MAX5853ETL [MAXIM]

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40;
MAX5853ETL
型号: MAX5853ETL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40

文件: 总18页 (文件大小:857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3196; Rev 0; 2/04  
Dual, 10-Bit, 80Msps, Current-Output DAC  
General Description  
Features  
The MAX5853 dual, 10-bit, 80Msps digital-to-analog  
converter (DAC) provides superior dynamic performance  
in wideband communication systems. The device inte-  
grates two 10-bit DAC cores, and a 1.24V reference. The  
converter supports single-ended and differential modes  
of operation. The MAX5853 dynamic performance is  
maintained over the entire 2.7V to 3.6V power-supply  
operating range. The analog outputs support a -1.0V to  
+1.25V compliance voltage.  
o 10-Bit, 80Msps Dual DAC  
o Low Power  
77mW with I = 5mA at f  
= 80MHz  
FS  
CLK  
o 2.7V to 3.6V Single Supply  
o Full Output Swing and Dynamic Performance at  
2.7V Supply  
o Superior Dynamic Performance  
78dBc SFDR at f  
= 20MHz  
The MAX5853 can also operate in interleave data mode  
to reduce the I/O pin count. This allows the converter to  
be updated on a single, 10-bit bus.  
OUT  
o Programmable Channel Gain Matching  
o Integrated 1.24V Low-Noise Bandgap Reference  
o Single-Resistor Gain Control  
The MAX5853 features digital control of channel gain  
matching to within 0.4dꢀ in siꢁteen 0.05dꢀ steps.  
Channel matching improves sideband suppression in  
analog quadrature modulation applications. The on-  
chip 1.24V bandgap reference includes a control  
amplifier that allows eꢁternal full-scale adjustments of  
both channels through a single resistor. The internal ref-  
erence can be disabled and an eꢁternal reference may  
be applied for high-accuracy applications.  
o Interleaved Data Mode  
o Single-Ended and Differential Clock Input Modes  
o Miniature 40-Pin Thin QFN Package, 6mm x 6mm  
o EV Kit Available—MAX5854 EV Kit  
Ordering Information  
The MAX5853 features full-scale current outputs of 2mA  
to 20mA and operates from a 2.7V to 3.6V single supply.  
The DAC supports three modes of power-control opera-  
tion: normal, low-power standby, and complete power-  
down. In power-down mode, the operating current is  
reduced to 1µA.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX5853ETL  
-40°C to +85°C  
40 Thin QFN-EP*  
*EP = Exposed paddle.  
The MAX5853 is packaged in a 40-pin thin QFN with  
eꢁposed paddle (EP) and is specified for the eꢁtended  
(-40°C to +85°C) temperature range.  
Pin Configuration  
TOP VIEW  
Pin-compatible, higher speed, and lower resolution  
versions are also available. Refer to the MAX5854  
(10-bit, 165Msps), the MAX5852** (8-bit, 165Msps), and  
the MAX5851** (8-bit, 80Msps) data sheets for more  
information. See Table 4 at the end of the data sheet.  
40 39 38 37 36 35 34 33  
32 31  
30  
29  
DA9/PD  
DA8/DACEN  
DA7/IDE  
DA6/REN  
DA5/G3  
DA4/G2  
DA3/G1  
DA2/G0  
DA1  
CV  
DD  
1
2
EP  
CGND  
Applications  
3
28 CLK  
Communications  
4
27  
26  
25  
24  
23  
22  
21  
CV  
DD  
SatCom, LMDS, MMDS, HFC, DSL, WLAN,  
Point-to-Point Microwave Links  
5
CLKXN  
CLKXP  
DCE  
MAX5853  
6
Wireless ꢀase Stations  
Quadrature Modulation  
Direct Digital Synthesis (DDS)  
Instrumentation/ATE  
7
8
CW  
9
DB0  
10  
DA0  
DB1  
11  
16 17 18 19 20  
15  
12  
13 14  
THIN QFN  
**Future product—contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 10-Bit, 80Msps, Current-Output DAC  
ABSOLUTE MAXIMUM RATINGS  
AV  
DV  
CV  
AV  
to AGND .........................................................-0.3V to +4V  
to DGND.........................................................-0.3V to +4V  
to CGND.........................................................-0.3V to +4V  
OUTPA, OUTNA to AGND..........(AV  
OUTPB, OUTNB to AGND..........(AV  
Maximum Current into Any Pin  
- 4.8V) to (AV  
- 4.8V) to (AV  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
to DV .............................................................-4V to +4V  
(excluding power supplies).......................................... 50mA  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
AGND to CGND.....................................................-0.3V to +0.3V  
DGND to CGND ....................................................-0.3V to +0.3V  
DA9DA0, DB9DB0, CW, DCE to DGND ...............-0.3V to +4V  
Continuous Power Dissipation (T = +70°C)  
A
40-Pin Thin QFN (derate 26.3mW/°C above +70°C)....2105mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CLK to CGND ..........................................-0.3V to (CV  
+ 0.3V)  
DD  
CLKXN, CLKXP to CGND.........................................-0.3V to +4V  
REFR, REFO to AGND .............................-0.3V to (AV + 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 80Msps, differential clock, external reference, V  
= 1.2V, I  
=
FS  
DD  
DD  
DD  
DAC  
REF  
20mA, differential output, output amplitude = 0dBFS, T = T  
to T  
, unless otherwise noted. T +25°C, guaranteed by produc-  
A
MIN  
MAX A  
tion test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
N
10  
Bits  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
R = 0  
-1.0  
0.25  
0.2  
+1.0  
+0.5  
+0.5  
+6.8  
+4.10  
L
Guaranteed monotonic, R = 0  
L
-0.5  
V
-0.5  
0.1  
OS  
Internal reference (Note1)  
External reference  
Internal reference  
-11.0  
-6.25  
1.5  
Gain Error (See Also Gain Error  
Definition Section)  
GE  
%FSR  
0.7  
150  
100  
Gain-Error Temperature Drift  
ppm/°C  
External reference  
DYNAMIC PERFORMANCE  
f
f
f
= 10MHz  
= 20MHz  
= 30MHz  
69.5  
78  
78  
72  
OUT  
OUT  
OUT  
f
A
= 80MHz,  
CLK  
= -1dBFS  
OUT  
Spurious-Free Dynamic Range to  
Nyquist  
SFDR  
dBc  
f
A
= 44MHz,  
CLK  
f
f
= 10MHz  
= 1MHz  
78  
79  
85  
82  
82  
74  
OUT  
OUT  
= -1dBFS  
OUT  
f
A
= 25MHz,  
CLK  
= -1dBFS  
OUT  
f
A
= 80MHz, f  
= 10MHz,  
= -1dBFS, span = 10MHz  
CLK  
OUT  
OUT  
Spurious-Free Dynamic Range  
Within a Window  
f
A
= 65MHz, f  
= 5MHz,  
= -1dBFS, span = 2.5MHz  
CLK  
OUT  
SFDR  
MTPR  
dBc  
dBc  
OUT  
f
A
= 25MHz, f  
= 1MHz,  
= -1dBFS, span = 2MHz  
CLK  
OUT  
OUT  
8 tones at 400kHz spacing, f  
= 78MHz,  
CLK  
Multitone Power Ratio to Nyquist  
f
= 15MHz to 18.2MHz  
OUT  
2
_______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 80Msps, differential clock, external reference, V  
= 1.2V, I  
=
FS  
DD  
DD  
DD  
DAC  
REF  
20mA, differential output, output amplitude = 0dBFS, T = T  
to T  
, unless otherwise noted. T +25°C, guaranteed by produc-  
A
MIN  
MAX A  
tion test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
8 tones at 811kHz spacing, f  
MIN  
TYP  
MAX  
UNITS  
Multitone Spurious-Free Dynamic  
Range Within a Window  
= 80MHz,  
CLK  
76  
dBc  
f
= 10.8MHz to 17.2MHz, span = 15MHz  
OUT  
f
f
f
= 10MHz  
= 20MHz  
= 30MHz  
-76  
-75  
-70  
OUT  
OUT  
OUT  
f
A
= 80MHz,  
= -1dBFS  
CLK  
OUT  
Total Harmonic Distortion to  
Nyquist (2nd- Through 8th-Order  
Harmonics Included)  
THD  
dBc  
f
A
= 44MHz,  
CLK  
f
f
= 10MHz  
= 1MHz  
-76  
-76  
OUT  
OUT  
= -1dBFS  
OUT  
f
A
= 25MHz,  
CLK  
= -1dBFS  
OUT  
Output Channel-to-Channel  
Isolation  
f
f
f
= 10MHz  
90  
dB  
dB  
OUT  
OUT  
OUT  
Channel-to-Channel Gain  
Mismatch  
= 10MHz, G[3:0] = 1000  
= 10MHz  
0.025  
0.05  
Channel-to-Channel Phase  
Mismatch  
Degrees  
dB  
f
f
= 80MHz, f  
= 80MHz, f  
= 5MHz, I = 20mA  
62  
62  
CLK  
CLK  
OUT  
FS  
Signal-to-Noise Ratio to Nyquist  
Maximum DAC Conversion Rate  
SNR  
= 5MHz, I = 5mA  
OUT  
FS  
Interleaved mode disabled, IDE = 0  
Interleaved mode enabled, IDE = 1  
80  
80  
f
Msps  
DAC  
Glitch Impulse  
5
pV-s  
ns  
Output Settling Time  
Output Rise Time  
t
S
To 0.1% error band (Note 3)  
10% to 90% (Note 3)  
12  
2.2  
2.2  
ns  
Output Fall Time  
90% to 10% (Note 3)  
ns  
ANALOG OUTPUT  
Full-Scale Output Current Range  
I
2
-1.00  
-5  
20  
+1.25  
+5  
mA  
V
FS  
Output Voltage Compliance  
Range  
Output Leakage Current  
Shutdown or standby mode  
µA  
REFERENCE  
Internal-Reference Output  
Voltage  
V
REN = 0  
1.13  
1.24  
0.5  
50  
1.32  
V
REFO  
Internal-Reference Supply  
Rejection  
AV  
varied from 2.7V to 3.6V  
mV/V  
DD  
Internal-Reference Output-  
Voltage Temperature Drift  
TCV  
REN = 0  
ppm/°C  
REFO  
_______________________________________________________________________________________  
3
Dual, 10-Bit, 80Msps, Current-Output DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 80Msps, differential clock, external reference, V  
= 1.2V, I  
=
FS  
DD  
DD  
DD  
DAC  
REF  
20mA, differential output, output amplitude = 0dBFS, T = T  
to T  
, unless otherwise noted. T +25°C, guaranteed by produc-  
A
MIN  
MAX A  
tion test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal-Reference Output Drive  
Capability  
REN = 0  
REN = 1  
50  
µA  
External-Reference Input Voltage  
Range  
0.10  
1.2  
32  
1.32  
V
Current Gain  
I
/I  
mA/mA  
FS REF  
LOGIC INPUTS (DA9DA0, DB9DB0, CW)  
0.65 x  
Digital Input-Voltage High  
Digital Input-Voltage Low  
V
V
V
IH  
DV  
DD  
0.3 x  
V
IL  
DV  
DD  
Digital Input Current  
I
-1  
+1  
µA  
pF  
IN  
Digital Input Capacitance  
C
3
IN  
SINGLE-ENDED CLOCK INPUT/OUTPUT AND  
INPUT (CLK, DCE)  
0.65 x  
CV  
Digital Input-Voltage High  
Digital Input-Voltage Low  
V
DCE = 1  
DCE = 1  
V
V
IH  
DD  
0.3 x  
CV  
V
IL  
DD  
Digital Input Current  
I
DCE = 1  
DCE = 1  
-1  
+1  
µA  
pF  
IN  
Digital Input Capacitance  
C
3
IN  
0.9 x  
CV  
Digital Output-Voltage High  
Digital Output-Voltage Low  
V
DCE = 0, I  
= 0.5mA, Figure 1  
SOURCE  
V
V
OH  
DD  
0.1 x  
CV  
V
DCE = 0, I = 0.5mA, Figure 1  
SINK  
OL  
DD  
DIFFERENTIAL CLOCK INPUTS (CLKXP/CLKXN)  
Differential Clock Input Internal  
Bias  
CV / 2  
DD  
V
Differential Clock Input Swing  
0.5  
V
Clock Input Impedance  
Measured single ended  
5
k  
POWER REQUIREMENTS  
Analog Power-Supply Voltage  
Digital Power-Supply Voltage  
Clock Power-Supply Voltage  
AV  
DV  
CV  
2.7  
2.7  
2.7  
3
3
3
3.6  
V
V
V
DD  
DD  
DD  
3.6  
3.6  
I
= 20mA (Note 2), single-ended clock  
FS  
43.2  
43.2  
5
46  
mode  
I
= 20mA (Note 2), differential clock mode  
FS  
Analog Supply Current  
I
mA  
AVDD  
I
= 2mA (Note 2), single-ended clock  
FS  
mode  
= 2mA (Note 2), differential clock mode  
I
5
FS  
4
_______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 80Msps, differential clock, external reference, V  
= 1.2V, I  
=
FS  
DD  
DD  
DD  
DAC  
REF  
20mA, differential output, output amplitude = 0dBFS, T = T  
to T  
, unless otherwise noted. T +25°C, guaranteed by produc-  
A
MIN  
MAX A  
tion test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 20mA (Note 2), single-ended clock  
MIN  
TYP  
3.4  
MAX  
UNITS  
I
FS  
4
mode  
Digital Supply Current  
Clock Supply Current  
I
mA  
DVDD  
CVDD  
I
= 20mA (Note 2), differential clock mode  
3.4  
FS  
Single-ended clock mode (DCE = 1)  
(Note 2)  
11.1  
13.5  
I
mA  
Differential clock mode (DCE = 0) (Note 2)  
16.7  
3.1  
1
Total Standby Current  
Total Shutdown Current  
I
I
I
+ I  
+ I  
3.7  
mA  
µA  
STANDBY  
AVDD  
AVDD  
DVDD  
DVDD  
CVDD  
CVDD  
I
+ I  
+ I  
SHDN  
I
I
I
I
= 20mA (Note 2)  
= 2mA (Note 2)  
= 20mA (Note 2)  
= 2mA (Note 2)  
173  
58  
191  
FS  
FS  
FS  
FS  
Single-ended clock  
mode (DCE = 1)  
190  
75  
Differential clock  
mode (DCE = 0)  
Total Power Dissipation  
P
mW  
TOT  
Standby  
9.3  
0.003  
11.1  
Shutdown  
TIMING CHARACTERISTICS (Figures 5 and 6)  
Clock  
cycles  
Propagation Delay  
1
Single-ended clock mode (DC  E = 1) (Note 4)  
Differential clock mode (DCE = 0) (Note 4)  
Single-ended clock mode (DC  E = 1) (Note 4)  
Differential clock mode (DCE = 0) (Note 4)  
1.2  
2.7  
0.8  
-0.5  
DAC Data to CLK Rise/Fall  
Setup Time  
t
ns  
ns  
ns  
ns  
DCS  
DAC Data to CLK Rise/Fall  
Hold Time  
t
DCH  
Control Word to CW Rise  
Setup Time  
t
2.5  
2.5  
CS  
Control Word to CW Rise  
Hold Time  
t
CW  
CW High Time  
CW Low Time  
t
5
5
ns  
ns  
CWH  
t
CWL  
_______________________________________________________________________________________  
5
Dual, 10-Bit, 80Msps, Current-Output DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 80Msps, differential clock, external reference, V  
= 1.2V, I  
=
FS  
DD  
DD  
DD  
DAC  
REF  
20mA, differential output, output amplitude = 0dBFS, T = T  
to T  
, unless otherwise noted. T +25°C, guaranteed by produc-  
A
MIN  
MAX A  
tion test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
DACEN = 1 to V Stable Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT  
t
3
µs  
STB  
(Coming Out of Standby)  
PD = 0 to V Stable Time  
(Coming Out of Power-Down)  
OUT  
t
500  
µs  
SHDN  
Maximum Clock Frequency at  
CLKXP/CLKXN Input  
f
80  
MHz  
CLK  
Clock High Time  
Clock Low Time  
t
CLKXP or CLKXN input  
3
3
ns  
ns  
CXH  
t
CLKXP or CLKXN input  
CXL  
CLKXP Rise to CLK Output  
Rise Delay  
t
DCE = 0  
2.7  
2.7  
ns  
ns  
CDH  
CLKXP Fall to CLK Output  
Fall Delay  
t
DCE = 0  
CDL  
Note 1: Including the internal reference voltage tolerance and reference amplifier offset.  
Note 2: f = 80Msps, f = 10MHz.  
DAC  
OUT  
Note 3: Measured single ended with 50load and complementary output connected to ground.  
Note 4: Guaranteed by design, not production tested.  
0.5mA  
TO OUTPUT  
1.6V  
PIN  
5pF  
0.5mA  
Figure 1. Load Test Circuit for CLK Outputs  
6
_______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Typical Operating Characteristics  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, I = 20mA, differential output, differential clock  
DD  
DD  
DD  
FS  
(unless otherwise noted), T = +25°C.)  
A
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f  
= 80MHz)  
CLK  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0dBFS  
0dBFS  
0dBFS  
-6dBFS  
-6dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
-12dBFS  
0
5
10 15 20 25 30 35 40  
(MHz)  
0
2
4
6
8
10 12 14 16 18 20 22  
(MHz)  
1
3
5
7
9
11  
13  
f
f
f (MHz)  
OUT  
OUT  
OUT  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f = 80MHz)  
SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f = 80MHz)  
vs. OUTPUT FREQUENCY (f  
= 65MHz)  
CLK  
CLK  
CLK  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
-6dBFS  
I
= 20mA  
OUT  
0dBFS  
AV = DV = CV = 2.7V  
DD  
DD  
DD  
AV = DV = CV = 3V  
DD  
DD  
DD  
I
= 10mA  
OUT  
I
= 5mA  
OUT  
AV = DV = CV = 3.6V  
DD  
DD  
DD  
-12dBFS  
AV = DV = CV = 3V  
DD  
DD  
DD  
0
5
10 15 20 25 30 35 40  
(MHz)  
0
5
10 15 20 25 30 35 40  
(MHz)  
0
5
10  
15  
20  
25  
30  
35  
f
f
OUT  
f
(MHz)  
OUT  
OUT  
SPURIOUS-FREE DYNAMIC RANGE vs. TEMPERATURE  
TWO-TONE INTERMODULATION DISTORTION  
(f = 80MHz, 8MHz WINDOW)  
(f  
= 80MHz, f  
= 10MHz, A  
= 0dBFS)  
CLK  
OUT  
OUT  
CLK  
83  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
= 8.2519MHz  
OUT1  
OUT2  
82  
81  
80  
79  
78  
77  
76  
75  
= 8.7030MHz  
f
f
OUT2  
OUT1  
2f  
- f  
2f  
- f  
OUT2 OUT1  
OUT1 OUT2  
-40  
-15  
10  
35  
60  
85  
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5  
(MHz)  
TEMPERATURE (°C)  
f
OUT  
_______________________________________________________________________________________  
7
Dual, 10-Bit, 80Msps, Current-Output DAC  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, I = 20mA, differential output, differential clock  
DD FS  
DD  
DD  
(unless otherwise noted), T = +25°C.)  
A
SINGLE-TONE SFDR  
= 25MHz, 2MHz WINDOW)  
8-TONE SFDR PLOT  
= 80MHz, 15MHz WINDOW)  
SINGLE-TONE SFDR  
= 80MHz, 10MHz WINDOW)  
(f  
(f  
(f  
CLK  
CLK  
CLK  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 1.0132MHz  
A = -1dBFS  
OUT  
f
= 10.0572MHz  
OUT  
OUT  
OUT  
A
= -1dBFS  
f
f
f
f
T4  
T5  
T3  
T2  
f
f
T6  
T7  
f
f
T8  
T1  
0.1  
0.5  
0.9  
1.3  
(MHz)  
1.7  
2.1  
6.5  
9.5  
12.5  
15.5  
(MHz)  
18.5  
21.5  
5
7
9
11  
(MHz)  
13  
15  
f
OUT  
f
f
OUT  
OUT  
f
= 10.825MHz  
= 11.475MHz  
= 12.425MHz  
= 13.175MHz  
f
f
f
f
= 14.825MHz  
= 15.675MHz  
= 16.475MHz  
= 17.375MHz  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
f
f
f
SINGLE-TONE FFT PLOT  
= 80MHz, NYQUIST WINDOW)  
SINGLE-TONE SFDR  
= 65MHz, 2.5MHz WINDOW)  
(f  
CLK  
(f  
CLK  
0
0
f
= 10MHz  
= 0dBFS  
OUT  
f
= 4.9901MHz  
OUT  
OUT  
A
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
A
OUT  
= -1dBFS  
0.5  
40  
3.95MHz/div  
OUTPUT TONE FREQUENCY (MHz)  
3.8  
4.3  
4.8  
5.3  
(MHz)  
5.8  
6.3  
f
OUT  
8
_______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, I = 20mA, differential output, differential clock  
DD FS  
DD  
DD  
(unless otherwise noted), T = +25°C.)  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
POWER DISSIPATION vs. CLOCK FREQUENCY  
(f  
= 10MHz, A  
= 0dBFS)  
OUT  
OUT  
0.5  
0.5  
0.4  
200  
190  
180  
170  
160  
150  
140  
0.4  
0.3  
0.3  
DIFFERENTIAL  
CLOCK DRIVE  
0.2  
0.2  
0.1  
0.1  
0
0
SINGLE-ENDED  
CLOCK DRIVE  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
150 300 450 600 750 900 1050  
DIGITAL INPUT CODE  
0
150 300 450 600 750 900 1050  
DIGITAL INPUT CODE  
20 25 30 35 40 45 50 55 60 65 70 75 80  
(MHz)  
f
CLK  
REFERENCE VOLTAGE vs. SUPPLY VOLTAGES  
(f = 80MHz, f = 10MHz)  
POWER DISSIPATION vs. SUPPLY VOLTAGES  
(f = 80MHz, f = 10MHz)  
REFERENCE VOLTAGE vs. TEMPERATURE  
CLK  
OUT  
CLK  
OUT  
1.22750  
1.22730  
1.22710  
1.22690  
1.22670  
1.22650  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
140  
DIFFERENTIAL  
CLOCK DRIVE  
SINGLE-ENDED  
CLOCK DRIVE  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGES (V)  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGES (V)  
TEMPERATURE (°C)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f  
= 80MHz)  
DYNAMIC RESPONSE RISE TIME  
DYNAMIC RESPONSE FALL TIME  
CLK  
MAX5853 toc20  
MAX5853 toc21  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0dBFS  
-6dBFS  
100mV/div  
100mV/div  
-12dBFS  
SINGLE-ENDED CLOCK DRIVE  
0
5
10 15 20 25 30 35 40  
(MHz)  
10ns/div  
10ns/div  
f
OUT  
_______________________________________________________________________________________  
9
Dual, 10-Bit, 80Msps, Current-Output DAC  
Pin Description  
PIN  
1
NAME  
FUNCTION  
Channel A Input Data Bit 9 (MSB)/Power-Down  
DA9/PD  
2
DA8/DACEN Channel A Input Data Bit 8/DAC Enable Control  
3
DA7/IDE  
Channel A Input Data Bit 7/Interleaved Data Enable  
Channel A Input Data Bit 6/Reference Enable. Setting REN = 0 enables the internal reference. Setting  
REN = 1 disables the internal reference.  
4
DA6/REN  
5
DA5/G3  
DA4/G2  
DA3/G1  
DA2/G0  
DA1  
Channel A Input Data Bit 5/Channel A Gain Adjustment Bit 3  
Channel A Input Data Bit 4/Channel A Gain Adjustment Bit 2  
Channel A Input Data Bit 3/Channel A Gain Adjustment Bit 1  
Channel A Input Data Bit 2/Channel A Gain Adjustment Bit 0  
Channel A Input Data Bit 1  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
DA0  
Channel A Input Data Bit 0 (LSB)  
DB9  
Channel B Input Data Bit 9 (MSB)  
DB8  
Channel B Input Data Bit 8  
DB7  
Channel B Input Data Bit 7  
DB6  
Channel B Input Data Bit 6  
DB5  
Channel B Input Data Bit 5  
DV  
Digital Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more details.  
Digital Ground  
DD  
DGND  
DB4  
DB3  
DB2  
DB1  
DB0  
CW  
Channel B Input Data Bit 4  
Channel B Input Data Bit 3  
Channel B Input Data Bit 2  
Channel B Input Data Bit 1  
Channel B Input Data Bit 0 (LSB)  
Active-Low Control Word Write Pulse. The control word is latched on the rising edge of CW.  
Active-Low Differential Clock Enable Input. Drive DCE low to enable the differential clock inputs  
CLKXP and CLKXN. Drive DCE high to disable the differential clock inputs and enable the single-  
ended CLK input.  
24  
25  
DCE  
Positive Differential Clock Input. With DCE = 0, CLKXP and CLKXN are enabled. With DCE = 1, CLKXP  
and CLKXN are disabled. Connect CLKXP to CGND when the differential clock is disabled.  
CLKXP  
CLKXN  
Negative Differential Clock Input. With DCE = 0, CLKXP and CLKXN are enabled. With DCE = 1, CLKXP  
26  
and CLKXN are disabled. Connect CLKXN to CV  
when the differential clock is disabled.  
DD  
Clock Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more  
27, 30  
CV  
DD  
Single-Ended Clock Input/Output. With the differential clock disabled (DCE = 1), CLK becomes a  
single-ended conversion clock input. With the differential clock enabled (DCE = 0), CLK is a single-  
ended output that mirrors the differential clock inputs CLKXP and CLKXN. See the Clock Modes section  
for more information on CLK.  
28  
CLK  
29  
31  
CGND  
REFO  
Clock Ground  
Reference Input/Output. REFO serves as a reference input when the internal reference is disabled. If the  
internal 1.24V reference is enabled, REFO serves as an output for the internal reference. When the  
internal reference is enabled, bypass REFO to AGND with a 0.1µF capacitor  
10 ______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Full-Scale Current Adjustment. To set the output full-scale current, connect an external resistor RSET  
32  
REFR  
between REFR and AGND. The output full-scale current is equal to 32 x V  
/R  
.
REFO SET  
33, 39  
34  
AV  
Analog Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more details.  
Channel B Negative Analog Current Output  
DD  
OUTNB  
OUTPB  
AGND  
OUTNA  
OUTPA  
EP  
35  
Channel B Positive Analog Current Output  
36, 40  
37  
Analog Ground  
Channel A Negative Analog Current Output  
38  
Channel A Positive Analog Current Output  
Exposed Paddle. Connect EP to the common point of all ground planes.  
Detailed Description  
The MAX5853 dual, high-speed, 10-bit, current-output  
DV  
AV  
DD  
DD  
DIGITAL  
ANALOG  
POWER  
DAC provides superior performance in communication  
systems requiring low-distortion analog-signal recon-  
struction. The MAX5853 combines two DACs and an on-  
chip 1.24V reference (Figure 2). The current outputs of  
the DACs can be configured for differential or single-  
ended operation. The full-scale output current range is  
adjustable from 2mA to 20mA to optimize power dissi-  
pation and gain control.  
POWER  
MANAGEMENT  
MANAGEMENT  
DGND  
CW  
AGND  
MAX5853  
DA0  
DA1  
DA2/G0  
DA3/G1  
DA4/G2  
DA5/G3  
DA6/REN  
DA7/IDE  
DA8/DACEN  
DA9/PD  
OUTPA  
OUTNA  
10-BIT  
DACA  
The MAX5853 accepts an input data and a DAC con-  
version rate of 80MHz. The inputs are latched on the  
rising edge of the clock whereas the output latches on  
the following rising edge.  
G0  
CHANNEL A  
GAIN  
CONTROL  
G1  
G2  
G3  
The MAX5853 features three modes of operation: normal,  
standby, and power-down (Table 2). These modes allow  
efficient power management. In power-down, the  
MAX5853 consumes only 1µA of supply current. Wake-  
up time from standby mode to normal DAC operation  
is 3µs.  
INPUT DATA  
IDE  
INTERLEAVER  
OPERATING  
MODE  
CONTROLLER  
DACEN  
PD  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
Programming the DAC  
An 8-bit control word routed through channel As data  
port programs the gain matching, reference, and the  
operational mode of the MAX5853. The control word is  
latched on the rising edge of CW. CW is independent  
of the DAC clock. The DAC clock can always remain  
running when the control word is written to the DAC.  
Table 1 and Table 2 represent the control word format  
and function.  
OUTPB  
OUTNB  
10-BIT  
DACB  
REFO  
REFR  
DCE  
CLKXP  
CLKXN  
CLK  
1.24V REFERENCE  
AND CONTROL  
AMPLIFIER  
CLOCK  
DISTRIBUTION  
The gain on channel A can be adjusted to achieve gain  
matching between two channels in a users system.  
The gain on channel A can be adjusted from -0.4dB to  
0.35dB in steps of 0.05dB by using bits G3 to G0 (see  
Table 3).  
R
SET  
CV  
DD  
CLOCK  
POWER  
MANAGEMENT  
REN  
CGND  
AGND  
Figure 2. Simplified Diagram  
______________________________________________________________________________________ 11  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Table 1. Control Word Format and Function  
MSB  
LSB  
PD  
DACEN  
IDE  
REN  
G3  
G2  
G1  
G0  
X
X
CONTROL WORD  
FUNCTION  
PD  
Power-Down. The part enters power-down mode if PD = 1.  
DAC Enable. When DACEN = 0 and PD = 0, the part enters standby mode.  
Interleaved Data Mode. IDE = 1 enables the interleaved data mode. In this mode, digital data for both  
DACEN  
IDE  
channels is applied through channel A in a multiplexed fashion. Channel B data is written on the falling edge  
of the clock signal and channel A data is written on the rising edge of the clock signal.  
Reference Enable Bit. REN = 0 activates the internal reference. REN = 1 disables the internal reference and  
requires the user to apply an external reference between 0.1V to 1.32V.  
REN  
G3  
G2  
G1  
G0  
Bit 3 (MSB) of Gain Adjust Word  
Bit 2 of Gain Adjust Word  
Bit 1 of Gain Adjust Word  
Bit 0 (LSB) of Gain Adjust Word  
Device Power-Up and  
Table 2. Configuration Modes  
States of Operation  
At power-up, the MAX5853s default configuration is inter-  
nal reference, noninterleaved input mode with a gain of  
0dB and a fully operational converter. In shutdown, the  
MAX5853 consumes only 1µA of supply current, and in  
standby the current consumption is 3.1mA. Wake-up time  
from standby mode to normal operation is 3µs.  
MODE  
PD  
DACEN IDE  
Normal operation;  
noninterleaved inputs;  
internal reference active  
0
1
1
1
0
0
1
0
1
1
Normal operation;  
noninterleaved inputs;  
internal reference disabled  
0
0
Clock Modes  
The MAX5853 allows both single-ended CMOS and dif-  
ferential clock mode operation, and supports update  
rates of up to 80Msps. These modes are selected  
through an active-low control line called DCE. In single-  
ended clock mode (DCE = 1), the CLK pin functions as  
an input, which accepts a user-provided single-ended  
clock signal. Data is written to the converter on the rising  
edge of the clock. The DAC outputs (previous data) are  
updated simultaneously on the same edge.  
Normal operation;  
interleaved inputs;  
internal reference disabled  
Standby  
0
1
0
0
X
1
X
X
X
X
X
X
Power-down  
Power-up  
X = Dont care.  
If the DCE pin is pulled low, the MAX5853 operates in  
differential clock mode. In this mode, the clock signal  
has to be applied to the differential clock input pins  
CLKXP/CLKXN. The differential input accepts an input  
Table 3. Gain Difference Setting  
range of 0.5V  
and a common-mode range of 1V to  
P-P  
GAIN ADJUSTMENT ON  
G3  
G2  
G1  
G0  
(CV  
- 0.5V), making the part ideal for low-input ampli-  
DD  
CHANNEL A (dB)  
tude clock drives. CLKXP/CLKXN also help to minimize  
the jitter, and allow the user to connect a crystal oscilla-  
tor directly to the MAX5853.  
+0.4  
0
0
1
1
0
0
1
0
0
1
0
0
1
-0.35  
The CLK pin now becomes an output, and provides a sin-  
gle-ended replica of the differential clock signal, which  
may be used to synchronize the input data. Data is writ-  
ten to the device on the rising edge of the CLK signal.  
12 ______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
AV  
DD  
OPTIONAL EXTERNAL BUFFER  
FOR HEAVIER LOADS  
10µF  
0.1µF  
MAX4040  
1.24V  
BANDGAP  
REFERENCE  
AGND  
REN = 0  
1.24V  
BANDGAP  
REFERENCE  
AV  
DD  
REN = 1  
REFO  
MAX6520  
CURRENT-  
SOURCE  
ARRAY  
I
FS  
C
COMP  
*
EXTERNAL  
1.2V  
REFERENCE  
I
REFO  
REFR  
REF  
REFR  
AGND  
CURRENT-  
SOURCE  
ARRAY  
I
FS  
I
V
R
REF  
REF  
R
I
=
SET  
REF  
SET  
AGND  
MAX5853  
R
SET  
AGND  
MAX5853  
*COMPENSATION CAPACITOR (C  
100nF).  
COMP  
AGND  
Figure 3. Setting I with the Internal 1.24V Reference and the  
FS  
Figure 4. MAX5853 with External Reference  
Control Amplifier  
Internal Reference and Control Amplifier  
The MAX5853 provides an integrated 50ppm/°C, 1.24V,  
low-noise bandgap reference that can be disabled and  
overridden with an external reference voltage. REFO  
serves either as an external reference input or an inte-  
grated reference output. If REN = 0, the internal refer-  
ence is selected and REFO provides a 1.24V (50µA)  
output. Buffer REFO with an external amplifier, when  
driving a heavy load.  
External Reference  
To disable the internal reference of the MAX5853, set  
REN = 1. Apply a temperature-stable, external reference  
to drive the REFO pin and set the full-scale output  
(Figure 4). For improved accuracy and drift performance,  
choose a fixed output voltage reference such as the  
1.2V, 25ppm/°C MAX6520 bandgap reference.  
Detailed Timing  
The MAX5853 accepts an input data and DAC con-  
version rate of up to 80Msps. The input latches on the  
rising edge of the clock, whereas the output latches  
on the following rising edge.  
The MAX5853 also employs a control amplifier  
designed to simultaneously regulate the full-scale out-  
put current (I ) for both outputs of the devices.  
FS  
Calculate the output current as:  
Figure 5 depicts the write cycle of the two DACs in non-  
interleaved mode.  
I
FS  
= 32 I  
REF  
where I  
REFO  
is the reference output current (I  
=
SET  
REF  
REF  
The MAX5853 can also operate in an interleaved data  
mode. Programming the IDE bit with a high level activates  
this mode (Tables 1 and 2). In interleaved mode, data for  
both DAC channels is written through input port A.  
Channel B data is written on the falling edge of the clock  
signal and then channel A data is written on the following  
rising edge of the clock signal. Both DAC outputs (chan-  
nel A and B) are updated simultaneously on the next fol-  
lowing rising edge of the clock. The interleaved data  
mode is attractive for applications where lower data rates  
are acceptable and interfacing on a single 10-bit bus is  
desired (Figure 6).  
V
/ R ) and I is the full-scale output current. R  
SET  
FS  
is the reference resistor that determines the amplifier out-  
put current of the MAX5853 (Figure 3). This current is mir-  
rored into the current-source array where I is equally  
FS  
distributed between matched current segments and  
summed to valid output current readings for the DACs.  
______________________________________________________________________________________ 13  
Dual, 10-Bit, 80Msps, Current-Output DAC  
t
t
CXL  
CXH  
CLKXN  
CLKXP  
t
CDL  
t
CDH  
CLK  
OUTPUT  
t
CWL  
CW  
t
CS  
t
CW  
t
DCS  
t
DCH  
CONTROL  
WORD  
DA0DA9  
DACA - 1  
DACA  
DACA + 1  
DACA + 2  
DACA + 3  
OUTNA  
OUTPA  
XXXX  
(CONTROL WORD DATA)  
DACA - 1  
DACA  
DACA + 1  
DACA + 2  
DACA + 3  
t
DCS  
t
DCH  
DB0DB9  
DACB - 1  
DACB  
DACB + 1  
DACB + 2  
XXXX  
DACB + 3  
OUTNB  
OUTPB  
DACB - 1  
DACB  
DACB + 1  
DACB + 2  
XXXX  
DACB + 3  
Figure 5. Timing Diagram for Noninterleaved Data Mode (IDE = 0)  
t
t
CXH  
CXL  
CLKXN  
CLKXP  
t
t
CDH  
CDL  
CLK  
OUTPUT  
t
CWL  
CW  
t
t
t
t
t
CS  
t
CW  
DCS  
DCH  
DCS  
DCH  
CONTROL  
WORD  
DA0–DA9  
OUTNA  
DACA  
DACB + 1  
DACA + 1  
DACB + 2  
DACA + 2  
DACA - 1  
DACB - 1  
DACA  
DACB  
DACA + 1  
OUTPA  
OUTNB  
DACB + 1  
OUTPB  
Figure 6. Timing Diagram for Interleaved Data Mode (IDE = 1)  
14 ______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
AV  
DV  
CV  
DD DD  
DD  
AV  
DV  
CV  
DD DD  
DD  
50  
V
,
50Ω  
OUTA  
SINGLE ENDED  
OUTPA  
OUTPA  
OUTNA  
DA0DA9  
DA0DA9  
1/2  
1/2  
100Ω  
MAX5853  
MAX5853  
10  
10  
OUTNA  
50Ω  
50Ω  
50Ω  
V
,
50Ω  
OUTB  
SINGLE ENDED  
OUTPB  
OUTPB  
OUTNB  
DB0DB9  
1/2  
DB0DB9  
1/2  
100Ω  
MAX5853  
MAX5853  
10  
10  
OUTNB  
50Ω  
50Ω  
AGND DGND CGND  
AGND DGND CGND  
Figure 7. Application with Output Transformer Performing  
Differential-to-Single-Ended Conversion  
Figure 8. Application with DC-Coupled Differential Outputs  
thesis. In these applications, information bandwidth can  
extend from 10MHz down to several hundred kilohertz.  
DC-coupling is desirable to eliminate long discharge  
time constants that are problematic with large, expen-  
sive coupling capacitors. Analog quadrature upcon-  
verters have a DC common-mode input requirement of  
typically 0.7V to 1.0V. The MAX5853 differential I/Q out-  
puts can maintain the desired full-scale level at the  
required 0.7V to 1.0V DC common-mode level when  
powered from a single 2.85V ( 5%) supply. The  
MAX5853 meets this low-power requirement with mini-  
mal reduction in dynamic range while eliminating the  
need for level-shifting resistor networks.  
Applications Information  
Differential-to-Single-Ended Conversion  
The MAX5853 exhibits excellent dynamic performance  
to synthesize a wide variety of modulation schemes,  
including high-order QAM modulation with OFDM.  
Figure 7 shows a typical application circuit with output  
transformers performing the required differential-to-  
single-ended signal conversion. In this configuration,  
the MAX5853 operates in differential mode, which  
reduces even-order harmonics, and increases the  
available output power.  
Differential DC-Coupled Configuration  
Figure 8 shows the MAX5853 output operating in differ-  
ential, DC-coupled mode. This configuration can be  
used in communication systems employing analog  
quadrature upconverters and requiring a baseband  
sampling, dual-channel, high-speed DAC for I/Q syn-  
Power Supplies, Bypassing,  
Decoupling, and Layout  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5853 performance. Unwanted digital  
crosstalk can couple through the input, reference,  
______________________________________________________________________________________ 15  
Dual, 10-Bit, 80Msps, Current-Output DAC  
power-supply, and ground connections, which can  
affect dynamic specifications, like signal-to-noise ratio  
or spurious-free dynamic range. In addition, electro-  
magnetic interference (EMI) can either couple into or  
be generated by the MAX5853. Observe the grounding  
and power-supply decoupling guidelines for high-  
speed, high-frequency applications. Follow the power  
supply and filter configuration to realize optimum  
dynamic performance.  
In this package, the data converter die is attached to an  
EP leadframe with the back of this frame exposed at the  
package bottom surface, facing the PC board side of  
the package. This allows a solid attachment of the pack-  
age to the PC board with standard infrared (IR) flow sol-  
dering techniques. A specially created land pattern on  
the PC board, matching the size of the EP (4.1mm ✕  
4.1mm), ensures the proper attachment and grounding  
of the DAC. Designing vias* into the land area and  
implementing large ground planes in the PC board  
design allows for highest performance operation of the  
DAC. Use an array of 3 3 vias (0.3mm diameter per  
via hole and 1.2mm pitch between via holes) for this 40-  
pin thin QFN-EP package (package code: T4066-1).  
Use of a multilayer printed circuit (PC) board with sepa-  
rate ground and power-supply planes is recommend-  
ed. Run high-speed signals on lines directly above the  
ground plane. The MAX5853 has separate analog and  
digital ground buses (AGND, CGND, and DGND,  
respectively). Provide separate analog, digital, and  
clock ground sections on the PC board with only one  
point connecting the three planes. The ground connec-  
tion points should be located underneath the device  
and connected to the exposed paddle. Run digital sig-  
nals above the digital ground plane and analog/clock  
signals above the analog/clock ground plane. Digital  
signals should be kept away from sensitive analog,  
clock, and reference inputs. Keep digital signal paths  
short and metal trace lengths matched to avoid propa-  
gation delay and data skew mismatch.  
Dynamic Performance  
Parameter Definitions  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of all essential harmon-  
ics (within a Nyquist window) of the input signal to the  
fundamental itself. This can be expressed as:  
2
2
2
2
V
+ V + V ...+...V  
3 4 N  
2
THD = 20 × log  
V
1
The MAX5853 includes three separate power-supply  
inputs: analog (AV ), digital (DV ), and clock  
DD  
DD  
(CV ). Use a single linear regulator power source to  
DD  
where V1 is the fundamental amplitude, and V2 through  
VN are the amplitudes of the 2nd through Nth order har-  
monics. The MAX5853 uses the first seven harmonics  
for this calculation.  
branch out to three separate power-supply lines (AV  
,
DD  
DV , CV ) and returns (AGND, DGND, CGND).  
DD  
DD  
Filter each power-supply line to the respective return  
line using LC filters comprising ferrite beads and 10µF  
capacitors. Filter each supply input locally with 0.1µF  
ceramic capacitors to the respective return lines.  
Note: To maintain the dynamic performance of the  
Electrical Characteristics, ensure the voltage differ-  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal component) to the RMS value  
of their next-largest spectral component. SFDR is usu-  
ally measured in dBc with respect to the carrier fre-  
quency amplitude or in dBFS with respect to the DACs  
full-scale range. Depending on its test condition, SFDR  
is observed within a predefined window or to Nyquist.  
ence between DV , AV , and CV does not  
DD  
DD  
DD  
exceed 150mV.  
Thermal Characteristics and Packaging  
Thermal Resistance  
Multitone Power Ratio (MTPR)  
A series of equally spaced tones are applied to the DAC  
with one tone removed from the center of the range.  
MTPR is defined as the worst-case distortion (usually a  
3rd-order harmonic product of the fundamental frequen-  
cies), which appears as the largest spur at the frequency  
of the missing tone in the sequence. This test can be per-  
formed with any number of input tones; however, four and  
eight tones are among the most common test conditions  
for CDMA- and GSM/EDGE-type applications.  
40-lead thin QFN-EP:  
θ
JA  
= 38°C/W  
The MAX5853 is packaged in a 40-pin thin QFN-EP  
package, providing greater design flexibility, increased  
thermal efficiency, and optimized AC performance of  
the DAC. The EP enables the implementation of  
grounding techniques, which are necessary to ensure  
highest performance operation.  
*Vias connect the land pattern to internal or external copper planes.  
16 ______________________________________________________________________________________  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles to its  
new output value to within the converters specified  
accuracy.  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in dBc of either out-  
put tone to the worst 3rd-order (or higher) IMD products.  
Static Performance Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. For a DAC,  
the deviations are measured at every individual step.  
Glitch Impulse  
A glitch is generated when a DAC switches between  
two codes. The largest glitch is usually generated  
around the midscale transition, when the input pattern  
transitions from 011111 to 100000. This occurs due  
to timing variations between the bits. The glitch impulse  
is found by integrating the voltage of the glitch at the  
midscale transition over time. The glitch impulse is usu-  
ally specified in pV-s.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (DNL) is the difference between  
an actual step height and the ideal value of 1 LSB. A  
DNL error specification no more negative than -1 LSB  
guarantees monotonic transfer function.  
Table 4. Part Selection Table  
Offset Error  
Offset error is the current flowing from positive DAC  
output when the digital input code is set to zero. Offset  
error is expressed in LSBs.  
PART  
MAX5851  
SPEED (Msps)  
RESOLUTION  
8-bit, dual  
80  
165  
80  
MAX5852  
MAX5853  
MAX5854  
8-bit, dual  
10-bit, dual  
10-bit, dual  
Gain Error  
A gain error is the difference between the ideal and the  
actual full-scale output current on the transfer curve,  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step. The ideal current is  
165  
Chip Information  
TRANSISTOR COUNT: 9,035  
PROCESS: CMOS  
defined by reference voltage at V  
/ I  
x 32.  
REFO REF  
______________________________________________________________________________________ 17  
Dual, 10-Bit, 80Msps, Current-Output DAC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36,40L THIN QFN, 6x6x0.8 mm  
1
D
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PACKAGE OUTLINE  
36, 40L THIN QFN, 6x6x0.8 mm  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
2
D
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5853ETL+

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5853ETL+TGH7

D/A Converter,
MAXIM

MAX5854

Dual, 10-Bit, 165Msps, Current-Output DAC
MAXIM

MAX5854ETL

Dual, 10-Bit, 165Msps, Current-Output DAC
MAXIM

MAX5854ETL+

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5854ETL+T

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5854ETL-T

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5855

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM

MAX5855EVKIT

MAX5855 Evaluation Kit
MAXIM

MAX5855EXE

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM

MAX5855EXE+

D/A Converter,
MAXIM

MAX5855EXET

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM