ZL40272 [MICROCHIP]

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control;
ZL40272
型号: ZL40272
厂家: MICROCHIP    MICROCHIP
描述:

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control

文件: 总54页 (文件大小:2747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL40272  
Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/  
LVPECL Fanout Buffer with Per-Output Enable Control  
Features  
• 3-to-1 input Multiplexer: Two Inputs Accept Any  
Differential (LVPECL, HCSL, LVDS, SSTL, CML,  
LVCMOS) or a Single-Ended Signal and the Third  
Input Accepts a Crystal or a Single-Ended Signal  
Applications  
• PCIe Gen1/2/3/4/5 Clock Distribution  
• Wired Communications: OTN, SONET/SDH, GE,  
10 GE, FC, and 10G FC  
• Twelve Differential HCSL/LVDS/LVPECL Outputs  
• General Purpose Clock Distribution  
• Low Jitter Clock Trees  
• Ultra-Low Additive Jitter: 24 fs (Integration Band:  
12 kHz to 20 MHz at 625 MHz Clock Frequency)  
• Logic Translation  
• Supports Clock Frequencies from 0 GHz to  
1.5 GHz  
• Clock and Data Signal Restoration  
• Wireless Communications  
• Supports 2.5V or 3.3V Power Supplies on HCSL/  
LVDS/LVPECL Outputs  
• High Performance Microprocessor Clock Distribu-  
tion  
• Embedded Low Drop Out (LDO) Voltage Regula-  
tor Provides Superior Power Supply Noise Rejec-  
tion  
Test Equipment  
• Maximum Output to Output Skew of 50 ps  
• Device Controlled via I2C or Hardware Control  
Pins  
• Factory Configurable Default Settings via OTP  
• Transparent for Spread Spectrum Clock  
SEL  
OUT0_p  
HW_CTRL/SMBus  
IN_SEL0  
I2C_SA_0  
OUT0_n  
IN_SEL0/  
I2C_SA_0  
IN_SEL1/  
I2C_SA_1  
Registers:  
xtal_buf_gain[7:0]  
xtal_drive_level[7:0]  
xtal_load_cap[7:0]  
xtal_normal_run  
input_select[1:0]  
output_drive_low[7:0]  
output_drive_low[11:8]  
vcm_sel  
OUT1_p  
OUT1_n  
IN_SEL1  
I2C_SA_0  
OUT2_p  
OUT2_n  
OUT_TYPE_SEL0  
I2C_SCL  
dev_addr[2:0]  
Device ID  
OUT_TYPE_SEL0/  
I2C_SCL  
OUT3_p  
OUT3_n  
OUT_TYPE_SEL1  
I2C_SDA  
OUT_TYPE_SEL1  
/I2C_SDA  
OUT4_p  
OUT4_n  
OE_b[11:0]  
OUT5_p  
OUT5_n  
IN0_p  
IN0_n  
OUT6_p  
OUT6_n  
IN1_p  
IN1_n  
OUT7_p  
OUT7_n  
XOUT  
OUT8_p  
OUT8_n  
XIN  
ZL40272  
OUT9_p  
OUT9_n  
IREF  
OUT10_p  
OUT10_n  
RH  
OUT11_p  
OUT11_n  
FIGURE 0-1:  
Functional Block Diagram.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 1  
ZL40272  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
• Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS20006408B-page 2  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE OF CONTENTS  
1.0 “Pin Description and Configuration” .................................................................... 6  
2.0 “Functional Description”....................................................................................... 11  
2.1 “Clock Inputs” ............................................................................................. 11  
2.2 “Clock Outputs” .......................................................................................... 13  
2.3 “Crystal Oscillator Input” ........................................................................... 13  
2.4 “Termination of Unused Inputs and Outputs”.......................................... 14  
2.5 “Power Consumption”................................................................................ 14  
2.6 “Power Supply Filtering”............................................................................ 15  
2.7 “Power Supplies and Power-Up Sequence............................................. 15  
2.8 “Host Interface”........................................................................................... 15  
2.9 “I2C Bus Byte Read/Write”......................................................................... 17  
2.10 “I2C Bus Burst Read/Write” ..................................................................... 18  
2.11 “Typical Phase Noise Characteristics................................................... 19  
3.0 “Register Map....................................................................................................... 21  
4.0 “Electrical Characteristics”................................................................................... 27  
5.0 “Package Outline”.................................................................................................. 47  
5.1 “Package Marking Information”................................................................. 47  
Appendix A: “Data Sheet Revision History” ............................................................. 50  
“Product Identification System”................................................................................ 51  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 3  
ZL40272  
List of Figures  
FIGURE 0-1: “Functional Block Diagram.”.............................................................................................................. 1  
FIGURE 1-1: “56-Lead 8 mm x 8 mm QFN.” ............................................................................................................ 6  
FIGURE 2-1: “Input Driven by a Single-Ended Output for vcm_sel = 0 and 1.”................................................. 11  
FIGURE 2-2: “Input Driven by DC-Coupled LVPECL Output for vcm_sel = 0.” ................................................. 11  
FIGURE 2-3: “Input Driven by DC-Coupled LVPECL Output for vcm_sel = 0 (Alternative Termination).”...... 12  
FIGURE 2-4: “Input Driven by AC-Coupled LVPECL Output for vcm_sel = 0 and 1.”....................................... 12  
FIGURE 2-5: “Input Driven by HCSL Output for vcm_sel = 1.” ........................................................................... 12  
FIGURE 2-6: “Input Driven by LVDS Output for vcm_sel = 0.” ........................................................................... 12  
FIGURE 2-7: “Input Driven by AC-Coupled LVDS for vcm_sel = 0 and 1.” ........................................................ 13  
FIGURE 2-8: “Input Driven by an SSTL Output for vcm_sel = 1.”....................................................................... 13  
FIGURE 2-9: “Driving a Load via Transformer.................................................................................................... 13  
FIGURE 2-10: “Crystal Oscillator Circuit in Hardware Controlled Mode.......................................................... 14  
FIGURE 2-11: “Power Supply Filtering.” ............................................................................................................... 15  
FIGURE 2-12: “Output Disable.”............................................................................................................................. 16  
FIGURE 2-13: “Output Enable.”.............................................................................................................................. 16  
FIGURE 2-14: “I2C Bus Slave Interface.” .............................................................................................................. 16  
FIGURE 2-15: “I2C Bus Byte Read.” ...................................................................................................................... 17  
FIGURE 2-16: “I2C Bus Byte Write....................................................................................................................... 17  
FIGURE 2-17: “I2C Bus Burst Read.”..................................................................................................................... 18  
FIGURE 2-18: “I2C Bus Burst Write.” .................................................................................................................... 18  
FIGURE 2-19: “100 MHz HCSL Output Phase Noise.”.......................................................................................... 19  
FIGURE 2-20: “156.25 MHz LVDS Output Phase Noise...................................................................................... 19  
FIGURE 2-21: “625 MHz LVPECL Output Phase Noise.” ..................................................................................... 20  
FIGURE 2-22: “Phase Noise with 156.25 MHz Crystal........................................................................................ 20  
FIGURE 4-1: “Single-Ended Measurement Points for Absolute Cross Point and Swing.”............................... 39  
FIGURE 4-2: “Single-Ended Measurement Points for Delta Cross Point.” ........................................................ 39  
FIGURE 4-3: “Single-Ended Measurement Points for Rise and Fall Time Matching....................................... 39  
FIGURE 4-4: “Differential Measurement Points for Rise and Fall Time............................................................ 39  
FIGURE 4-5: “Differential Measurement Points for Ringback.” .......................................................................... 40  
FIGURE 4-6: “PCIe Test Circuit.” ........................................................................................................................... 40  
FIGURE 4-7: “I2C Bus Timing............................................................................................................................... 45  
DS20006408B-page 4  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
List of Tables  
TABLE 1-1: “Pin Descriptions.................................................................................................................................7  
TABLE 2-1: “Input Clock Selection.......................................................................................................................15  
TABLE 2-2: “Output Type Selection” .....................................................................................................................15  
TABLE 2-3: “I2C Bus Address Table” ....................................................................................................................17  
TABLE 3-1: “Register Map”.....................................................................................................................................21  
TABLE 3-2: “0x00 XTALBG - XTAL Buffer Gain” ..................................................................................................21  
TABLE 3-3: “0x01 XTALDL - XTAL Drive Level” ...................................................................................................22  
TABLE 3-4: “0x02 XTALLC - XTAL Load Capacitance........................................................................................22  
TABLE 3-5: “0x03 XTALNR - XTAL Normal Run..................................................................................................23  
TABLE 3-6: “0x04 OUTLOWALL - Output Low All”...............................................................................................23  
TABLE 3-7: “0x05 INSEL - Input Select Register.................................................................................................23  
TABLE 3-8: “0x07 DRVTYPE0 - Output Type Select (Outputs 0 to 3)................................................................24  
TABLE 3-9: “0x08 DRVTYPE1 - Output Type Select (Outputs 4 to 7)................................................................24  
TABLE 3-10: “0x09 DRVTYPE2 - Output Type Select (outputs 8 to 11)” ............................................................24  
TABLE 3-11: “0x0A OUTLOW0 - Output Drive Low (Outputs 0 to 7).................................................................25  
TABLE 3-12: “0x0B OUTLOW1 - Output Drive Low (Outputs 8 to 11)...............................................................25  
TABLE 3-13: “0x0C COMMODSEL - Common Mode Select” ...............................................................................26  
TABLE 3-14: “0x0E DEVADDR - I2C Bus Slave Device Address” .......................................................................26  
TABLE 3-15: “0x11 DEVID - Device Identification” ...............................................................................................26  
TABLE 4-1: “Absolute Maximum Ratings” ............................................................................................................27  
TABLE 4-2: “Recommended Operating Conditions............................................................................................27  
TABLE 4-3: “Current Consumption” ......................................................................................................................27  
TABLE 4-4: “Input Characteristics”........................................................................................................................28  
TABLE 4-5: “Crystal Oscillator Characteristics”...................................................................................................29  
TABLE 4-6: “Power Supply Rejection Ratio for VDD = VDDO = 3.3V................................................................29  
TABLE 4-7: “Power Supply Rejection Ratio for VDD = VDDO = 2.5V................................................................30  
TABLE 4-8: “LVPECL Output Characteristics for VDDO = 3.3V”.........................................................................30  
TABLE 4-9: “LVPECL Output Characteristics for VDDO = 2.5V”.........................................................................31  
TABLE 4-10: “LVDS Outputs for VDDO = 3.3V” ....................................................................................................32  
TABLE 4-11: “LVDS Outputs for VDDO = 2.5V” ....................................................................................................33  
TABLE 4-12: “HCSL Outputs (PCIe electrical characteristics) for vddo = 3.3v................................................34  
TABLE 4-13: “HCSL (PCIe) jitter performance for vddo = 3.3v” ..........................................................................35  
TABLE 4-14: “HCSL Outputs (PCIe electrical characteristics) for vddo = 2.5v................................................36  
TABLE 4-15: “HCSL (PCIe) jitter performance for vddo = 2.5v” ..........................................................................38  
TABLE 4-16: “LVPECL Output Phase Noise with 25 MHz XTAL........................................................................40  
TABLE 4-17: “LVDS Output Phase Noise with 25 MHz XTAL”.............................................................................41  
TABLE 4-18: “HCSL Output Phase Noise with 25 MHz XTAL” ............................................................................41  
TABLE 4-19: “LVPECL Output Phase Noise with 125 MHz XTAL......................................................................42  
TABLE 4-20: “LVDS Output Phase Noise with 125 MHz XTAL”...........................................................................42  
TABLE 4-21: “HCSL Output Phase Noise with 125 MHz XTAL” ..........................................................................43  
TABLE 4-22: “LVPECL Output Phase Noise with 156.25 MHz XTAL.................................................................43  
TABLE 4-23: “LVDS Output Phase Noise with 156.25 MHz XTAL”......................................................................44  
TABLE 4-24: “HCSL Output Phase Noise with 156.25 MHz XTAL” .....................................................................44  
TABLE 4-25: “I2C Bus Electrical Characteristics................................................................................................45  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 5  
ZL40272  
1.0  
PIN DESCRIPTION AND CONFIGURATION  
Pin#1  
Corner  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
OUT0_p  
OUT0_n  
VDDO  
1
2
42  
41  
OUT11_n  
OUT11_p  
VDDO  
3
4
40  
39  
38  
37  
36  
35  
34  
33  
OUT1_p  
OUT1_n  
OUT2_p  
OUT2_n  
OUT3_p  
OUT3_n  
OUT4_p  
OUT4_n  
VDDO  
OUT10_n  
OUT10_p  
OUT9_n  
OUT9_p  
OUT8_n  
OUT8_p  
OUT7_n  
5
6
7
Exposed Ground Pad  
8
9
10  
11  
12  
13  
14  
32 OUT7_p  
31  
VDDO  
OUT5_p  
OUT5_n  
30  
OUT6_n  
29  
OUT6_p  
15  
16  
17  
18  
19  
20  
21  
23  
24  
25  
26  
27  
28  
22  
FIGURE 1-1:  
56-Lead 8 mm x 8 mm QFN.  
DS20006408B-page 6  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
All device inputs and outputs are LVPECL, unless described otherwise. The I/O column uses the following symbols:  
I – input, IPU – input with 300 kΩ internal pull-up resistor, IPD – input with 300 kΩ internal pull-down resistor,  
IAPU – input with 31 kΩ internal pull-up resistor, IAPD – input with 30 kΩ internal pull-down resistor, IAPU/APD – input  
biased to VDD/2 with 60 kΩ internal pull-up and pull-down resistors (30 kΩ equivalent), O – output, I/OOD – Input/Open-  
Drain Output pin, NC – No connect, P – power supply pin.  
TABLE 1-1:  
PIN DESCRIPTIONS  
Pin  
Number  
Pin Name  
Type  
Description  
Input References  
20  
21  
25  
IN0_p  
IAPD  
IAPU/APD  
IAPD  
Differential/Single-Ended References 0 and 1  
IN0_n  
IN1_p  
Input frequency range from 0 Hz to 1.5 GHz.  
Non-inverting inputs (_p) are pulled down with internal 30 kΩ pull-down  
resistors.  
Inverting inputs (_n) are pulled up and pulled down with 60 kΩ internal  
resistors (30 kΩ equivalent) to keep inverting input voltages at VDD/2  
when inverting inputs are left floating (device fed with a single-ended ref-  
erence).  
24  
IN1_n  
IAPU/APD  
Output Clocks  
1
OUT0_p  
OUT0_n  
OUT1_p  
OUT1_n  
OUT2_p  
OUT2_n  
OUT3_p  
OUT3_n  
OUT4_p  
OUT4_n  
OUT5_p  
OUT5_n  
OUT6_p  
OUT6_n  
OUT7_p  
OUT7_n  
OUT8_p  
OUT8_n  
OUT9_p  
OUT9_n  
OUT10_p  
OUT10_n  
OUT11_p  
OUT11_n  
2
4
5
6
7
8
9
Ultra-Low Additive Jitter Differential LVPECL/HCSL/LVDS Outputs 0  
to 11  
10  
11  
13  
14  
29  
30  
32  
33  
34  
35  
36  
37  
38  
39  
41  
42  
Output frequency range 0 Hz to 1.5 GHz  
In I2C bus controlled mode (SEL pin pulled high on the power up) type  
(LVPECL/HCSL/LVDS/High-Z) of each output is programmable via I2C  
Bus  
O
In Hardware control mode (SEL pin pulled low on the power up) type  
(LVPECL/HCSL/LVDS/High-Z) of each output is controlled via  
OUT_TYPE_SEL0/1 pins.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 7  
ZL40272  
TABLE 1-1:  
PIN DESCRIPTIONS (CONTINUED)  
Pin  
Number  
Pin Name  
Type  
Description  
Control  
Input Select 0 or I2C Address. When SEL pin is low, this pin is Input  
Select 0 hardware control input. When SEL pin is high, this pin together  
with pin 51 provides address for I2C Bus. This pin is pulled-down with  
300 kΩ resistor.  
IN_SEL1  
IN_SEL0  
OUTN  
IN_SEL0/  
I2C_SA_0  
52  
IPD  
0
0
0
1
Input 0 (IN0)  
Input 1 (IN1)  
Crystal Oscillator or  
Overdrive  
1
0
1
1
Crystal Bypass  
Input Select 1 or Serial Interface Input. When SEL pin is low, this pin  
is Input Select 1 hardware control pin. When SEL pin is high, this pin  
together with pin 45 provides address for I2C Bus.  
This pin is pulled down with 300 kΩ resistor.  
Output Signal Type or I2C Bus Clock.  
IN_SEL1/  
I2C_SA_1  
51  
50  
49  
IPD  
When SEL pin is low, this pin and pin 49 selects output type.  
When SEL pin is high, this pin is I2C Bus Clock.  
OUT_TYPE_-  
SEL0  
/I2C_SCL  
OUT_TYPE_SEL_1  
OUT_TYPE_SEL_0  
Output [11:0]  
HCSL  
I/O  
0
0
1
1
0
1
0
1
LVDS  
LVPECL  
High-Z (disabled)  
Output Signal Type or I2C Bus I/O Data  
When SEL pin is low, this pin and pin 50 selects output type.  
When SEL pin is high, this pin is an I/O pin (Input/Open-Drain) for I2C  
Bus.  
OUT_TYPE_-  
SEL1  
/I2C_SDA  
I
I/OOD  
56  
55  
54  
17  
16  
15  
27  
26  
19  
45  
44  
43  
OE0_b  
OE1_b  
OE2_b  
OE3_b  
OE4_b  
OE5_b  
OE6_b  
OE7_b  
OE8_b  
OE9_b  
OE10_b  
OE11_b  
Output Enable Control.  
When OEn_b is low, the output n where n = {0,..,11} is active.  
When OEn_b is high, the output is disabled (High-Z)  
OEn_b pins are pulled-down with 300 kΩ resistor  
IPD  
Crystal Oscillator  
Crystal Oscillator Input or Crystal Bypass Mode or Crystal Over-  
drive Mode:  
If crystal circuit is not used, pull-down this pin or connect it to the ground.  
22  
23  
XIN  
XOUT  
I
O
Crystal Oscillator Output  
DS20006408B-page 8  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 1-1:  
PIN DESCRIPTIONS (CONTINUED)  
Pin  
Number  
Pin Name  
Type  
Description  
Hardware/I2C Bus Control selection  
Select Control.  
When this pin is low, the device is controlled via hardware pins, IN_-  
SEL0/1 and OE.  
48  
28  
SEL  
I
I
When this pin is high, the device is controlled via I2C Bus port.  
Any change of SEL pin value requires power cycle. Hence, SEL pin can-  
not be changed on the fly.  
Output Current Select.  
Connect this pin to the ground via resistor R:  
HCSL/LVDS/LVPECL for 100Ω differential transmission line:  
R = 536Ω  
IREF  
HCSL for 85 Ω differential transmission line:  
R = 422Ω  
Power and Ground  
18  
46  
53  
3
VDD  
P
P
Positive Supply Voltage. Connect to 3.3V or 2.5V supply.  
Positive Supply Voltage for Differential Outputs. Connect to 3.3V or  
2.5V power supply. These pins power up differential outputs  
OUT[11:0]_p/n.  
12  
31  
40  
VDDO  
Positive Supply Voltage for Programming OTP Memory. This pin is  
used for generating custom configurations on ATE. Connect to ground  
for normal operation.  
47  
VPP  
P
P
ePad  
GND  
Ground. Connect to the ground.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 9  
ZL40272  
NOTES:  
DS20006408B-page 10  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
2.0  
FUNCTIONAL DESCRIPTION  
The ZL40272 is an I2C Bus programmable or hardware pin controlled low additive jitter, low power 3 x 12 HCSL/LVDS/  
LVPECL fanout buffer.  
Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML) or single-ended (LVPECL or LVCMOS)  
format; the third input can accept a single-ended signal or it can be used to build a crystal oscillator by connecting an  
external crystal resonator between its XIN and XOUT pins. All the other components for building a crystal oscillator are  
built into the device, such as load capacitance, series resistors, and shunt resistors.  
The ZL40272 has twelve HCSL/LVDS/LVPECL outputs that can be powered from a 3.3V or 2.5V supply. Each output  
can be independently enabled/disabled via OEn_b pins or via I2C Bus. The type of each output driver can be pro-  
grammed to be LVPECL, HCSL or LVDS. Hence, the device can be configured to support different signaling formats  
depending on the application.  
The device operates from 2.5V ±5% or 3.3V ±5% supply. Its operation is guaranteed over the industrial temperature  
range of –40°C to +85°C.  
2.1  
Clock Inputs  
The following block diagrams show how to terminate different signals fed to the ZL40272 inputs.  
The device has programmable common mode input voltage. The common mode voltage can be programmed in COM-  
MODSEL register at address 0x0C:  
COMMODSEL.vcm_sel = 1 (default) for inputs with common mode between 0V and 1V, such as HCSL.  
COMMODSEL.vcm_sel = 0 for inputs with common mode voltage between 1V and 2V, such as LVPECL and LVDS.  
For devices intended to be used in hardware pin controlled mode, the default common mode voltage can be changed  
in factory by programming OTP.  
Figure 2-1 shows how to terminate a single-ended output such as LVCMOS. Resistors R1 and R2 should present 50Ω  
equivalent resistance to the line and RO + RS should be 50Ω so that the transmission line is terminated at both ends  
with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance (stan-  
dard LVCMOS output, for example), the value of series resistor RS should be increased. This will reduce the voltage  
swing at the input, but this should be fine as long as the input voltage swing requirement is not violated (Table 9). The  
source resistors of RS = 330Ω could be used for a standard LVCMOS driver. This will provide 471 mV of voltage swing  
for 3.3V LVCMOS driver with the peak load current of (3.3V* 0.85) *(1/(330Ω + 50Ω)) = 7.3 mA for common mode volt-  
age biased at 0.5V. For common mode voltage of VDD/2, the peak current will be lower.  
For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the  
ratio R1/R2 should be equal to the ratio R3/R4.  
VDD  
VDD  
VDD  
VDD  
OpƟonal AC coupling  
R3  
R1  
R2  
capacitor  
0.1 μF  
Rs  
Ro  
Z0 = 50 ё  
R1/R2 =R2/R4  
MSCC Device  
0.1 μF  
R4  
Example for vcm_sel = 1 (vcm =0.75V):  
R1 = 59ё, R2 = 330ё  
Example for vcm_sel = 0 (vcm = Vdd/2):  
R1 = R2 = 100ё  
R3 = R4 = 1kё  
R3 = 590ё, R4 = 3.3kё  
Rs = 330ё for standard LVCMOS output  
FIGURE 2-1:  
Input Driven by a Single-Ended Output for vcm_sel = 0 and 1.  
VDD  
VDD  
VDD  
RUP  
RUP  
VDD  
Z0 = 50 ё  
Z0 = 50 ё  
LVPECL  
RDWN  
RDWN  
MSCC Device  
VDD  
3.3V  
RUP  
RDWN  
127 ё  
82 ё  
2.5V 250 ё  
62.5 ё  
FIGURE 2-2:  
Input Driven by DC-Coupled LVPECL Output for vcm_sel = 0.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 11  
ZL40272  
VDD  
VDD  
Z0 = 50 ё  
Z0 = 50 ё  
LVPECL  
LVPECL  
50ё  
50ё  
MSCC Device  
VDD  
3.3V  
2.5V  
RDWN  
50 ё  
22 ё  
RDWN  
FIGURE 2-3:  
Input Driven by DC-Coupled LVPECL Output for vcm_sel = 0 (Alternative  
Termination).  
VDD  
VDD  
VDD  
VDD  
RUP  
RUP  
10 nF  
10 nF  
Z0 = 50 ё  
Z0 = 50 ё  
LVPECL  
200 ё  
200 ё  
RDWN  
MSCC Device  
RDWN  
vcm_sel  
0
1
RUP  
100 ё  
330 ё  
RDWN  
100 ё  
59 ё  
FIGURE 2-4:  
Input Driven by AC-Coupled LVPECL Output for vcm_sel = 0 and 1.  
VDD  
VDD  
50 ё  
Z0 = 50 ё  
HCSL  
50 ё  
Z0 = 50 ё  
50 ё  
50 ё  
MSCC Device  
FIGURE 2-5:  
Input Driven by HCSL Output for vcm_sel = 1.  
VDD  
VDD  
Z0 = 50 ё  
100ё  
LVDS  
Z0 = 50 ё  
MSCC Device  
FIGURE 2-6:  
Input Driven by LVDS Output for vcm_sel = 0.  
DS20006408B-page 12  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
VDD  
VDD  
VDD  
RUP  
RUP  
VDD  
10 nF  
10 nF  
Z0 = 50 ё  
Z0 = 50 ё  
100 ё  
LVDS  
MSCC Device  
RDWN  
RDWN  
vcm_sel  
0
1
RUP  
RDWN  
1 kё  
590 ё  
1 kё  
3.3 kё  
FIGURE 2-7:  
Input Driven by AC-Coupled LVDS for vcm_sel = 0 and 1.  
VDD  
VDD  
VDD  
120ё  
120ё  
VDD  
Z0 = 60 ё  
Z0 = 60 ё  
SSTL  
120ё  
120ё  
MSCC Device  
FIGURE 2-8:  
Input Driven by an SSTL Output for vcm_sel = 1.  
2.2  
Clock Outputs  
Differential outputs LVPECL, LVDS, and HCSL should have same termination as corresponding outputs described in  
previous section.  
The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to con-  
vert from the differential to the single-ended output (for example, driving an oscilloscope 50Ω input), a resistor larger  
than 10Ω should be added at the center tap of the primary winding to achieve optimum jitter performance as shown in  
Figure 2-9. This is to provide a nominal common mode impedance of 10Ω or higher, which is typical for differential ter-  
minations.  
Add resistor to the ground or leave open  
VDD  
2 : 1  
Z0 = 50 ё  
10 nF  
Z0 = 50 ё  
Z0 = 50 ё  
24.9 ё  
LVPECL  
10 nF  
50 ё  
200 ё  
200 ё  
FIGURE 2-9:  
Driving a Load via Transformer.  
2.3  
Crystal Oscillator Input  
The crystal oscillator circuit can work with crystal resonators from 8 MHz to 160 MHz. To be able support crystal reso-  
nators with different characteristics, all internal components are programmable.  
The load capacitors can be programmed from 0 pF to 21.75 pF (4 pF default) with resolution of 0.25 pF, which not only  
meets load requirement for most crystal resonator but also allows for fine tuning of the crystal resonator frequency. The  
amplifier gain can be adjusted in five steps and series resistor can be adjusted as parallel combination of seven different  
resistors: 0Ω, 10.5Ω, 21Ω, 42Ω, 84Ω, 161Ω, and 312Ω. (84Ω default) Although the first resistor is 0Ω, the series resis-  
tance RS will be slightly higher than 0Ω due to parasitic resistance of the switch that connects to the resistor. Hence, the  
minimum series resistance is achieved when all seven resistors are connected in parallel. The shunt resistor is fixed  
and its value is 500 kΩ.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 13  
ZL40272  
In Hardware Controlled mode, the capacitive load is set at 4 pF, internal series resistance to 84Ω and they cannot be  
changed. For Crystals that require higher load or series resistance, additional capacitance and/or series resistance can  
be added externally as shown in the Figure 2-10.  
C1  
XIN  
Crystal  
Rs  
XOUT  
C2  
Load capacitors C1 and C2  
should be as per crystal  
speciĮcaƟon  
MSCC Device  
FIGURE 2-10:  
Crystal Oscillator Circuit in Hardware Controlled Mode.  
2.4  
Termination of Unused Inputs and Outputs  
Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by a 1 kΩ resistor. Unused outputs  
should be left unconnected.  
2.5  
Power Consumption  
The device total power consumption can be calculated as:  
EQUATION 2-1:  
PT = PS + PXTAL + PC + PO_DIFF  
Where:  
PS = VDD x IS: is the core power consumed by input buffers. If XTAL is running this power, it should be set to zero.  
The static current (IS) is specified in Table 4-2.  
PXTAL = VDD x IDD_XTAL: is the core power consumption of the XTAL circuit. The current of the XTAL circuit is provided  
in Table 4-2. If XTAL is not used, the power consumption is equal to zero.  
PC = VDDO x IDD_CM: Common output power shared among all twelve outputs. The current IDD_CM is specified in  
Table 4-2.  
PO_DIFF = VDDO x (IDD_LVDS x N1 + IDD_LVPECL x N2 + IDD_HCSL x N3): Output power where the output current are  
specified in Table 4-2. N1, N2, and N3 are the  
number of enabled LVPECL, LVDS, and HCSL  
outputs respectively and N1 + N2 + N3 is less  
than or equal to 12.  
Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors  
from the power consumption.  
EQUATION 2-2:  
PD = PT N1 PLVPECL N2 PLVDS N3 PHCSL  
Where:  
N1, N2, N3 = The number of enabled LVPECL, LVDS and HSCL outputs respectively. Because there are twelve  
differential outputs N1 + N2 + N3 will be less or equal to 12.  
PLVPECL = (VSW / 50Ω) x (VSW + VB): VSW is the voltage swing of the LVPECL output. VB is the LVPECL bias voltage  
equal to VDD – 2V.  
P
P
LVDS = VSW / 100Ω: VSW is the voltage swing of the LVDS output.  
HCSL = (VSW / 50Ω)2 x (50Ω + 50Ω): VSW is the voltage swing of the HCSL output. 50Ω is the termination resistance  
and 50Ω is the series resistance of the HCSL output.  
DS20006408B-page 14  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
2.6  
Power Supply Filtering  
Each power pin (VDD and VDDO) should be decoupled with a 0.1 µF capacitor with minimum equivalent series resis-  
tance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V minimum  
rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce the power  
noise from adjacent digital components on the board, each power supply could be further insulated with a low resistance  
ferrite bead with two capacitors. The ferrite bead will also insulate adjacent components from the noise generated from  
the device. Figure 2-11 shows recommended decoupling for each power pin.  
Board Supply  
10uF  
Ferrite Bead  
1uF  
VDD or VDDO  
0.1uF  
FIGURE 2-11:  
Power Supply Filtering.  
2.7  
Power Supplies and Power-Up Sequence  
The device has two different power supplies: VDD and VDDO, which are mutually independent. Voltages supported by  
each of these power supplies are specified in Table 1-1.  
The device is not sensitive to the power-up sequence. For example, a commonly used sequence where higher voltage  
comes up before or at the same time as the lower voltages can be used (or any other sequence).  
2.8  
Host Interface  
ZL40272 can be controlled via hardware pins (SEL pin tied low) or via I2C Bus (SEL pin tied high). The mode shall be  
selected during power up and it cannot be changed on-the-fly.  
2.8.1  
HARDWARE CONTROL MODE  
In this mode, ZL40272 is controlled via Input Select pins (IN_SEL[1:0]) that select which one of three inputs is fed to  
outputs as show in Table 2-1, OUT_TYPE_SEL[1:0] pins which select signal level (HCSL, LVDS, LVPECL or Hi-Z) and  
output enable pins (OE_b) for each output as shown in Table 2-2.  
All input control pins have low input threshold voltage so they can be driven from the device with low output voltage  
(FPGA/CPLD). Supported voltages are between 1.2V and VDD (2.5V or 3.3V).  
TABLE 2-1:  
INPUT CLOCK SELECTION  
IN_SEL1  
IN_SEL0  
Selected Input  
0
0
1
0
1
X
IN0_p, IN0_n  
IN1_p, IN1_n  
XIN (crystal input pin)  
TABLE 2-2:  
OUTPUT TYPE SELECTION  
OE_N_b  
OUT_TYPE_SEL[1:0]  
Output  
0
0
0
1
X
00  
HCSL  
LVDS  
01  
10  
00 or 01 or 10  
11  
LVPECL  
High-Z (on output N)  
High-Z (on all outputs)  
Output is disabled synchronously and depending of the input frequency it can take up to 5 clock cycles to disable the  
output (t2 – t1 ≤ 5*T, where T is the input clock period) as shown in Figure 2-12.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 15  
ZL40272  
INn_n  
INn_p  
INn_p - INn_n  
OE_N_b  
It takes up to 5  
cycles to disable  
the output  
OUTN_n  
OUTN_p  
t1  
t2  
FIGURE 2-12:  
Output Disable.  
Any outputs can be enabled by pulling the corresponding OE_b pin low. As soon as OE_N_b pin goes low (t1) the output  
N will go from high-Z to low (OUTN_p = low, OUTN_n = high) and will start to track the input after up to 5 input clock  
cycles (t2 – t1 ≤ 5*T, where T is the input clock period) depending on the frequency of the input clock as shown in  
Figure 2-13.  
INn_n  
INn_p  
INn_p - INn_n  
OE_N_b  
OUTN_n  
OUTN_p  
t1  
t2  
FIGURE 2-13:  
Output Enable.  
2.8.2  
I2C BUS CONTROL MODE  
ZL40272 is controlled via four pin I2C Bus slave interface as shown in the following figure.  
SCL  
SDA  
MSCC Device  
SA_0  
SA_1  
FIGURE 2-14:  
I2C Bus Slave Interface.  
The address selection is done via SA_0 and SA_1 hardware pins, which select the appropriate address for the device.  
DS20006408B-page 16  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 2-3:  
I2C BUS ADDRESS TABLE  
SA_1  
SA_0  
I2C Bus Address  
0
0
1
1
0
1
0
1
0x34  
0x35  
0x36  
0x37  
2.9  
I2C Bus Byte Read/Write  
Reading or writing a register or registers in a I2C Bus slave device is MSB first and LSB last in one-byte blocks.  
The access from I2C master starts with the start condition followed by the slave address and the write indicator bit. This  
is then followed by the command byte which in bits [6:0] contains the address of the register to be accessed for byte  
mode or the first register to be accessed in the burst mode. The most significant bit in the command byte must be set  
to 1.  
Byte Read. The standard byte read is as shown in Figure 2-15. The command byte is followed the slave address and  
read indication bit. The device (slave) will respond by sending the requested byte.  
Byte  
Byte  
Byte  
Byte  
Data Byte 0  
Rd/Wr Command  
T
Slave  
Wr  
A
Command  
A
r
Slave  
Rd  
A
N
P
Notack  
Stop  
CondiƟon  
Rd/Wr Command  
Repeat start  
Acknowledge  
Register address to read  
MSB = 1  
{1'b1,register_address[6:0]}  
Start  
CondiƟon  
Master  
drives Bus  
Slave  
drives Bus  
FIGURE 2-15:  
I2C Bus Byte Read.  
Write. Figure 2-16 illustrates the standard byte write After the written byte has been acknowledged by the device, the  
master will assert the stop signal.  
Byte  
Byte  
Byte  
T
Slave  
Wr A Command  
A
Data Byte 0  
Acknowledge  
A
P
Rd/Wr Command  
Register address to write  
MSB = 1  
{1'b1,register_address[6:0]}  
Start  
CondiƟon  
Stop  
Master  
drives Bus  
Slave  
drives Bus  
FIGURE 2-16:  
I2C Bus Byte Write.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 17  
ZL40272  
2.10 I2C Bus Burst Read/Write  
Burst Read and Write are very similar to Byte Read and Write.  
Burst Read. Figure 2-17 illustrates the Burst Read. The I2C master acknowledges after each received byte and finally  
sends a Not Acknowledge (NACK) followed with Stop Condition.  
Byte  
Byte  
Byte  
Command  
T
Slave  
Wr  
A
A
r
Slave  
Rd  
A
Repeat start  
Acknowledge  
Rd/Wr Command  
Rd/Wr Command  
Register address to read  
MSB = 1  
{1'b1,register_address[6:0]}  
Start  
CondiƟon  
Byte  
Byte  
Byte  
Data Byte 0  
A
Data Byte 1  
A
Data Byte 2  
N
P
Notack  
Stop  
Master  
drives Bus  
CondiƟon  
Slave  
drives Bus  
FIGURE 2-17:  
I2C Bus Burst Read.  
Burst Write. Figure 2-18 illustrates the Burst Write. The I2C master will send the Stop Condition after the last data byte.  
Byte  
Byte  
T
Slave  
Wr A Command  
A
Master  
drives Bus  
Slave  
drives Bus  
Rd/Wr Command  
Acknowledge  
Register address to write  
MSB = 1  
{1'b1,register_address[6:0]}  
Start  
CondiƟon  
Byte  
Byte  
Byte  
Data Byte 0  
A
Data Byte 1  
A
Data Byte 2  
A
P
Acknowledge  
Stop  
FIGURE 2-18:  
I2C Bus Burst Write.  
DS20006408B-page 18  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
2.11 Typical Phase Noise Characteristics  
FIGURE 2-19:  
100 MHz HCSL Output Phase Noise.  
FIGURE 2-20:  
156.25 MHz LVDS Output Phase Noise.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 19  
ZL40272  
FIGURE 2-21:  
625 MHz LVPECL Output Phase Noise.  
FIGURE 2-22:  
Phase Noise with 156.25 MHz Crystal.  
DS20006408B-page 20  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
3.0  
REGISTER MAP  
The device is controlled by accessing registers through the serial interface. The following table provides a summary of  
the registers available for the configuration of the device. The default settings can be modified via factory programmable  
OTP memory.  
TABLE 3-1:  
REGISTER MAP  
Name  
Address  
I2C A[6:0]  
Hex (0x)  
Data D[7:0]  
00  
01  
XTALBG  
XTALDL  
xtal_buf_gain[7:0]  
xtal_drive_level[7:0]  
xtal_load_cap[7:0]  
xtal_normal_run  
out_low_all  
02  
XTALLC  
03  
XTALNR  
04  
OUTLOWALL  
INSEL  
05  
input_select[1:0]  
Not used.  
06  
07  
DRVTYPE0  
DRVTYPE1  
DRVTYPE2  
OUTLOW0  
OUTLOW1  
COMMODSEL  
driver_type[7:0] (differential output OUT3, OUT2, OUT1, OUT0)  
08  
driver_type[15:8] (differential output OUT7, OUT6, OUT5, OUT4)  
09  
driver_type[23:16] (differential output OUT11, OUT10, OUT9, OUT8)  
0A  
0B  
0C  
0D  
0E  
0F  
10  
output_drive_low[7:0]  
output_drive_low[11:8]  
vcm_sel  
Not used.  
DEVADDR  
Reserved  
Reserved  
DEVICEID  
Reserved  
dev_addr[2:0]  
Reserved  
Reserved  
11  
Device Identification  
Reserved  
12-1F  
TABLE 3-2:  
Bit  
0X00 XTALBG - XTAL BUFFER GAIN  
Name  
Description  
Type  
Reset  
Programs crystal buffer (inverting amplifier) gain.  
Every bit pair (bits: 01, 23, 45, 67) of this register corre-  
spond to additional equal gain block which can be added  
(bits set) or removed (bits cleared).  
Minimum gain is 0x00 (default) and 0xFF is maximum  
gain  
When reference input mode is “bypass XTAL mode” or  
“differential input modes” with HIGH xtal_normal_run bit,  
the buffer is disabled and follows “Input Selection”.  
When xtal_normal_run bit is LOW, XTAL buffer is in the  
“xtal forced run” mode and keep running.  
7:0  
xtal_buf_gain[7:0]  
RW  
FF  
8’b0000_0000: default crystal buffer strength.  
8’b0000_0011: enable additional buffer strength  
8’b0000_1100: enable additional buffer strength  
8’b0011_0000: enable additional buffer strength  
8’b1100_0000: enable additional buffer strength  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 21  
ZL40272  
TABLE 3-3:  
Bit  
0X01 XTALDL - XTAL DRIVE LEVEL  
Name  
Description  
Type  
Reset  
Internal damping resistance of crystal circuit to limit  
external crystal’s drive level µW.  
The value of damping resistor is determined by crystal’s  
motion resistance of crystal’s equivalent circuit.  
Drive level should be lower than crystal manufacturer’s  
specification.  
Crystal’s equivalent values should be requested to the  
manufacturer, (motion resistance and shunt capaci-  
tance).  
The selected resistors are connected to XOUT.  
Multiple bit combinations available by 7-bit control.  
Because they use parallel connections, 0xFF is the  
smallest resistance and 0x01 is the highest resistance.  
7:0  
xtal_drive_level[7:0]  
RW  
04  
8’b0000_0000: disable all resistors  
8’b0000_0001: 312Ω resistor  
8’b0000_0010: 161Ω resistor  
8’b0000_0100: 84Ω resistor  
8’b0000_1000: 42Ω resistor  
8’b0001_0000: 21Ω resistor  
8’b0010_0000: 10.5Ω resistor  
8’b0100_0000: 0Ω connection  
8’b1000_0000: not used  
TABLE 3-4:  
Bit  
0X02 XTALLC - XTAL LOAD CAPACITANCE  
Name  
Description  
Type  
Reset  
Internal load capacitance of crystal circuit (0 pF to  
21.75 pF with the resolution of 0.25 pF).  
XIN and XOUT have each capacitor connected to GND.  
Multiple bit combinations available between 8 capaci-  
tors.  
8’b0000_0000: disable all xtal load capacitors  
8’b0000_0001: enable capacitor 0.25 pF  
8’b0000_0010: enable capacitor 0.5 pF  
8’b0000_0100: enable capacitor 1 pF  
8’b0000_1000: enable capacitor 2 pF  
8’b0001_0000: enable capacitor 2 pF  
8’b0010_0000: enable capacitor 4 pF  
8’b0100_0000: enable capacitor 4 pF  
8’b1000_0000: enable capacitor 8 pF  
7:0  
xtal_load_cap[7:0]  
RW  
40  
DS20006408B-page 22  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 3-5:  
Bit  
0X03 XTALNR - XTAL NORMAL RUN  
Name  
Description  
Type  
Reset  
7:1  
Unused  
Unused  
R
0000000  
When this bit is set high crystal oscillator circuit is run-  
ning only if input_select[1:0] register at address 0x05  
selects crystal mode (2’b10). This value is recom-  
mended because it provides best jitter performance--XO  
circuit is running only when it is needed.  
0
xtal_normal_run  
RW  
1
When this bit is set low the crystal oscillator will keep  
running even if crystal oscillator is not selected in  
input_select[1:0] register at address 0x05. This mode  
should only be used when fast switching between input  
references and crystal oscillator is required.  
TABLE 3-6:  
Bit  
0X04 OUTLOWALL - OUTPUT LOW ALL  
Name  
Description  
Type  
Reset  
7:1  
Unused  
Unused  
R
0000000  
OUTLOWALL affects OUTLOW0 and OUTLOW1 regis-  
ters.  
1’b0: Output0 to Output11 are according to their driver_-  
type[n+1, n] values  
1’b1: Output0 to Output11 will drive logic LOW.  
OTP value load to this bit and/or I2C write to this bit in  
the SCM mode, will affect all the values at OUTLOW0  
and OUTLOW1 registers. In other words, loading value  
of 1’b0 from OTP or writing it from I2C, will cause all val-  
ues in OUTLOW0 and OUTLOW1 registers to be 0’s.  
Same thing for 1’b1.  
0
out_low_all  
RW  
0
In SCM, the output_low values per output are controlled  
individually by accessing the bits in OUTLOW0 and  
OUTLOW1 registers. However, any subsequent write to  
this bit will affect the values in those registers (OUT-  
LOW0 and OUTLOW1)  
TABLE 3-7:  
Bit  
0X05 INSEL - INPUT SELECT REGISTER  
Name  
Description  
Type  
Reset  
7:2  
Unused  
Unused  
R
000000  
Input reference clock selection.  
Proper external coupling and termination are required.  
2’b00: differential input from IN0_p and IN0_n  
2’b01: differential input from IN1_p and IN1_n  
2’b10: fundamental XTAL mode with XIN and XOUT  
(Use internal crystal oscillator circuits) or XTAL overdrive  
mode (single-ended clock signal fed to XIN)  
2’b11: XTAL bypass mode (single-ended clock signal  
with XIN and disabled internal crystal buffer circuit in the  
analog block)  
1:0  
input_select[1:0]  
00  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 23  
ZL40272  
TABLE 3-8:  
Bit  
0X07 DRVTYPE0 - OUTPUT TYPE SELECT (OUTPUTS 0 TO 3)  
Name  
Description  
Type  
Reset  
Output driver type of differential OUT3.  
7:6  
5:4  
3:2  
driver_type[7:6]  
driver_type[5:4]  
driver_type[3:2]  
RW  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT2.  
RW  
RW  
11  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT1.  
The same bit configuration with OUT0.  
Output driver type of differential OUT0.  
2’b00: HCSL outputs  
2’b01: LVDS outputs  
2’b10: LVPECL outputs  
2’b11: Outputs disabled  
1:0  
driver_type[1:0]  
RW  
11  
TABLE 3-9:  
Bit  
0X08 DRVTYPE1 - OUTPUT TYPE SELECT (OUTPUTS 4 TO 7)  
Name  
Description  
Type  
Reset  
Output driver type of differential OUT7.  
7:6  
5:4  
3:2  
1:0  
driver_type[15:14]  
driver_type[13:12]  
driver_type[11:10]  
driver_type[9:8]  
RW  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT6.  
RW  
RW  
RW  
11  
11  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT5.  
The same bit configuration with OUT0.  
Output driver type of differential OUT4.  
The same bit configuration with OUT0.  
TABLE 3-10: 0X09 DRVTYPE2 - OUTPUT TYPE SELECT (OUTPUTS 8 TO 11)  
Bit  
Name  
Description  
Type  
Reset  
driver_type[23:22]  
Output driver type of differential OUT11.  
7:6  
RW  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT10.  
driver_type[21:20]  
driver_type[19:18]  
driver_type[17:16]  
5:4  
3:2  
1:0  
RW  
RW  
RW  
11  
11  
11  
The same bit configuration with OUT0.  
Output driver type of differential OUT9.  
The same bit configuration with OUT0.  
Output driver type of differential OUT8.  
The same bit configuration with OUT0.  
DS20006408B-page 24  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 3-11: 0X0A OUTLOW0 - OUTPUT DRIVE LOW (OUTPUTS 0 TO 7)  
Bit  
Name  
Description  
Type  
Reset  
Output driver type of differential OUT7.  
7
output_drive_low[7]  
RW  
0
The same bit configuration with OUT0.  
Output driver type of differential OUT6.  
6
5
4
3
2
1
output_drive_low[6]  
output_drive_low[5]  
output_drive_low[4]  
output_drive_low[3]  
output_drive_low[2]  
output_drive_low[1]  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
The same bit configuration with OUT0.  
Output driver type of differential OUT5.  
The same bit configuration with OUT0.  
Output driver type of differential OUT4.  
The same bit configuration with OUT0.  
Output driver type of differential OUT3.  
The same bit configuration with OUT0.  
Output driver type of differential OUT2.  
The same bit configuration with OUT0.  
Output driver type of differential OUT1.  
The same bit configuration with OUT0.  
When this bit is set to 1, and when OUT0 is enabled, the  
OUT0_p will drive low and OUT0_n will drive high volt-  
age levels for corresponding type of the output. For  
example, if output type for OUT0 is set to HCSL (driver_-  
type = 2’b00), the OUT0_p will drive 0V and OUT0_n will  
drive 0.75V.  
When OUT0 is in high-Z mode (driver_type[1:0] = 2’b11),  
this bit is ignored and the output will stay high-Z.  
0
output_drive_low[0]  
If this bit is set to 0, drive low function is disabled.  
RW  
0
output_drive_low[0]  
driver_type[1:0] OUT0  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
HCSL  
LVDS  
LVPECL  
Hi-Z  
HCSL_drive_low  
LVDS_drive_low  
10 LVPECL_drive_low  
11 Hi-Z  
TABLE 3-12: 0X0B OUTLOW1 - OUTPUT DRIVE LOW (OUTPUTS 8 TO 11)  
Bit  
Name  
Description  
Type  
Reset  
7:4  
Unused  
Unused  
R
0
Output driver type of differential OUT11.  
3
2
output_drive_low[11]  
output_drive_low[10]  
The same bit configuration with OUT0.  
Output driver type of differential OUT10.  
The same bit configuration with OUT0.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 25  
ZL40272  
TABLE 3-12: 0X0B OUTLOW1 - OUTPUT DRIVE LOW (OUTPUTS 8 TO 11) (CONTINUED)  
Bit  
Name  
Description  
Type  
Reset  
Output driver type of differential OUT9.  
1
output_drive_low[9]  
The same bit configuration with OUT0.  
Output driver type of differential OUT8.  
0
output_drive_low[8]  
The same bit configuration with OUT0.  
TABLE 3-13: 0X0C COMMODSEL - COMMON MODE SELECT  
Bit  
Name  
Description  
Type  
Reset  
7:1  
Unused  
vcm_sel  
Unused  
R
0000000  
The bit determines the range of the input VCM  
0
1’b0: the input VCM is from 1V to 2V  
RW  
1
1’b1: the input VCM is from 0.1V to 0.8V (for HCSL for-  
mat)  
TABLE 3-14: 0X0E DEVADDR - I2C BUS SLAVE DEVICE ADDRESS  
Bit  
Name  
Description  
Type  
Reset  
7:3  
Unused  
Unused  
R
00000  
These three bits contributes as the following to the 7 bits  
of the I2C Bus slave address {2'b01,  
2:0  
dev_addr[2:0]  
dev_addr[2:0],SA1,SA0}, where SA0 and SA1 are from  
pins IN_SEL0_I2C_SA_0 and IN_SEL0_I2C_SA_0  
respectively.  
RW  
101  
TABLE 3-15: 0X11 DEVID - DEVICE IDENTIFICATION  
Bit  
Name  
Description  
Type  
Reset  
7:5  
4:0  
Unused  
dev_id  
Unused  
R
000  
Device ID  
RO  
00011  
DS20006408B-page 26  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
4.0  
ELECTRICAL CHARACTERISTICS  
TABLE 4-1:  
ABSOLUTE MAXIMUM RATINGS  
Note 1, Note 2, Note 3  
Parameter  
Symbol  
Min.  
Max.  
Units  
Supply Voltage, 3.3V  
Supply Voltage, 2.5V  
VDD/VDDO  
VDD/VDDO  
TST  
–0.5  
–0.5  
–55  
+4.6  
+3.5  
+125  
V
V
Storage Temperature Range  
°C  
Note 1: Exceeding these values may cause permanent damage.  
2: Functional operation under these conditions is not implied.  
3: Voltages are with respect to ground (GND) unless otherwise stated.  
TABLE 4-2:  
RECOMMENDED OPERATING CONDITIONS  
Note 1, Note 2  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Supply Voltage 3.3V  
Supply Voltage 2.5V  
Operating Temperature  
Input Voltage  
VDD/VDDO  
VDD/VDDO  
TA  
3.135  
2.375  
–40  
3.3  
2.5  
+25  
3.465  
2.625  
V
V
+85  
°C  
V
VDD-IN  
–0.3  
VDD + 0.3  
Note 1: Voltages are with respect to ground (GND) unless otherwise stated.  
2: The device core supports two power supply modes (3.3V and 2.5V).  
TABLE 4-3:  
CURRENT CONSUMPTION  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
IS_3.3V  
IS_2.5V  
163  
153  
128  
197  
187  
154  
mA  
mA  
mA  
VDD = 3.3V+5%  
VDD = 2.5V+5%  
VDD = 3.3V+5%  
Core Device Current (all outputs  
and XTAL disabled)  
Core Device Current (all outputs  
disabled) XTAL Circuit Enabled  
with 25 MHz Crystal Connected  
between XIN and XOUT  
IDD_XTAL_3.3V  
IDD_XTAL_2.5V  
124  
150  
mA  
VDD = 2.5V+5%  
IDD_CM_3.3V  
IDD_CM_2.5V  
17.9  
16.6  
21.5  
21.5  
6.73  
6.87  
21  
18.9  
17.5  
25.7  
25.6  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDDO = 3.3V+5%  
VDDO = 2.5V+5%  
VDDO = 3.3V+5%  
VDDO = 2.5V+5%  
VDDO = 3.3V+5%  
VDDO = 2.5V+5%  
VDDO = 3.3V+5%  
Common Output Current  
IDD_LVPECL_3.3V  
IDD_LVPECL_2.5V  
IDD_LVDSL_3.3V  
IDD_LVDS_2.5V  
IDD_85HCSL_3.3V  
Current Dissipation per LVPECL  
Output  
Current Dissipation per LVDS  
Output  
7.83  
22.8  
Current Dissipation per HCSL  
Output (IREF pin pulled down  
with 422Ω)  
IDD_85HCSL_2.5V  
IDD_100HCSL_3.3V  
IDD_100HCSL_2.5V  
20  
17.6  
17  
21.4  
19.2  
18.4  
mA  
mA  
mA  
VDDO = 2.5V+5%  
VDDO = 3.3V+5%  
VDDO = 2.5V+5%  
Current Dissipation per HCSL  
Output (IREF pin pulled down  
with 536Ω)  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 27  
ZL40272  
TABLE 4-4:  
INPUT CHARACTERISTICS  
Note 1, Note 2, Note 3  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
CMOS High-Level Input Voltage for Control  
Inputs  
VCIH  
1.05  
V
CMOS Low-Level Input Voltage for Control  
Inputs  
VCIL  
0.45  
50  
V
CMOS Input Leakage Current for Control  
Inputs (includes current due to pull down  
resistors)  
IIL  
–25  
µA  
VI = VDD or 0V  
Differential Input Common Mode Voltage for  
IN0_p/n and IN1_p/n  
vcm_sel bit = 0  
(reg 0x0C)  
VCM  
VCM  
VID  
1
2
V
V
V
V
Differential Input Common Mode Voltage for  
IN0_p/n and IN1_p/n (HCSL common mode)  
vcm_sel bit = 1  
(reg 0x0C)  
0.1  
0.8  
1.3  
1.3  
Differential Input Voltage Swing for IN0_p/n  
and IN1_p/n; f < 1 GHz  
0.15  
0.35  
Differential Input Voltage Swing for IN0_p/n  
and IN1_p/n for 1 GHz < f < 1.5 GHz  
VID  
Differential Input Leakage Current for IN0_p/  
n and IN1_p/n (includes current due to pull-  
up and pull-down resistors)  
IIL  
–150  
150  
µA  
VI = 2V or 0V  
Single-Ended Input Voltage for IN0_p and  
IN1_p  
VSI  
–0.3  
1
2.7  
2
V
V
V
V
Single-Ended Input Common Mode Voltage  
(IN0_p and IN1_p)  
vcm_sel bit = 0  
(reg 0x0C)  
VSIC  
VSIC  
VSID  
Single-Ended Input Common Mode Voltage  
(IN0_p and IN1_p) (HCSL common mode)  
vcm_sel bit = 1  
(reg 0x0C)  
0.1  
0.3  
0.8  
0.8  
Single-Ended Input Voltage Swing for IN0_p  
and IN1_p  
Input Frequency (differential)  
Input Frequency (single-ended)  
Input Duty Cycle  
fIN  
0
0
2
1500  
400  
65  
MHz  
MHz  
%
fIN_SE  
DC  
35  
Input Slew Rate  
tSLEW  
V/ns  
Input Pull-Up/Pull-Down Resistance for  
IN0_p/IN0_n and IN1_p/IN1_n  
RPU/RPD  
RPD  
60  
30  
kΩ  
kΩ  
kΩ  
Input Pull-Down Resistance for INx_p  
Control Input (OE_b[11:0]) Pull-Down Resis-  
tance  
RPDD  
300  
–90  
–75  
–61  
–52  
fIN = 100 MHz  
fIN = 200 MHz  
fIN = 400 MHz  
fIN = 800 MHz  
Input Multiplexer Isolation IN0_p/n to IN1_p/n  
and Vice-Versa. Power on Both Inputs  
0 dBm, fOFFSET > 50 kHz  
ISO  
dBc  
Note 1: Values are over Recommended Operating Conditions.  
2: Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V).  
3: Input mux isolation is measured as amplitude of fOFFSET spur in dBc on the output clock phase noise plot  
(1) low frequency only.  
DS20006408B-page 28  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-5:  
CRYSTAL OSCILLATOR CHARACTERISTICS  
Note 1, Note 2  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Mode of Oscillation  
Frequency  
f
Fundamental  
8
0
160  
MHz  
pF  
On-Chip Load Capacitance  
in I2C Bus Controlled Mode  
CL  
CL  
RS  
21.75  
Programmable  
Fixed  
On-Chip Load Capacitance  
in Pin Controlled Mode  
0
4
pF  
Ω
On-Chip Series Resistor in  
I2C Bus Controlled Mode  
312  
Programmable  
On-Chip Series Resistor in  
Pin Controlled Mode  
RS  
R
84  
Ω
Fixed  
On-Chip Shunt Resistor  
500  
kΩ  
Functional, but may not meet AC  
parameters. Minimum depends  
on AC coupling capacitor (0.1 µF  
assumed).  
Frequency in Overdrive  
Mode (Note 3)  
fOV  
0.1  
0
250  
250  
MHz  
MHz  
Frequency in Bypass Mode  
(Note 4)  
Functional, but may not meet AC  
parameters.  
fBP  
Note 1: Values are over Recommended Operating Conditions.  
2: Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V).  
3: Maximum input level is 2V.  
4: Maximum output level is VDD  
.
TABLE 4-6:  
POWER SUPPLY REJECTION RATIO FOR VDD = VDDO = 3.3V  
Note 1, Note 2, Note 3  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
–79  
–81  
–84  
–91  
–88  
–81  
–95  
–93  
–84  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 100 MHz  
fIN = 133 MHz  
fIN = 400 MHz  
PSRR for LVPECL Output  
PSRR for LVDS Output  
PSRR for HCSL Output  
PSRRLVPECL  
dBc  
PSRRLVDS  
PSRRHCSL  
dBc  
dBc  
Note 1: Values are over Recommended Operating Conditions.  
2: Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVPP  
3: PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot.  
.
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 29  
ZL40272  
TABLE 4-7:  
POWER SUPPLY REJECTION RATIO FOR VDD = VDDO = 2.5V  
Note 1, Note 2, Note 3  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
–82  
–71  
–68  
–97  
–79  
–78  
–89  
–94  
–82  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 156.25 MHz  
fIN = 312.5 MHz  
fIN = 625 MHz  
fIN = 100 MHz  
fIN = 133 MHz  
fIN = 400 MHz  
PSRR for LVPECL Output  
PSRRLVPECL  
dBC  
PSRR for LVDS Output  
PSRR for HCSL Output  
PSRRLVDS  
PSRRHCSL  
dBc  
dBc  
Note 1: Values are over Recommended Operating Conditions.  
2: Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVPP  
3: PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot.  
.
TABLE 4-8:  
LVPECL OUTPUT CHARACTERISTICS FOR VDDO = 3.3V  
Note 1  
Characteristics  
Symbol  
Min  
Typ.  
Max.  
Units  
Notes  
Output High Voltage  
VLVPECL_OH  
VLVPECL_OL  
VLVPECL_SW  
1.9  
1.2  
0.6  
2.08  
1.36  
0.72  
2.5  
1.7  
0.9  
V
V
V
DC Measurement  
DC Measurement  
DC Measurement  
Output Low Voltage  
Output Differential Swing (Note 2)  
Variation of VLVPECL_SW for Com-  
plementary Output States  
∆VLVPECL_SW  
VCM  
0
0.02  
1.72  
0.07  
2.1  
V
V
Common Mode Output  
1.6  
Output Frequency when  
VLVPECL_SW ≥ 0.6V  
fMAX_0.6VSW  
800  
MHz  
Output Frequency when  
VLVPECL_SW ≥ 0.4V  
fMAX_0.4VSW  
1500  
MHz  
Rise or Fall Time (20% to 80%)  
Output Frequency  
tr, tf  
fO  
0
110  
1
170  
1500  
40  
ps  
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
Output Enable Time  
tOOSK  
tDOOSK  
tIOD  
0.8  
120  
1.2  
5
ps  
ns  
tEN  
cycles  
cycles  
Output Disable Time  
tDIS  
5
Input clock:  
100 MHz  
63  
41  
21  
67  
46  
27  
81  
56  
32  
89  
67  
46  
Additive RMS Jitter in 1 MHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_1M_20M  
fs  
fs  
Input clock:  
625 MHz  
Input clock:  
100 MHz  
Additive RMS Jitter in 12 kHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_12k_20M  
Input clock:  
625 MHz  
DS20006408B-page 30  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-8:  
LVPECL OUTPUT CHARACTERISTICS FOR VDDO = 3.3V (CONTINUED)  
Note 1  
Characteristics  
Symbol  
Min  
Typ.  
Max.  
Units  
Notes  
Input clock:  
100 MHz  
–163  
–161  
Input clock:  
156.25 MHz  
Noise Floor  
NF  
–163  
–158  
–161  
–156  
dBc/Hz  
Input clock:  
625 MHz  
Note 1: Values are over Recommended Operating Conditions.  
2: Output differential swing is calculated as VSW = VOH – VOL. It should not be confused with  
VSW = 2 * (VOH – VOL) sometimes used in some data sheets.  
TABLE 4-9:  
LVPECL OUTPUT CHARACTERISTICS FOR VDDO = 2.5V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Output High Voltage  
VLVPECL_OH  
VLVPECL_OL  
VLVPECL_SW  
1.1  
0.4  
0.6  
1.28  
0.57  
0.71  
1.7  
0.9  
1
V
V
V
DC Measurement  
DC Measurement  
DC Measurement  
Output Low Voltage  
Output Differential Swing (Note 2)  
Variation of VLVPECL_SW for Com-  
plementary Output States  
∆VLVPECL_SW  
VCM  
0
0.02  
0.92  
0.05  
1.2  
V
V
Common Mode Output  
0.8  
Output Frequency when  
VLVPECL_SW ≥ 0.6V  
fMAX_0.6VSW  
800  
MHz  
Output Frequency when  
VLVPECL_SW ≥ 0.4V  
fMAX_0.4VSW  
1500  
MHz  
Rise or Fall Time (20% to 80%)  
Output Frequency  
tr, tf  
fO  
0
120  
1
170  
1500  
40  
ps  
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
Output Enable Time  
tOOSK  
tDOOSK  
tIOD  
0.8  
120  
1.2  
5
ps  
ns  
tEN  
cycles  
cycles  
Output Disable Time  
tDIS  
5
Input clock:  
100 MHz  
60  
40  
21  
64  
45  
27  
77  
55  
33  
86  
89  
47  
Additive RMS Jitter in 1 MHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_1M_20M  
fs  
fs  
Input clock:  
625 MHz  
Input clock:  
100 MHz  
Additive RMS Jitter in 12 kHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_12k_20M  
Input clock:  
625 MHz  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 31  
ZL40272  
TABLE 4-9:  
LVPECL OUTPUT CHARACTERISTICS FOR VDDO = 2.5V (CONTINUED)  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Input clock:  
100 MHz  
–164  
–162  
Input clock:  
156.25 MHz  
Noise Floor  
NF  
–164  
–158  
–161  
–156  
dBc/Hz  
Input clock:  
625 MHz  
Note 1: Values are over Recommended Operating Conditions.  
2: Output differential swing is calculated as VSW = VOH – VOL. It should not be confused with  
SW = 2 * (VOH – VOL) sometimes used in some data sheets.  
V
TABLE 4-10: LVDS OUTPUTS FOR VDDO = 3.3V  
Note 1  
Characteristics  
Output High Voltage  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
VLVDS_OH  
VLVDS_OL  
VLVDS_SW  
1.3  
1.0  
1.39  
1.07  
0.32  
1.48  
1.15  
0.39  
V
V
V
DC Measurement  
DC Measurement  
DC Measurement  
Output Low Voltage  
Output Differential Swing (Note 2)  
0.25  
Variation of VLVDS_SW for Comple-  
mentary Output States  
∆VLVDS_SW  
VCM  
0
1.15  
0
0.002  
1.23  
0.01  
1.3  
V
V
V
Common Mode Output  
Variation of VCM for Complemen-  
tary Output States  
∆VCM  
0.001  
0.01  
Output Frequency when  
VLVDS_SW ≥ 0.6V  
fMAX_0.6VSW  
fMAX_0.4VSW  
800  
MHz  
MHz  
Output Frequency when  
VLVDS_SW ≥ 0.4V  
1500  
Rise or Fall Time (20% to 80%)  
Output Frequency  
tr, tf  
fO  
0
110  
1
170  
1500  
20  
ps  
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
tOOSK  
tDOOSK  
tIOD  
0.8  
130  
1.2  
ps  
ns  
Single-ended out-  
puts shorted to  
GND  
Output Short Circuit Current Single-  
Ended  
IS  
–24  
24  
mA  
Output Short Circuit Current Differ-  
ential  
Complementary  
outputs shorted  
ISD  
–24  
24  
mA  
Output Enable Time  
Output Disable Time  
tEN  
5
5
cycles  
cycles  
tDIS  
Input clock:  
100 MHz  
87  
46  
21  
102  
58  
Additive RMS Jitter in 1 MHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_1M_20M  
fs  
Input clock:  
625 MHz  
32  
DS20006408B-page 32  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-10: LVDS OUTPUTS FOR VDDO = 3.3V (CONTINUED)  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Input clock:  
100 MHz  
91  
108  
Additive RMS Jitter in 12 kHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_12k_20M  
51  
69  
fs  
Input clock:  
625 MHz  
27  
48  
Input clock:  
100 MHz  
–161  
–162  
–158  
–159  
–161  
–156  
Input clock:  
156.25 MHz  
Noise Floor  
NF  
dBc/Hz  
Input clock:  
625 MHz  
Note 1: Values are over Recommended Operating Conditions.  
2: Output differential swing is calculated as VSW = VOH – VOL. It should not be confused with  
SW = 2 * (VOH – VOL) sometimes used in some data sheets.  
V
TABLE 4-11: LVDS OUTPUTS FOR VDDO = 2.5V  
Note 1  
Characteristics  
Output High Voltage  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
VLVDS_OH  
VLVDS_OL  
VLVDS_SW  
1.3  
1.4  
1.5  
V
V
V
DC Measurement  
DC Measurement  
DC Measurement  
Output Low Voltage  
0.97  
0.25  
1.05  
0.35  
1.13  
0.44  
Output Differential Swing (Note 2)  
Variation of VLVDS_SW for Comple-  
mentary Output States  
∆VLVDS_SW  
VCM  
0
1.15  
0
0.001  
1.23  
0.01  
1.3  
V
V
V
Common Mode Output  
Variation of VCM for Complemen-  
tary Output States  
∆VCM  
0.001  
0.01  
Output Frequency when  
VLVDS_SW ≥ 0.6V  
fMAX_0.6VSW  
fMAX_0.4VSW  
800  
MHz  
MHz  
Output Frequency when  
VLVDS_SW ≥ 0.4V  
1500  
Rise or Fall Time (20% to 80%)  
Output Frequency  
tr, tf  
fO  
0
110  
1
170  
1500  
20  
ps  
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
tOOSK  
tDOOSK  
tIOD  
0.8  
130  
1.2  
ps  
ns  
Single-ended out-  
puts shorted to  
GND  
Output Short Circuit Current Single-  
Ended  
IS  
–24  
24  
mA  
Output Short Circuit Current Differ-  
ential  
Complementary  
outputs shorted  
ISD  
–24  
24  
mA  
Output Enable Time  
Output Disable Time  
tEN  
3
3
cycles  
cycles  
tDIS  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 33  
ZL40272  
TABLE 4-11: LVDS OUTPUTS FOR VDDO = 2.5V (CONTINUED)  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Input clock:  
100 MHz  
81  
100  
Additive RMS Jitter in 1 MHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_1M_20M  
44  
21  
58  
34  
fs  
Input clock:  
625 MHz  
Input clock:  
100 MHz  
85  
107  
70  
Additive RMS Jitter in 12 kHz to  
20 MHz band  
Input clock:  
156.25 MHz  
tj_12k_20M  
48  
fs  
Input clock:  
625 MHz  
27  
50  
Input clock:  
100 MHz  
–161  
–163  
–158  
–159  
–161  
–156  
Input clock:  
156.25 MHz  
Noise Floor  
NF  
dBc/Hz  
Input clock:  
625 MHz  
Note 1: Values are over Recommended Operating Conditions.  
2: Output differential swing is calculated as VSW = VOH – VOL. It should not be confused with  
SW = 2 * (VOH – VOL) used in some data sheets.  
V
TABLE 4-12: HCSL OUTPUTS (PCIe ELECTRICAL CHARACTERISTICS) FOR VDDO = 3.3V  
Note 1  
Characteristics  
Rising Edge Rate  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Rise_Rate  
Fall_Rate  
VIH  
1.4  
1.4  
0.6  
1.75  
1.75  
4
4
V/ns  
V/ns  
V
Note 3, Note 4  
Note 3, Note 4  
Note 3  
Falling Edge Rate  
Differential High Voltage  
Differential Low Voltage  
Single-Ended High Voltage  
Single-Ended Low Voltage  
VIL  
–0.6  
0.85  
20  
V
Note 3  
VSIH  
0.65  
–20  
0.75  
0
V
DC Measurement  
DC Measurement  
VSIL  
mV  
Note 2, Note 5,  
Note 6  
Absolute Crossing Voltage  
VCROSS  
0.25  
0.55  
V
V
Variation of VCROSS over All Rising  
Clock Edges  
Note 2, Note 5,  
Note 10  
∆VCROSS  
0.140  
Ringback Voltage Margin  
Time before VRB is Allowed  
Cycle-to-Cycle Additive Jitter  
Absolute Maximum Voltage  
Absolute Minimum Voltage  
VRB  
tSTABLE  
tJCC  
–0.55  
4.6  
0.55  
V
ns  
Note 3, Note 12  
Note 3, Note 12  
Note 3  
4.6  
5.8  
1.15  
psPP  
V
VMAX  
VMIN  
Note 2, Note 8  
Note 2, Note 9  
–0.3  
V
Output Duty Cycle (When Input has  
50% of Duty Cycle)  
ODC  
48  
50  
50  
52  
20  
%
%
Ω
Note 3  
Rising to Falling Edge Matching  
r/f match  
ZC-DC_CK  
Note 2, Note 13  
DC Measurement,  
Note 2  
Clock Source DC Impedance (CK)  
DS20006408B-page 34  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-12: HCSL OUTPUTS (PCIe ELECTRICAL CHARACTERISTICS) FOR VDDO = 3.3V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
DC Measurement,  
Note 2  
Clock Source DC Impedance (CK#)  
ZC-DC_CK#  
50  
Ω
Output Frequency  
fOUT  
tOOSK  
tDOOSK  
tIOD  
0
0.8  
1
400  
50  
129  
1.2  
5
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
Output Enable Time  
ps  
ps  
tEN  
cycles  
cycles  
Output Disable Time  
tDIS  
5
Note 1: Values are over Recommended Operating Conditions.  
2: Measurement taken from single-ended waveform.  
3: Measurement taken from differential waveform.  
4: Measured from –150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The sig-  
nal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement  
window is centered on the differential zero crossing. See Figure 28.  
5: Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the fall-  
ing edge of CK#. See Figure 25.  
6: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing. Refers to all crossing points for this measurement. See Figure 25.  
7: This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock genera-  
tors and not to buffers. A clock buffer is a transparent device whose output clock period follows the input  
clock period.  
8: Defined as the maximum instantaneous voltage including overshoot. See Figure 25.  
9: Defined as the minimum instantaneous voltage including undershoot. See Figure 25.  
10: Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum  
allowed variance in VCROSS for any particular system. See Figure 26.  
11: The PPM requirement from PCI Express Base Specification, Revision 4.0 is related to clock generation  
devices. This requirement is not applicable to buffers because the buffer’s output frequency accuracy is  
identical to the frequency accuracy of the source driving the buffer.  
12: tSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after 20 ris-  
ing/falling edges before it is allowed to droop back into the VRB ±100 mV differential range. See Figure 29.  
13: Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV  
window centered on the median cross point where CKx rising meets CK#x falling. The median cross point  
is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed differ-  
ence should not exceed 20% of the slowest edge rate. See Figure 27.  
TABLE 4-13: HCSL (PCIe) JITTER PERFORMANCE FOR VDDO = 3.3V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Additive Jitter as per PCIe 1.0  
(1.5 MHz to 22 MHz)  
Input clock:  
100 MHz  
tjPCIe_1.0  
99  
122  
fsRMS  
Additive Jitter as per PCIe 2.0 High  
Band (1.5 MHz to 50 MHz)  
Input clock:  
100 MHz  
tjPCIe_2.0_high  
tjPCIe_2.0_low  
tjPCIe_2.0_mid  
98  
26  
77  
120  
36  
fsRMS  
fsRMS  
fsRMS  
Additive Jitter as per PCIe 2.0 Low  
Band (10 kHz to 1.5 MHz)  
Input clock:  
100 MHz  
Additive Jitter as per PCIe 2.0 Mid  
Band (5 MHz to 16 MHz)  
Input clock:  
100 MHz  
94  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 35  
ZL40272  
TABLE 4-13: HCSL (PCIe) JITTER PERFORMANCE FOR VDDO = 3.3V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Additive Jitter as per PCIe 3.0  
(PLL_BW = 2 MHz to 5 MHz, CDR  
= 10 MHz)  
Input clock:  
100 MHz  
tjPCIe_3.0  
24  
30  
fsRMS  
Additive Jitter as per PCIe 4.0  
(PLL_BW = 2 MHz to 5 MHz, CDR  
= 10 MHz)  
Input clock:  
100 MHz  
tjPCIe_4.0  
24  
10  
30  
12  
fsRMS  
Additive Jitter as per PCIe 5.0  
(PLL_BW = 0.5 MHz to 1.8 MHz,  
CDR for 32 GT/s CC)  
Input clock:  
100 MHz  
tjPCIe_5.0  
fsRMS  
Additive Jitter as per Intel QPI  
9.6 Gbps  
Input clock:  
100 MHz  
tjQPI  
45  
64  
55  
75  
fsRMS  
Input clock:  
100 MHz  
Additive RMS Jitter in 1 MHz to  
20 MHz Band  
Input clock:  
133 MHz  
tj_1M_20M  
tj_12k_20M  
NF  
48  
60  
fsRMS  
Input clock:  
400 MHz  
26  
33  
Input clock:  
100 MHz  
68  
83  
Additive RMS Jitter in 12 kHz to  
20 MHz Band  
Input clock:  
133 MHz  
52  
66  
fsRMS  
Input clock:  
400 MHz  
31  
43  
Input clock:  
100 MHz  
–163  
–164  
–160  
–161  
–162  
–158  
Input clock:  
133 MHz  
Noise Floor  
dBc/Hz  
Input clock:  
400 MHz  
Note 1: Values are over Recommended Operating Conditions.  
TABLE 4-14: HCSL OUTPUTS (PCIe ELECTRICAL CHARACTERISTICS) FOR VDDO = 2.5V  
Note 1  
Characteristics  
Rising Edge Rate  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Rise_Rate  
Fall_Rate  
VIH  
1.4  
1.4  
0.6  
1.75  
1.75  
4
4
V/ns  
V/ns  
V
Note 3, Note 4  
Note 3, Note 4  
Note 3  
Falling Edge Rate  
Differential High Voltage  
Differential Low Voltage  
Single-Ended High Voltage  
Single-Ended Low Voltage  
VIL  
–0.6  
0.85  
20  
V
Note 3  
VSIH  
0.65  
–20  
0.75  
0
V
DC Measurement  
DC Measurement  
VSIL  
mV  
Note 2, Note 5,  
Note 6  
Absolute Crossing Voltage  
VCROSS  
0.25  
0.55  
V
V
Variation of VCROSS over All Rising  
Clock Edges  
Note 2, Note 5,  
Note 10  
∆VCROSS  
0.140  
Ringback Voltage Margin  
Time before VRB is Allowed  
Cycle-to-Cycle Additive Jitter  
VRB  
tSTABLE  
tJCC  
–0.55  
4.6  
0.55  
V
ns  
Note 3, Note 12  
Note 3, Note 12  
Note 3  
4.6  
5.8  
psPP  
DS20006408B-page 36  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-14: HCSL OUTPUTS (PCIe ELECTRICAL CHARACTERISTICS) FOR VDDO = 2.5V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Absolute Maximum Voltage  
Absolute Minimum Voltage  
VMAX  
VMIN  
1.15  
V
V
Note 2, Note 8  
Note 2, Note 9  
–0.3  
Output Duty Cycle (When Input has  
50% of Duty Cycle)  
ODC  
48  
50  
50  
52  
20  
%
%
Ω
Note 3  
Rising to Falling Edge Matching  
r/f match  
ZC-DC_CK  
Note 2, Note 13  
DC Measurement,  
Note 2  
Clock Source DC Impedance (CK)  
DC Measurement,  
Note 2  
Clock Source DC Impedance (CK#)  
ZC-DC_CK#  
50  
Ω
Output Frequency  
fOUT  
tOOSK  
tDOOSK  
tIOD  
0
0.8  
1
400  
50  
129  
1.2  
5
MHz  
ps  
Output-to-Output Skew  
Device-to-Device Output Skew  
Input-to-Output Delay  
Output Enable Time  
ps  
ps  
tEN  
cycles  
cycles  
Output Disable Time  
tDIS  
5
Note 1: Values are over Recommended Operating Conditions.  
2: Measurement taken from single-ended waveform.  
3: Measurement taken from differential waveform.  
4: Measured from –150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The sig-  
nal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement  
window is centered on the differential zero crossing. See Figure 28.  
5: Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the fall-  
ing edge of CK#. See Figure 25.  
6: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing. Refers to all crossing points for this measurement. See Figure 25.  
7: This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock genera-  
tors and not to buffers. A clock buffer is a transparent device whose output clock period follows the input  
clock period.  
8: Defined as the maximum instantaneous voltage including overshoot. See Figure 25.  
9: Defined as the minimum instantaneous voltage including undershoot. See Figure 25.  
10: Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum  
allowed variance in VCROSS for any particular system. See Figure 26.  
11: The PPM requirement from PCI Express Base Specification, Revision 4.0 is related to clock generation  
devices. This requirement is not applicable to buffers because the buffer’s output frequency accuracy is  
identical to the frequency accuracy of the source driving the buffer.  
12: tSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after 20 ris-  
ing/falling edges before it is allowed to droop back into the VRB ±100 mV differential range. See Figure 29.  
13: Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV  
window centered on the median cross point where CKx rising meets CK#x falling. The median cross point  
is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed differ-  
ence should not exceed 20% of the slowest edge rate. See Figure 27.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 37  
ZL40272  
TABLE 4-15: HCSL (PCIe) JITTER PERFORMANCE FOR VDDO = 2.5V  
Note 1  
Characteristics  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Additive Jitter as per PCIe 1.0  
(1.5 MHz to 22 MHz)  
Input clock:  
100 MHz  
tjPCIe_1.0  
86  
110  
fsRMS  
Additive Jitter as per PCIe 2.0 High  
Band (1.5 MHz to 50 MHz)  
Input clock:  
100 MHz  
tjPCIe_2.0_high  
tjPCIe_2.0_low  
tjPCIe_2.0_mid  
85  
23  
67  
108  
38  
fsRMS  
fsRMS  
fsRMS  
Additive Jitter as per PCIe 2.0 Low  
Band (10 kHz to 1.5 MHz)  
Input clock:  
100 MHz  
Additive Jitter as per PCIe 2.0 Mid  
Band (5 MHz to 16 MHz)  
Input clock:  
100 MHz  
85  
Additive Jitter as per PCIe 3.0  
(PLL_BW = 2 MHz to 5 MHz, CDR  
= 10 MHz)  
Input clock:  
100 MHz  
tjPCIe_3.0  
21  
21  
8
27  
27  
11  
fsRMS  
Additive Jitter as per PCIe 4.0  
(PLL_BW = 2 MHz to 5 MHz, CDR  
= 10 MHz)  
Input clock:  
100 MHz  
tjPCIe_4.0  
fsRMS  
Additive Jitter as per PCIe 5.0  
(PLL_BW = 0.5 MHz to 1.8 MHz,  
CDR for 32 GT/s CC)  
Input clock:  
100 MHz  
tjPCIe_5.0  
fsRMS  
Additive Jitter as per Intel QPI  
9.6 Gbps  
Input clock:  
100 MHz  
tjQPI  
40  
56  
50  
70  
fsRMS  
Input clock:  
100 MHz  
Additive RMS Jitter in 1 MHz to  
20 MHz Band  
Input clock:  
133 MHz  
tj_1M_20M  
tj_12k_20M  
NF  
45  
58  
fsRMS  
Input clock:  
400 MHz  
25  
34  
Input clock:  
100 MHz  
60  
77  
Additive RMS Jitter in 12 kHz to  
20 MHz Band  
Input clock:  
133 MHz  
49  
65  
fsRMS  
Input clock:  
400 MHz  
30  
45  
Input clock:  
100 MHz  
–164  
–164  
–160  
–161  
–162  
–158  
Input clock:  
133 MHz  
Noise Floor  
dBc/Hz  
Input clock:  
400 MHz  
Note 1: Values are over Recommended Operating Conditions.  
DS20006408B-page 38  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
Vmax = 1.15V  
OUTx_n  
Vcross_max = 550mV  
Vcross_min = 250mV  
OUTx_p  
Vmax = -0.3V  
FIGURE 4-1:  
Single-Ended Measurement Points for Absolute Cross Point and Swing.  
OUTx_n  
Vcross_delta = 250mV  
OUTx_p  
FIGURE 4-2:  
Single-Ended Measurement Points for Delta Cross Point.  
tfall  
OUTx_n  
Vcross_median + 75mV  
Vcross_median  
Vcross_median  
Vcross_median – 75mV  
OUTx_p  
trise  
Rise/fall match = MIN[|trise – tfall|/trise,|trise – tfall|/tfall]*100%  
FIGURE 4-3:  
Single-Ended Measurement Points for Rise and Fall Time Matching.  
OUTx_p -OUTx_n  
slew_rise = 0.3V/trise_edge_rate [V/ns]  
slew_fall = 0.3V/tfall_edge_rate [V/ns]  
Differential Measurement Points for Rise and Fall Time.  
FIGURE 4-4:  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 39  
ZL40272  
OUTx_p - OUTx_n  
FIGURE 4-5:  
Differential Measurement Points for Ringback.  
15 dB loss at 4 GHz  
Refclk Margins  
CK  
DUT  
CK#  
DiīerenƟal PCB trace  
DIFF = 100ё 10%  
2 pF 5%  
2 pF 5%  
Z
FIGURE 4-6:  
PCIe Test Circuit.  
TABLE 4-16: LVPECL OUTPUT PHASE NOISE WITH 25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
DD = 3.3V, VDDO = 3.3V  
VDD = 2.5V, VDDO = 2.5V  
265  
213  
fs  
fs  
V
Jitter RMS in 12 kHz to 5 MHz  
Band  
–102  
–127  
–153  
–158  
–158  
–158  
–96  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
Noise Floor  
–122  
–151  
–160  
–160  
–160  
Note 1: Values are over Recommended Operating Conditions.  
DS20006408B-page 40  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-17: LVDS OUTPUT PHASE NOISE WITH 25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
172  
177  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
VDD = 2.5V, VDDO = 2.5V  
–102  
–126  
–153  
–160  
–161  
–160  
–96  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
Noise Floor  
–123  
–152  
–161  
–161  
–160  
Note 1: Values are over Recommended Operating Conditions.  
TABLE 4-18: HCSL OUTPUT PHASE NOISE WITH 25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
235  
143  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
VDD = 2.5V, VDDO = 2.5V  
–102  
–126  
–153  
–158  
–159  
–158  
–97  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
Noise Floor  
–123  
–153  
–162  
–162  
–163  
Note 1: Values are over Recommended Operating Conditions.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 41  
ZL40272  
TABLE 4-19: LVPECL OUTPUT PHASE NOISE WITH 125 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
62  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
67  
VDD = 2.5V, VDDO = 2.5V  
–95  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–124  
–144  
–155  
–161  
–161  
–163  
–164  
–95  
Noise Floor  
–125  
–143  
–154  
–160  
–160  
–162  
–163  
Note 1: Values are over Recommended Operating Conditions.  
TABLE 4-20: LVDS OUTPUT PHASE NOISE WITH 125 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
74  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
75  
VDD = 2.5V, VDDO = 2.5V  
–93  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–124  
–145  
–155  
–159  
–159  
–161  
–162  
–95  
Noise Floor  
–124  
–144  
–155  
–159  
–159  
–161  
–161  
Note 1: Values are over Recommended Operating Conditions.  
DS20006408B-page 42  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-21: HCSL OUTPUT PHASE NOISE WITH 125 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
60  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
63  
VDD = 2.5V, VDDO = 2.5V  
–93  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–125  
–145  
–156  
–161  
–160  
–163  
–163  
–94  
Noise Floor  
–124  
–144  
–156  
–161  
–160  
–163  
–163  
Note 1: Values are over Recommended Operating Conditions.  
TABLE 4-22: LVPECL OUTPUT PHASE NOISE WITH 156.25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
49  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
53  
VDD = 2.5V, VDDO = 2.5V  
–86  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–117  
–141  
–153  
–160  
–163  
–163  
–164  
–85  
Noise Floor  
–119  
–142  
–154  
–160  
–162  
–163  
–163  
Note 1: Values are over Recommended Operating Conditions.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 43  
ZL40272  
TABLE 4-23: LVDS OUTPUT PHASE NOISE WITH 156.25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
53  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
55  
VDD = 2.5V, VDDO = 2.5V  
–85  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–118  
–143  
–154  
–160  
–162  
–163  
–163  
–87  
Noise Floor  
–119  
–142  
–154  
–159  
–162  
–162  
–162  
Note 1: Values are over Recommended Operating Conditions.  
TABLE 4-24: HCSL OUTPUT PHASE NOISE WITH 156.25 MHZ XTAL  
Note 1  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Notes  
48  
fs  
fs  
V
DD = 3.3V, VDDO = 3.3V  
Jitter RMS in 12 kHz to 5 MHz  
Band  
50  
VDD = 2.5V, VDDO = 2.5V  
–85  
dBc/Hz @100 Hz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 kHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @1 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @5 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @10 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @20 MHz, VDD = 3.3V, VDDO = 3.3V  
dBc/Hz @100 Hz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @100 kHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @1 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @5 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @10 MHz, VDD = 2.5V, VDDO = 2.5V  
dBc/Hz @20 MHz, VDD = 2.5V, VDDO = 2.5V  
–117  
–143  
–155  
–161  
–163  
–164  
–164  
–86  
Noise Floor  
–119  
–142  
–154  
–160  
–163  
–163  
–163  
Note 1: Values are over Recommended Operating Conditions.  
DS20006408B-page 44  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
TABLE 4-25: I2C BUS ELECTRICAL CHARACTERISTICS  
Characteristics  
Nominal Bus Voltage  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
VDDI2C  
VIL  
2.375  
5.5  
0.7  
V
V
Note 1  
Input Low Voltage  
Input High Voltage  
VIH  
1.5  
VDDI2C  
0.4  
V
Output Low Voltage  
Input Leakage Current  
Current Sinking at VOL(MAX)  
Pin Capacitive Load  
VOL  
V
At IPULLUP(MAX)  
ILEAK  
IPULLUP  
CL  
±10  
µA  
mA  
pF  
4
1
Signal Noise Immunity from 10 MHz  
to 100 MHz  
VNOISE  
300  
mVPP  
Noise Spike Suppression Time  
I2C Bus Operating Frequency  
tSPIKE  
fOC  
0
0
50  
ns  
Note 3  
400  
kHz  
Bus Free Time between Start and  
Stop Conditions  
tBUF  
1.3  
0.6  
0.6  
µs  
µs  
µs  
After this period,  
the first clock is  
generated  
Hold Time after (Repeated) Start  
Condition  
tHD:STA  
Repeated Start Condition Setup  
Time  
tSU:STA  
Stop Condition Setup Time  
Data Hold Time  
tSU:STO  
tHD:DAT  
tSU:DAT  
tTIMEOUT  
tLOW  
0.6  
0
0.9  
µs  
µs  
ns  
ms  
µs  
µs  
Note 4  
Data Setup Time  
100  
25  
Detect Clock Low Timeout  
Clock Low Period  
35  
1.3  
0.6  
Clock High Period  
tHIGH  
20 +  
0.1*Cb  
Clock/Data Fall Time  
tF  
250  
250  
ns  
ns  
Note 2  
Note 2  
20 +  
0.1*Cb  
Clock /Data Rise Time  
tR  
Note 1: 3V to 5V ±10%  
2: Rise and fall time is defined as follows: tR = (VIL(MAX) – 0.15) to (VIH(MIN) + 0.15); tF = (VIH(MIN) – 0.15) to  
(VIL(MAX) + 0.15)  
3: Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.  
4: The maximum hold time has to be less than the maximum data valid or data valid acknowledge time as  
per Table 10, note [4] of I2C bus Rev. 6 specification.  
FIGURE 4-7:  
I2C Bus Timing.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 45  
ZL40272  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Maximum Ambient Temperature  
Maximum Junction Temperature  
TA(MAX)  
TJ(MAX)  
+85  
°C  
°C  
+125  
Package Thermal Resistance, 8x8 QFN-56Ld  
19.5  
15.7  
13.9  
6.3  
°C/W Still-air  
Junction to Ambient Thermal  
θJA  
°C/W 1 m/s airflow  
°C/W 2.5 m/s airflow  
Resistance (Note 1)  
Junction to Board Thermal Resistance  
Junction to Case Thermal Resistance  
θJB  
θJC  
°C/W  
°C/W  
11  
Junction to Pad Thermal Resistance  
(Note 2)  
θJP  
3.6  
0.2  
°C/W Still-air  
°C/W Still-air  
Junction to Top-Center Thermal  
Characterization Parameter  
ΨJT  
Note 1: Theta-JA (θJA) is the thermal resistance from junction to ambient when the package is mounted on a 8-  
layer JEDEC standard test board and dissipating maximum power.  
2: Theta-JP (θJP) is the thermal resistance from junction to the center exposed pad on the bottom of the  
package.  
DS20006408B-page 46  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
5.0  
5.1  
PACKAGE OUTLINE  
Package Marking Information  
Example  
56-Lead QFN*  
XXXXXXX  
X X  
YYWWNNN  
ZL40272  
Z Z  
2041971  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e3)  
●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar (‾) symbol may not be to scale.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 47  
ZL40272  
56-Lead 8 mm x 8 mm QFN Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20006408B-page 48  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
NOTES:  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 49  
ZL40272  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Revision  
Section/Figure/Entry  
Correction  
Converted Microsemi data sheet ZL40272 to Micro-  
chip DS20006408A. Minor text changes throughout.  
DS20006408A (09-09-20)  
DS20006408B (12-03-21)  
Corrected values in the figure for when vcm_sel = 1.  
RUP is 3.3 kΩ and RDOWN is 590Ω.  
Figure 2-7  
DS20006408B-page 50  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
ZL40272  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
Device  
X
X
X
X
a) ZL40272LDG1:  
Low-Skew, Low Additive Jitter,  
Part  
Number  
Chip Carrier  
Type  
Package  
Media Type  
Finish  
12 Output HCSL/LVDS/LVPECL  
Fanout Buffer with Per-Output  
Enable Control, Leadless Chip  
Carrier, 56-Lead QFN, 260/Tray,  
Pb Free with Matte Sn lead finish,  
RoHS e3 Compliant  
Device:  
ZL40272: Low-Skew, Low Additive Jitter, 12 Output HCSL/  
LVDS/LVPECL Fanout Buffer with Per-Output  
Enable Control  
b) ZL40272LDF1:  
Chip Carrier Type: L = Leadless Chip Carrier  
Low-Skew, Low Additive Jitter,  
12 Output HCSL/LVDS/LVPECL  
Fanout Buffer with Per-Output  
Enable Control, Leadless Chip  
Carrier, 56-Lead QFN, 2,700/Reel,  
Pb Free with Matte Sn lead finish,  
RoHS e3 Compliant  
Package:  
D = 56-Lead 8 mm x 8 mm QFN  
Media Type:  
G = 260/Tray  
F = 2,700/Reel  
Finish:  
1 = Pb Free with Matte Sn lead finish, RoHS e3 Compliant  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 51  
ZL40272  
NOTES:  
DS20006408B-page 52  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
Note the following details of the code protection feature on Microchip products:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and  
under normal conditions.  
Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of  
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to  
continuously improving the code protection features of our products.  
This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip  
products with your application. Use of this information in any other manner violates these terms. Information regarding device applications  
is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets  
with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.micro-  
chip.com/en-us/support/design-help/client-support-services.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR- RANTIES OF  
ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMA-  
TION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON- INFRINGEMENT, MERCHANTABILITY, AND FIT-  
NESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI- RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL  
LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER  
CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE  
FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFOR-  
MATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR  
THE INFORMATION.  
Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify  
and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF,  
dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA,  
SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are  
registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion,  
SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom,  
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling,  
Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart,  
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS,  
SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,  
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other  
countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2020 - 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.  
ISBN: 978-1-5224-9422-5  
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
DS20006408B-page 53  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Korea - Seoul  
Germany - Haan  
Tel: 49-2129-3766400  
Tel: 86-571-8792-8115  
Tel: 82-2-554-7200  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Malaysia - Kuala Lumpur  
Germany - Heilbronn  
Tel: 49-7131-72400  
Tel: 852-2943-5100  
Tel: 60-3-7651-7906  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Los Angeles  
Tel: 48-22-3325737  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
Fax: 44-118-921-5820  
DS20006408B-page 54  
2020 - 2021 Microchip Technology Inc. and its subsidiaries  
09/14/21  

相关型号:

ZL40272LDF1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDG1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40293LDF1

Low Skew Clock Driver, 4000/14000/40000 Series, 40 True Output(s), 0 Inverted Output(s), CMOS
MICROCHIP

ZL40510

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LCE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LCF

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDF

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDG

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510_06

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40511

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40511LCE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK