MAX9324EUP+ [MAXIM]

暂无描述;
MAX9324EUP+
型号: MAX9324EUP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

驱动器 时钟
文件: 总12页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2576; Rev 0; 10/02  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
General Description  
Features  
The MAX9324 low-skew, low-jitter, clock and data driver  
distributes a differential LVPECL input to four differential  
LVPECL outputs and one single-ended LVCMOS output.  
All outputs default to logic low when the differential inputs  
equal GND or are left open. The MAX9324 operates from  
3.0V to 3.6V, making it ideal for 3.3V systems, and con-  
sumes only 25mA (max) of supply current.  
15ps Differential Output-to-Output Skew  
1.7ps Added Random Jitter  
RMS  
150ps (max) Part-to-Part Skew  
450ps Propagation Delay  
Synchronous Output Enable/Disable  
Single-Ended Monitor Output  
The MAX9324 features low 150ps (max) part-to-part  
skew, low 15ps output-to-output skew, and low 1.7ps  
RMS jitter, making the device ideal for clock and data  
distribution across a backplane or board. CLK_EN and  
SEOUT_Z control the status of the various outputs.  
Asserting CLK_EN low configures the differential (Q_,  
Q_) outputs to a differential low condition and SEOUT to  
a single-ended logic-low state. CLK_EN operation is  
synchronous with the CLK_ inputs. A logic high on  
SEOUT_Z places SEOUT in a high-impedance state.  
SEOUT_Z is asynchronous with the CLK (CLK) inputs.  
Outputs Assert Low when CLK, CLK are Open or  
at GND  
3.0V to 3.6V Supply Voltage Range  
-40°C to +85°C Operating Temperature Range  
Ordering Information  
The MAX9324 is available in space-saving 20-pin  
TSSOP and ultra-small 20-pin 4mm 4mm thin QFN  
packages and operates over the extended (-40°C to  
+85°C) temperature range.  
PART  
MAX9324EUP  
MAX9324ETP*  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 TSSOP  
20 Thin QFN-EP**  
Applications  
*Future product—Contact factory for availability.  
**EP = Exposed paddle.  
Precision Clock Distribution  
Low-Jitter Data Repeater  
Data and Clock Driver and Buffer  
Central-Office Backplane Clock Distribution  
DSLAM Backplane  
Functional Diagram and Typical Operating Circuit appear at  
end of data sheet.  
Base Station  
ATE  
Pin Configurations  
TOP VIEW  
20 19 18 17 16  
GND  
CLK_EN  
N.C.  
1
2
20 Q0  
19 Q0  
V
1
2
3
4
5
15  
14  
13  
12  
11  
SEOUT  
GND  
CC  
3
18 V  
CC  
Q1  
Q1  
Q2  
Q2  
SEOUT  
GND  
4
17 Q1  
16 Q1  
15 Q2  
MAX9324  
N.C.  
MAX9324  
5
**EXPOSED PADDLE  
SEOUT_Z  
CLK  
N.C.  
6
SEOUT_Z  
CLK  
7
14  
13  
Q2  
8
V
CC  
6
7
8
9
10  
CLK  
9
12 Q3  
11 Q3  
V
10  
CC  
THIN QFN-EP** (4mm x 4mm)  
**CONNECT EXPOSED PADDLE TO GND.  
TSSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +4.0V  
Junction-to-Ambient Thermal Resistance in Still Air  
Q_, Q_, CLK, CLK, SEOUT_Z, CLK_EN,  
SEOUT to GND.......................................-0.3V to (V  
CLK to CLK............................................................................±3V  
SEOUT Short to GND .................................................Continuous  
Continuous Output Current (Q_, Q_) ..................................50mA  
Surge Output Current (Q_, Q_).........................................±00mA  
20-Pin TSSOP ............................................................+9±°C/W  
20-Pin 4mm 4mm Thin QFN.................................+59.3°C/W  
Junction-to-Case Thermal Resistance  
20-Pin TSSOP ............................................................+20°C/W  
20-Pin 4mm 4mm Thin QFN......................................+2°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+±50°C  
Storage Temperature Range.............................-65°C to +±50°C  
Soldering Temperature (±0s)...........................................+300°C  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TSSOP (derate ±±mW/°C)..............................879.±mW  
20-Pin 4mm 4mm Thin QFN (derate ±6.9mW/°C)..±349.±mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
CC  
(V  
= 3.0V to 3.6V, differential outputs terminated with 50±±1 to (V  
- 2V), SEOUT_Z = GND, CLK_EN = V , T = -40°C to  
CC CC A  
= 3.3V, T = +25°C.) (Notes ±, 2, and 3)  
+85°C, unless otherwise noted. Typical values are at V  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (CLK_EN, SEOUT_Z)  
Input High Voltage  
Input Low Voltage  
V
2
0
V
V
V
IH  
CC  
V
0.8  
+5  
IL  
CLK_EN = V  
-5  
CC  
Input High Current  
Input Low Current  
I
µA  
µA  
IH  
SEOUT_Z = V  
±50  
CC  
CLK_EN = GND  
SEOUT_Z = GND  
-±50  
-5  
I
IL  
+5  
DIFFERENTIAL INPUT (CLK, CLK)  
Differential Input High Voltage  
Differential Input Low Voltage  
Differential Input Voltage  
Input Current  
V
Figure ±  
Figure ±  
±.5  
0
V
V
V
IHD  
CC  
V
V
- 0.±5  
±.5  
ILD  
- V  
CC  
V
0.±5  
-5  
V
IHD  
ILD  
I
V
, V  
IHD ILD  
+±50  
µA  
CLK  
DIFFERENTIAL OUTPUTS (Q_, Q_)  
Single-Ended Output High  
V
Figure ±  
Figure ±  
Figure ±  
V
V
- ±.4  
V
- ±.0  
V
V
V
OH  
CC  
CC  
CC  
CC  
Single-Ended Output Low  
V
- 2.0  
V
- ±.7  
OL  
- V  
Differential Output Voltage  
SINGLE-ENDED OUTPUT (SEOUT)  
Output High Voltage  
V
0.6  
0.85  
OH  
OL  
V
I
I
= -4mA  
= 4mA  
2.4  
-±0  
V
V
OH  
OH  
OL  
Output Low Voltage  
V
0.4  
+±0  
75  
OL  
OZ  
OS  
Output High-Impedance Current  
Output Short-Circuit Current  
SUPPLY  
I
I
SEOUT_Z = V , SEOUT = V  
or GND  
CC  
µA  
mA  
CC  
V
= V , SEOUT = GND  
CC  
CLK  
Supply Current  
I
(Note 4)  
25  
mA  
CC  
2
_______________________________________________________________________________________  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, differential outputs terminated with 50±±1 to (V  
- 2V), f  
266MHz, input duty cycle = 501, input transi-  
CLK  
CC  
CC  
tion time = ±25ps (201 to 801), V  
= ±.5V to V , V  
= GND to (V  
- 0.±5V), V  
- V  
= 0.±5V to ±.5V, CLK_EN = V  
,
IHD  
CC ILD  
CC  
IHD  
ILD  
CC  
SEOUT_Z = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V, V  
= (V  
- ±V), V  
= (V  
-
A
CC  
IHD  
CC  
ILD  
CC  
±.5V), T = +25°C.) (Note 5)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
- V 0.6V, SEOUT_Z = V  
CC  
MIN  
650  
±25  
±00  
TYP  
MAX  
UNITS  
V
800  
200  
450  
OH  
OL  
Switching Frequency  
f
MHz  
MAX  
SEOUT_Z = GND, SEOUT  
Propagation Delay  
Output-to-Output Skew  
Part-to-Part Skew  
t
, t  
CLK, CLK to Q_, Q_, Figure ± (Note 6)  
(Note 7)  
600  
30  
ps  
ps  
ps  
ps  
ps  
1
PHL PLH  
t
SKOO  
t
(Note 8)  
±50  
300  
300  
52  
SKPP  
Output Rise Time  
t
201 to 801, Figure ±  
801 to 201, Figure ±  
±00  
±00  
48  
2±7  
207  
50  
R
Output Fall Time  
t
F
Output Duty Cycle  
Added Random Jitter  
Added Deterministic Jitter  
ODC  
t
t
f
= 650MHz (Note 9)  
2e23 - ± PRBS pattern, f = 650Mbps (Note 9)  
±.7  
83  
3
ps  
(RMS)  
RJ  
CLK  
±00  
ps  
(P-P)  
DJ  
V
= 3.3V with 25mV superimposed  
CC  
Added Jitter  
t
8.5  
±2  
ps  
(P-P)  
AJ  
sinusoidal noise at ±00kHz (Note 9)  
Single-Ended Output Rise Time  
Single-Ended Output Fall Time  
Single-Ended Output Duty Cycle  
t
C = ±5pF, 201 to 801, Figure ±  
±.6  
±.6  
52  
2
2
ns  
ns  
1
R
L
t
C = ±5pF, 801 to 201, Figure ±  
L
F
ODC  
(Note ±0)  
40  
60  
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters are production tested at T = +25°C and guaranteed by design over the full operating temperature range.  
A
Note 4: All pins open except V  
and GND.  
CC  
Note 5: Guaranteed by design and characterization. Limits are set at ±6 sigma.  
Note 6: Measured from the differential input signal crosspoint to the differential output signal crosspoint.  
Note 7: Measured between the differential outputs of the same part at the differential signal crosspoint for a same-edge transition.  
Note 8: Measured between the differential outputs of different parts at the differential signal crosspoint under identical conditions  
for a same-edge transition.  
Note 9: Jitter added to the input signal.  
Note 10: Measured at 501 of V  
.
CC  
_______________________________________________________________________________________  
3
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Typical Operating Characteristics  
(V  
= 3.3V, outputs terminated to (V  
- 2V) through 50, SEOUT_Z = V , CLK_EN = V , T = +25°C.)  
CC  
CC CC CC A  
DIFFERENTIAL OUTPUT AMPLITUDE  
(V - V ) vs. FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
OH  
OL  
800  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
700  
600  
500  
400  
300  
200  
100  
0
0
200 400 600 800 1000 1200 1400 1600  
FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT RISE/FALL TIME  
vs. TEMPERATURE  
DIFFERENTIAL PROPAGATION DELAY  
vs. TEMPERATURE  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
510  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
t
R
t
PLH  
t
F
t
PHL  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP  
QFN  
±, 5  
2, ±8  
GND  
Ground. Provide a low-impedance connection to the ground plane.  
Synchronous Output Enable. Connect CLK_EN to V  
or leave floating to enable the  
CC  
differential outputs. Connect CLK_EN to GND to disable the differential outputs. When  
disabled, Q_ asserts low, Q_ asserts high, and SEOUT asserts low. A 5±kpullup resistor to  
2
±9  
CLK_EN  
V
allows CLK_EN to be left floating.  
CC  
3, 6  
4
3, 20  
±
N.C.  
No Connect. Not internally connected.  
LVCMOS/LVTTL Clock Output. SEOUT reproduces CLK when SEOUT_Z = GND. SEOUT  
goes high impedance when SEOUT_Z = V . The maximum output frequency of SEOUT is  
CC  
SEOUT  
±25MHz.  
Single-Ended Clock Output Enable/Disable. Connect SEOUT_Z to GND to enable the single-  
ended clock output. Connect SEOUT_Z to V  
5±kpulldown resistor to GND allows SEOUT_Z to be left floating.  
to disable the single-ended clock output. A  
7
4
SEOUT_Z  
CLK  
CC  
Noninverting Differential LVPECL Input. An internal 5±kpulldown resistor to GND forces the  
outputs (Q_, Q_) to differential low and logic low (SEOUT) when CLK and CLK are left open or  
at GND and the outputs are enabled.  
8
9
5
6
Inverting Differential LVPECL Input. An internal 5±kpulldown resistor to GND forces the  
outputs (Q_, Q_) to differential low and logic low (SEOUT) when CLK and CLK are left open or  
at GND and the outputs are enabled.  
CLK  
Positive Supply Voltage. Bypass V  
to GND with three 0.0±µF and one 0.±µF ceramic  
CC  
±0, ±3, ±8  
7, ±0, ±5  
V
capacitors. Place the 0.0±µF capacitors as close to each V input as possible (one per V  
CC CC  
CC  
input). Connect all V  
inputs together, and bypass to GND with a 0.±µF ceramic capacitor.  
CC  
±±  
±2  
±4  
±5  
±6  
±7  
±9  
20  
8
Q3  
Q3  
Q2  
Q2  
Q1  
Q±  
Q0  
Q0  
Inverting Differential LVPECL Output. Terminate Q3 to (V  
- 2V) with a 50±±1 resistor.  
CC  
9
Noninverting Differential LVPECL Output. Terminate Q3 to (V  
- 2V) with a 50±±1 resistor.  
CC  
±±  
±2  
±3  
±4  
±6  
±7  
Inverting Differential LVPECL Output. Terminate Q2 to (V  
- 2V) with a 50±±1 resistor.  
CC  
Noninverting Differential LVPECL Output. Terminate Q2 to (V  
- 2V) with a 50±±1 resistor.  
CC  
Inverting Differential LVPECL Output. Terminate Q1 to (V  
- 2V) with a 50±±1 resistor.  
CC  
Noninverting Differential LVPECL Output. Terminate Q± to (V  
- 2V) with a 50±±1 resistor.  
CC  
Inverting Differential LVPECL Output. Terminate Q0 to (V  
- 2V) with a 50±±1 resistor.  
CC  
Noninverting Differential LVPECL Output. Terminate Q0 to (V  
- 2V) with a 50±±1 resistor.  
CC  
_______________________________________________________________________________________  
5
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
signal. Terminate CLK and CLK through 50to (V  
-
CC  
Detailed Description  
2V) to minimize input signal reflections. Internal 5±kΩ  
pulldown resistors to GND ensure the outputs default to  
differential low (Q_, Q_) or logic low (SEOUT) when the  
CLK inputs are left open.  
The MAX9324 low-skew, low-jitter, clock and data dri-  
ver distributes a differential LVPECL input signal to four  
differential LVPECL outputs and a single-ended LVC-  
MOS output. The differential output drivers operate at  
frequencies up to 800MHz. When SEOUT_Z = GND,  
the single-ended LVCMOS output driver operates with  
frequencies as high as 200MHz. The MAX9324 oper-  
ates from 3.0V to 3.6V, making the device ideal for 3.3V  
systems.  
CLK_EN Input  
CLK_EN enables/disables the differential outputs of the  
MAX9324. Connect CLK_EN to V  
to enable the dif-  
CC  
ferential outputs. The (Q_, Q_) outputs are driven to a  
differential low condition when CLK_EN = GND. Each  
differential output pair disables following successive  
rising and falling edges on CLK (falling and rising  
edges on CLK), after CLK_EN connects to GND. Both a  
rising and falling edge on CLK are required to com-  
plete the enable/disable function (Figure 2).  
Data Inputs  
Differential LVPECL Inputs  
The MAX9324 accepts a differential LVPECL input.  
Each differential output duplicates the differential input  
CLK  
V
IHD  
V
ILD  
CLK  
Q_  
V
OH  
V
- V  
OH OL  
V
OL  
Q_  
t
t
PHL  
PLH  
80%  
80%  
Q_ - Q_  
t
t
F
R
20%  
20%  
80%  
80%  
SEOUT  
t
t
F
R
20%  
20%  
Figure 1. MAX9324 Clock Input-to-Output Delay and Rise/Fall Time  
_______________________________________________________________________________________  
6
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
CLK  
CLK  
ENABLED  
DISABLED  
CLK_EN  
Q_  
Q_  
HIGH  
IMPEDANCE  
SEOUT  
SEOUT_Z  
Figure 2. MAX9324 CLK_EN Timing Diagram  
SEOUT_Z  
Applications Information  
SEOUT_Z enables/disables the single-ended LVCMOS  
output (Table ±). Connect SEOUT_Z to GND to enable  
Output Termination  
Terminate both outputs of each differential pair through  
the single-ended output. Connect SEOUT_Z to V  
to  
CC  
50to (V  
- 2V) or use an equivalent Thevenin termi-  
CC  
force the single-ended output to a high-impedance  
state. SEOUT provides a single-ended monitor for oper-  
ating frequencies as high as 200MHz.  
nation. Use identical termination on each output for the  
lowest output-to-output skew. Terminate both outputs  
when deriving a single-ended signal from a differential  
output. For example, using Q0 as a single-ended out-  
put requires termination for both Q0 and Q0.  
Table 1. Control Input Table  
INPUTS  
OUTPUTS  
Q0 Q3  
CLK_EN  
SEOUT_Z  
Q0Q3  
Disabled, pulled to logic low  
Disabled, pulled to logic low  
Enabled  
SEOUT  
0
0
±
±
0
±
0
±
Disabled, pulled to logic high  
Disabled, pulled to logic high  
Enabled  
Enabled, logic low  
Disabled, high impedance  
Enabled  
Enabled  
Enabled  
Disabled, high impedance  
_______________________________________________________________________________________  
7
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
SEOUT provides a single-ended LVCMOS monitor out-  
put. SEOUT operates with a maximum output frequency  
of 200MHz.  
Circuit Board Traces  
Input and output trace characteristics affect the perfor-  
mance of the MAX9324. Connect each input and output  
to a 50characteristic impedance trace to minimize  
reflections. Avoid discontinuities in differential imped-  
ance and maximize common-mode noise immunity by  
maintaining the distance between differential traces  
and avoiding sharp corners. Minimize the number of  
vias to prevent impedance discontinuities. Minimize  
skew by matching the electrical length of the traces.  
Ensure that the output currents do not violate the cur-  
rent limits as specified in the Absolute Maximum  
Ratings table. Observe the devices total thermal limits  
under all operating conditions.  
Power-Supply Bypassing  
Bypass V  
to GND using three 0.0±µF ceramic capaci-  
CC  
tors and one 0.±µF ceramic capacitor. Place the 0.0±µF  
capacitors (one per V  
input) as close to V  
as possi-  
CC  
CC  
ble (see the Typical Operating Circuit). Use multiple  
Chip Information  
TRANSISTOR COUNT: 4430  
bypass vias to minimize parasitic inductance.  
PROCESS: BiCMOS  
Functional Diagram  
V
V
V
CC  
CC  
CC  
SEOUT_Z  
MAX9324  
SEOUT  
V
CC  
Q0  
Q0  
D
CLK_EN  
Q
Q1  
Q1  
CLK  
CLK  
CLK  
Q2  
Q2  
Q3  
Q3  
GND  
GND  
8
_______________________________________________________________________________________  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Typical Operating Circuit  
3.0V TO  
3.6V  
0.01µF  
0.01µF  
0.01µF  
0.1µF  
V
V
V
CC  
CC  
CC  
Z
= 50Ω  
O
Q0  
Q0  
Z
Z
= 50Ω  
= 50Ω  
O
O
MAX9324  
50Ω  
50Ω  
LVPECL  
RECEIVER  
Z
Z
= 50Ω  
= 50Ω  
CLK  
CLK  
O
O
Q1  
Q1  
V
- 2V  
CC  
Z
Z
= 50Ω  
= 50Ω  
O
O
50Ω  
50Ω  
Q2  
Q2  
V
- 2V  
CC  
Z
Z
= 50Ω  
= 50Ω  
O
O
ON  
CLK_EN  
Q3  
Q3  
OFF  
ON  
LVCMOS/  
LVTTL  
INPUT  
OFF  
Z
= 50Ω  
O
SEOUT_Z  
SEOUT  
GND  
_______________________________________________________________________________________  
9
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
10 ______________________________________________________________________________________  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
______________________________________________________________________________________ 11  
One-to-Five LVPECL/LVCMOS Output Clock and  
Data Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9324EUP+T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), BICMOS, PDSO20, 4.40 MM, TSSOP-20
MAXIM

MAX9324EUP-T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), BICMOS, PDSO20, 4.40 MM, TSSOP-20
MAXIM

MAX9325

2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9325EGI

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC28, 5 X 5 MM, QFN-28
ROCHESTER

MAX9325EQI

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, MO-047AB, LCC-28
ROCHESTER

MAX9325EQI+

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, MO-047AB, LCC-28
ROCHESTER

MAX9325EQI+T

Low Skew Clock Driver, 9325 Series, 8 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9326EGI

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9326EGI

LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC28, 5 X 5 MM, QFN-28
ROCHESTER

MAX9326EGI-T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, 5 X 5 MM, QFN-28
MAXIM

MAX9326EQI

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM