MAX9325EGI [ROCHESTER]

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC28, 5 X 5 MM, QFN-28;
MAX9325EGI
型号: MAX9325EGI
厂家: Rochester Electronics    Rochester Electronics
描述:

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC28, 5 X 5 MM, QFN-28

驱动 输出元件 逻辑集成电路
文件: 总13页 (文件大小:1413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2511; Rev 3; 11/04  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
General Description  
Features  
The MAX9325 low-skew, 2:8 differential driver features  
extremely low output-to-output skew (50ps max) and  
part-to-part skew (225ps max). These features make  
the device ideal for clock and data distribution across a  
backplane or board. The device selects one of the two  
differential HSTL or LVECL/LVPECL inputs and repeats  
them at eight differential outputs. Outputs are compati-  
ble with LVECL and LVPECL, and can directly drive  
50terminated transmission lines.  
50ps (max) Output-to-Output Skew  
1.5ps (max) Random Jitter  
Guaranteed 300mV Differential Output at 700MHz  
RMS  
+2.375V to +3.8V Supplies for Differential  
HSTL/LVPECL  
-2.375V to -3.8V Supplies for Differential LVECL  
Two Selectable Differential Inputs  
On-Chip Reference for Single-Ended Inputs  
Outputs Low for Inputs Open or at V  
Pin Compatible with MC100LVE310  
The differential inputs can be configured to accept a  
single-ended signal when the unused complementary  
input is connected to the on-chip reference output volt-  
EE  
age V  
EE.  
All inputs have internal pulldown resistors to  
BB.  
V
The internal pulldowns and a fail-safe circuit  
ensure differential low default outputs when the inputs  
are left open or at V  
.
EE  
The MAX9325 operates over a 2.375V to 3.8V supply  
range for interfacing to differential HSTL and LVPECL  
signals. This allows high-performance clock or data dis-  
tribution in systems with a nominal +2.5V or +3.3V sup-  
ply. For LVECL operation, the device operates with a  
-2.375V to -3.8V supply.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 PLCC  
MAX9325EQI  
MAX9325EGI  
The MAX9325 is offered in 28-lead PLCC and space-  
saving 28-lead QFN packages. The MAX9325 is speci-  
fied for operation from -40°C to +85°C.  
28 QFN 5mm x 5mm  
Applications  
Precision Clock Distribution  
Functional Diagram appears at end of data sheet.  
Low-Jitter Data Repeaters  
Pin Configurations  
TOP VIEW  
INPUT SELECT TRUTH TABLE  
25 24 23 22 21 20 19  
CLK_SEL  
INPUT CLOCK  
*
*
L
CLK0, CLK0 SELECTED  
CLK1, CLK1 SELECTED  
V
EE  
Q3  
Q3  
Q4  
V
26  
27  
28  
1
18  
17  
16  
15  
14  
13  
12  
H
V
1
2
3
4
5
6
7
21 Q3  
20 Q3  
19 Q4  
EE  
CLK_SEL  
CLKO  
CLK_SEL  
CLKO  
V
CC  
CC  
MAX9325  
V
CC  
18  
V
CC  
CLKO  
2
Q4  
Q5  
Q5  
MAX9325  
V
3
CLKO  
17 Q4  
16 Q5  
15 Q5  
BB  
4
CLK1  
V
BB  
CLK1  
5
6
7
8
9
10 11  
*
*
PLCC  
QFN  
*CORNER PINS AND EXPOSED PAD ARE CONNECTED TO V  
.
EE  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
ABSOLUTE MAXIMUM RATINGS  
V
- V ...............................................................-0.3V to +4.1V  
28-Lead QFN (derate 20.8mW/°C above +70°C) ....1667mW  
CC  
EE  
Inputs (CLK_, CLK_, CLK_SEL) to V ......-0.3V to (V + 0.3V)  
θ
θ
in Still Air............................................................+48°C/W  
..............................................................................+2°C/W  
EE  
CC  
JA  
JC  
CLK_ to CLK_ .....................................................................±3.0V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
V
Sink/Source Current................................................±0.65mA  
BB  
Continuous Power Dissipation (T = +70°C)  
A
28-Lead PLCC (derate 10.5mW/°C above +70°C) .....842mW  
Human Body Model (CLK_, CLK_, Q_, Q_)....................2kV  
Soldering Temperature (10s)...........................................+300°C  
θ
JA  
JC  
in Still Air.............................................................+95°C/W  
.............................................................................+25°C/W  
θ
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
((V - V ) = 2.375V to 3.8V, R = 50±1% to V - 2V. Typical values are at (V - V ) = 3.3V, V = (V - 1V), V = (V - 1.5V).)  
CC  
EE  
L
CC  
CC  
EE  
IH  
CC  
IL  
CC  
(Notes 1–4)  
-40°C  
TYP  
+25°C  
+85°C  
PARAMETER SYMBOL CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
SINGLE-ENDED INPUT (CLK_SEL)  
Single-Ended  
Input High  
Voltage  
V
V
V
CC  
- 1.165  
CC  
CC  
V
Figure 1  
Figure 1  
V
V
V
V
CC  
V
IH  
CC  
CC  
CC  
- 1.165  
- 1.165  
Single-Ended  
Input Low  
Voltage  
V
V
CC  
- 1.475  
CC  
V
V
V
V
EE  
V
IL  
EE  
EE  
- 1.475  
- 1.475  
Input Current  
I
V
, V  
IH IL  
-10.0  
+150  
-10.0  
+150 -10.0  
+150  
µA  
IN  
DIFFERENTIAL INPUT (CLK_, CLK_)  
Single-Ended  
Input High  
Voltage  
V
V
V
CC  
- 1.165  
CC  
CC  
V
Figure 1  
V
V
V
V
V
CC  
V
IH  
CC  
CC  
CC  
CC  
- 1.165  
- 1.165  
Single-Ended  
Input Low  
Voltage  
VCC  
- 1.475  
V
Figure 1  
Figure 1  
V
V
V
V
V
V
V
V
IL  
EE  
EE  
EE  
EE  
EE  
EE  
- 1.475  
- 1.475  
Differential Input  
High Voltage  
V
V
V
V
CC  
IHD  
CC  
CC  
+ 1.2  
+ 1.2  
+ 1.2  
2
_______________________________________________________________________________________  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
DC ELECTRICAL CHARACTERISTICS (continued)  
((V - V ) = 2.375V to 3.8V, R = 50±1% to V - 2V. Typical values are at (V - V ) = 3.3V, V = (V - 1V), V = (V - 1.5V).)  
CC  
EE  
L
CC  
CC  
EE  
IH  
CC  
IL  
CC  
(Notes 1–4)  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Differential Input  
Low Voltage  
V
V
V
CC  
- 0.095  
CC  
CC  
V
Figure 1  
(V - V ) <  
V
V
V
EE  
V
ILD  
EE  
EE  
- 0.095  
- 0.095  
V
- V  
V
- V  
V
CC  
- VEE  
CC  
EE  
CC  
CC  
0.095  
0.095  
-10.0  
0.095  
0.095  
0.095  
0.095  
3.0V, Figure 1  
EE  
EE  
Differential Input  
Voltage  
V
-
IHD  
V
V
ILD  
(V - V ) ≥  
CC  
EE  
3.0  
3.0  
3.0  
3.0V, Figure 1  
V
V
V
, V  
,
IH, IL IHD  
Input Current  
I
+150.0 -10.0  
+150.0 -10.0  
+150.0  
µA  
IN  
ILD  
OUTPUT (Q_, Q_)  
Single-Ended  
Output High  
Voltage  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 2  
V
OH  
- 1.085 - 0.977 - 0.880 - 1.025 - 0.949 - 0.88 - 1.025 - 0.929 - 0.88  
Single-Ended  
Output Low  
Voltage  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 2  
Figure 2  
V
OL  
- V  
- 1.810 - 1.695 - 1.620 - 1.810 - 1.697 - 1.62 - 1.810 - 1.698 - 1.62  
Differential  
Output Voltage  
V
535  
718  
595  
749  
595  
769  
mV  
OH  
OL  
REFERENCE VOLTAGE OUTPUT (VBB)  
Reference  
Voltage Output  
IBB = 0.5mA  
(Note 5)  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
BB  
- 1.38 - 1.318 - 1.26 - 1.38 - 1.325 - 1.26 - 1.38 - 1.328 - 1.26  
SUPPLY  
Supply Current  
I
EE  
(Note 6)  
35  
50  
39  
55  
42  
65  
mA  
_______________________________________________________________________________________  
3
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
AC ELECTRICAL CHARACTERISTICS—PLCC Package  
((V  
are at (V  
- V ) = 2.375V to 3.8V, R = 50±1% to V  
- 2V, f 500MHz, input transition time = 125ps (20% to 80%). Typical values  
CC  
EE  
L
CC  
IN  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
- 1.5V).) (Note 7)  
CC  
EE  
IH  
CC  
IL  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Differential  
Input-to-Output  
Delay  
t
t
PLHD  
Figure 2  
525  
725  
550  
750  
575  
775  
ps  
PHLD  
Single-Ended  
Input-to-Output  
Delay  
t
t
PLH  
PHL  
Figure 3 (Note 8)  
(Note 9)  
500  
750  
550  
800  
600  
850  
ps  
Output-to-  
Output Skew  
t
50  
50  
50  
ps  
ps  
SKOO  
Part-to-Part  
Skew  
Differential input  
(Note 10)  
t
160  
190  
225  
SKPP  
f
= 0.5GHz  
IN  
Added Random  
Jitter  
t
clock pattern  
(Note 11)  
1.5  
1.5  
1.5  
ps  
RMS  
RJ  
Added  
Deterministic  
Jitter  
f
= 1.0Gbps,  
IN  
2E23 - 1 PRBS  
t
DJ  
100  
100  
100  
ps  
P-P  
pattern (Note 11)  
V
- V  
OH  
OL  
Switching  
Frequency  
f
300mV clock  
pattern  
1.5  
1.5  
1.5  
GHz  
ps  
MAX  
Output Rise/Fall  
Time (20% to  
80%)  
t , t  
Figure 2  
140  
440  
140  
440  
140  
440  
R
F
4
_______________________________________________________________________________________  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
AC ELECTRICAL CHARACTERISTICS—QFN Package  
((V  
are at (V  
- V ) = 2.375V to 3.8V, R = 50±1% to V  
- 2V, f 500MHz, input transition time = 125ps (20% to 80%). Typical values  
CC  
EE  
L
CC  
IN  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
- 1.5V).) (Note 7)  
CC  
EE  
IH  
CC  
IL  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Differential  
Input-to-Output  
Delay  
t
t
PLHD  
Figure 2  
250  
575  
298  
553  
309  
576  
ps  
PHLD  
Single-Ended  
Input-to-Output  
Delay  
t
t
PLH  
PHL  
Figure 3 (Note 8)  
(Note 9)  
253  
581  
310  
586  
324  
606  
ps  
Output-to-  
Output Skew  
t
50  
50  
50  
ps  
ps  
SKOO  
Part-to-Part  
Skew  
Differential input  
(Note 10)  
t
192  
215  
218  
SKPP  
f
= 0.5GHz  
IN  
Added Random  
Jitter  
t
clock pattern  
(Note 11)  
1.5  
95  
1.5  
95  
1.5  
95  
ps  
RMS  
RJ  
Added  
Deterministic  
Jitter  
f
= 1.0Gbps,  
IN  
2E23 - 1 PRBS  
t
DJ  
ps  
P-P  
pattern (Note 11)  
V
- V  
OH  
OL  
Switching  
Frequency  
f
300mV clock  
pattern  
1.5  
97  
1.5  
1.5  
GHz  
ps  
MAX  
Output Rise/Fall  
Time (20% to  
80%)  
t , t  
Figure 2  
411  
104  
210  
111  
232  
R
F
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters production tested at T = +25°C and guaranteed by design over the full operating temperature range.  
A
Note 4: Single-ended input operation using V is limited to (V  
- V ) = 3.0V to 3.8V.  
EE  
BB  
CC  
Note 5: Use V only for inputs that are on the same device as the V reference.  
BB  
BB  
Note 6: All pins open except V  
and V  
.
EE  
CC  
Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.  
Note 8: Measured from the 50% point of the input signal with the 50% point equal to V , to the 50% point of the output signal.  
BB  
Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Differential input signal.  
Note 10: Measured between outputs of different parts under identical condition for same-edge transition.  
Note 11: Device jitter added to the input signal. Differential input signal.  
_______________________________________________________________________________________  
5
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Typical Operating Characteristics  
(PLCC package, typical values are at (V  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
- 1.5V), R = 50±1% to V  
- 2V, f  
=
CC  
EE  
IH  
CC  
IL  
CC  
L
CC  
IN  
500MHz, input transition time = 125ps (20% to 80%).)  
OUTPUT AMPLITUDE (V - V  
)
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
OH  
OL  
EE  
vs. FREQUENCY  
50  
45  
40  
35  
30  
25  
20  
800  
700  
600  
500  
400  
300  
-40  
-15  
10  
35  
60  
85  
0
500  
1000  
1500  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
PROPAGATION DELAY  
vs. TEMPERATURE  
TRANSITION TIME vs. TEMPERATURE  
750  
650  
550  
450  
400  
360  
320  
280  
240  
200  
160  
t
PHLD  
t
R
t
F
t
PLHD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Supply Voltage. Bypass each V to V with 0.1µF and 0.01µF ceramic  
PLCC  
QFN  
CC  
EE  
capacitors. Place the capacitors as close to the device as possible, with the smaller  
value capacitor closest to the device.  
1, 8, 15, 22 4, 11, 18, 25  
V
CC  
2
3
5
6
CLK0  
Inverting Differential Clock Input 0. Internal 105kpulldown to V  
.
EE  
Reference Output Voltage. Connect to the inverting or noninverting clock input to  
provide a reference for single-ended operation. When used, bypass V to V  
BB  
with a  
V
CC  
BB  
0.01µF ceramic capacitor. Otherwise leave open.  
4
7
CLK1  
CLK1  
N.C.  
Q7  
Noninverting Differential Clock Input 1. Internal 105kpulldown to V  
.
EE  
5
8
Inverting Differential Clock Input 1. Internal 105kpulldown to V  
.
EE  
6
9
Not Connected  
7
10  
12  
13  
14  
15  
16  
17  
19  
20  
21  
22  
23  
24  
26  
27  
28  
1
Inverting Q7 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
9
Q7  
Noninverting Q7 Output. Typically terminate with 50resistor to V - 2V.  
CC  
10  
11  
12  
13  
14  
16  
17  
18  
19  
20  
21  
23  
24  
25  
26  
Q6  
Inverting Q6 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q6  
Noninverting Q6 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q5  
Inverting Q5 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q5  
Noninverting Q5 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q4  
Inverting Q4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q4  
Noninverting Q4 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q3  
Inverting Q3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q3  
Noninverting Q3 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q2  
Inverting Q2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q2  
Noninverting Q2 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q1  
Inverting Q1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q1  
Noninverting Q1 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Q0  
Inverting Q0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q0  
Noninverting Q0 Output. Typically terminate with 50resistor to V - 2V.  
CC  
V
Negative Supply Voltage  
EE  
Clock Select Input. When driven low, the CLK0 input is selected. Drive high to select  
the CLK1 Input. The CLK_SEL threshold is equal to V . Internal 75kpulldown to V  
27  
28  
2
CLK_SEL  
CLK0  
.
EE  
BB  
3
Noninverting Differential Clock Input 0. Internal 105kpulldown to V  
.
EE  
Exposed  
Pad  
Exposed  
Internally Connected to V  
EE  
_______________________________________________________________________________________  
7
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
V
CC  
V
CC  
V
IHD  
V
ILD  
V
IHD  
V
ILD  
(MAX)  
(MAX)  
(MIN)  
(MIN)  
V
- V  
ILD  
IHD  
V
V
IH  
IL  
V
BB  
V
- V  
ILD  
IHD  
V
EE  
V
EE  
DIFFERENTIAL INPUT VOLTAGE DEFINITION  
SINGLE-ENDED INPUT VOLTAGE DEFINITION  
Figure 1. Input Voltage Definitions  
CLK  
V
IHD  
V
- V  
ILD  
IHD  
V
V
CLK  
Q_  
ILD  
OH  
t
t
PHLD  
PLHD  
V
- V  
OH OL  
Q_  
V
OL  
80%  
80%  
V
V
- V  
OH OL  
0V (DIFFERENTIAL)  
- V  
OH OL  
20%  
20%  
DIFFERENTIAL OUTPUT WAVEFORM  
Q_ - Q_  
t
t
F
R
Figure 2. Differential Input (CLK_, CLK_) to Output (Q_, Q_) Delay Timing Diagram  
8
_______________________________________________________________________________________  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
CLK_ WHEN CLK_ = V  
BB  
V
IH  
V
V
BB  
BB  
V
V
OR  
IL  
IH  
V
V
t
BB  
BB  
CLK_ WHEN CLK_ = V  
BB  
V
IL  
t
PLH  
PHL  
Q_  
Q_  
V
V
OH  
OL  
V
- V  
OL  
OH  
Figure 3. Single-Ended Input (CLK_, CLK_) to Output (Q_, Q_) Delay Timing Diagram  
±(V  
- V ), whichever is less. This limit also applies  
EE  
CC  
Detailed Description  
to the difference between a single-ended input and any  
reference voltage input.  
The MAX9325 low-skew, 2:8 differential driver features  
extremely low output-to-output skew (50ps max) and  
part-to-part skew (225ps max). These features make the  
device ideal for clock and data distribution across a  
backplane or board. The device selects one of the two  
differential HSTL or LVECL/LVPECL inputs, and repeats  
them at eight differential outputs. Outputs are compati-  
ble with LVECL and LVPECL, and can directly drive 50Ω  
terminated transmission lines.  
The single-ended CLK_SEL input has a 75kpulldown  
to V that selects the default input, CLK0, CLK0, when  
EE  
CLK_SEL is left open or at V . All the differential inputs  
EE  
EE  
have 105kpulldowns to V . Internal pulldowns and a  
fail-safe circuit ensure differential low default outputs  
when the inputs are left open or at V  
.
EE  
Specifications for the high and low voltages of a differ-  
ential input (V and V ) and the differential input  
voltage (V  
IHD  
ILD  
A 2:1 mux selects between the two differential inputs,  
CLK0, CLK0 and CLK1, CLK1. The 2:1 mux is switched  
by the single-ended CLK_SEL input. A logic low selects  
the CLK0, CLK0 input. A logic high selects the CLK1,  
CLK1 input. The logic threshold for CLK_SEL is set by  
an internal V voltage reference. The selected input is  
BB  
reproduced at eight differential outputs at speeds up to  
700MHz.  
- V ) apply simultaneously.  
IHD  
ILD  
For interfacing to differential HSTL and LVPECL signals,  
these devices operate over a +2.375V to +3.8V supply  
range, allowing high-performance clock or data distrib-  
ution in systems with a nominal +2.5V or +3.3V supply.  
For differential LVECL operation, these devices operate  
from a -2.375V to -3.8V supply.  
The differential inputs can be configured to accept a  
single-ended signal when the unused complementary  
input is connected to the on-chip reference output volt-  
Single-Ended Operation  
CLK_SEL is a single-ended input with the input threshold  
internally set to V , and can be driven to V  
or V or  
EE  
BB  
CC  
age (V ). A single-ended input of at least V  
95mV  
or a differential input of at least 95mV switches the out-  
puts to the V and V levels specified in the DC  
BB  
BB  
by a single-ended LVPECL/LVECL signal. The CLK_,  
CLK_ are differential inputs but can be configured to  
accept single-ended inputs when operating at supply  
voltages greater than 2.58V. The recommended supply  
voltage for single-ended operation is 3.0V to 3.8V. A dif-  
OH  
OL  
Electrical Characteristics. The maximum magnitude of  
the differential input from CLK_ to CLK_ is ±3.0V or  
_______________________________________________________________________________________  
9
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
ferential input is configured for single-ended operation  
Traces  
Circuit board trace layout is very important to maintain  
the signal integrity of high-speed differential signals.  
Maintaining integrity is accomplished in part by reduc-  
ing signal reflections and skew, and increasing com-  
mon-mode noise immunity.  
by connecting the on-chip reference voltage, V , to an  
BB  
unused complementary input as a reference. For exam-  
ple, the differential CLK0, CLK0 input is converted to a  
noninverting, single-ended input by connecting V  
to  
BB  
CLK0 and connecting the single-ended input to CLK0.  
Similarly, an inverting input is obtained by connecting  
Signal reflections are caused by discontinuities in the  
50characteristic impedance of the traces. Avoid dis-  
continuities by maintaining the distance between differ-  
ential traces, not using sharp corners or using vias.  
Maintaining distance between the traces also increases  
common-mode noise immunity. Reducing signal skew  
is accomplished by matching the electrical length of  
the differential traces.  
V
BB  
to CLK0 and connecting the single-ended input to  
CLK0. With a differential input configured as single-  
ended (using V ), the single-ended input can be driven  
BB  
to V  
or V or with a single-ended LVPECL/LVECL  
CC  
EE  
signal.  
When configuring a differential input as a single-ended  
input, a user must ensure that the supply voltage (V  
-
CC  
V
) is greater than 2.58V. This is because the input  
EE  
Exposed-Pad Package  
The 28-lead QFN package (MAX9325EGI) has the  
exposed paddle on the bottom of the package that pro-  
vides the primary heat removal path from the IC to the  
PC board, as well as excellent electrical grounding to  
the PC board. The MAX9325EGI’s exposed pad is  
high minimum level must be at (V + 1.2V) or higher  
EE  
for proper operation. The reference voltage V  
must  
BB  
be at least (V + 1.2V) or higher for the same reason  
EE  
because it becomes the high-level input when the other  
single-ended input swings below it. The minimum V  
BB  
output for the MAX9325 is (V  
the minimum V  
in a minimum supply (V  
- 1.38V). Substituting  
CC  
internally connected to V . Do not connect the  
EE  
output for (V = V + 1.2V) results  
BB  
BB EE  
exposed pad to a separate circuit ground plane  
- V ) of 2.58V. Rounding up  
EE  
CC  
unless V and the circuit ground are the same.  
EE  
to standard supplies gives the single-ended operating  
supply ranges (V  
MAX9325.  
- V  
) of 3.0V to 3.8V for the  
EE  
CC  
Chip Information  
TRANSISTOR COUNT: 1030  
When using the V  
reference output, bypass it with a  
BB  
PROCESS: Bipolar  
0.01µF ceramic capacitor to V . If not used, leave it  
CC  
open. The V  
reference can source or sink 0.5mA,  
BB  
which is sufficient to drive two inputs.  
Functional Diagram  
Applications Information  
Q0  
Q0  
Output Termination  
MAX9325  
Terminate the outputs through 50to (V - 2V) or use  
CC  
Q1  
CLK0  
equivalent Thevenin terminations. Terminate each Q and  
Q output with identical termination on each for low output  
distortion. When a single-ended signal is taken from the  
differential output, terminate both Q_ and Q_.  
Q1  
CLK0  
Q2  
105k  
Q2  
Ensure that output currents do not exceed the current  
limits as specified in the Absolute Maximum Ratings  
table. Under all operating conditions, the device’s total  
thermal limits should be observed.  
Q3  
0
1
V
EE  
Q3  
Q4  
CLK1  
CLK1  
Supply Bypassing  
to V with high-frequency surface-  
EE  
Q4  
Q5  
Bypass each V  
CC  
105kΩ  
mount ceramic 0.1µF and 0.01µF capacitors. Place the  
capacitors as close to the device as possible with the  
0.01µF capacitor closest to the device pins.  
Q5  
Q6  
V
EE  
CLK_SEL  
Use multiple vias when connecting the bypass capaci-  
Q6  
Q7  
75kΩ  
tors to ground. When using the V  
reference output,  
BB  
bypass it with a 0.01µF ceramic capacitor to V . If the  
CC  
V
V
BB  
reference is not used, it can be left open.  
EE  
Q7  
10 ______________________________________________________________________________________  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
INCHES  
MIN MAX MIN  
D 0.385 0.395 9.78  
D1 0.350 0.356 8.89  
D2 0.290 0.330 7.37  
INCHES  
MIN MAX MIN  
0.165 0.180 4.20  
MAX  
10.03  
9.04  
N
MAX  
4.57  
3.04  
3.96  
---  
0.53  
0.81  
0.28  
20 AA  
A
A1 0.090 0.120 2.29  
A2 0.145 0.156 3.69  
8.38  
D D1 D3  
A3 0.020 ---  
0.013 0.021 0.33  
B1 0.026 0.032 0.66  
0.51  
D3 0.200 REF  
5.08 REF  
B
N
28 AB  
44 AC  
52 AD  
68 AE  
D
0.485 0.495 12.32 12.57  
D1 0.450 0.456 11.43 11.58  
D2 0.390 0.430 9.91 10.92  
D3 0.300 REF 7.62 REF  
C
e
0.009 0.011 0.23  
0.050 1.27  
D3  
D1  
D
D
0.685 0.695 17.40 17.65  
D1 0.650 0.656 16.51 16.66  
D2 0.590 0.630 14.99 16.00  
D3 0.500 REF  
12.70 REF  
D
0.785 0.795 19.94 20.19  
D1 0.750 0.756 19.05 19.20  
D2 0.690 0.730 17.53 18.54  
A2  
A
A1  
D3 0.600 REF  
15.24 REF  
B1  
B
D
0.985 0.995 25.02 25.27  
D1 0.950 0.958 24.13 24.33  
D2 0.890 0.930 22.61 23.62  
C
D2  
A3  
D3 0.800 REF  
20.32 REF  
NOTES:  
1. D1 DOES NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED  
.20mm (.008") PER SIDE.  
3. LEADS TO BE COPLANAR WITHIN .10mm.  
4. CONTROLLING DIMENSION: MILLIMETER  
5. MEETS JEDEC MO047-XX AS SHOWN IN TABLE.  
6. N = NUMBER OF PINS.  
PROPRIETARY INFORMATION  
TITLE:  
FAMILY PACKAGE OUTLINE:  
20L, 28L, 44L, 52L, 68L PLCC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0049  
D
1
______________________________________________________________________________________ 11  
2:8 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9325EQI

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, MO-047AB, LCC-28
ROCHESTER

MAX9325EQI+

9325 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, MO-047AB, LCC-28
ROCHESTER

MAX9325EQI+T

Low Skew Clock Driver, 9325 Series, 8 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9326EGI

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9326EGI

LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC28, 5 X 5 MM, QFN-28
ROCHESTER

MAX9326EGI-T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, 5 X 5 MM, QFN-28
MAXIM

MAX9326EQI

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9326EQI

LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, MO-047AB, LCC-28
ROCHESTER

MAX9326EQI+

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326EQI+T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326EQI-T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM