MAX9326EQI [MAXIM]

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver; 1 : 9差分LVPECL / LVECL / HSTL时钟和数据驱动
MAX9326EQI
型号: MAX9326EQI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1:9 Differential LVPECL/LVECL/HSTL Clock and Data Driver
1 : 9差分LVPECL / LVECL / HSTL时钟和数据驱动

驱动 时钟
文件: 总12页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2538; Rev 2; 10/02  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
General Description  
Features  
The MAX9326 low-skew, 1:9 differential driver features  
extremely low output-to-output skew (50ps max) and  
part-to-part skew (225ps max). These features make  
the device ideal for clock and data distribution across a  
backplane or board. The device repeats an HSTL or  
LVECL/LVPECL differential input at nine differential out-  
puts. Outputs are compatible with LVECL and LVPECL,  
and directly drive 50terminated transmission lines.  
50ps (max) Output-to-Output Skew  
1.5ps (max) Random Jitter  
RMS  
Guaranteed 300mV Differential Output at 1.0GHz  
+2.375V to +3.8V Supplies for Differential  
HSTL/LVPECL  
-2.375V to -3.8V Supplies for Differential LVECL  
On-Chip Reference for Single-Ended Inputs  
The differential inputs can be configured to accept a  
single-ended signal when the unused complementary  
input is connected to the on-chip reference output volt-  
Outputs Low for Inputs Open or at V  
Pin Compatible with MC100LVE111  
EE  
age V  
EE.  
All inputs have internal pulldown resistors to  
BB.  
V
The internal pulldowns and a fail-safe circuit  
ensure differential low default outputs when the inputs  
are left open or at V  
.
EE  
The MAX9326 operates over a +2.375V to +3.8V supply  
range for interfacing to differential HSTL and LVPECL  
signals. This allows high-performance clock or data dis-  
tribution in systems with a nominal +2.5V or +3.3V sup-  
ply. For LVECL operation, the device operates with a  
-2.375V to -3.8V supply.  
Ordering Information  
PART  
MAX9326EQI  
MAX9326EGI  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 PLCC  
The MAX9326 is offered in 28-lead PLCC and space-  
saving 28-lead QFN packages. The MAX9326 is speci-  
fied for operation from -40°C to +85°C.  
28 QFN 5mm x 5mm  
Functional Diagram appears at end of data sheet.  
Applications  
Precision Clock Distribution  
Low-Jitter Data Repeaters  
Pin Configurations  
TOP VIEW  
25 24 23 22 21 20 19  
Q3  
Q3  
Q4  
V
V
18  
17  
16  
15  
14  
13  
12  
EE  
26  
27  
28  
1
V
1
2
3
4
5
6
7
21 Q3  
EE  
N.C.  
CLK  
N.C.  
CLK  
20 Q3  
19 Q4  
V
CC  
CC  
MAX9326  
MAX9326  
V
CC  
18  
V
CC  
Q4  
Q5  
Q5  
CLK  
2
V
BB  
3
CLK  
17 Q4  
16 Q5  
15 Q5  
4
N.C.  
V
BB  
N.C.  
5
6
7
8
9
10 11  
PLCC  
QFN*  
*CORNER PINS AND EXPOSED PAD ARE CONNECTED TO V  
EE  
.
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
ABSOLUTE MAXIMUM RATINGS  
V
- V ...............................................................-0.3V to +4.1V  
28-Lead QFN (derate 20.8mW/°C above +70°C) .....1667mW  
CC  
EE  
Inputs (CLK, CLK) to V ...........................-0.3V to (V + 0.3V)  
θ
in Still Air.............................................................+48°C/W  
...............................................................................+2°C/W  
EE  
CC  
JA  
CLK to CLK ........................................................................ 3.0V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
θ
JC  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
V
Sink/Source Current................................................ 0.65mA  
BB  
Continuous Power Dissipation (T = +70°C)  
A
28-Lead PLCC (derate 10.5mW/°C above +70°C) .....842mW  
Human Body Model (CLK, CLK, Q_, Q_).........................2kV  
Soldering Temperature (10s)...........................................+300°C  
θ
JA  
JC  
in Still Air.............................................................+95°C/W  
.............................................................................+25°C/W  
θ
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
((V  
- V ) = 2.375V to 3.8V, R = 501% to V  
- 2V. Typical values are at (V  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
-
CC  
CC  
EE  
L
CC  
CC  
EE  
IH  
CC  
IL  
1.5V).) (Notes 14)  
-40°C  
TYP  
+25°C  
+85°C  
PARAMETER SYMBOL CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
DIFFERENTIAL INPUT (CLK_, CLK_)  
Single-Ended  
Input High  
Voltage  
V
V
V
CC  
- 1.165  
CC  
CC  
V
Figure 1  
Figure 1  
V
V
V
V
V
CC  
V
V
IH  
CC  
CC  
CC  
CC  
- 1.165  
- 1.165  
Single-Ended  
Input Low  
Voltage  
VCC  
- 1.475  
V
V
V
V
V
V
V
IL  
EE  
EE  
EE  
EE  
EE  
EE  
- 1.475  
- 1.475  
Differential Input  
High Voltage  
V
Figure 1  
Figure 1  
V
V
V
V
V
V
V
V
IHD  
CC  
CC  
CC  
CC  
CC  
CC  
+ 1.2  
+ 1.2  
+ 1.2  
Differential Input  
Low Voltage  
V
V
V
V
EE  
ILD  
EE  
EE  
- 0.095  
- 0.095  
- 0.095  
(V - V ) <  
3.0V, Figure 1  
V
- V  
V
- V  
V
CC  
- VEE  
CC  
EE  
CC  
CC  
0.095  
0.095  
-10.0  
0.095  
0.095  
0.095  
0.095  
EE  
EE  
Differential Input  
Voltage  
V
V
-
IHD  
V
ILD  
(V - V ) ≥  
CC  
EE  
3.0  
3.0  
3.0  
3.0V, Figure 1  
V
V
V
, V  
,
IH, IL IHD  
Input Current  
I
+150.0 -10.0  
+150.0 -10.0  
+150.0  
µA  
IN  
ILD  
2
_______________________________________________________________________________________  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
DC ELECTRICAL CHARACTERISTICS (continued)  
((V  
- V ) = 2.375V to 3.8V, R = 501% to V  
- 2V. Typical values are at (V  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
-
CC  
CC  
EE  
L
CC  
CC  
EE  
IH  
CC  
IL  
1.5V).) (Notes 14)  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
OUTPUT (Q_,  
)
Single-Ended  
Output High  
Voltage  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 2  
V
OH  
- 1.085 - 0.977 - 0.880 - 1.025 - 0.949 - 0.88 - 1.025 - 0.929 - 0.88  
Single-Ended  
Output Low  
Voltage  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 2  
Figure 2  
V
OL  
- V  
- 1.810 - 1.695 - 1.620 - 1.810 - 1.697 - 1.62 - 1.810 - 1.698 - 1.62  
Differential  
Output Voltage  
V
535  
718  
595  
749  
595  
769  
mV  
OH  
OL  
REFERENCE VOLTAGE OUTPUT (VBB)  
Reference  
Voltage Output  
IBB = 0.5mA  
(Note 5)  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
BB  
- 1.38 - 1.318 - 1.26 - 1.38 - 1.325 - 1.26 - 1.38 - 1.328 - 1.26  
SUPPLY  
Supply Current  
I
EE  
(Note 6)  
35  
50  
39  
55  
42  
65  
mA  
_______________________________________________________________________________________  
3
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
AC ELECTRICAL CHARACTERISTICSPLCC Package  
((V  
are at (V  
- V ) = 2.375V to 3.8V, R = 501% to V  
- 2V, f 500MHz, input transition time = 125ps (20% to 80%). Typical values  
CC  
CC  
EE  
L
CC IN  
- V ) = 3.3V, V = V(V  
- 1V), V = (V  
- 1.5V).) (Note 7)  
CC  
EE  
IH  
CC  
IL  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Differential  
Input-to-Output  
Delay  
t
t
PLHD  
PHLD  
Figure 2  
365  
615  
375  
605  
383  
653  
ps  
Single-Ended  
Input-to-Output  
Delay  
t
t
PLH  
PHL  
Figure 3 (Note 8)  
(Note 9)  
350  
635  
360  
685  
360  
705  
ps  
Output-to-  
Output Skew  
t
50  
50  
50  
ps  
ps  
SKOO  
Part-to-Part  
Skew  
Differential input  
(Note 10)  
t
190  
125  
240  
SKPP  
f
= 0.5GHz  
IN  
Added Random  
Jitter  
t
clock pattern  
(Note 11)  
1.5  
95  
1.5  
95  
1.5  
95  
ps  
RMS  
RJ  
Added  
Deterministic  
Jitter  
f
= 1.0Gbps,  
IN  
2E23 - 1 PRBS  
t
DJ  
ps  
P-P  
pattern (Note 11)  
V
- V  
OH  
OL  
Switching  
Frequency  
f
300mV clock  
pattern  
1.5  
1.5  
1.5  
GHz  
ps  
MAX  
Output Rise/Fall  
Time (20% to  
80%)  
t , t  
R
Figure 2  
140  
440  
140  
440  
140  
440  
F
4
_______________________________________________________________________________________  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
AC ELECTRICAL CHARACTERISTICSQFN Package  
((V  
are at (V  
- V ) = 2.375V to 3.8V, R = 501% to V  
- 2V, f 500MHz, input transition time = 125ps (20% to 80%). Typical values  
CC  
CC  
EE  
L
CC IN  
- V ) = 3.3V, V = V(V  
- 1V), V = (V  
- 1.5V).) (Note 7)  
CC  
EE  
IH  
CC  
IL  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Differential  
Input-to-Output  
Delay  
t
t
PLHD  
PHLD  
Figure 2  
217  
541  
238  
448  
249  
486  
ps  
Single-Ended  
Input-to-Output  
Delay  
t
t
PLH  
PHL  
Figure 3 (Note 8)  
(Note 9)  
213  
558  
230  
506  
244  
503  
ps  
Output-to-  
Output Skew  
t
50  
50  
50  
ps  
ps  
SKOO  
Part-to-Part  
Skew  
Differential input  
(Note 10)  
t
192  
215  
218  
SKPP  
f
= 0.5GHz  
IN  
Added Random  
Jitter  
t
clock pattern  
(Note 11)  
1.5  
95  
1.5  
95  
1.5  
95  
ps  
RMS  
RJ  
Added  
Deterministic  
Jitter  
f
= 1.0Gbps,  
IN  
2E23 - 1 PRBS  
t
DJ  
ps  
P-P  
pattern (Note 11)  
V
- V  
OH  
OL  
Switching  
Frequency  
f
300mV clock  
pattern  
1.5  
97  
1.5  
1.5  
GHz  
ps  
MAX  
Output Rise/Fall  
Time (20% to  
80%)  
t , t  
R
Figure 2  
411  
104  
210  
111  
232  
F
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters production tested at T = +25°C and guaranteed by design over the full operating temperature range.  
A
Note 4: Single-ended input operation using V is limited to (V  
- V ) = 3.0V to 3.8V.  
BB  
CC  
EE  
Note 5: Use V only for inputs that are on the same device as the V reference.  
BB  
BB  
Note 6: All pins open except V  
and V  
.
EE  
CC  
Note 7: Guaranteed by design and characterization. Limits are set at 6 sigma.  
Note 8: Measured from the 50% point of the input signal with the 50% point equal to V , to the 50% point of the output signal.  
BB  
Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Differential input signal.  
Note 10: Measured between outputs of different parts under identical conditions for same-edge transition.  
Note 11: Device jitter added to the input signal. Differential input signal.  
_______________________________________________________________________________________  
5
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Typical Operating Characteristics  
(PLCC package, typical values are at (V  
500MHz, input transition time = 125ps (20% to 80%).)  
- V ) = 3.3V, V = (V  
- 1V), V = (V  
- 1.5V), R = 501% to V  
- 2V, f  
=
CC  
EE  
IH  
CC  
IL  
CC  
L
CC  
IN  
OUTPUT AMPLITUDE (V - V  
OH  
)
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
OL  
EE  
vs. FREQUENCY  
50  
45  
40  
35  
30  
25  
20  
800  
700  
600  
500  
400  
300  
-40  
-15  
10  
35  
60  
85  
0
500  
1000  
1500  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
PROPAGATION DELAY  
vs. TEMPERATURE  
OUTPUT TRANSITION TIME  
vs. TEMPERATURE  
750  
650  
550  
450  
400  
360  
320  
280  
240  
200  
160  
t
PHLD  
t
R
t
PLHD  
t
F
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Supply Voltage. Bypass each V to V with 0.1µF and 0.01µF ceramic  
PLCC  
QFN  
CC  
EE  
capacitors. Place the capacitors as close to the device as possible with the smaller  
value capacitor closest to the device.  
1, 8, 15, 22 4, 11, 18, 25  
V
CC  
2
3
5
6
CLK  
Inverting Differential Clock Input. Internal 105kpulldown to V  
.
EE  
Reference Output Voltage. Connect to the inverting or noninverting clock input to  
provide a reference for single-ended operation. When used, bypass V to V  
BB  
with a  
V
CC  
BB  
0.01µF ceramic capacitor. Otherwise leave open.  
4, 27  
5
2, 7  
8
N.C.  
Q8  
Q8  
Q7  
Q7  
Q6  
Q6  
Q5  
Q5  
Q4  
Q4  
Q3  
Q3  
Q2  
Q2  
Q1  
Q1  
Q0  
Q0  
Not Connected  
Inverting Q8 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
6
9
Noninverting Q8 Output. Typically terminate with 50resistor to V - 2V.  
CC  
7
10  
12  
13  
14  
15  
16  
17  
19  
20  
21  
22  
23  
24  
26  
27  
28  
1
Inverting Q7 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
9
Noninverting Q7 Output. Typically terminate with 50resistor to V - 2V.  
CC  
10  
11  
12  
13  
14  
16  
17  
18  
19  
20  
21  
23  
24  
25  
26  
28  
Inverting Q6 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q6 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q5 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q5 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q4 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q3 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q2 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q1 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q0 Output. Typically terminate with 50resistor to V - 2V.  
CC  
V
Negative Supply Voltage  
EE  
3
CLK  
Noninverting Differential Clock Input. Internal 105kpulldown to V  
.
EE  
Exposed  
Pad  
Internally Connected to V  
EE  
_______________________________________________________________________________________  
7
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
V
CC  
V
CC  
V
IHD  
V
ILD  
V
IHD  
V
ILD  
(MAX)  
(MAX)  
(MIN)  
(MIN)  
V
- V  
ILD  
IHD  
V
V
IH  
IL  
V
BB  
V
- V  
ILD  
IHD  
V
V
EE  
EE  
DIFFERENTIAL INPUT VOLTAGE DEFINITION  
SINGLE-ENDED INPUT VOLTAGE DEFINITION  
Figure 1. Input Voltage Definitions  
CLK  
V
IHD  
V
IHD  
- V  
ILD  
V
CLK  
Q_  
ILD  
t
t
PHLD  
PLHD  
V
V
OH  
OL  
V
- V  
OH OL  
Q_  
80%  
80%  
V
V
- V  
OH OL  
0V (DIFFERENTIAL)  
- V  
OH OL  
20%  
20%  
DIFFERENTIAL OUTPUT WAVEFORM  
Q_ - Q_  
t
R
t
F
Figure 2. Differential Input (CLK, CLK) to Output (Q_, Q_) Delay Timing Diagram  
8
_______________________________________________________________________________________  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
CLK WHEN CLK = V  
BB  
V
IH  
V
V
BB  
BB  
V
V
OR  
IL  
IH  
V
V
t
BB  
BB  
CLK WHEN CLK = V  
BB  
V
IL  
t
PLH  
PHL  
Q_  
Q_  
V
V
OH  
V
- V  
OL  
OH  
OL  
Figure 3. Single-Ended Input (CLK, CLK) to Output (Q_, Q_) Delay Timing Diagram  
Specifications for the high and low voltages of a differ-  
ential input (V and V ) and the differential input  
Detailed Description  
IHD  
ILD  
The MAX9326 low-skew, 1:9 differential driver features  
extremely low output-to-output skew (50ps max) and part-  
to-part skew (225ps max). These features make the  
device ideal for clock and data distribution across a  
backplane or board. The device repeats an HSTL or  
LVECL/LVPECL differential input at nine differential out-  
puts. Outputs are compatible with LVECL and LVPECL,  
and can directly drive 50terminated transmission lines.  
voltage (V  
- V ) apply simultaneously.  
IHD  
ILD  
For interfacing to differential HSTL and LVPECL signals,  
these devices operate over a 2.375V to 3.8V supply  
range, allowing high-performance clock or data distrib-  
ution in systems with a nominal 2.5V or 3.3V supply. For  
differential LVECL operation, these devices operate  
from a -2.375V to -3.8V supply.  
The differential inputs (CLK, CLK) can be configured to  
accept a single-ended signal when the unused com-  
plementary input is connected to the on-chip reference  
Single-Ended Operation  
The differential inputs (CLK, CLK) can be configured to  
accept single-ended inputs when operating at supply  
voltages greater than 2.58V. The recommended supply  
voltage for single-ended operation is 3.0V to 3.8V. A dif-  
ferential input is configured for single-ended operation  
output voltage (V ). A single-ended input of at least  
BB  
V
95mV or a differential input of at least 95mV  
and V levels speci-  
BB  
switches the outputs to the V  
OH  
OL  
fied in the DC Electrical Characteristics. The maximum  
magnitude of the differential input from CLK to CLK is  
by connecting the on-chip reference voltage, V , to an  
BB  
unused complementary input as a reference. For exam-  
ple, the differential CLK, CLK input is converted to a non-  
3.0V or (V  
- V ), whichever is less. This limit also  
EE  
CC  
applies to the difference between a single-ended input  
and any reference voltage input.  
inverting, single-ended input by connecting V  
to CLK  
BB  
and connecting the single-ended input to CLK. Similarly,  
an inverting input is obtained by connecting V to CLK  
BB  
All the differential inputs have 105kpulldowns to V  
.
EE  
and connecting the single-ended input to CLK. With a  
Internal pulldowns and a fail-safe circuit ensure differ-  
ential low default outputs when the inputs are left open  
differential input configured as single ended (using V ),  
BB  
the single-ended input can be driven to V  
with a single-ended LVPECL/LVECL signal.  
or V or  
CC  
EE  
or at V  
.
EE  
_______________________________________________________________________________________  
9
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
When configuring a differential input as a single-ended  
input, a user must ensure that the supply voltage (V  
EE  
Signal reflections are caused by discontinuities in the  
50characteristic impedance of the traces. Avoid dis-  
continuities by maintaining the distance between differ-  
ential traces, not using sharp corners or using vias.  
Maintaining distance between the traces also increases  
common-mode noise immunity. Reducing signal skew  
is accomplished by matching the electrical length of  
the differential traces.  
-
CC  
V
) is greater than 2.58V. This is because the input high  
minimum level must be at (V + 1.2V) or higher for prop-  
EE  
er operation. The reference voltage V must be at least  
BB  
(V + 1.2V) or higher for the same reason because it  
EE  
becomes the high-level input when the other single-  
ended input swings below it. The minimum V output for  
BB  
the MAX9326 is (V  
- 1.38V). Substituting the minimum  
CC  
Exposed-Pad Package  
The 28-lead QFN package (MAX9326EGI) has the  
exposed paddle on the bottom of the package that pro-  
vides the primary heat removal path from the IC to the  
PC board, as well as excellent electrical grounding to  
the PC board. The MAX9326EGIs exposed pad is  
V
output for (V = V + 1.2V) results in a minimum  
BB  
BB EE  
supply (V  
- V ) of 2.58V. Rounding up to standard  
EE  
CC  
supplies gives the single-ended operating supply ranges  
(V - V ) of 3.0V to 3.8V for the MAX9326.  
CC  
EE  
When using the V  
reference output, bypass it with a  
BB  
0.01µF ceramic capacitor to V . If not used, leave it  
CC  
internally connected to V . Do not connect the  
EE  
open. The V  
reference can source or sink 0.5mA,  
BB  
exposed pad to a separate circuit ground plane  
which is sufficient to drive two inputs.  
unless V and the circuit ground are the same.  
EE  
Applications Information  
Chip Information  
TRANSISTOR COUNT: 1030  
Output Termination  
Terminate the outputs through 50to V - 2V or use  
CC  
PROCESS: Bipolar  
equivalent Thevenin terminations. Terminate each Q and  
Q output with identical termination on each for the lowest  
output distortion. When a single-ended signal is taken  
from the differential output, terminate both Q_ and Q_.  
Functional Diagram  
Ensure that output currents do not exceed the current  
limits as specified in the Absolute Maximum Ratings.  
Under all operating conditions, the devices total ther-  
mal limits should be observed.  
Q0  
Q0  
Q1  
Q1  
Supply Bypassing  
Bypass each V  
to V with high-frequency surface-  
EE  
CC  
Q2  
Q2  
Q3  
Q3  
mount ceramic 0.1µF and 0.01µF capacitors. Place the  
capacitors as close to the device as possible with the  
0.01µF capacitor closest to the device pins.  
Use multiple vias when connecting the bypass capaci-  
tors to ground. When using the V  
reference output,  
BB  
bypass it with a 0.01µF ceramic capacitor to V . If the  
CLK  
CLK  
CC  
Q4  
V
BB  
reference is not used, it can be left open.  
Q4  
Q5  
Q5  
Q6  
Q6  
Q7  
Q7  
Q8  
Q8  
Traces  
105k  
Circuit board trace layout is very important to maintain  
the signal integrity of high-speed differential signals.  
Maintaining integrity is accomplished in part by reduc-  
ing signal reflections and skew, and increasing com-  
mon-mode noise immunity.  
V
EE  
10 ______________________________________________________________________________________  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
INCHES  
MIN MAX MIN  
D 0.385 0.395 9.78  
D1 0.350 0.356 8.89  
D2 0.290 0.330 7.37  
INCHES  
MIN MAX MIN  
0.165 0.180 4.20  
MAX  
10.03  
9.04  
N
MAX  
4.57  
3.04  
3.96  
---  
0.53  
0.81  
0.28  
20 AA  
A
A1 0.090 0.120 2.29  
A2 0.145 0.156 3.69  
8.38  
D D1 D3  
A3 0.020 ---  
0.013 0.021 0.33  
B1 0.026 0.032 0.66  
0.51  
D3 0.200 REF  
5.08 REF  
B
N
28 AB  
44 AC  
52 AD  
68 AE  
D
0.485 0.495 12.32 12.57  
D1 0.450 0.456 11.43 11.58  
D2 0.390 0.430 9.91 10.92  
D3 0.300 REF 7.62 REF  
C
e
0.009 0.011 0.23  
0.050 1.27  
D3  
D1  
D
D
0.685 0.695 17.40 17.65  
D1 0.650 0.656 16.51 16.66  
D2 0.590 0.630 14.99 16.00  
D3 0.500 REF  
12.70 REF  
D
0.785 0.795 19.94 20.19  
D1 0.750 0.756 19.05 19.20  
D2 0.690 0.730 17.53 18.54  
A2  
A
A1  
D3 0.600 REF  
15.24 REF  
B1  
B
D
0.985 0.995 25.02 25.27  
D1 0.950 0.958 24.13 24.33  
D2 0.890 0.930 22.61 23.62  
C
D2  
A3  
D3 0.800 REF  
20.32 REF  
NOTES:  
1. D1 DOES NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED  
.20mm (.008") PER SIDE.  
3. LEADS TO BE COPLANAR WITHIN .10mm.  
4. CONTROLLING DIMENSION: MILLIMETER  
5. MEETS JEDEC MO047-XX AS SHOWN IN TABLE.  
6. N = NUMBER OF PINS.  
PROPRIETARY INFORMATION  
TITLE:  
FAMILY PACKAGE OUTLINE:  
20L, 28L, 44L, 52L, 68L PLCC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0049  
D
1
______________________________________________________________________________________ 11  
1:9 Differential LVPECL/LVECL/HSTL Clock and  
Data Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9326EQI+

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326EQI+T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326EQI-T

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, PQCC28, PLASTIC, MO-047AB, LCC-28
MAXIM

MAX9326ETI

Low Skew Clock Driver, 9 True Output(s), 0 Inverted Output(s), Bipolar, 5 X 5 MM, 0.90 MM HEIGHT, EXPOSED PAD, MO-220, QFN-28
MAXIM

MAX932CPA

Ultra Low-Power, Low-Cost Comparators with 2eference
MAXIM

MAX932CSA

Ultra Low-Power, Low-Cost Comparators with 2eference
MAXIM

MAX932CSA

SPECIALTY ANALOG CIRCUIT, PDSO8, 0.150 INCH, MS-012A, SOIC-8
ROCHESTER

MAX932CSA+

Analog Circuit, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX932CSA+T

Analog Circuit, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX932CSA-T

暂无描述
MAXIM

MAX932CUA

Ultra Low-Power, Low-Cost Comparators with 2eference
MAXIM

MAX932CUA

SPECIALTY ANALOG CIRCUIT, PDSO8, UMAX-8
ROCHESTER