MAX4938CTN [MAXIM]

Octal High-Voltage Transmit/Receive Switches; 八通道高压发送/接收开关
MAX4938CTN
型号: MAX4938CTN
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Octal High-Voltage Transmit/Receive Switches
八通道高压发送/接收开关

开关 高压
文件: 总19页 (文件大小:1636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5541; Rev 1; 3/11  
Octal High-Voltage Transmit/Receive Switches  
General Description  
Features  
S Low Power: Low Impedance (5ω) with 1.5mA Bias  
The MAX4936–MAX4939 are octal, high-voltage, transmit/  
receive (T/R) switches. The T/R switches are based on  
a diode bridge topology, and the amount of current  
in the diode bridges can be programmed through an  
SPIK interface. All devices feature a latch-clear input  
to asynchronously turn off all T/R switches and put the  
device into a low-power shutdown mode. The MAX4936/  
MAX4938 include the T/R switch and grass-clipping  
diodes, performing both transmit and receive operations.  
The MAX4937/MAX4939 include just the T/R switch and  
perform the receive operation only.  
Current Only  
S Low Noise < 0.5nV/Hz (typ) with 1.5mA Bias  
Current Only  
S Wide -3dB Bandwidth 65MHz (typ)  
S Easy Programming with SPI Interface  
S High Density (8 Channels per Package)  
S Grass-Clipping Diodes with Low-Voltage Isolation  
(MAX4936/MAX4938)  
S Output Clamp Diodes for Receiver Protection  
The MAX4936/MAX4938 transmit path is low impedance  
during high-voltage transmit and high impedance during  
low-voltage receive, providing isolation between transmit  
and receive circuitry. The high-voltage transmit path is  
high bandwidth, low distortion, and low jitter.  
(MAX4936/MAX4937)  
S Global Shutdown Control (CLR)  
S Each T/R Switch Can Be Individually Programmed  
On or Off  
The receive path for all devices is low impedance dur-  
ing low-voltage receive and high impedance during  
high-voltage transmit, providing protection to the receive  
circuitry. The low-voltage receive path is high bandwidth,  
low noise, low distortion, and low jitter. Each T/R switch  
can be individually programmed on or off, allowing these  
devices to also be used as receive path multiplexers.  
S Low-Voltage Receive Path with High-Voltage  
Protection  
S Space-Saving, 5mm x 11mm, 56-Pin TQFN Package  
Applications  
Medical/Industrial Imaging  
Ultrasound  
The MAX4936/MAX4937 feature clamping diodes to  
protect the receiver input from voltage spikes due to  
leakage currents flowing through the T/R switches dur-  
ing transmission. The MAX4938/MAX4939 do not have  
clamping diodes and rely on clamping diodes integrated  
in the receiver front end.  
High-Voltage Transmit and Low-Voltage Isolation  
All devices are available in a small, 56-pin, 5mm x 11mm  
TQFN package, and are specified over the commercial  
0NC to +70NC temperature range.  
Ordering Information/Selector Guide  
LOW-VOLTAGE  
ISOLATION  
HIGH-VOLTAGE  
PROTECTION  
PART  
OUTPUT CLAMP  
TEMP RANGE  
PIN-PACKAGE  
MAX4936CTN+  
MAX4937CTN+  
MAX4938CTN+**  
MAX4939CTN+**  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
0NC to +70NC  
0NC to +70NC  
0NC to +70NC  
0NC to +70NC  
56 TQFN-EP*  
56 TQFN-EP*  
56 TQFN-EP*  
56 TQFN-EP*  
Yes  
No  
No  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future productcontact factory for availability.  
SPI is a trademark of Motorola, Inc.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Octal High-Voltage Transmit/Receive Switches  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
Voltage Difference Across Any or All COM_ .................. Q230V  
Continuous Current (HV_ to COM_ ) (MAX4936/MAX4938)..Q250mA  
Continuous Current (Any Other Terminal)..................... Q100mA  
Peak Current (HV_ to COM_ ) (MAX4936/MAX4938)  
V
V
V
Positive Supply Voltage...................................-0.3V to +6V  
, LVCC_ Positive Supply Voltage ....................-0.3V to +6V  
, LVEE_ Negative Supply Voltage ....................-6V to +0.3V  
DD  
CC  
EE  
CLK, DIN, CLR, LE Input Voltage ..........................-0.3V to +6V  
DOUT Output Voltage ..............................-0.3V to (V + 0.3V)  
(Pulsed at 1ms, 0.1% Duty Cycle) ................................ Q2.5A  
Continuous Power Dissipation (T = +70NC)  
DD  
A
HV_ Input Voltage (MAX4936/MAX4938) ..........-120V to +120V  
COM_ Input/Output Voltage...............................-120V to +120V  
NO_ Output Voltage (MAX4936/MAX4937) ...................... Q1.5V  
NO_ Output Voltage (MAX4938/MAX4939) ......................... Q6V  
Voltage Difference Across Any or  
TQFN (derate 41.0mW/NC above +70NC) .................3279mW  
Operating Temperature Range............................. 0NC to +70NC  
Storage Temperature Range............................ -65NC to +150NC  
Junction Temperature ................................................... +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
All HV_ (MAX4936/MAX4938) ...................................... Q230V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
Junction-to-Ambient Thermal Resistance (q )...........44°C/W  
JA  
Junction-to-Case Thermal Resistance (q ).................10°C/W  
JC  
Note 1: Package thermal resistance were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +1.62V to +5.5V, V  
= +2.7V to +5.5V, V = -2.7V to -5.5V, V  
= 0V, LVCC_ = V , LVEE_ = V , T = T  
to T  
,
CC  
EE  
CLR  
CC  
EE  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX4936/MAX4938 only  
MAX4936/MAX4938 only  
|V | R +2V, I = Q100mA (MAX4936/  
MIN  
TYP  
MAX UNITS  
STATIC CHARACTERISTICS  
HV_ Input Voltage Range  
V
-115  
+115  
220  
V
V
IRHV_  
|Difference Across Any or All  
HV_ |  
V
HV_  
V
HV_  
Q
V
HV_  
+ 1  
HV_  
HV_  
COM_ Output Voltage Range  
COM_ Input Voltage Range  
V
V
V
V
ORCM_  
MAX4938 only)  
- 1  
0.85  
V
-115  
+115  
IRCM_  
|Difference Across Any or All  
COM_ |  
220  
V
CC  
= +5V, V = -5V, |V  
| R +2V,  
COM_  
EE  
R = 200I, C = 30pF, I = 10mA  
CH_  
-1  
Q0.75  
+1  
L
L
(MAX4936/MAX4937 only)  
NO_ Output Voltage Range  
V
V
ORNO_  
V
= +5V, V = -5V, |V  
| < +0.4V,  
= 1.5mA  
V
V
Q 0.1  
V
CC  
EE  
COM_  
COM_  
- 0.2  
COM_  
COM_  
+ 0.2  
R = 200I, C = 30pF, I  
L
L
CH_  
HV_ to COM_ Continuous  
Current  
I
V
= 0V (MAX4936/MAX4938 only)  
-200  
+200  
mA  
V
CN_  
COM_  
V
= 0V, I  
= Q2A  
COM_  
CN_  
HV_ to COM_ Drop  
V
Q2  
CN_  
(MAX4936/MAX4938 only)  
V
= +5V, V = -5V, COM_ = unconnected,  
CC  
EE  
Diode Bridge Voltage Offset  
V
OFF_  
-200  
+200  
mV  
NO_ = unconnected, I  
= 1.5mA  
CH  
2
______________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.62V to +5.5V, V  
= +2.7V to +5.5V, V = -2.7V to -5.5V, V  
= 0V, LVCC_ = V , LVEE_ = V , T = T  
to T  
,
CC  
EE  
CLR  
CC  
EE  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
| < +0.3V, V  
(MAX4936/MAX4938 only)  
|V - V | < +0.3V, V = 0V,  
HV_  
MIN  
TYP  
MAX UNITS  
|V  
- V  
= 0V  
COM_  
HV_  
COM_  
HV_ Off-Leakage Current  
I
-3  
+3  
+3  
+1  
FA  
FA  
LHV_  
HV_  
COM_  
-3  
-1  
switch is off (MAX4936/MAX4938 only)  
COM_ Off-Leakage Current  
I
LCOM_  
HV_ = unconnected, switch is off  
(MAX4936/MAX4938 only)  
FA  
FA  
FA  
Switch is off (MAX4937/MAX4939 only)  
-1  
-2  
-1  
+1  
+2  
+1  
MAX4936/MAX4937  
MAX4938/MAX4939  
|V  
NO_  
| < +0.3V,  
NO_ Off-Leakage Current  
I
LNO_  
switch is off  
DYNAMIC CHARACTERISTICS  
V
CC  
= +5V, V = -5V, R = 200I,  
EE L  
Diode Bridge Turn-On Time  
Diode Bridge Turn-Off Time  
t
I
= 1.5mA, C = 30pF, V = Q0.4V,  
COM_  
200  
5
ns  
ON  
CH  
L
Figure 1  
V
= +5V, V = -5V, R = 200I,  
CC  
EE  
L
t
I
= 1.5mA, C = 30pF, V  
= Q0.4V,  
OFF  
CH  
L
COM_  
ms  
Figure 1  
= I = 10mA  
RVR  
Reverse Recovery Time  
SPI Power-Up Delay  
t
I
450  
4.5  
65  
ns  
RR  
FWD  
t
500  
Fs  
DLY  
Small-Signal COM_ to NO_ On  
Impedance  
V
CC  
= +5V, V = -5V, V  
= 0V,  
NO_  
EE  
R
I
ICOM_  
I
= 1.5mA, f = 5MHz  
CH  
COM_ to NO_, switch is on,  
|V | < +0.4V, V = +5V, V = -5V,  
-3dB Bandwidth  
Off-Isolation  
BW  
MHz  
COM_  
CC  
EE  
R = 200I, C = 30pF, I  
= 1.5mA  
L
L
CH  
HV_ to COM_, |V  
- V  
| < +0.3V,  
HV_  
COM_  
V
CC  
= +5V, V = -5V, R = 100I,  
EE L  
-50  
-75  
-60  
C = 100pF, f = 1MHz  
L
V
dB  
dB  
ISO  
(MAX4936/MAX4938 only)  
COM_ to NO_, switch is off, V  
= +5V,  
CC  
V
EE  
= -5V, R = 200I, C = 30pF, f = 1MHz  
L L  
Between any two HV_ to COM_ channels,  
|V | R +2V, V = +5V,  
HV_  
CC  
V
= -5V, R = 100I, C = 100pF,  
L L  
EE  
f = 5MHz (MAX4936/MAX4938 only)  
Crosstalk  
V
CT  
Between any two COM_ to NO_ channels,  
switch is on, |V  
| < +0.4V, V  
= +5V,  
COM_  
CC  
-71  
V
EE  
= -5V, R = 200I, C = 30pF,  
L
L
I
= 1.5mA, f = 5MHz  
CH  
_______________________________________________________________________________________  
3
Octal High-Voltage Transmit/Receive Switches  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.62V to +5.5V, V  
= +2.7V to +5.5V, V = -2.7V to -5.5V, V  
= 0V, LVCC_ = V , LVEE_ = V , T = T  
to T  
,
CC  
EE  
CLR  
CC  
EE  
TYP  
-90  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
HV_ to COM_, |V | R +2V, V  
MIN  
MAX UNITS  
= +5V,  
CC  
COM_  
V
EE  
= -5V, R = 100I, C = 100pF,  
L L  
f = 5MHz (MAX4936/MAX4938 only)  
2nd Harmonic Distortion  
HD2  
dBc  
COM_ to NO_, switch is on, |V | < +0.4V,  
COM_  
V
= +5V, V = -5V, R = 200I,  
-95  
-90  
CC  
EE  
L
C = 30pF, I  
= 1.5mA, f = 5MHz  
L
CH  
HV_ to COM_, |V  
| R +2V, V  
= +5V,  
COM_  
CC  
V
EE  
= -5V, R = 100I, C = 100pF,  
L L  
f = 5MHz (MAX4936/MAX4938 only)  
3rd Harmonic Distortion  
HD3  
dBc  
dBc  
COM_ to NO_, switch is on, |V | < +0.4V,  
COM_  
V
CC  
= +5V, V = -5V, R = 200I,  
-115  
EE  
L
C = 30pF, I  
= 1.5mA, f = 5MHz  
L
CH  
COM_ to NO_, switch is on,  
|V | < +0.4V, V = +5V, V = -5V,  
Two-Tone Intermodulation  
Distortion (Note 3)  
COM_  
CC  
EE  
IMD3  
-77  
R = 200I, C = 30pF, I = 1.5mA,  
CH  
L
L
f = 5MHz, f = 5.01MHz  
1
2
|V  
- V  
| < +0.3V  
HV_  
COM_  
HV_ Off Capacitance  
C
12  
17  
pF  
pF  
HV_(OFF)  
(MAX4936/MAX4938 only)  
|V - V | < +0.3V, switch is off  
HV_  
COM_  
(MAX4936/MAX4938 only)  
COM_ Off Capacitance  
C
COM_(OFF)  
Switch is off (MAX4937/MAX4939 only)  
12  
20  
NO_ On Capacitance  
NO_ Off Capacitance  
C
|V | < +0.4V, switch is on  
NO_  
NO_  
pF  
pF  
NO_(ON)  
C
|V  
| < +0.4V, switch is off  
7.5  
NO_(OFF)  
DIGITAL I/Os (CLR, DIN, DOUT, CLK, LE)  
V
DD  
0.5  
-
V
DD  
= +2.25V to +5.5V  
Input High Voltage  
V
V
IH  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= +1.62V to +1.98V  
= +2.25V to +5.5V  
= +1.62V to +1.98V  
= +3V  
1.4  
0.6  
V
Input Low Voltage  
Input Hysteresis  
V
IL  
0.4  
50  
90  
V
mV  
HYST  
= +1.8V  
Input Leakage Current  
Input Capacitance  
DOUT Low Voltage  
I
-1  
+1  
FA  
pF  
V
CLR, DIN, CLK, LE = GND or V  
IL  
DD  
C
5
IN  
V
OL  
I
I
= 5mA  
0.4  
SINK  
V
-
DD  
0.4  
DOUT High Voltage  
V
= 5mA  
V
OH  
SOURCE  
POWER SUPPLY (V , V , V  
)
DD CC EE  
Positive Logic Supply Voltage  
Positive Analog Supply Voltage  
V
V
+1.62  
+2.7  
+5.5  
+5.5  
V
V
DD  
CC  
Negative Analog Supply  
Voltage  
V
EE  
-5.5  
-2.7  
V
4
______________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.62V to +5.5V, V  
= +2.7V to +5.5V, V = -2.7V to -5.5V, V  
= 0V, LVCC_ = V , LVEE_ = V , T = T  
to T  
,
CC  
EE  
CLR  
CC  
EE  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Positive Logic Supply Current  
I
+1  
FA  
CLR, DIN, CLK, LE = GND or V  
DD  
DD  
Per channel, switch is on, V  
= +5V,  
CC  
Positive Analog Supply Current  
I
+1.15  
+1.5  
-1.5  
+2  
mA  
CC  
V
EE  
= -5V, I  
= 1.5mA  
CH  
Positive Analog Shutdown  
Supply Current  
I
CLR = high  
+1  
FA  
mA  
FA  
CC_SHDN  
Negative Analog Supply  
Current  
Per channel, switch is on, V  
= -5V, I = 1.5mA  
= +5V,  
CC  
I
-2  
-1  
-1.15  
EE  
V
EE  
CH  
Negative Analog Shutdown  
Supply Current  
I
CLR = high  
EE_SHDN  
V
V
to NO_ or V to NO_, switch is on,  
EE  
CC  
On Power-Supply Rejection  
Ratio  
PSRR  
= +5V, V = -5V, R = 200I,  
-77  
-80  
dB  
dB  
ON  
CC  
EE  
L
C = 30pF, I  
= 1.5mA, f = 1MHz  
L
CH  
V
V
to NO_ or V to NO_, switch is off,  
EE  
= +5V, V = -5V, R = 200I,  
EE L  
CC  
Off Power-Supply Rejection  
Ratio  
PSRR  
OFF  
CC  
C = 30pF, f = 1MHz  
L
LOGIC TIMING (CLR, DIN, DOUT, CLK, LE) (Figure 1)  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
50  
100  
20  
45  
20  
45  
3
CLK Period  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
CLK High Time  
t
CH  
CLK Low Time  
t
CL  
= 3V Q10%, C P 20pF  
30  
70  
L
CLK to DOUT Delay  
DIN to CLK Setup Time  
DIN to CLK Hold Time  
t
DO  
= 1.8V Q10%, C P 20pF  
7
L
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
= 3V Q10%  
= 1.8V Q10%  
10  
16  
4
t
DS  
t
DH  
4
36  
65  
14  
22  
20  
40  
t
t
CLK to LE Setup Time  
LE Low Pulse Width  
CLR High Pulse Width  
CS  
WL  
t
WC  
Note 2: All specifications are 100% production tested at T = +70NC, unless otherwise noted. Specifications at 0NC are guaran-  
A
teed by design.  
Note 3: See the Ultrasound-Specific IMD3 Specification section.  
_______________________________________________________________________________________  
5
Octal High-Voltage Transmit/Receive Switches  
D
D
D
N - 1  
DIN  
LE  
50%  
50%  
50%  
N + 1  
N
50%  
t
WL  
t
CS  
50%  
50%  
CLK  
t
t
DH  
DS  
t
DO  
50%  
t
DOUT  
T/R SWITCH  
CLR  
t
OFF  
ON  
OFF  
ON  
90%  
10%  
50%  
50%  
t
WC  
Figure 1. Serial Interface Timing  
6
______________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Typical Operating Characteristics  
(V  
= +3V, V  
= +5V, V = -5V, I  
= 1.5mA, R  
= 200I, R  
= 200I, f = 5MHz, V  
= 0V, T = +25NC, unless other-  
CLR A  
DD  
CC  
EE  
CH  
COM_  
NO_  
wise noted.)  
I
, I SUPPLY CURRENT  
I
, I SUPPLY CURRENT  
vs. TEMPERATURE  
CC EE  
CC EE  
vs. V , V SUPPLY VOLTAGE  
CC  
EE  
2.0  
1.5  
1.0  
0.5  
0
2.00  
1.75  
1.50  
1.25  
1.00  
ONE CHANNEL ON  
ONE CHANNEL ON  
2.5  
3.0  
V
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
, V SUPPLY VOLTAGE (V)  
EE  
TEMPERATURE (°C)  
CC  
I
, I  
SUPPLY SHUTDOWN CURRENT  
vs. TEMPERATURE  
COM_ TO NO_ SMALL-SIGNAL TRANSFER  
FUNCTION vs. FREQUENCY  
CC_SHDN EE_SHDN  
0.20  
0.15  
0.10  
0.05  
0
0
-0.5  
-1.0  
-1.5  
R
= 50  
NO_  
I
= 1.5mA  
CH  
I
= 3mA  
CH  
0
14  
28  
42  
56  
70  
0
5
10  
FREQUENCY (MHz)  
15  
20  
TEMPERATURE (°C)  
COM_ TO NO_ IMPEDANCE  
vs. FREQUENCY  
COM_ TO NO_ CROSSTALK  
vs. FREQUENCY  
9
8
7
6
5
4
3
2
1
0
-60  
-70  
R
R
= 200  
NO_  
= 200Ω  
COM_  
I
= 1.5mA  
CH  
-80  
I
= 3mA  
CH  
-90  
-100  
0
5
10  
FREQUENCY (MHz)  
15  
20  
1
10  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Octal High-Voltage Transmit/Receive Switches  
Typical Operating Characteristics (continued)  
(V  
= +3V, V  
= +5V, V = -5V, I  
= 1.5mA, R  
= 200I, R  
= 200I, f = 5MHz, V  
= 0V, T = +25NC, unless other-  
DD  
CC  
EE  
CH  
COM_  
NO_  
CLR  
A
wise noted.)  
COM_/NO_ SMALL SIGNAL vs. TIME  
(2MHz GAUSSIAN SIGNAL AT COM_)  
COM_/NO_ FFT vs. FREQUENCY  
(2MHz GAUSSIAN SIGNAL AT COM_)  
PSRR vs. FREQUENCY  
-70  
0.08  
0.06  
0.04  
0.02  
0
0
-20  
-40  
-60  
-80  
R
= 50  
R
R
= 200  
R
= 50  
NO_  
NO_  
NO_  
NO_  
COM_  
COM_  
NO_  
= 200Ω  
COM_  
PSRR_V  
EE  
-75  
-80  
-85  
-0.02  
-0.04  
-0.06  
-0.08  
PSRR_V  
CC  
1
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
5
10  
15  
FREQUENCY (MHz)  
TIME (ms)  
FREQUENCY (MHz)  
COM_/NO_ vs. TIME  
HV_/COM_ vs. TIME  
FOR CLR TOGGLING FROM V TO GND TO V  
DD  
DD  
MAX4936-39 toc11  
MAX4936-39 toc10  
COM_LOAD = 200Ω  
V
HV_  
V
50V/div  
COM_  
5mV/div  
NO_LOAD = 20030pF  
COM_LOAD = 100100pF  
V
COM_  
50V/div  
V
NO_  
5mV/div  
200µs/div  
100ns/div  
8
______________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Pin Configuration  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31 30 29  
48 47 46 45 44 43 42 41  
NO1 49  
LVCC1 50  
LE 51  
28 NO8  
27 LVCC8  
26 DOUT  
25 DIN  
CLR 52  
GND 53  
N.C. 54  
COM1 55  
HV1 56  
MAX4936/MAX4938  
24 CLK  
23 GND  
22 COM8  
21 HV8  
*EP  
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
40 39 38 37 36 35 34 33 32 31 30 29  
48 47 46 45 44 43 42 41  
NO1 49  
LVCC1 50  
LE 51  
28 NO8  
27 LVCC8  
26 DOUT  
25 DIN  
CLR 52  
GND 53  
N.C. 54  
COM1 55  
N.C. 56  
MAX4937/MAX4939  
24 CLK  
23 GND  
22 COM8  
21 N.C.  
*EP  
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TQFN  
(5mm × 11mm)  
*CONNECT EP TO GND.  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4936/  
MAX4938  
MAX4937/  
MAX4939  
T/R Switch 2 Input. When the switch is on, low-voltage signals are passed  
through from COM2 to NO2, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
1
2
1
COM2  
HV2  
T/R Switch 2 Input. COM2 follows HV2 when high-voltage signals are present on  
HV2. HV2 is isolated from COM2 when low-voltage signals are present on COM2.  
_______________________________________________________________________________________  
9
Octal High-Voltage Transmit/Receive Switches  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX4936/  
MAX4938  
MAX4937/  
MAX4939  
2, 3, 5, 6, 8,  
3, 6, 15, 18, 54 13, 15, 16, 18,  
19, 21, 54, 56  
N.C.  
No Connection. Not internally connected.  
T/R Switch 3 Input. When the switch is on, low-voltage signals are passed  
through from COM3 to NO3, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
4
5
7
4
7
COM3  
HV3  
T/R Switch 3 Input. COM3 follows HV3 when high-voltage signals are present on  
HV3. HV3 is isolated from COM3 when low-voltage signals are present on COM3.  
T/R Switch 4 Input. When the switch is on, low-voltage signals are passed  
through from COM4 to NO4, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
COM4  
HV4  
T/R Switch 4 Input. COM4 follows HV4 when high-voltage signals are present on  
HV4. HV4 is isolated from COM4 when low-voltage signals are present on COM4.  
8
9
9
Positive Logic Supply. Bypass V  
to GND with a 1FF or greater ceramic  
DD  
V
V
DD  
capacitor as close as possible to the device.  
Positive Analog Supply. Bypass V to GND with a 1FF or greater ceramic  
CC  
10  
10  
CC  
capacitor as close as possible to the device.  
Negative Analog Supply. Bypass V to GND with a 1FF or greater ceramic  
capacitor as close as possible to the device.  
EE  
11  
12, 23, 53  
13  
11  
12, 23, 53  
V
EE  
GND  
HV5  
Ground  
T/R Switch 5 Input. COM5 follows HV5 when high-voltage signals are present on  
HV5. HV5 is isolated from COM5 when low-voltage signals are present on COM5.  
T/R Switch 5 Input. When the switch is on, low-voltage signals are passed  
through from COM5 to NO5, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
14  
16  
17  
19  
20  
21  
22  
14  
17  
20  
22  
COM5  
HV6  
T/R Switch 6 Input. COM6 follows HV6 when high-voltage signals are present on  
HV6. HV6 is isolated from COM6 when low-voltage signals are present on COM6.  
T/R Switch 6 Input. When the switch is on, low-voltage signals are passed  
through from COM6 to NO6, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
COM6  
HV7  
T/R Switch 7 Input. COM7 follows HV7 when high-voltage signals are present on  
HV7. HV7 is isolated from COM7 when low-voltage signals are present on COM7.  
T/R Switch 7 Input. When the switch is on, low-voltage signals are passed  
through from COM7 to NO7, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
COM7  
HV8  
T/R Switch 8 Input. COM8 follows HV8 when high-voltage signals are present on  
HV8. HV8 is isolated from COM8 when low-voltage signals are present on COM8.  
T/R Switch 8 Input. When the switch is on, low-voltage signals are passed  
through from COM8 to NO8, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
COM8  
10 _____________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX4936/  
MAX4938  
MAX4937/  
MAX4939  
24  
25  
26  
24  
25  
26  
CLK  
DIN  
Serial-Clock Input  
Serial-Data Input  
Serial-Data Output  
DOUT  
Inductor V  
Connection. Connect an inductor between LVCC8 and V  
to  
CC  
CC  
27  
27  
LVCC8  
NO8  
improve noise performance, otherwise connect LVCC8 to V  
.
CC  
T/R Switch 8 Output. When the switch is on, low-voltage signals are passed  
through from COM8 to NO8, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO8 is  
limited with clamping diodes on MAX4936/MAX4937.  
28  
28  
Inductor V Connection. Connect an inductor between LVEE8 and V to  
EE  
EE  
29  
30  
29  
30  
LVEE8  
LVCC7  
improve noise performance; otherwise, connect LVEE8 to V  
.
EE  
Inductor V  
Connection. Connect an inductor between LVCC7 and V  
to  
CC  
CC  
improve noise performance; otherwise, connect LVCC7 to V  
.
CC  
T/R Switch 7 Output. When the switch is on, low-voltage signals are passed  
through from COM7 to NO7, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO7 is  
limited with clamping diodes on MAX4936/MAX4937.  
31  
31  
NO7  
Inductor V Connection. Connect an inductor between LVEE7 and V to  
EE  
EE  
32  
33  
32  
33  
LVEE7  
LVCC6  
improve noise performance; otherwise, connect LVEE7 to V  
.
EE  
Inductor V  
Connection. Connect an inductor between LVCC6 and V  
to  
CC  
CC  
improve noise performance; otherwise, connect LVCC6 to V  
.
CC  
T/R Switch 6 Output. When the switch is on, low-voltage signals are passed  
through from COM6 to NO6, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO6 is  
limited with clamping diodes on MAX4936/MAX4937.  
34  
34  
NO6  
Inductor V Connection. Connect an inductor between LVEE6 and V to  
EE  
EE  
35  
36  
35  
36  
LVEE6  
LVCC5  
improve noise performance; otherwise, connect LVEE6 to V  
.
EE  
Inductor V  
Connection. Connect an inductor between LVCC5 and V  
to  
CC  
CC  
improve noise performance; otherwise, connect LVCC5 to V  
.
CC  
T/R Switch 5 Output. When the switch is on, low-voltage signals are passed  
through from COM5 to NO5, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO5 is  
limited with clamping diodes on MAX4936/MAX4937.  
37  
37  
NO5  
Inductor V Connection. Connect an inductor between LVEE5 and V to  
EE  
EE  
38  
39  
38  
39  
LVEE5  
LVEE4  
improve noise performance; otherwise, connect LVEE5 to V  
.
EE  
Inductor V Connection. Connect an inductor between LVEE4 and V to  
EE  
EE  
improve noise performance; otherwise, connect LVEE4 to V  
.
EE  
T/R Switch 4 Output. When the switch is on, low-voltage signals are passed  
through from COM4 to NO4, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO4 is  
limited with clamping diodes on MAX4936/MAX4937.  
40  
40  
NO4  
______________________________________________________________________________________ 11  
Octal High-Voltage Transmit/Receive Switches  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX4936/  
MAX4938  
MAX4937/  
MAX4939  
Inductor V  
Connection. Connect an inductor between LVCC4 and V  
to  
CC  
CC  
41  
42  
41  
42  
LVCC4  
LVEE3  
improve noise performance; otherwise, connect LVCC4 to V  
.
CC  
Inductor V Connection. Connect an inductor between LVEE3 and V to  
EE  
EE  
improve noise performance; otherwise, connect LVEE3 to V  
.
EE  
T/R Switch 3 Output. When the switch is on, low-voltage signals are passed  
through from COM3 to NO3, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO3 is  
limited with clamping diodes on MAX4936/MAX4937.  
43  
43  
NO3  
Inductor V  
Connection. Connect an inductor between LVCC3 and V  
to  
CC  
CC  
44  
45  
44  
45  
LVCC3  
LVEE2  
improve noise performance; otherwise, connect LVCC3 to V  
.
CC  
Inductor V Connection. Connect an inductor between LVEE2 and V to  
EE  
EE  
improve noise performance; otherwise, connect LVEE2 to V  
.
EE  
T/R Switch 2 Output. When the switch is on, low-voltage signals are passed  
through from COM2 to NO2, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO2 is  
limited with clamping diodes on MAX4936/MAX4937.  
46  
46  
NO2  
Inductor V  
Connection. Connect an inductor between LVCC2 and V  
to  
CC  
CC  
47  
48  
47  
48  
LVCC2  
LVEE1  
improve noise performance; otherwise, connect LVCC2 to V  
.
CC  
Inductor V Connection. Connect an inductor between LVEE1 and V to  
EE  
EE  
improve noise performance; otherwise, connect LVEE1 to V  
.
EE  
T/R Switch 1 Output. When the switch is on, low-voltage signals are passed  
through from COM1 to NO1, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked. NO1 is  
limited with clamping diodes on MAX4936/MAX4937.  
49  
49  
NO1  
Inductor V  
Connection. Connect an inductor between LVCC1 and V  
to  
CC  
CC  
50  
51  
50  
51  
LVCC1  
improve noise performance; otherwise, connect LVCC1 to V  
.
CC  
Active-Low Latch-Enable Input. Drive LE low to change the contents of the latch  
and update the state of the switches. Drive LE high to hold the contents of the  
latch.  
LE  
Active-High Latch-Clear Input. Drive CLR high to clear the contents of the latch  
and disable all the switches. When CLR is driven high, the device enters  
shutdown mode. CLR does not affect the contents of the register.  
52  
55  
52  
55  
CLR  
T/R Switch 1 Input. When the switch is on, low-voltage signals are passed  
through from COM1 to NO1, while high-voltage signals are blocked. When the  
switch is off, both low-voltage and high-voltage signals are blocked.  
COM1  
T/R Switch 1 Input. COM1 follows HV1 when high-voltage signals are present on  
HV1. HV1 is isolated from COM1 when low-voltage signals are present on COM1.  
56  
HV1  
EP  
Exposed Pad. Internally connected to GND. Connect EP to a large ground plane  
to maximize thermal performance. Do not use EP as the only GND connection.  
12 _____________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
MAX4938 include the T/R switch and grass-clipping  
diodes, performing both transmit and receive operations.  
The MAX4937/MAX4939 include just the T/R switch and  
Functional Diagram  
V
V
CC  
DD  
perform the receive operation only.  
The MAX4936/MAX4938 transmit path is low impedance  
during high-voltage transmit and high impedance during  
low-voltage receive, providing isolation between transmit  
and receive circuitry. The high-voltage transmit path is  
high bandwidth, low distortion, and low jitter.  
MAX4936−MAX4939  
(SINGLE CHANNEL)  
*
HV_  
LVCC_  
NO_  
V
EE  
The receive path for all devices is low impedance dur-  
ing low-voltage receive and high impedance during  
high-voltage transmit, providing protection to the receive  
circuitry. The low-voltage receive path is high bandwidth,  
low noise, low distortion, and low jitter. Each T/R switch  
can be individually programmed on or off, allowing these  
devices to also be used as receive path multiplexers.  
COM_  
**  
V
CC  
LVEE_  
SPI LOGIC  
The MAX4936/MAX4937 feature clamping diodes to  
protect the receiver input from voltage spikes due to  
leakage currents flowing through the T/R switches dur-  
ing transmission. The MAX4938/MAX4939 do not have  
clamping diodes and rely on clamping diodes integrated  
in the receiver front-end.  
GND  
CLK DIN DOUT LE CLR  
V
EE  
*LOW-VOLTAGE ISOLATION DIODES AVAILABLE ON MAX4936/MAX4938 ONLY.  
**OUTPUT CLAMP DIODES AVAILABLE ON MAX4936/MAX4937 ONLY.  
Serial Interface  
All the devices are controlled by a serial interface with a  
12-bit serial shift register and transparent latch (Figure 2).  
Each of the first 4 data bits controls the bias current into  
the diode bridges (see Figure 3 and Table 2), while the  
remaining 8 data bits control a T/R switch (Table 1). Data  
on DIN is clocked with the most significant bit (MSB) first  
into the shift register on the rising edge of CLK. Data is  
clocked out of the shift register onto DOUT on the rising  
edge of CLK. DOUT reflects the status of DIN, delayed  
by 12 clock cycles (Figure 4).  
Detailed Description  
The MAX4936–MAX4939 are octal, high-voltage trans-  
mit/receive (T/R) switches. The T/R switches are based  
on a diode bridge topology, and the amount of current  
in the diode bridges can be programmed through an  
SPI interface. All devices feature a latch-clear input to  
asynchronously turn off all T/R switches and put the  
device into a low-power shutdown mode. The MAX4936/  
SPI LOGIC  
Transmit/Receive Switch  
The T/R switch is based on a diode bridge topology. The  
amount of bias current into each diode bridge is adjust-  
able by setting the S0–S3 switches through the serial  
interface (see Figure 3 and Table 2).  
REGISTER  
CLK  
D0  
D1  
D10  
S2  
D11  
S3  
DOUT  
DIN  
Latch Enable (LE)  
Drive LE logic-low to change the contents of the latch  
and update the state of the T/R switches (Figure 4).  
Drive LE logic-high to hold the contents of the latch and  
prevent changes to the switches’ states. To reduce noise  
due to clock feedthrough, drive LE logic-high while data  
is clocked into the shift register. After the data shift reg-  
ister is loaded with valid data, pulse LE logic-low to load  
the contents of the shift register into the latch.  
LATCH  
CLR  
LE  
ON1  
ON2  
Figure 2. SPI Logic  
______________________________________________________________________________________ 13  
Octal High-Voltage Transmit/Receive Switches  
Latch Clear (CLR)  
LVCC (LVEE)  
Drive CLR logic-high to reset the contents of the latch to  
zero and open all T/R switches. CLR does not affect the  
contents of the shift register. Once CLR is high again,  
and LE is driven low, the contents of the shift register are  
loaded into the latch.  
S3  
S2  
S1  
S0  
R3  
R2  
R1  
R0  
Power-On Reset  
The devices feature a power-on-reset circuit to ensure  
all switches are off at power-on. The internal 12-bit serial  
shift register and latch are set to zero on power-up.  
DIODE BRIDGE  
Figure 3. Diode Bias Current Control  
LE  
CLK  
D9  
D1  
D0  
DIN  
D11  
MSB  
D10  
LSB  
D10'  
D1'  
D0'  
D11  
D11'  
D9'  
DOUT  
D11'–D0' FROM PREVIOUS DATA  
POWER-UP DEFAULT: D11–D0 = 0  
Figure 4. Latch-Enable Interface Timing  
14 _____________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Table 1. Serial Interface Programming  
CONTROL  
BITS  
DATA BITS  
FUNCTION  
D0  
(LSB)  
D11  
(MSB)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
CLR  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
SW8  
S0  
S1  
S2  
S3  
LE  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
Off  
On  
H
L
H
X
X
Off  
On  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Hold Previous State  
Off Off Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
L = Low, H = High, X = Don’t care.  
Table 2. Diode Bias Current  
RESISTOR  
COMBINATION  
TYPICAL DIODE BRIDGE CURRENT  
(mA) vs. S[3:0] CONTROL BITS (*)  
SWITCHES  
RESISTORS (I)  
S3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
S2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
S1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
S0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R3  
R2  
R1  
R0  
(I)  
V
CC  
= 3.0V  
V
CC  
= 5.0V  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
350  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
700  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
2800  
0
0
2800  
1400  
933  
0.78  
1.50  
1.58  
2.36  
3.14  
3.98  
4.72  
5.50  
6.28  
7.08  
7.86  
8.64  
9.42  
10.22  
11.00  
11.78  
3.00  
4.50  
700  
6.00  
560  
7.50  
467  
9.00  
400  
10.50  
12.00  
13.50  
15.00  
16.50  
18.00  
19.50  
21.00  
22.50  
350  
311  
280  
255  
233  
215  
200  
187  
*V = -V  
EE  
CC  
______________________________________________________________________________________ 15  
Octal High-Voltage Transmit/Receive Switches  
all devices, and drive LE logic-low to update all devices  
simultaneously. Drive CLR high to open all the switches  
simultaneously. Additional shift registers can be includ-  
ed anywhere in series with the device data chain.  
Applications Information  
For medical ultrasound applications, see Figures 5, 6,  
and 7.  
Ultrasound-Specific IMD3 Specification  
Supply Sequencing and Bypassing  
Unlike typical communications applications, the two input  
The devices do not require special sequencing of the  
tones are not equal in magnitude for the ultrasound-spe-  
V
DD  
, V  
and V  
supply voltages; however, analog  
CC,  
EE  
cific IMD3 two-tone specification. In this measurement,  
F1 represents reflections from tissue and F2 represents  
reflections from blood. The latter reflections are typically  
25dB lower in magnitude, and hence the measurement  
is defined with one input tone 25dB lower than the other.  
The IMD3 product of interest (F1 - (F2 - F1)) presents  
itself as an undesired Doppler error signal in ultrasound  
applications. See Figure 8.  
switch inputs must be unconnected, or satisfy V  
P
EE  
(V  
, V  
, V  
) P V  
during power up and power  
HV_ COM_ NO_  
CC  
down. Bypass V , V , and V  
to GND with a 1FF  
DD CC  
EE  
ceramic capacitor as close as possible to the device.  
PCB Layout  
The pin configuration is optimized to facilitate a very  
compact physical layout of the device and its associated  
discrete components. A typical application for this device  
might incorporate several devices in close proximity to  
handle multiple channels of signal processing.  
Logic Levels  
The digital interface inputs CLK, DIN, LE, and CLR are  
tolerant of up to +5.5V, independent of the V  
supply  
DD  
The exposed pad (EP) of the TQFN-EP package provides  
a low thermal resistance path to the die. It is important that  
the PCB on which the device is mounted be designed to  
conduct heat from the EP. In addition, provide the EP with  
a low-inductance path to electrical ground. The EP must  
be soldered to a ground plane on the PCB, either directly  
or through an array of plated through holes.  
voltage, allowing compatibility with higher voltage con-  
trollers.  
Daisy-Chaining Multiple Devices  
Digital output DOUT is provided to allow the connec-  
tion of multiple devices by daisy-chaining (Figure 9).  
Connect each DOUT to the DIN of the subsequent  
device in the chain. Connect CLK, LE, and CLR inputs of  
Application Diagrams  
+3V  
+5V  
HV  
MUX  
XMT  
V
V
CC  
DD  
TRANSDUCERS  
COM_  
MAX4936/MAX4938  
HV_  
NO_  
HV  
MUX  
RELAY  
MUX  
CLK  
DIN  
DOUT  
CLR  
LE  
SPI  
CONTROL  
RCV  
GND  
V
EE  
HV  
MUX  
CONNECTORS  
-5V  
Figure 5. Ultrasound T/R Path with One Transmit per Receive Channel (One Channel Only)  
16 _____________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Application Diagrams (continued)  
XMT  
+3V  
+5V  
TRANSDUCERS  
HV  
MUX  
V
V
CC  
DD  
COM_  
MAX4937/MAX4939  
HV  
MUX  
RELAY  
MUX  
RCV  
NO_  
CLK  
DIN  
DOUT  
CLR  
LE  
SPI  
CONTROL  
GND  
V
EE  
HV  
MUX  
CONNECTORS  
-5V  
Figure 6. Ultrasound T/R Path with One Transmit per Receive Channel and External Isolation (One Channel Only)  
MAX4936  
HV_  
DRIVER  
< ±±11V  
TRANSMIT PATH  
HV_  
DRIVER  
< ±±11V  
TRANSDUCERS  
V
V
CC  
HV  
MUX  
EE  
COM_  
COM_  
NO_ < 511mV  
HV  
MUX  
RELAY  
MUX  
V
V
CC  
EE  
LNA  
V
V
CC  
EE  
HV  
MUX  
RECEIVE PATH  
NO_ < 511mV  
CONNECTORS  
V
V
CC  
EE  
Figure 7. Ultrasound T/R Path with Multiple Transmits per Receive Channel  
______________________________________________________________________________________ 17  
Octal High-Voltage Transmit/Receive Switches  
Application Diagrams (continued)  
-25dB  
ULTRASOUND IMD3  
F1 - (F2 - F1)  
F1  
F2  
F2 + (F2 - F1)  
Figure 8. Ultrasound IMD3 Measurement Technique  
U1  
DOUT  
U2  
U_  
DOUT  
DIN  
DIN  
DIN  
DIN  
DOUT  
MAX4936-  
MAX4939  
MAX4936-  
MAX4939  
MAX4936-  
MAX4939  
CLK  
LE  
CLK  
LE  
CLK  
LE  
CLK  
LE  
CLR  
CLR  
CLR  
CLR  
Figure 9. Interfacing Multiple Devices by Daisy-Chaining  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-“ in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BCDMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
56 TQFN-EP  
T56511+1  
21-0187  
90-0087  
18 _____________________________________________________________________________________  
Octal High-Voltage Transmit/Receive Switches  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
9/10  
Initial release  
Updated the Diode Bridge Turn-Off Time and the NO_ On Capacitance in the  
Electrical Characteristics, updated Figure 7  
1
3/11  
3, 4, 17  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
19  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4939CTN

Octal High-Voltage Transmit/Receive Switches
MAXIM

MAX494

Single/Dual/Quad, Micropower, Single-Supply Rail-to-Rail Op Amps
MAXIM

MAX4940

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX4940A

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX4940ACTN+

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, MO-220, TQFN-56
MAXIM

MAX4940ACTN+T

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX4940CTN+

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX4940CTN+T

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX4940EVKIT

3.5mm Scope Probe Jacks
MAXIM

MAX4940EVKIT+

3.5mm Scope Probe Jacks
MAXIM

MAX4940MB+

3.5mm Scope Probe Jacks
MAXIM
MARKTECH