MAX5854ETL+ [MAXIM]

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40;
MAX5854ETL+
型号: MAX5854ETL+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40

转换器
文件: 总18页 (文件大小:2205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
General Description  
Features  
10-Bit, 165Msps Dual DAC  
The MAX5854 dual, 10-bit, 165Msps digital-to-analog  
converter (DAC) provides superior dynamic performance  
in wideband communication systems. The device inte-  
grates two 10-bit DAC cores, and a 1.24V reference. The  
MAX5854 supports single-ended and differential modes  
of operation. The dynamic performance is maintained  
over the entire 2.7V to 3.6V power-supply operating  
range. The analog outputs support a -1.0V to +1.25V  
compliance voltage.  
Low Power  
• 190mW with I = 20mA at f  
FS  
= 165MHz  
CLK  
2.7V to 3.6V Single Supply  
Full Output Swing and Dynamic Performance at  
2.7V Supply  
Superior Dynamic Performance  
• 73dBc SFDR at f  
= 40MHz  
OUT  
• UMTS ACLR = 65.5dB at f  
= 30.7MHz  
The MAX5854 can operate in interleaved data mode to  
reduce the I/O pin count. This allows the converter to be  
updated on a single, 10-bit bus.  
OUT  
Programmable Channel Gain Matching  
Integrated 1.24V Low-Noise Bandgap Reference  
Single-Resistor Gain Control  
The MAX5854 features digital control of channel gain  
matching to within ±0.4dB in sixteen 0.05dB steps.  
Channel matching improves sideband suppression in  
analog quadrature modulation applications. The on-chip  
1.24V bandgap reference includes a control amplifier that  
allows external full-scale adjustments of both channels  
through a single resistor. The internal reference can be  
disabled and an external reference can be applied for  
high-accuracy applications.  
Interleaved Data Mode  
Single-Ended and Differential Clock Input Modes  
Miniature 40-Pin TQFN Package, 6mm x 6mm  
EV Kit Available—MAX5854 EV Kit  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
The MAX5854 features full-scale current outputs of 2mA  
to 20mA and operates from a 2.7V to 3.6V single supply.  
The DAC supports three modes of power-control opera-  
tion: normal, low-power standby, and complete power-  
down. In power-down mode, the operating current is  
reduced to 1μA.  
MAX5854ETL  
-40°C to +85°C  
40 Thin QFN-EP*  
*EP = Exposed paddle.  
Pin Configuration  
TOP VIEW  
The MAX5854 is packaged in a 40-pin TQFN with  
exposed paddle (EP) and is specified for the extended  
(-40°C to +85°C) temperature range.  
40 39 38 37 36 35 34 33  
32 31  
Pin-compatible, lower speed, and lower resolution ver-  
sions are also available. Refer to the MAX5853 (10-  
bit, 80Msps), the MAX5852 (8-bit, 165Msps), and the  
MAX5851 (8-bit, 80Msps) data sheets for more informa-  
tion. See Table 4 at the end of the data sheet.  
30  
29  
DA9/PD  
DA8/DACEN  
DA7/IDE  
DA6/REN  
DA5/G3  
DA4/G2  
DA3/G1  
DA2/G0  
DA1  
CV  
DD  
1
2
EP  
CGND  
3
28 CLK  
4
27  
26  
25  
24  
23  
22  
21  
CV  
DD  
5
CLKXN  
CLKXP  
DCE  
MAX5854  
6
Applications  
Communications  
SatCom, LMDS, MMDS, HFC, DSL, WLAN,  
Point-to-Point Microwave Links  
Wireless Base Stations  
7
8
CW  
9
DB0  
10  
DA0  
DB1  
11  
16 17 18 19 20  
12  
15  
Quadrature Modulation  
13 14  
Direct Digital Synthesis (DDS)  
Instrumentation/ATE  
TQFN  
19-3197; Rev 0; 2/04  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Absolute Maximum Ratings  
AV , DV , CV to AGND, DGND, CGND .......-0.3V to +4V  
AGND to DGND, DGND to CGND,  
DD  
DD  
DD  
DA9–DA0, DB9–DB0, CW, DCE to AGND,  
DGND, CGND .....................................................-0.3V to +4V  
CLKXN, CLKXP to CGND.......................................-0.3V to +4V  
AGND to CGND................................................-0.3V to +0.3V  
Maximum Current into Any Pin  
(excluding power supplies)...........................................±50mA  
OUTP_, OUTN_ to AGND....................-1.25V to (AV  
CLK to DGND.........................................-0.3V to (DV  
REFR, REFO to AGND ..........................-0.3V to (AV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
40-Pin TQFN-EP (derate 23.3mW/°C  
above +70°C) ..............................................................1.860W  
Operating Temperature Range........................... -40°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
DD  
DD  
DD  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 165Msps, differential clock, external reference, V  
= 1.2V,  
DD  
DD  
DD  
DAC  
REF  
I
= 20mA, output amplitude = 0dB FS, differential output, T = T  
to T  
, unless otherwise noted. T ≥ +25°C guaranteed by  
FS  
A
MIN  
MAX  
A
production test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
10  
Bits  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
R = 0  
-1.0  
-0.5  
-0.5  
-11.0  
-6.25  
±0.25  
±0.2  
±0.1  
±1.5  
±0.7  
±150  
±100  
+1.0  
+0.5  
+0.5  
+6.8  
+4.10  
L
Guaranteed monotonic, R = 0  
L
V
OS  
Internal reference (Note1)  
External reference  
Internal reference  
Gain Error (See Also Gain Error  
Definition Section)  
GE  
%FSR  
Gain-Error Temperature Drift  
ppm/°C  
External reference  
DYNAMIC PERFORMANCE  
f
f
f
f
f
f
= 10MHz  
= 20MHz  
= 40MHz  
= 10MHz  
= 20MHz  
= 30MHz  
69.4  
78  
77  
73  
77  
77  
76  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
A
= 165MHz,  
CLK  
= -1dBFS  
OUT  
Spurious-Free Dynamic Range  
to Nyquist  
SFDR  
dBc  
f
= 100MHz,  
CLK  
A
= -1dBFS  
OUT  
f
A
= 25MHz,  
CLK  
f
= 1MHz  
79  
83  
84  
82  
74  
OUT  
= -1dBFS  
OUT  
f
A
= 165MHz, f  
= 10MHz,  
OUT  
CLK  
= -1dBFS, span = 10MHz  
OUT  
Spurious-Free Dynamic Range  
Within a Window  
f
A
= 100MHz, f  
= 5MHz,  
OUT  
CLK  
SFDR  
MTPR  
dBc  
dBc  
= -1dBFS, span = 4MHz  
OUT  
f
A
= 25MHz, f  
= 1MHz,  
CLK  
OUT  
= -1dBFS, span = 2MHz  
OUT  
8 tones at 400kHz spacing, f  
f
= 78MHz,  
CLK  
Multitone Power Ratio to Nyquist  
= 15MHz to 18.2MHz  
OUT  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Electrical Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 165Msps, differential clock, external reference, V  
= 1.2V,  
DD  
DD  
DD  
DAC  
REF  
I
= 20mA, output amplitude = 0dB FS, differential output, T = T  
to T  
, unless otherwise noted. T ≥ +25°C guaranteed by  
FS  
A
MIN  
MAX  
A
production test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Multitone Spurious-Free  
Dynamic Range Within a  
Window  
8 tones at 2.1MHz spacing,  
f
= 165MHz, f  
= 28.3MHz to 45.2MHz,  
70  
dBc  
CLK  
OUT  
span = 50MHz  
Adjacent Channel Power Ratio  
with UMTS  
f
f
= 30.72MHz, RBW = 30kHz,  
= 122.88MHz  
OUT  
CLK  
ACLR  
65.5  
dB  
f
f
f
f
f
f
= 10MHz  
= 20MHz  
= 40MHz  
= 10MHz  
= 20MHz  
= 30MHz  
-76  
-74  
-71  
-75  
-74  
-73  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
A
= 165MHz,  
CLK  
= -1dBFS  
OUT  
Total Harmonic Distortion to  
Nyquist (2nd- Through 8th-Order  
Harmonics Included)  
THD  
dBc  
f
= 100MHz,  
CLK  
A
= -1dBFS  
OUT  
f
A
= 25MHz,  
CLK  
f
= 1MHz  
-76  
90  
OUT  
= -1dBFS  
OUT  
Output Channel-to-Channel  
Isolation  
f
f
f
= 10MHz  
dB  
dB  
OUT  
OUT  
OUT  
Channel-to-Channel Gain  
Mismatch  
= 10MHz, G[3:0] = 1000  
= 10MHz  
0.025  
0.05  
Channel-to-Channel Phase  
Mismatch  
Degrees  
f
f
f
f
= 165MHz, f  
= 165MHz, f  
= 10MHz, I = 20mA  
60.5  
61  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
FS  
= 10MHz, I = 5mA  
FS  
Signal-to-Noise Ratio to Nyquist  
Maximum DAC Conversion Rate  
SNR  
dB  
= 65MHz, f  
= 10MHz, I = 20mA  
62  
OUT  
OUT  
FS  
= 65MHz, f  
= 10MHz, I = 5mA  
62  
FS  
Interleaved mode disabled, IDE = 0  
Interleaved mode enabled, IDE = 1  
165  
200  
100  
5
f
Msps  
DAC  
82.5  
Glitch Impulse  
pV-s  
ns  
Output Settling Time  
Output Rise Time  
Output Fall Time  
ANALOG OUTPUT  
t
To ±0.1% error band (Note 3)  
10% to 90% (Note 3)  
12  
S
2.2  
2.2  
ns  
90% to 10% (Note 3)  
ns  
Full-Scale Output Current  
Range  
I
2
20  
mA  
FS  
Output Voltage Compliance  
Range  
-1.00  
-5  
+1.25  
+5  
V
Output Leakage Current  
Shutdown or standby mode  
µA  
REFERENCE  
Internal-Reference Output  
Voltage  
V
REFO  
1.13  
1.24  
1.32  
V
REN = 0  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Electrical Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 165Msps, differential clock, external reference, V  
= 1.2V,  
DD  
DD  
DD  
DAC  
REF  
I
= 20mA, output amplitude = 0dB FS, differential output, T = T  
to T  
, unless otherwise noted. T ≥ +25°C guaranteed by  
FS  
A
MIN  
MAX  
A
production test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal-Reference Supply  
Rejection  
AV  
varied from 2.7V to 3.6V  
0.5  
mV/V  
DD  
Internal-Reference Output-  
Voltage Temperature Drift  
TCV  
±50  
50  
ppm/°C  
µA  
REN = 0  
REN = 0  
REN = 1  
REFO  
Internal-Reference Output Drive  
Capability  
External-Reference Input  
Voltage Range  
0.10  
1.2  
32  
1.32  
V
Current Gain  
I
/I  
mA/mA  
FS REF  
LOGIC INPUTS (DA9–DA0, DB9–DB0, CW)  
0.65 x  
DV  
Digital Input-Voltage High  
V
IH  
V
V
DD  
0.3 x  
DD  
Digital Input-Voltage Low  
V
IL  
DV  
Digital Input Current  
I
-1  
+1  
µA  
pF  
IN  
Digital Input Capacitance  
C
3
IN  
SINGLE-ENDED CLOCK INPUT/OUTPUT AND DCE INPUT (CLK, DCE)  
0.65 x  
Digital Input-Voltage High  
V
V
V
DCE = 1  
IH  
CV  
DD  
0.3 x  
CV  
Digital Input-Voltage Low  
V
I
DCE = 1  
IL  
DD  
Digital Input Current  
-1  
+1  
µA  
pF  
DCE = 1  
DCE = 1  
IN  
Digital Input Capacitance  
C
3
IN  
0.9 x  
CV  
Digital Output-Voltage High  
Digital Output-Voltage Low  
V
V
V
DCE = 0, I  
= 0.5mA, Figure 1  
OH  
SOURCE  
DD  
0.1 x  
CV  
V
DCE = 0, I  
= 0.5mA, Figure 1  
OL  
SINK  
DD  
DIFFERENTIAL CLOCK INPUTS (CLKXP/CLKXN)  
Differential Clock Input Internal  
Bias  
CV /2  
DD  
V
Differential Clock Input Swing  
0.5  
V
Clock Input Impedance  
Measured single ended  
5
kΩ  
POWER REQUIREMENTS  
Analog Power-Supply Voltage  
Digital Power-Supply Voltage  
Clock Power-Supply Voltage  
AV  
2.7  
2.7  
2.7  
3
3
3
3.6  
V
V
V
DD  
DV  
CV  
3.6  
3.6  
DD  
DD  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Electrical Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 165Msps, differential clock, external reference, V  
= 1.2V,  
DD  
DD  
DD  
DAC  
REF  
I
= 20mA, output amplitude = 0dB FS, differential output, T = T  
to T  
, unless otherwise noted. T ≥ +25°C guaranteed by  
FS  
A
MIN  
MAX  
A
production test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
43.2  
43.2  
5
MAX  
UNITS  
I
I
I
I
I
I
= 20mA (Note 2), single-ended clock mode  
= 20mA (Note 2), differential clock mode  
= 2mA (Note 2), single-ended clock mode  
= 2mA (Note 2), differential clock mode  
= 20mA (Note 2), single-ended clock mode  
= 20mA (Note 2), differential clock mode  
46  
FS  
FS  
FS  
FS  
FS  
FS  
Analog Supply Current  
I
mA  
AVDD  
5
6.2  
6.2  
13.7  
24  
7.5  
16.5  
3.7  
Digital Supply Current  
Clock Supply Current  
I
I
mA  
mA  
DVDD  
CVDD  
Single-ended clock mode (DCE = 1) (Note 2)  
Differential clock mode (DCE = 0) (Note 2)  
Total Standby Current  
Total Shutdown Current  
I
I
+ I  
+ I  
DVDD CVDD  
3.1  
1
mA  
µA  
STANDBY AVDD  
I
I
+ I  
+ I  
DVDD CVDD  
SHDN  
AVDD  
I
I
= 20mA (Note 2)  
= 2mA (Note 2)  
= 20mA (Note 2)  
= 2mA (Note 2)  
190  
75  
210  
Single-ended clock  
mode (DCE = 1)  
FS  
FS  
I
220  
106  
9.3  
0.003  
Differential clock mode FS  
Total Power Dissipation  
P
mW  
TOT  
(DCE = 0)  
I
FS  
Standby  
11.1  
Shutdown  
TIMING CHARACTERISTICS (Figure 5, Figure 6)  
Clock  
cycles  
Propagation Delay  
1
1.2  
2.7  
0.8  
-0.5  
Single-ended clock mode (DCE = 1) (Note 4)  
Differential clock mode (DCE = 0) (Note 4)  
Single-ended clock mode (DCE = 1) (Note 4)  
Differential clock mode (DCE = 0) (Note 4)  
DAC Data to CLK Rise/Fall  
Setup Time  
t
ns  
ns  
DCS  
DAC Data to CLK Rise/Fall Hold  
Time  
t
DCH  
Control Word to CW Rise Setup  
t
2.5  
2.5  
ns  
ns  
CS  
Time  
Control Word to CW Rise Hold  
t
CW  
Time  
t
5
5
ns  
ns  
CW High Time  
CW Low Time  
CWH  
t
CWL  
DACEN = 1 to V  
Stable  
OUT  
t
3
µs  
STB  
Time (Coming Out of Standby)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Electrical Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, f  
= 165Msps, differential clock, external reference, V  
= 1.2V,  
DD  
DD  
DD  
DAC  
REF  
I
= 20mA, output amplitude = 0dB FS, differential output, T = T  
to T  
, unless otherwise noted. T ≥ +25°C guaranteed by  
FS  
A
MIN  
MAX  
A
production test. T < +25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PD = 0 to V  
Stable Time  
OUT  
t
500  
µs  
SHDN  
(Coming Out of Power-Down)  
Maximum Clock Frequency at  
CLKXP/CLKXN Input  
f
165  
200  
MHz  
CLK  
Clock High Time  
Clock Low Time  
t
CLKXP or CLKXN input  
1.5  
1.5  
ns  
ns  
CXH  
t
CLKXP or CLKXN input  
CXL  
CLKXP Rise to CLK Output Rise  
Delay  
t
2.7  
2.7  
ns  
ns  
DCE = 0  
CDH  
CLKXP Fall to CLK Output Fall  
Delay  
t
DCE = 0  
CDL  
Note 1: Including the internal reference voltage tolerance and reference amplifier offset.  
Note 2: f = 165Msps, f = 10MHz.  
DAC  
OUT  
Note 3: Measured single-ended with 50Ω load and complementary output connected to AGND.  
Note 4: Guaranteed by design, not production tested.  
0.5mA  
TO OUTPUT  
1.6V  
PIN  
5pF  
0.5mA  
Figure 1. Load Test Circuit for CLK Outputs  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Typical Operating Characteristics  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, differential clock, I  
= 20mA, differential output,  
DD  
DD  
DD  
FS  
T
= +25°C, unless otherwise noted.)  
A
SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f  
= 200MHz)  
vs. OUTPUT FREQUENCY (f  
= 100MHz)  
vs. OUTPUT FREQUENCY (f  
= 25MHz)  
CLK  
CLK  
CLK  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0dBFS  
0dBFS  
0dBFS  
-6dBFS  
-12dBFS  
-6dBFS  
-12dBFS  
-6dBFS  
-12dBFS  
50  
0
10 20 30 40 50 60 70 80 90 100  
(MHz)  
0
5
10 15 20 25 30 35 40 45  
(MHz)  
1
3
5
7
9
11  
13  
f
f
f (MHz)  
OUT  
OUT  
OUT  
SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY (f  
= 200MHz)  
vs. OUTPUT FREQUENCY (f  
= 165MHz)  
vs. OUTPUT FREQUENCY (f  
= 165MHz)  
CLK  
CLK  
CLK  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
AV = DV = CV = 3.3V  
DD  
DD  
DD  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
I
= 20mA  
OUT  
0dBFS  
I
= 5mA  
OUT  
AV = DV = CV = 3.6V  
DD  
DD  
DD  
AV = DV = CV = 2.7V  
DD  
DD  
DD  
I
= 10mA  
OUT  
-6dBFS  
-12dBFS  
AV = DV = CV = 3V  
DD DD DD  
0
10 20 30 40 50 60 70 80 90 100  
(MHz)  
0
10 20 30 40 50 60 70 80 90  
(MHz)  
0
10 20 30 40 50 60 70 80 90  
(MHz)  
f
f
f
OUT  
OUT  
OUT  
SFDR vs. TEMPERATURE (f  
= 165MHz,  
TWO-TONE INTERMODULATION DISTORTION  
CLK  
f
= 10MHz, A  
= 0dBFS)  
(f  
= 165MHz, 1MHz WINDOW)  
OUT  
OUT  
CLK  
80.0  
79.5  
79.0  
78.5  
78.0  
77.5  
77.0  
76.5  
76.0  
75.5  
75.0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
= 4.8541MHz  
= 5.0555MHz  
OUT1  
OUT2  
f
f
OUT1  
OUT2  
2f  
- f  
OUT1 OUT2  
2f  
- f  
OUT2 OUT1  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
(MHz)  
-40  
-15  
10  
35  
60  
85  
f
TEMPERATURE (°C)  
OUT  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, differential clock, I  
= 20mA, differential output,  
DD  
DD  
DD  
FS  
T
= +25°C, unless otherwise noted.)  
A
8-TONE SFDR PLOT  
SINGLE-TONE SFDR  
SINGLE-TONE SFDR  
(f  
CLK  
= 165MHz, 35MHz WINDOW)  
(f  
= 165MHz, 10MHz WINDOW)  
(f  
CLK  
= 100MHz, 4MHz WINDOW)  
CLK  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
A
= 9.1040MHz  
= -1dBFS  
f
A
= 5.0533MHz  
OUT1  
OUT1  
f
f
T4  
T5  
= -1dBFS  
OUT  
OUT  
f
T6  
f
T3  
f
T2  
f
T7  
f
T1  
f
T8  
39.7  
34.7  
14  
7.0  
4.7 9.7 14.7  
24.7 29.7  
(MHz)  
9
10  
13  
5.0 5.5  
(MHz)  
19.7  
4
5
6
8
11 12  
3.0 3.5 4.0  
6.0 6.5  
7
4.5  
f
f
f
(MHz)  
OUT  
OUT  
OUT  
f
= 24.035MHz  
= 25.087MHz  
= 26.741MHz  
= 27.869MHz  
f
f
f
f
= 17.493MHz  
= 18.997MHz  
= 20.200MHz  
= 21.253MHz  
T5  
T1  
T2  
T3  
T4  
f
f
f
T6  
T7  
T8  
SINGLE-TONE SFDR  
= 25MHz, 2MHz WINDOW)  
SINGLE-TONE SFDR  
= 78MHz, 20MHz WINDOW)  
CLK  
(f  
CLK  
(f  
0
0
f
= 1.0152MHz  
f
= 11.0333MHz  
OUT  
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
A
= -1dBFS  
A
= -1dBFS  
OUT  
OUT  
1.9  
21.0  
0.1 0.4 0.6  
1.1 1.4 1.6  
(MHz)  
1.0  
5.0  
13.0  
(MHz)  
17.0  
0.9  
9.0  
f
f
OUT  
OUT  
SINGLE-TONE FFT PLOT (f  
= 165MHz,  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
CLK  
f
= 10MHz, A  
= 0dBFS, NYQUIST WINDOW)  
OUT  
OUT  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
82.5  
0.5  
0
150 300 450 600 750 900 1050  
DIGITAL INPUT CODE  
8.2MHz/div  
f
(MHz)  
OUT  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= CV  
= 3V, AGND = DGND = CGND = 0, external reference, differential clock, I  
= 20mA, differential output,  
DD  
DD  
DD  
FS  
T
= +25°C, unless otherwise noted.)  
A
POWER DISSIPATION vs. SUPPLY VOLTAGES  
(f = 165MHz, f = 10MHz)  
POWER DISSIPATION vs. CLOCK FREQUENCY  
(f = 10MHz, A = 0dBFS)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
CLK  
OUT  
OUT  
OUT  
300  
280  
260  
240  
220  
200  
180  
160  
160  
230  
220  
210  
200  
190  
180  
170  
160  
150  
0.5  
0.4  
0.3  
0.2  
0.1  
0
DIFFERENTIAL  
CLOCK DRIVE  
DIFFERENTIAL  
CLOCK DRIVE  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
SINGLE-ENDED  
CLOCK DRIVE  
SINGLE-ENDED  
CLOCK DRIVE  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGES (V)  
20  
45  
70  
95  
(MHz)  
120  
145  
170  
0
150 300 450 600 750 900 1050  
DIGITAL INPUT CODE  
f
CLK  
REFERENCE VOLTAGE vs. SUPPLY VOLTAGES  
(f = 165MHz, f = 10MHz)  
REFERENCE VOLTAGE vs. TEMPERATURE  
DYNAMIC RESPONSE RISE TIME  
CLK  
OUT  
MAX5854 toc21  
1.22230  
1.22230  
1.22230  
1.22200  
1.22190  
1.22180  
1.22170  
1.22160  
1.22150  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
100mV/div  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGES (V)  
-40  
-15  
10  
35  
60  
85  
10ns/div  
TEMPERATURE (°C)  
ACLR PLOT  
SPURIOUS-FREE DYNAMIC RANGE  
DYNAMIC RESPONSE FALL TIME  
(f  
CLK  
= 122.88MHz, f  
= 30.72MHz)  
vs. OUTPUT FREQUENCY (f  
= 165MHz)  
OUT  
CLK  
MAX5854 toc22  
-20  
-30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
ACLR = 65.5dB  
0dBFS  
-40  
100mV/div  
-50  
-60  
-70  
-6dBFS  
-80  
-12dBFS  
-90  
-100  
-110  
-120  
-130  
-140  
SINGLE-ENDED  
CLOCK DRIVE  
10ns/div  
23.38  
1.468MHz/div  
(MHz)  
38.06  
0
10 20 30 40 50 60 70 80 90  
(MHz)  
f
f
OUT  
OUT  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Pin Description  
PIN  
1
NAME  
FUNCTION  
DA9/PD  
Channel A Input Data Bit 9 (MSB)/Power-Down  
2
DA8/DACEN Channel A Input Data Bit 8/DAC Enable Control  
3
DA7/IDE  
Channel A Input Data Bit 7/Interleaved Data Enable  
Channel A Input Data Bit 6/Reference Enable. Setting REN = 0 enables the internal reference. Setting  
REN = 1 disables the internal reference.  
4
DA6/REN  
5
DA5/G3  
DA4/G2  
DA3/G1  
DA2/G0  
DA1  
Channel A Input Data Bit 5/Channel A Gain Adjustment Bit 3  
Channel A Input Data Bit 4/Channel A Gain Adjustment Bit 2  
Channel A Input Data Bit 3/Channel A Gain Adjustment Bit 1  
Channel A Input Data Bit 2/Channel A Gain Adjustment Bit 0  
Channel A Input Data Bit 1  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
DA0  
Channel A Input Data Bit 0 (LSB)  
DB9  
Channel B Input Data Bit 9 (MSB)  
DB8  
Channel B Input Data Bit 8  
DB7  
Channel B Input Data Bit 7  
DB6  
Channel B Input Data Bit 6  
DB5  
Channel B Input Data Bit 5  
DV  
Digital Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more details.  
Digital Ground  
DD  
DGND  
DB4  
DB3  
DB2  
DB1  
DB0  
CW  
Channel B Input Data Bit 4  
Channel B Input Data Bit 3  
Channel B Input Data Bit 2  
Channel B Input Data Bit 1  
Channel B Input Data Bit 0 (LSB)  
Active-Low Control Word Write Pulse. The control word is latched on the rising edge of CW.  
Active-Low Differential Clock Enable Input. Drive DCE low to enable the differential clock inputs  
CLKXP and CLKXN. Drive DCE high to disable the differential clock inputs and enable the single-  
ended CLK input.  
24  
25  
DCE  
Positive Differential Clock Input. With DCE = 0, CLKXP and CLKXN are enabled. With DCE = 1, CLKXP  
and CLKXN are disabled. Connect CLKXP to CGND when the differential clock is disabled.  
CLKXP  
CLKXN  
Negative Differential Clock Input. With DCE = 0, CLKXP and CLKXN are enabled. With DCE = 1, CLKXP  
26  
and CLKXN are disabled. Connect CLKXN to CV  
when the differential clock is disabled.  
DD  
27, 30  
CV  
Clock Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more details.  
DD  
Single-Ended Clock Input/Output. With the differential clock disabled (DCE = 1), CLK becomes a single-  
ended conversion clock input. With the differential clock enabled (DCE = 0), CLK is a single-ended output  
that mirrors the differential clock inputs CLKXP and CLKXN. See the Clock Modes section for more  
information on CLK.  
28  
CLK  
29  
31  
CGND  
REFO  
Clock Ground  
Reference Input/Output. REFO serves as a reference input when the internal reference is disabled. If  
the internal 1.24V reference is enabled, REFO serves as an output for the internal reference. When the  
internal reference is enabled, bypass REFO to AGND with a 0.1µF capacitor  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Full-Scale Current Adjustment. To set the output full-scale current, connect an external resistor RSET  
32  
REFR  
between REFR and AGND. The output full-scale current is equal to 32 x V  
/R  
.
REFO SET  
33, 39  
34  
AV  
Analog Power Input. See the Power Supplies, Bypassing, Decoupling, and Layout section for more details.  
Channel B Negative Analog Current Output  
DD  
OUTNB  
OUTPB  
AGND  
OUTNA  
OUTPA  
EP  
35  
Channel B Positive Analog Current Output  
36, 40  
37  
Analog Ground  
Channel A Negative Analog Current Output  
38  
Channel A Positive Analog Current Output  
Exposed Paddle. Connect EP to the common point of all ground planes.  
Figure 2  
Detailed Description  
The MAX5854 dual, high-speed, 10-bit, current-output  
DV  
AV  
DD  
DD  
DIGITAL  
POWER  
MANAGEMENT  
ANALOG  
POWER  
MANAGEMENT  
DAC provides superior performance in communication  
systems requiring low-distortion analog-signal reconstruc-  
tion. The MAX5854 combines two DACs and an on-chip  
1.24V reference (Figure 2). The current outputs of the  
DACs can be configured for differential or single-ended  
operation. The full-scale output current range is adjust-  
able from 2mA to 20mA to optimize power dissipation and  
gain control.  
DGND  
AGND  
CW  
MAX5854  
DA0  
DA1  
DA2/G0  
DA3/G1  
DA4/G2  
OUTPA  
OUTNA  
10-BIT  
DACA  
DA5/G3  
DA6/REN  
DA7/IDE  
DA8/DACEN  
DA9/PD  
The MAX5854 accepts an input data and a DAC conver-  
sion rate of 165MHz. The inputs are latched on the rising  
edge of the clock whereas the output latches on the fol-  
lowing rising edge.  
G0  
G1  
G2  
G3  
CHANNEL A  
GAIN  
CONTROL  
INPUT DATA  
INTERLEAVER  
IDE  
The MAX5854 features three modes of operation: nor-  
mal, standby, and power-down (Table 2). These modes  
allow efficient power management. In power-down, the  
MAX5854 consumes only 1μA of supply current. Wake-up  
time from standby mode to normal DAC operation is 3μs.  
OPERATING  
MODE  
CONTROLLER  
DACEN  
PD  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
OUTPB  
10-BIT  
DACB  
Programming the DAC  
OUTNB  
An 8-bit control word routed through channel A’s data port  
programs the gain matching, reference, and the opera-  
tional mode of the MAX5854. The control word is latched  
on the rising edge of CW. CW is independent of the DAC  
clock. The DAC clock can always remain running, when  
the control word is written to the DAC. Table 1 and Table  
2 represent the control word format and function.  
REFO  
REFR  
DCE  
CLKXP  
CLKXN  
CLK  
1.24V REFERENCE  
AND CONTROL  
AMPLIFIER  
CLOCK  
DISTRIBUTION  
R
CV  
DD  
SET  
CLOCK  
POWER  
MANAGEMENT  
The gain on channel A can be adjusted to achieve gain  
matching between two channels in a user’s system. The  
gain on channel A can be adjusted from -0.4dB to 0.35dB  
in steps of 0.05dB by using bits G3 to G0 (Table 3).  
REN  
CGND  
AGND  
Figure 2. Simplified Diagram  
Maxim Integrated  
11  
www.maximintegrated.com  
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Table 1. Control Word Format and Function  
MSB  
LSB  
PD  
DACEN  
IDE  
G3  
G2  
G1  
G0  
X
X
REN  
CONTROL WORD  
FUNCTION  
PD  
Power-Down. The part enters power-down mode if PD = 1.  
DAC Enable. When DACEN = 0 and PD = 0, the part enters standby mode.  
DACEN  
Interleaved Data Mode. IDE = 1 enables the interleaved data mode. In this mode, digital data for both channels  
is applied through channel A in a multiplexed fashion. Channel B data is written on the falling edge of the clock  
signal and channel A data is written on the rising edge of the clock signal.  
IDE  
Reference Enable Bit. REN = 0 activates the internal reference. REN = 1 disables the internal reference and  
requires the user to apply an external reference between 0.1V to 1.32V.  
REN  
G3  
G2  
G1  
G0  
Bit 3 (MSB) of Gain Adjust Word  
Bit 2 of Gain Adjust Word  
Bit 1 of Gain Adjust Word  
Bit 0 (LSB) of Gain Adjust Word  
Device Power-Up and  
States of Operation  
Table 2. Configuration Modes  
MODE  
PD DACEN IDE  
REN  
At power-up, the MAX5854’s default configuration is  
internal reference noninterleaved input mode with a gain  
of 0dB and a fully operational converter. In shutdown, the  
MAX5854 consumes only 1μA of supply current, and in  
standby the current consumption is 3.1mA. Wake-up time  
from standby mode to normal operation is 3μs.  
Normal operation;  
noninterleaved inputs;  
internal reference active  
0
0
0
1
1
1
0
0
1
0
Normal operation;  
noninterleaved inputs;  
internal reference disabled  
1
1
Clock Modes  
Normal operation;  
interleaved inputs; internal  
reference disabled  
The MAX5854 allows both single-ended CMOS and dif-  
ferential clock mode operation, and supports update rates  
of up to 165Msps. These modes are selected through an  
active-low control line called DCE. In single-ended clock  
mode (DCE = 1), the CLK pin functions as an input, which  
accepts a user-provided single-ended clock signal. Data  
is written to the converter on the rising edge of the clock.  
The DAC outputs (previous data) are updated simultane-  
ously on the same edge.  
Standby  
0
1
0
0
X
1
X
X
X
X
X
X
Power-down  
Power-up  
X = Don’t care.  
If the DCE pin is pulled low, the MAX5854 will operate  
in differential clock mode. In this mode, the clock signal  
has to be applied to differential clock input pins CLKXP/  
CLKXN. The differential input accepts an input range of  
Table 3. Gain Difference Setting  
GAIN ADJUSTMENT ON  
G3  
G2  
G1  
G0  
CHANNEL A (dB)  
+0.4  
0
-0.35  
0
1
1
0
0
1
0
0
1
0
0
1
≥0.5V  
and a common-mode range of 1V to (CV  
-
P-P  
DD  
0.5V), making the part ideal for low-input amplitude clock  
drives. CLKXP/CLKXN also help to minimize the jitter,  
and allow the user to connect a crystal oscillator directly  
to MAX5854.  
Maxim Integrated  
12  
www.maximintegrated.com  
 
 
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
AV  
DD  
OPTIONAL EXTERNAL BUFFER  
FOR HEAVIER LOADS  
10µF  
0.1µF  
AGND  
MAX4040  
1.24V  
BANDGAP  
REFERENCE  
REN = 0  
1.24V  
BANDGAP  
REFERENCE  
AV  
DD  
REN = 1  
REFO  
MAX6520  
CURRENT-  
SOURCE  
ARRAY  
I
FS  
EXTERNAL  
1.2V  
REFERENCE  
C
COMP  
*
REFO  
REFR  
I
REF  
REFR  
AGND  
CURRENT-  
SOURCE  
ARRAY  
I
FS  
V
REF  
I
REF  
R
I
=
SET  
REF  
R
SET  
MAX5854  
AGND  
AGND  
R
SET  
*COMPENSATION CAPACITOR (C  
100nF).  
COMP  
MAX5854  
AGND  
Figure 4. MAX5854 with External Reference  
Figure 3. Setting I with the Internal 1.24V Reference and the  
FS  
Control Amplifier  
The CLK pin now becomes an output, and provides a  
single-ended replica of the differential clock signal, which  
can be used to synchronize the input data. Data is written  
to the device on the rising edge of the CLK signal.  
External Reference  
To disable the internal reference of the MAX5854, set  
REN = 1. Apply a temperature-stable, external refer-  
ence to drive the REFO pin and set the full-scale output  
(Figure 4). For improved accuracy and drift performance,  
choose a fixed output voltage reference such as the 1.2V,  
25ppm/°C MAX6520 bandgap reference.  
Internal Reference and Control Amplifier  
The MAX5854 provides an integrated 50ppm/°C, 1.24V,  
low-noise bandgap reference that can be disabled and  
overridden with an external reference voltage. REFO  
serves either as an external reference input or an inte-  
grated reference output. If REN = 0, the internal reference  
is selected and REFO provides a 1.24V (50μA) output.  
Buffer REFO with an external amplifier, when driving a  
heavy load.  
Detailed Timing  
The MAX5854 accepts an input data and the DAC con-  
version rate of up to 165Msps. The input latches on the  
rising edge of the clock, whereas the output latches on the  
following rising edge.  
Figure 5 depicts the write cycle of the two DACs in non-  
interleaved mode.  
The MAX5854 also employs a control amplifier designed  
to simultaneously regulate the full-scale output current  
The MAX5854 can also operate in an interleaved data  
mode. Programming the IDE bit with a high level activates  
this mode (Table 1 and Table 2). In interleaved mode,  
data for both DAC channels is written through input port  
A. Channel B data is written on the falling edge of the  
clock signal and then channel A data is written on the fol-  
lowing rising edge of the clock signal. Both DAC outputs  
(channel A and B) are updated simultaneously on the  
next following rising edge of the clock. In interleaved data  
mode, the maximum input data rate per channel is half  
of the rate in noninterleaved mode. The interleaved data  
mode is attractive for applications where lower data rates  
are acceptable and interfacing on a single 10-bit bus is  
desired (Figure 6).  
(I ) for both outputs of the devices. Calculate the output  
current as:  
FS  
I
= 32 x I  
REF  
FS  
where I  
is the reference output current (I  
= V  
/
REF  
REF  
REFO  
R
SET  
) and I is the full-scale output current. R  
is the  
FS  
SET  
reference resistor that determines the amplifier output cur-  
rent of the MAX5854 (Figure 3). This current is mirrored  
into the current-source array where I is equally distrib-  
FS  
uted between matched current segments and summed to  
valid output current readings for the DACs.  
Maxim Integrated  
13  
www.maximintegrated.com  
 
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
t
t
CXH  
CXL  
CLKXN  
CLKXP  
t
CDL  
t
CDH  
CLK  
OUTPUT  
t
CWL  
CW  
t
t
CW  
t
t
DCH  
CS  
DCS  
CONTROL  
WORD  
DA0–DA9  
DACA - 1  
DACA  
DACA + 1  
DACA + 2  
DACA + 3  
OUTNA  
OUTPA  
XXXX  
(CONTROL WORD DATA)  
DACA - 1  
DACA  
DACA + 1  
DACA + 2  
DACA + 3  
t
t
DCH  
DCS  
DB0–DB9  
DACB - 1  
DACB  
DACB + 1  
DACB + 2  
XXXX  
DACB + 3  
OUTNB  
OUTPB  
DACB - 1  
DACB  
DACB + 1  
DACB + 2  
XXXX  
DACB + 3  
Figure 5. Timing Diagram for Noninterleaved Data Mode (IDE = 0)  
t
t
CXH  
CXL  
CLKXN  
CLKXP  
t
t
CDL  
CDH  
CLK  
OUTPUT  
t
CWL  
CW  
t
t
t
t
t
t
CW  
DCS  
DCH  
DCS  
DCH  
CS  
CONTROL  
WORD  
DA0–DA9  
OUTNA  
DACA  
DACB + 1  
DACA + 1  
DACB + 2  
DACA + 2  
DACA - 1  
DACA  
DACB  
DACA + 1  
OUTPA  
OUTNB  
DACB - 1  
DACB + 1  
OUTPB  
Figure 6. Timing Diagram for Interleaved Data Mode (IDE = 1)  
Maxim Integrated  
14  
www.maximintegrated.com  
 
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
AV DV CV  
DD  
DD  
DD  
AV DV CV  
DD  
DD  
DD  
50  
V
,
OUTA  
50  
SINGLE ENDED  
OUTPA  
OUTPA  
OUTNA  
DA0–DA9  
DA0–DA9  
1/2  
MAX5854  
1/2  
MAX5854  
100Ω  
10  
10  
OUTNA  
50Ω  
50Ω  
50Ω  
V
OUTB  
,
50Ω  
SINGLE ENDED  
OUTPB  
OUTPB  
OUTNB  
DB0–DB9  
DB0–DB9  
1/2  
MAX5854  
1/2  
MAX5854  
100Ω  
10  
10  
OUTNB  
50Ω  
50Ω  
AGND DGND CGND  
AGND DGND CGND  
Figure 8. Application with DC-Coupled Differential Outputs  
Figure 7. Application with Output Transformer Performing  
Differential-to-Single-Ended Conversion  
applications, information bandwidth can extend from  
10MHz down to several hundred kilohertz. DC-coupling is  
desirable to eliminate long discharge time constants that  
are problematic with large, expensive coupling capacitors.  
Analog quadrature upconverters have a DC common-  
mode input requirement of typically 0.7V to 1.0V. The  
MAX5854 differential I/Q outputs can maintain the desired  
full-scale level at the required 0.7V to 1.0V DC common-  
mode level when powered from a single 2.85V (±5%)  
supply. The MAX5854 meets this low-power requirement  
with minimal reduction in dynamic range while eliminating  
the need for level-shifting resistor networks.  
Applications Information  
Differential-to-Single-Ended Conversion  
The MAX5854 exhibits excellent dynamic performance to  
synthesize a wide variety of modulation schemes, includ-  
ing high-order QAM modulation with OFDM.  
Figure 7 shows a typical application circuit with output  
transformers performing the required differential-to-sin-  
gle-ended signal conversion. In this configuration, the  
MAX5854 operates in differential mode, which reduces  
even-order harmonics, and increases the available output  
power.  
Power Supplies, Bypassing,  
Decoupling, and Layout  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5854 performance. Unwanted digital cross-  
talk can couple through the input, reference, power-supply,  
and ground connections, which can affect dynamic specifi-  
cations, like signal-to-noise ratio or spurious-free dynamic  
Differential DC-Coupled Configuration  
Figure 8 shows the MAX5854 output operating in differ-  
ential, DC-coupled mode. This configuration can be used  
in communications systems employing analog quadrature  
upconverters and requiring a baseband sampling, dual-  
channel, high-speed DAC for I/Q synthesis. In these  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
range. In addition, electromagnetic interference (EMI)  
can either couple into or be generated by the MAX5854.  
Observe the grounding and power-supply decoupling  
guidelines for high-speed, high-frequency applications.  
Follow the power supply and filter configuration to realize  
optimum dynamic performance.  
In this package, the data converter die is attached to an  
EP leadframe with the back of this frame exposed at the  
package bottom surface, facing the PC board side of the  
package. This allows a solid attachment of the package  
to the PC board with standard infrared (IR) flow soldering  
techniques. A specially created land pattern on the PC  
board, matching the size of the EP (4.1mm x 4.1mm),  
ensures the proper attachment and grounding of the  
DAC. Designing vias* into the land area and implement-  
ing large ground planes in the PC board design allows for  
highest performance operation of the DAC. Use an array  
of 3 x 3 vias (≤ 0.3mm diameter per via hole and 1.2mm  
pitch between via holes) for this 40-pin thin QFN-EP pack-  
age (package code: T4066-1).  
Use of a multilayer printed circuit (PC) board with sepa-  
rate ground and power-supply planes is recommended.  
Run high-speed signals on lines directly above the ground  
plane. The MAX5854 has separate analog and digital  
ground buses (AGND, CGND, and DGND, respectively).  
Provide separate analog, digital, and clock ground sec-  
tions on the PC board with only one point connecting  
the three planes. The ground connection points should  
be located underneath the device and connected to the  
exposed paddle. Run digital signals above the digital  
ground plane and analog/clock signals above the analog/  
clock ground plane. Digital signals should be kept away  
from sensitive analog, clock, and reference inputs. Keep  
digital signal paths short and metal trace lengths matched  
to avoid propagation delay and data skew mismatch.  
Dynamic Performance Parameter Definitions  
Adjacent Channel Leakage Ratio (ACLR)  
Commonly used in combination with wideband code-  
division multiple-access (WCDMA), ACLR reflects the  
leakage power ratio in dB between the measured power  
within a channel relative to its adjacent channel. ACLR  
provides a quantifiable method of determining out-of-band  
spectral energy and its influence on an adjacent channel  
The MAX5854 includes three separate power-supply  
inputs: analog (AV ), digital (DV ), and clock (CV ).  
DD  
DD  
DD  
when a bandwidth-limited RF signal passes through a  
nonlinear device.  
Use a single linear regulator power source to branch  
out to three separate power-supply lines (AV , DV  
,
DD  
DD  
CV ) and returns (AGND, DGND, CGND).Filter each  
Total Harmonic Distortion (THD)  
DD  
power-supply line to the respective return line using LC  
filters comprising ferrite beads and 10μF capacitors. Filter  
each supply input locally with 0.1μF ceramic capacitors to  
the respective return lines.  
THD is the ratio of the RMS sum of all essential harmon-  
ics (within a Nyquist window) of the input signal to the  
fundamental itself. This can be expressed as:  
2
2
2
2
Note: To maintain the dynamic performance of the  
Electrical Characteristics, ensure the voltage dif-  
V
+ V + V ... + ...V  
3 4 N  
)
(
2
THD = 20 ×log  
V
ference between DV , AV , and CV does not  
1
DD  
DD  
DD  
exceed 150mV.  
where V is the fundamental amplitude, and V through  
1
2
Thermal Characteristics and Packaging  
V
N
are the amplitudes of the 2nd through Nth order har-  
Thermal Resistance  
monics. The MAX5854 uses the first seven harmonics for  
this calculation.  
40-lead thin QFN-EP:  
θ
JA  
= 38°C/W  
Spurious-Free Dynamic Range (SFDR)  
The MAX5854 is packaged in a 40-pin thin QFN-EP  
package, providing greater design flexibility, increased  
thermal efficiency, and optimized AC performance of the  
DAC. The EP enables the implementation of grounding  
techniques, which are necessary to ensure highest per-  
formance operation.  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal component) to the RMS value  
of their next-largest spectral component. SFDR is usually  
measured in dBc with respect to the carrier frequency  
amplitude or in dBFS with respect to the DAC’s full-scale  
range. Depending on its test condition, SFDR is observed  
within a predefined window or to Nyquist.  
*Vias connect the land pattern to internal or external copper planes.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Multitone Power Ratio (MTPR)  
Gain Error  
A series of equally spaced tones are applied to the DAC  
with one tone removed from the center of the range.  
MTPR is defined as the worst-case distortion (usually a  
3rd-order harmonic product of the fundamental frequen-  
cies), which appears as the largest spur at the frequency  
of the missing tone in the sequence. This test can be per-  
formed with any number of input tones; however, four and  
eight tones are among the most common test conditions  
for CDMA- and GSM/EDGE-type applications.  
A gain error is the difference between the ideal and the  
actual full-scale output current on the transfer curve, after  
nullifying the offset error. This error alters the slope of the  
transfer function and corresponds to the same percent-  
age error in each step. The ideal current is defined by  
reference voltage at V  
/I  
x 32.  
REFO REF  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles to its new  
output value to within the converter’s specified accuracy.  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in dBc of either  
output tone to the worst 3rd-order (or higher) IMD products.  
Glitch Impulse  
A glitch is generated when a DAC switches between two  
codes. The largest glitch is usually generated around the  
midscale transition, when the input pattern transitions  
from 011…111 to 100…000. This occurs due to timing  
variations between the bits. The glitch impulse is found  
by integrating the voltage of the glitch at the midscale  
transition over time. The glitch impulse is usually speci-  
fied in pV-s.  
Static Performance Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity (INL) is the deviation of the values on  
an actual transfer function from a line drawn between the  
end points of the transfer function, once offset and gain  
errors have been nullified. For a DAC, the deviations are  
measured at every individual step.  
Table 4. Part Selection Table  
Differential Nonlinearity (DNL)  
PART  
SPEED (Msps)  
RESOLUTION  
8-bit, dual  
Differential nonlinearity (DNL) is the difference between  
an actual step height and the ideal value of 1 LSB. A DNL  
error specification no more negative than -1 LSB guaran-  
tees monotonic transfer function.  
MAX5851  
MAX5852  
MAX5853  
MAX5854  
80  
165  
80  
8-bit, dual  
10-bit, dual  
10-bit, dual  
Offset Error  
165  
Offset error is the current flowing from positive DAC out-  
put when the digital input code is set to zero. Offset error  
is expressed in LSBs.  
Chip Information  
TRANSISTOR COUNT: 9,035  
PROCESS: CMOS  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX5854  
Dual, 10-Bit, 165Msps, Current-Output DAC  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2004 Maxim Integrated Products, Inc.  
18  

相关型号:

MAX5854ETL+T

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5854ETL-T

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.012us Settling Time, 6 X 6 MM, 0.8 MM HEIGHT, TQFN-40
MAXIM

MAX5855

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM

MAX5855EVKIT

MAX5855 Evaluation Kit
MAXIM

MAX5855EXE

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM

MAX5855EXE+

D/A Converter,
MAXIM

MAX5855EXET

16-Bit, 4.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM

MAX5856

Dual 8-Bit, 300Msps DAC with 4x/2x/1x Interpolation Filters and PLL
MAXIM

MAX5856A

Dual 8-Bit, 300Msps DAC with 4x/2x/1x Interpolation Filters and PLL
MAXIM

MAX5856AECM

Dual 8-Bit, 300Msps DAC with 4x/2x/1x Interpolation Filters and PLL
MAXIM

MAX5856AECM-D

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MO-136AE, TQFP-48
MAXIM

MAX5857

16-Bit, 5.9Gsps Wideband Interpolating and Modulating RF DAC with JESD204B Interface
MAXIM