDO = 3.3V  
fin = 125MHz, single ended input  
45.18  
80.46  
39.95  
67.18  
93.11  
126.92  
68.98  
VDD = 2.5V, VDDO = 1.5V to 2.5V  
fin = 125MHz, single ended input  
2
Additive jitter(2) (3)  
VDD = 3.3V, VDDO = 3.3V  
fin = 125MHz, differential input  
VDD = 2.5V, VDDO = 1.5V to 2.5V  
fin = 125MHz, differential input  
117.26  
-145.08  
-152.46  
-160.67  
-162.66  
-162.71  
-145.34  
-152.60  
-161.06  
-163.22  
-163.38  
-139.93  
-147.22  
-157.11  
-160.58  
-160.78  
-141.69  
-149.19  
-158.66  
-161.60  
-161.85  
-138.67  
-145.82  
-155.66  
-160.55  
-160.19  
-137.83  
-146.93  
-156.99  
-160.84  
-161.42  
-134.59  
-144.21  
-154.78  
-158.21  
-158.19  
-134.26  
-144.73  
-156.22  
-159.32  
-159.36  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10kHz, fin = 125MHz, single ended input  
@100kHz, fin = 125MHz, single ended input  
@1MHz, fin = 125MHz, single ended input  
@10MHz, fin = 125MHz, single ended input  
@20MHz, fin = 125MHz, single ended input  
@10kHz, fin = 125MHz, differential input  
@100kHz, fin = 125MHz, differential input  
@1MHz, fin = 125MHz, differential input  
@10MHz, fin = 125MHz, differential input  
@20MHz, fin = 125MHz, differential input  
@10kHz, fin = 125MHz, single ended input  
@100kHz, fin = 125MHz, single ended input  
@1MHz, fin = 125MHz, single ended input  
@10MHz, fin = 125MHz, single ended input  
@20MHz, fin = 125MHz, single ended input  
@10kHz, fin = 125MHz, differential input  
@100kHz, fin = 125MHz, differential input  
@1MHz, fin = 125MHz, differential input  
@10MHz, fin = 125MHz, differential input  
@20MHz, fin = 125MHz, differential input  
Phase Noise floor  
3
(VDD = 3.3V, VDDO = 3.3V)  
Phase Noise floor  
(VDD = 2.5V, VDDO = 2.5V)  
4
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
(1)  
(2)  
System level additive jitter is calculated as JRMS_SYS_AJ = JRMS_OUT - JRMS_IN  
Additive jitter is calculated as JRMS__AJ = sqrt (JRMS_OUT2 - JRMS_IN2) where jitter is integrated in 12 kHz to 20 MHz band  
Tester measures jitter at 156.25MHz. Since this freq won’t appear in the data sheet, it should be removed from the PPGT. Data sheet jitter is guaranteed by lab  
char. The ATE jitter measurement will be used to screen outliers only, with limits based on ATE distribution  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
20  
Preliminary Data Sheet  
ZL40241  
Table 9 · LVCMOS Output Jitter Phase Noise with 25MHz XTAL*  
Characteristics  
Min.  
Typ.  
Max.  
Units  
fs  
Notes  
VDD = 3.3V, VDDO = 3.3V  
72.63  
Jitter RMS in 12kHz to 20MHz  
band  
1
fs  
VDD = 2.5V; VDDO = 2.5V  
87.59  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@10Hz , VDD = 3.3V, VDDO = 3.3V  
@100Hz, VDD = 3.3V, VDDO = 3.3V  
@1kHz, VDD = 3.3V, VDDO = 3.3V  
@10kHz, VDD = 3.3V, VDDO = 3.3V  
@100kHz, VDD = 3.3V, VDDO = 3.3V  
@1MHz, VDD = 3.3V, VDDO = 3.3V  
@5MHz, VDD = 3.3V, VDDO = 3.3V  
@10Hz, VDD = 2.5V; VDDO = 2.5V  
@100Hz, VDD = 2.5V; VDDO = 2.5V  
@1kHz, VDD = 2.5V; VDDO = 2.5V  
@10kHz, VDD = 2.5V; VDDO = 2.5V  
@100kHz, VDD = 2.5V; VDDO = 2.5V  
@1MHz, VDD = 2.5V; VDDO = 2.5V  
@5MHz, VDD = 2.5V; VDDO = 2.5V  
-75.96  
-107.50  
-132.34  
-157.36  
-165.82  
-168.85  
-168.88  
-70.52  
2
Phase Noise floor  
-102.60  
-129.14  
-153.93  
-164.00  
-167.34  
-167.41  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
* Xtal frequency is 25 MHz  
Table 10 · 5x5mm QFN Package Thermal Properties  
Parameter  
Symbol  
Conditions  
Value  
Units  
TA  
TJMAX  
Maximum Ambient Temperature  
Maximum Junction Temperature  
85  
C  
C  
125  
26.8  
21.8  
19.9  
10.8  
19.5  
6.5  
still air  
1m/s airflow  
2.5m/s airflow  
Junction to Ambient Thermal Resistance(1) (Note 1)  
JA  
C/W  
Junction to Board Thermal Resistance  
Junction to Case Thermal Resistance  
Junction to Pad Thermal Resistance(2)  
JB  
JC  
JP  
C/W  
C/W  
C/W  
Still air  
Still air  
Junction to Top-Center Thermal Characterization  
Parameter  
0.6  
C/W  
JT  
(1)  
Theta-JA (JA) is the thermal resistance from junction to ambient when the package is mounted on an 4-layer JEDEC standard test board and dissipating  
maximum power  
(2)  
Theta-JP (JP) is the thermal resistance from junction to the center exposed pad on the bottom of the package)  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
21  
Preliminary Data Sheet  
ZL40241  
Package Outline  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
22  
Preliminary Data Sheet  
ZL40241  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for aerospace & defense, communications, data center and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world's standard for time; voice  
processing devices; RF solutions; discrete components; enterprise storage and  
communication solutions, security technologies and scalable anti-tamper products; Ethernet  
solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and  
services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800  
employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or  
the suitability of its products and services for any particular purpose, nor does Microsemi assume any  
liability whatsoever arising out of the application or use of any product or circuit. The products sold  
hereunder and any other products sold by Microsemi have been subject to limited testing and should not  
be used in conjunction with mission-critical equipment or applications. Any performance specifications are  
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and  
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s  
responsibility to independently determine suitability of any products and to test and verify the same. The  
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the  
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly  
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
©
2017 Microsemi Corporation. All information itself or anything described by such information. Information provided in this document is  
rights reserved. Microsemi and the proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
Microsemi logo are trademarks of document or to any products and services at any time without notice.  
Microsemi Corporation. All other  
trademarks and service marks are the  
property of their respective owners.  
ZL40241  
Confidential  
February 2017  
© 2017 Microsemi Corporation  
23  

相关型号:

ZL40241LDG1

Clock Driver
MICROCHIP

ZL40241LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40252LDF1

Low Skew Clock Driver,
MICROSEMI

ZL40253LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40264LDF1

Clock Driver
MICROCHIP

ZL40264LDG1

Clock Driver
MICROCHIP

ZL40272

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDF1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDG1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40293LDF1

Low Skew Clock Driver, 4000/14000/40000 Series, 40 True Output(s), 0 Inverted Output(s), CMOS
MICROCHIP

ZL40510

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LCE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK