MAX4940A [MAXIM]

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers;
MAX4940A
型号: MAX4940A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

文件: 总18页 (文件大小:1714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4591; Rev 0; 4/09  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
General Description  
Features  
S High-Density Quad-Channel Pulser in One  
The MAX4940/MAX4940A integrated circuits generate  
high-voltage, high-frequency, unipolar or bipolar pulses  
from low-voltage logic inputs. These quad/dual pulsers  
feature independent logic inputs, independent high-volt-  
age pulser outputs with active clamps and independent  
high-voltage supply inputs.  
Package  
S 0 to +220V Unipolar or Q110V Bipolar Outputs  
S 8.5I (typ) Output Impedance and 2.0A (typ)  
Output Current  
S 21I (typ) Always-On Active Clamp with Integrated  
The MAX4940/MAX4940A feature quad, high-voltage puls-  
ers with 8.5I output impedance for the high-voltage  
outputs and a 21I impedance for the active clamp. The  
high-voltage outputs can provide 2.0A (typ) output current.  
Blocking Diodes  
S Integrated Output Diodes (MAX4940A Only)  
S No Special Power-Supply Sequencing Required  
for Trilevel Applications  
All devices use two logic inputs per channel to con-  
trol the positive and negative pulses. The MAX4940/  
MAX4940A have a dedicated input to control the active  
clamp. All devices feature an independent enable input  
EN. All digital inputs are CMOS compatible (see the  
Ordering Information/Selector Guide).  
S Matched Rise/Fall Times and Matched  
Propagation Delays  
S CMOS-Compatible Logic Inputs  
S 56-Pin, 8mm x 8mm, TQFN Package  
The MAX4940/MAX4940A are available in a 56-pin, 8mm x  
8mm, TQFN exposed pad package and are specified over  
the 0NC to +70NC commercial temperature range.  
Ordering Information/  
Selector Guide  
Warning: Exercise caution. The MAX4940/MAX4940A are  
OUTPUT  
BLOCKING CURRENT  
DIODE  
OUTPUT  
PIN-  
PACKAGE  
designed to operate with high voltages.  
PART  
(A)  
Applications  
Ultrasound Medical Imaging  
Flaw Detection  
MAX4940CTN+  
MAX4940ACTN+  
None  
2.0 (typ)  
56 TQFN-EP*  
56 TQFN-EP*  
OUT2A,  
OUT2B  
2.0 (typ)  
Piezoelectric Drivers  
Note: Devices operate over the 0°C to +70°C temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Test Instruments  
Cleaning Equipment  
Pin Configuration  
TOP VIEW  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OUT1A  
GND  
OUT1B  
GND  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
V
V
PP1  
PP1  
C
C
C
C
C
C
C
C
C
GP1A  
GN1A  
GN2A  
GP1B  
GN1B  
GN2B  
GP2B  
DP2B  
DN2B  
DN1B  
DP1B  
CC  
C
C
C
C
GP2A  
DP2A  
DN2A  
DN1A  
MAX4940  
MAX4940A  
C
C
C
DP1A  
V
V
CC  
GND 55  
56  
*EP  
16 GND  
15  
+
V
DD  
V
EE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TQFN  
*EP = EXPOSED PAD. CONNECT EP TO V  
.
NN1  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND.)  
C
, C  
Voltage................................................-0.3V to V  
DP_ DN_ CC  
V
V
V
V
V
V
Logic Supply Voltage......................................-0.3V to +6V  
Output Driver Positive Supply Voltage..........-0.3V to +15V  
Output Driver Negative Supply Voltage ........-15V to +0.3V  
Continuous Power Dissipation (T = +70NC)  
56-Pin TQFN (derate 47.6mW/NC above +70NC).......3809mW  
Thermal Resistance (Note 1)  
DD  
A
CC  
EE  
B
................................................................................21NC/W  
.................................................................................1NC/W  
High-Positive Supply Voltage........-0.3V to (V  
+ 220V)  
JA  
PP_  
NN_  
PP1  
NN_  
B
Low-Negative Supply Voltage ...................-220V to +0.3V  
- V , V - V Supply Voltage .........-0.6V to +250V  
JC  
Operating Temperature Range............................. 0NC to +70NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
NN1 PP2  
NN2  
INP_, INN_, CLP_, EN Logic Input........... -0.3V to (V  
C
C
+ 0.3V)  
DD  
Voltage ......................... (-0.3V + V  
Voltage............................(+0.3V + V  
) to (+15V + V  
)
)
GN_  
GP_  
NN_  
NN_  
) to (-15V + V  
PP_ PP_  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
EE  
PP_  
NN_  
A
MIN  
at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
, V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY (V , V , V , V  
)
DD CC EE PP_ NN_  
Logic Supply Voltage  
V
V
2.37  
4.75  
3
6
V
V
DD  
CC  
Positive Drive Supply Voltage  
12  
12.6  
1.05 x  
0.95 x  
Negative Drive Supply Voltage  
V
EE  
-V  
CC  
V
(-V )  
CC  
(-V )  
CC  
High-Side Supply Voltage  
Low-Side Supply Voltage  
High-Side Supply Voltage  
Low-Side Supply Voltage  
V
0
-200  
0
+200  
0
V
V
V
V
V
PP1  
V
NN1  
V
PP2  
V
PP1  
V
V
NN1  
0
NN2  
V
- V  
Supply Voltage  
0
+200  
PP_  
NN_  
SUPPLY CURRENT (for single channel)  
V
/V  
/V  
= 0 or V , V = 0  
1
FA  
FA  
INN_ INP_ CLP_  
DD EN  
V
Supply Current  
I
DD  
DD  
V
EN  
V
= V , V  
, f = 5MHz, one channel switching  
= 0 or V , V  
=
DD CLP_  
DD INN_  
100  
200  
INP_  
V
V
= 0 (static)  
1
EN  
EN  
FA  
= V  
(static)  
10  
DD  
V
V
= V , V  
= 0 or V , V  
DD INN_  
=
EN  
DD CLP_  
, f = 5MHz, V  
INP_  
= +12V, V = +3V,  
DD  
36  
15  
CC  
V
Supply Current  
I
CC  
CC_  
one channel switching  
mA  
V
EN  
V
= V , V  
= 0 or V , V  
=
DD CLP_  
DD INN_  
, f = 5MHz, V  
INP_  
= +5V, V  
= +3V,  
CC  
DD  
one channel switching  
2
______________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
EE  
PP_  
NN_  
A
MIN  
at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
(static)  
DD  
MIN  
TYP  
MAX  
UNITS  
V
V
= 0 or V  
1
EN  
= -5V, V = V , V  
= V  
,
EE  
EN  
DD CLP_  
DD  
PRF = 10kHz, f = 5MHz, four pulses,  
no load, one channel switching  
100  
V
EE_  
Supply Current  
I
EE_  
FA  
V
= -12V, V = V , V  
= V  
,
EE  
EN  
DD CLP_  
DD  
PRF = 10kHz, f = 5MHz, four pulses,  
no load, one channel switching  
200  
1
V
= 0 or V  
(static)  
FA  
EN  
DD  
V
V
= V , V  
= 0 or V , V  
DD INN_  
=
EN  
DD CLP_  
, f = 5MHz, V  
INP_  
= +5V, V = -5V,  
NN_  
9
PP_  
no load, one channel switching  
V
Supply Current  
I
PP_  
PP_  
mA  
FA  
V
V
= V , V  
= 0 or V  
,
EN  
DD CLP_  
DD  
= +80V, V  
= -80V, PRF = 10kHz,  
PP_  
NN_  
0.6  
f = 10MHz, four pulses, no load,  
one channel switching  
V
= 0 or V  
(static)  
1
EN  
DD  
V
V
= V , V  
= 0 or V , V  
DD INN_  
=
EN  
DD CLP_  
, f = 5MHz, V  
INP_  
= +5V, V = -5V,  
NN_  
9
PP_  
no load, one channel switching  
V
Supply Current  
I
NN_  
NN_  
mA  
V
V
= V , V  
= 0 or V  
,
EN  
DD INC_  
DD  
= +80V, V  
= -80V, PRF = 10kHz,  
PP_  
NN_  
0.6  
f = 10MHz, four pulses, no load,  
one channel switching  
LOGIC INPUTS (EN, INN_, INP_, CLP_)  
0.25 x  
Low-Level Input Voltage  
High-Level Input Voltage  
V
V
V
IL  
V
DD  
0.75 x  
V
IH  
V
DD  
Logic-Input Capacitance  
Logic-Input Leakage  
OUTPUT (OUT_)  
C
5
0
pF  
IN  
I
V
IN  
= 0 or V  
DD  
Q1  
FA  
IN  
No load at OUT_  
V
V
V
V
NN_  
PP_  
V
NN_  
1.5  
+
V
PP_  
1.5  
-
100mA load (MAX4940), V  
= +12V Q5%  
CC  
OUT_ Output-Voltage Range  
V
OUT_  
V
NN_  
2.5  
+
V
-
PP_  
2.5  
100mA load (MAX4940A), V  
= +12V Q5%  
V
I
I
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= +12V Q5%  
= +5V Q5%  
= +12V Q5%  
= +5V Q5%  
7.5  
8
14  
18  
14  
18  
Low-Side Output Impedance  
(MAX4940)  
R
OLS  
I
I
= -50mA  
= -50mA  
OUT_  
OUT_  
9
High-Side Output Impedance  
(MAX4940)  
R
OHS  
10.5  
_______________________________________________________________________________________  
3
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
EE  
PP_  
NN_  
A
MIN  
at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
8.5  
MAX  
17  
UNITS  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= +12V Q5%  
= +5V Q5%  
= +12V Q5%  
= +5V Q5%  
= +12V Q5%  
= +5V Q5%  
= +12V Q5%  
= +5V Q5%  
Low-Side Output Impedance  
(MAX4940A)  
R
I
I
I
I
= -50mA  
= -50mA  
= -50mA  
= -50mA  
I
OLS  
OUT_  
OUT_  
OUT_  
OUT_  
10.0  
11.5  
13.0  
18.7  
20  
21  
17  
High-Side Output Impedance  
(MAX4940A)  
R
OHS  
I
I
I
21  
45  
Low-Side Signal CLAMP Output  
Impedance  
R
OLSC  
60  
26.5  
37.0  
45  
High-Side Signal CLAMP Output  
Impedance  
R
OHSC  
60  
PEAK CURRENT  
Low-Side Output Current  
High-Side Output Current  
Low-Side Output Current Clamp  
High-Side Output Current Clamp  
I
V
V
V
V
= +12V Q5%, V  
= +12V Q5%, V  
= +12V Q5%, V  
= +12V Q5%, V  
- V  
- V  
= 100V  
= 100V  
1.3  
1.3  
2.0  
2.0  
0.9  
0.9  
75  
A
A
OL  
CC  
CC  
CC  
CC  
OUT_  
OUT_  
OUT_  
OUT_  
NN_  
I
OH  
PP_  
I
= +40V  
= +40V  
0.47  
0.47  
OLC  
OHC  
A
I
MAX4940, MAX4940A (OUT1_)  
MAX4940A (OUT2_)  
Off-Output Capacitance  
C
pF  
FA  
O(OFF)  
45  
V
V
= -100V, V  
= +100V, V = 0,  
NN_  
PP_ EN  
Off-Output Leakage Current  
I
Q1  
LK  
= -100V to +100V  
OUT_  
GATE-SOURCE RESISTANCE  
Gate-Source Resistance  
R
V
EN  
= V  
5
7.5  
10  
kI  
GS  
DD  
DYNAMIC CHARACTERISTICS (R = 100I, C = 100pF, unless otherwise noted)  
L
L
Logic Input-to-Output Rise  
Propagation Delay (Figure 1)  
INN_/INP_ at 50% to OUT_ 10/90%,  
= +12V, V = +5V, V = -5V  
t
15  
15  
ns  
ns  
PLH  
PHL  
V
CC  
PP_  
NN_  
Logic Input-to-Output Fall  
Propagation Delay (Figure 1)  
INN_/INP_ at 50% to OUT_ 10/90%,  
V = +12V, V = +5V, V = -5V  
CC  
t
PP_  
NN_  
Logic Input-to-Output Rise  
Propagation Delay Clamp  
(Figure 1)  
INN_/INP_ at 50% to OUT_ 10/90%,  
= +12V, V = +5V, V = -5V  
t
15  
15  
ns  
ns  
PLO  
V
CC  
PP_  
NN_  
Logic Input-to-Output Fall  
Propagation Delay Clamp  
(Figure 1)  
INN_/INP_ at 50% to OUT_ 10/90%,  
t
PHO  
V
CC  
= +12V, V  
= +5V, V  
= -5V  
PP_  
NN_  
OUT_ Rise Time (GND to V  
(Figure 1)  
)
V
V
= +100V, V  
= -100V, 10% to 90%,  
PP_  
PP_  
NN_  
t
9
10.5  
9
20  
35  
20  
35  
35  
ns  
ns  
ns  
ns  
ns  
ROP  
= +12V Q5%, V  
= -V  
CC_  
CC_  
EE_  
OUT_ Rise Time (V  
(Figure 1)  
to V  
)
V
V
= +100V, V  
= -100V, 10% to 90%,  
NN_  
PP_  
PP_  
NN_  
t
RNP  
FON  
= +12V Q5%, V  
= -V  
CC_  
CC_  
EE_  
OUT_ Fall Time (GND to V  
(Figure 1)  
)
V
V
= +100V, V  
= -100V, 10% to 90%,  
NN_  
PP_  
NN_  
t
= +12V Q5%, V  
= -V  
CC_  
CC_  
EE_  
OUT_ Fall Time (V  
(Figure 1)  
to V  
)
V
V
= +100V, V  
= -100V, 10% to 90%,  
PP_  
NN_  
PP_  
NN_  
t
10.5  
17  
FPN  
= +12V Q5%, V  
= -V  
CC_  
CC  
EE_  
OUT_ Rise Time (V  
(Figure 1)  
to GND)  
V
V
= +100V, V  
= -100V, 10% to 90%,  
NN_  
PP_  
NN_  
t
RNO  
= +12V Q5%, V  
= -V  
CC_  
CC  
EE_  
4
______________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
EE  
PP_  
NN_  
A
MIN  
at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT_ Fall Time (V  
(Figure 1)  
to GND)  
V
V
= +100V, V  
= +12V Q5%, V  
= -100V, 10% to 90%,  
PP_  
PP_  
NN_  
t
17  
35  
ns  
FPO  
= -V  
CC_  
CC  
EE_  
Output Enable Time from EN  
(Figure 2)  
t
V
V
= +5V, V  
= -5V  
= -5V  
100  
150  
ns  
ns  
EN  
PP_  
NN_  
NN_  
Output Disable Time from EN  
(Figure 2)  
t
= +5V, V  
DI  
PP_  
f
V
= 5MHz, V  
= +12V  
= -V  
= -V  
= -V  
= +5V,  
OUT_  
PP_  
NN_  
NN_  
NN_  
2nd Harmonic Distortion LV  
2nd Harmonic Distortion HV  
THD2_LV  
THD2_HV  
-40  
-45  
dB  
dB  
CC  
f
= 5MHz, V  
= +50V, V  
OUT_  
PP_  
CC  
= +12V, 10 periods  
f
= 5MHz, V  
PP_  
= +50V,  
OUT_  
Pulse Cancellation  
2HD  
V
= +12V, 10 periods, 1st harmonic  
-43  
dB  
CC  
cancellation  
RMS Output Jitter  
Crosstalk  
t
10  
ps  
J
CT  
Adjacent channels, f = 5MHz  
-60  
dB  
Note 2: Specifications are guaranteed for the stated global conditions, unless otherwise noted. 100% production tested at  
= +70NC. Specifications at T = 0NC are guaranteed by design.  
T
A
A
Typical Operating Characteristics  
(V  
DD  
= +3.3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, f  
= 5MHz, R = 100I, C = 100pF, T = +25NC, unless  
CC  
EE  
PP_  
NN_  
OUT  
L
L
A
otherwise noted.)  
I
vs. OUTPUT FREQUENCY  
I
vs. TEMPERATURE  
CC  
I
vs. OUTPUT FREQUENCY  
CC  
CC  
0.50  
0.48  
40  
35  
30  
25  
20  
15  
10  
5
0.50  
CONTINUOUS SWITCHING,  
4 PULSES AT 10MHz, PRF = 10kHz  
4 PULSES, PRF = 10kHz  
= 100I  
= 100pF  
0.48  
0.46  
V
V
V
= V = +5V,  
= V = -5V,  
= +3.3V  
R = 100I  
PP_  
NN_  
DD  
L
L
CC  
EE  
R
C
L
L
0.46  
0.44  
0.42  
0.40  
0.38  
0.36  
0.34  
0.44  
0.42  
0.40  
C = 100pF  
0.38  
0.36  
0.34  
0.32  
0.30  
0.32  
0.30  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
1
3
5
7
9
11  
13  
15  
FREQUENCY (MHz)  
TEMPERATURE (NC)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3.3V, V  
= +12V, V = -12V, V  
EE  
= +100V, V  
= -100V, f  
= 5MHz, R = 100I, C = 100pF, T = +25NC, unless  
CC  
PP_  
NN_  
OUT  
L
L
A
otherwise noted.)  
I
vs. OUTPUT FREQUENCY  
I
CC  
vs. TEMPERATURE  
I
vs. OUTPUT FREQUENCY  
PP_  
PP_  
50  
40  
30  
20  
10  
0
12  
40  
35  
30  
25  
20  
15  
10  
5
CONTINUOUS SWITCHING,  
= 2.5MHz,  
4 PULSES, PRF = 10kHz  
CONTINUOUS SWITCHING,  
f
V
V
V
= V = +5V,  
= V = -5V,  
EE  
= +3.3V  
OUT  
PP_  
NN_  
DD  
CC  
11  
10  
9
V
V
V
= V = +5V,  
= V = -5V,  
EE  
= +3.3V,  
PP_  
NN_  
DD  
CC  
R = 0, C = 0  
L
L
8
R
C
= 100I  
= 100pF  
R
C
= 100I  
= 100pF  
L
L
L
L
7
6
NO LOAD  
NO LOAD  
3
5
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
1
5
7
9
11  
13  
15  
FREQUENCY (MHz)  
TEMPERATURE (NC)  
FREQUENCY (MHz)  
I
vs. TEMPERATURE  
I
vs. OUTPUT FREQUENCY  
I
vs. TEMPERATURE  
PP_  
NN_  
PP_  
10  
9
40  
35  
30  
25  
20  
15  
10  
5
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
CONTINUOUS SWITCHING,  
= 2.5MHz,  
4 PULSES, PRF = 10kHz  
4 PULSES AT 10MHz, PRF = 10kHz  
f
OUT  
PP_  
NN_  
DD  
8
V
V
V
= V = +5V,  
CC  
= V = -5V,  
= +3.3V,  
EE  
7
6
R = 0, C = 0  
L
L
5
4
R
C
= 100I  
= 100pF  
L
L
3
2
NO LOAD  
3
1
0
0
0
10  
20  
30  
40  
50  
60  
70  
1
5
7
9
11  
13  
15  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (NC)  
FREQUENCY (MHz)  
TEMPERATURE (NC)  
I
vs. TEMPERATURE  
NN_  
I
vs. TEMPERATURE  
NN_  
I
vs. OUTPUT FREQUENCY  
NN_  
10  
9
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
50  
40  
30  
20  
10  
0
CONTINUOUS SWITCHING,  
= 2.5MHz,  
4 PULSES AT 10MHz, PRF = 10kHz  
CONTINUOUS SWITCHING,  
PP_  
NN_  
f
OUT  
PP_  
NN_  
DD  
L
V
V
V
= V = +5V,  
CC  
= V = -5V,  
EE  
8
V
V
V
= V = +5V,  
CC  
= V = -5V,  
EE  
= 3.3V  
7
DD  
= +3.3V,  
6
R = 0, C = 0  
L
5
4
R = 100I  
L
C = 100pF  
L
3
2
1
0
NO LOAD  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
FREQUENCY (MHz)  
6
______________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3.3V, V  
= +12V, V = -12V, V  
= +100V, V  
= -100V, f  
= 5MHz, R = 100I, C = 100pF, T = +25NC, unless  
CC  
EE  
PP_  
NN_  
OUT  
L
L
A
otherwise noted.)  
OUT_ RISE TIME (GND TO V  
)
OUT_ FALL TIME (GND TO V  
)
INP_ TO OUT_ RISE PROPAGATION DELAY  
PP_  
NN_  
vs. V /V SUPPLY VOLTAGE  
vs. V /V SUPPLY VOLTAGE  
vs. V /V SUPPLY VOLTAGE  
CC EE  
CC EE  
CC EE  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
R = 100I, C = 100pF  
R = 100I, C = 100pF  
L
L
L
L
R = 100I, C = 100pF  
L
L
6
6
4
4
2
2
0
0
0
Q4.75 Q5 Q7.5 Q10 Q12 Q12.6  
/V SUPPLY VOLTAGE (V)  
Q4.75 Q5 Q7.5 Q10 Q12 Q12.6  
/V SUPPLY VOLTAGE (V)  
Q4.75 Q5 Q7.5 Q10 Q12 Q12.6  
/V SUPPLY VOLTAGE (V)  
V
V
CC EE  
V
CC EE  
CC EE  
INP_ TO OUT_ FALL PROPAGATION DELAY  
vs. TEMPERATURE  
INP_ TO OUT_ RISE PROPAGATION DELAY  
vs. TEMPERATURE  
INP_ TO OUT_ FALL PROPAGATION DELAY  
vs. V /V SUPPLY VOLTAGE  
CC EE  
20  
15  
10  
5
20  
15  
10  
5
25  
20  
15  
10  
5
R = 100I, C = 100pF  
L
L
R = 100I, C = 100pF  
R = 100I, C = 100pF  
L
L
L
L
0
0
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
Q4.75 Q5 Q7.5 Q10 Q12 Q12.6  
/V SUPPLY VOLTAGE (V)  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
V
CC EE  
JITTER  
SPECTRUM  
= +50V, V  
5MHz, V  
= +5V, V  
= -5V  
NN_  
MAX4940 toc19  
5MHz, V  
= -50V  
NN_  
PP_  
PP_  
MAX4940 toc20  
_______________________________________________________________________________________  
7
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Pin Description  
PIN  
NAME  
FUNCTION  
1
INP1A  
Channel 1A High-Side Logic Input. See the Truth Tables section.  
Channel 1A Clamp Logic Input. Clamp is turned on when CLP1A is high and when INP1A and  
INN1A are low. See the Truth Table section.  
2
CLP1A  
3
4
INN1A  
INP2A  
Channel 1A Low-Side Logic Input. See the Truth Tables section.  
Channel 2A High-Side Logic Input. See the Truth Tables section.  
Channel 2A Clamp Logic Input. Clamp is turned on when CLP2A is high and when INP2A and  
INN2A are low. See the Truth Tables section.  
5
CLP2A  
6
7
8
9
INN2A  
AGND  
EN  
Channel 2A Low-Side Logic Input. See the Truth Tables section.  
Analog Ground. Must be connected to common GND.  
Enable Logic Input. Drive EN high to enable OUT1A, OUT1B, OUT2A, and OUT2B.  
Channel 2B High-Side Logic Input. See the Truth Tables section.  
INP2B  
Channel 2B Clamp Logic Input. Clamp is turned on when CLP2B is high and when INP2B and  
INN2B are low. See the Truth Tables section.  
10  
CLP2B  
11  
12  
INN2B  
INP1B  
Channel 2B Low-Side Logic Input. See the Truth Tables section.  
Channel 1B High-Side Logic Input. See the Truth Tables section.  
Channel 1B Clamp Logic Input. Clamp is turned on when CLP1B is high and when INP1B and  
INN1B are low. See the Truth Tables section.  
13  
14  
15  
CLP1B  
INN1B  
Channel 1B Low-Side Logic Input. See the Truth Tables section.  
Negative Supply Input. Gate-drive supply voltage for the clamp. Bypass V to GND with a 0.1FF  
EE  
V
EE  
capacitor as close as possible to the device.  
16, 27, 29,  
34, 37, 42,  
44, 55  
GND  
Ground  
Gate-Drive Supply Voltage Input. Bypass V  
to the device.  
to GND with a 0.1FF capacitor as close as possible  
CC  
17, 54  
18  
V
CC  
Channel 1B High-Side Driver Output. Connect a 3.3nF capacitor between C  
and C  
as  
as  
as  
as  
DP1B  
DN1B  
DN2B  
GP1B  
GN1B  
GN2B  
C
DP1B  
DN1B  
DN2B  
close as possible to the device  
.
Channel 1B Low-Side Driver Output. Connect a 3.3nF capacitor between C  
close as possible to the device  
and C  
and C  
19  
C
C
.
Channel 2B Low-Side Driver Output. Connect a 3.3nF capacitor between C  
close as possible to the device  
20  
.
Channel 2B High-Side Driver Output. Connect a 3.3nF capacitor between C  
and C  
GP2B  
DP2B  
21  
C
C
DP2B  
GP2B  
GN2B  
GN1B  
close as possible to the device  
.
Channel 2B High-Side Gate Input. Connect a 3.3nF capacitor between C  
and C  
as close  
as close  
as close  
as close  
DP2B  
DN2B  
DN1B  
GP2B  
GN2B  
GN1B  
22  
as possible to the device  
.
Channel 2B Low-Side Gate Input. Connect a 3.3nF capacitor between C  
as possible to the device  
and C  
and C  
23  
C
C
.
Channel 1B Low-Side Gate Input. Connect a 3.3nF capacitor between C  
as possible to the device  
24  
.
Channel 1B High-Side Gate Input. Connect a 3.3nF capacitor between C  
and C  
GP1B  
DP1B  
25  
C
GP1B  
as possible to the device  
.
8
______________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Pin Description (continued)  
PIN  
26, 45  
28  
NAME  
FUNCTION  
Channel 1A, 1B High-Side Positive Supply Voltage Input. Bypass V  
capacitor as close as possible to the device.  
to GND with a 0.1FF  
PP1  
V
PP1  
OUT1B  
Channel 1B Output  
Channel 1A, 1B Low-Side Negative Supply Voltage Input. Bypass V  
capacitor as close as possible to the device.  
to GND with a 0.1FF  
to GND with a 0.1FF  
NN1  
30, 41  
V
NN1  
NN2  
Channel 2A, 2B Low-Side Negative Supply Voltage Input. Bypass V  
capacitor as close as possible to the device.  
NN2  
31, 40  
V
32, 39  
33  
N.C.  
No Connection. Not connected internally.  
Channel 2B Output  
OUT2B  
Channel 2A, 2B High-Side Positive Supply Voltage Input. Bypass V  
capacitor as close as possible to the device.  
to GND with a 0.1FF  
PP2  
35, 36  
V
PP2  
38  
43  
OUT2A  
OUT1A  
Channel 2A Output  
Channel 1A Output  
Channel 1A High-Side Gate Input. Connect a 3.3nF capacitor between C  
and C  
as close  
as close  
as close  
as close  
DP1A  
DN1A  
DN2A  
GP1A  
GN1A  
GN2A  
46  
47  
48  
49  
50  
51  
52  
53  
C
GP1A  
GN1A  
GN2A  
as possible to the device  
.
Channel 1A Low-Side Gate Input. Connect a 3.3nF capacitor between C  
as possible to the device  
and C  
and C  
C
C
.
Channel 2A Low-Side Gate Input. Connect a 3.3nF capacitor between C  
as possible to the device  
.
Channel 2A High-Side Gate Input. Connect a 3.3nF capacitor between C  
and C  
GP2A  
DP2A  
C
C
GP2A  
DP2A  
DN2A  
DN1A  
as possible to the device  
.
Channel 2A High-Side Driver Output. Connect a 3.3nF capacitor between C  
and C  
as  
as  
as  
as  
DP2A  
DN2A  
DN1A  
GP2A  
GN2A  
GN1A  
close as possible to the device  
.
Channel 2A Low-Side Driver Output. Connect a 3.3nF capacitor between C  
close as possible to the device  
and C  
and C  
C
C
.
Channel 1A Low-Side Driver Output. Connect a 3.3nF capacitor between C  
close as possible to the device  
.
Channel 1A High-Side Driver Output. Connect a 3.3nF capacitor between C  
and C  
GP1A  
DP1A  
C
DP1A  
close as possible to the device  
.
Logic-Supply Voltage Input. Bypass V  
device.  
to GND with a 0.1FF capacitor as close as possible to the  
DD  
56  
V
DD  
EP  
Exposed Pad. EP must be connected to V  
.
NN1  
_______________________________________________________________________________________  
9
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Logic Inputs (INP_, INN_, CLP_, EN)  
Detailed Description  
INP_ controls the on and off states of the high-side FET,  
INN_ controls the on and off states of the low-side FET,  
and CLP_ controls the active clamp. A global enable  
input (EN) can be used to enable/disable all channels.  
These signals give complete control of the output stage  
of each driver (see the Truth Tables section for all logic  
combinations). The MAX4940/MAX4940A logic inputs  
are CMOS logic compatible and the logic levels are ref-  
The MAX4940/MAX4940A are quad high-voltage, high-  
speed pulsers that can be independently configured  
for either unipolar/bipolar/multilevel pulse outputs (see  
Figures 5 and 6.). These devices have independent  
logic inputs for full pulse control and independent active  
clamps. The clamp input, CLP_, can be set high to  
activate the clamp automatically when the device is not  
pulsing to the positive or negative high-voltage supplies.  
erenced to V  
for maximum flexibility. The low 5pF (typ)  
DD  
input capacitance of the logic inputs reduce loading and  
increase switching speed.  
Truth Tables  
MAX4940  
INPUTS  
OUTPUTS  
OUT_  
STATE  
EN  
0
INP_  
INN_  
CLP_  
X
0
0
0
1
1
X
0
0
1
0
1
X
0
1
X
X
X
High impedance  
High impedance  
GND  
Powered up, INP_/INN_ disabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Not allowed.  
1
1
1
V
NN_  
1
V
PP_  
1
Not allowed  
MAX4940A  
INPUTS  
OUTPUTS  
STATE  
INP1A INN1A CLP1A  
INP1B INN1B CLP1B  
OUT1A  
OUT1B  
EN  
0
1
1
1
1
1
X
0
0
0
1
1
X
0
0
1
0
1
X
0
1
0
0
1
High impedance  
High impedance  
GND  
Powered up, INP_/INN_ disabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Not allowed.  
V
NN_  
V
PP_  
Not allowed  
INPUTS  
OUTPUTS  
STATE  
INP2A INN2A CLP2A  
INP2B INN2B CLP2B  
OUT2A  
OUT2B  
EN  
0
1
1
1
1
1
X
0
0
0
1
1
X
0
0
1
0
1
X
0
1
X
X
X
High impedance  
High impedance  
GND  
Powered up, INP_/INN_ disabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Powered up, all inputs enabled.  
Not allowed.  
V
NN_  
V
PP_  
Not allowed  
X = Don’t care.  
0 = Logic-low.  
1 = Logic-high.  
10 _____________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Active Clamps  
Power Dissipation  
The power dissipation of the MAX4940/MAX4940A con-  
sists of three major components caused by the current  
The MAX4940/MAX4940A feature an integrated active  
clamp circuit to improve pulse quality and reduce 2nd  
harmonic distortion. The clamp circuit consists of an  
n-channel (DC-coupled) and a p-channel (DC-coupled)  
high-voltage FETs that are switched on or off by the logic  
clamp input (CLP_).  
consumption from V , V  
, and V  
PP_  
. The sum of  
NN_  
CC  
these components (P  
, P  
, and P ) must be  
VNN_  
VCC VPP_  
kept below the maximum power-dissipation limit. See  
the Typical Operating Characteristics section for more  
information on typical supply currents versus switching  
frequencies.  
The MAX4940/MAX4940A feature protected clamp devic-  
es, allowing the clamp circuit to be used in bipolar pulsing  
circuits (see Figures 3 and 4). A diode in series with the  
OUT_ output prevents the body diode of the low-side FET  
from turning on when a voltage lower than GND is pres-  
ent. Another diode in series with the OUT_ output prevents  
the body diode of the high-side FET from turning on when  
a voltage higher than ground is present. The MAX4940/  
MAX4940A have an active clamp on all outputs.  
The device consumes most of the supply current from  
V
CC  
supply to charge and discharge internal nodes  
such as the gate capacitance of the high-side FET (C )  
P
and the low-side FET (C ). Neglecting the small quies-  
N
cent supply current and a small amount of current used  
to charge and discharge the capacitances at the internal  
gate clamp FETs, the power consumption can be esti-  
mated as follows:  
For the MAX4940 only, the user can connect the active  
clamp input (CLP_) to a logic-high voltage and drive  
only the INP_ and INN_ inputs to minimize the number of  
signals used to drive the device. In this case, whenever  
both the INP_ and INN_ inputs are low and the CLP_  
input is high, the active clamp circuit pulls the output to  
GND (see the Truth Tables section for more information).  
2
2
P
=
C
× V  
× f + C × V  
× f  
IN  
× BRF ×BTD  
(
)
VCC  
(
N
CC  
IN  
)
(
P
CC  
)
f
= f  
+ f  
IN INN_ INP_  
where f  
and f  
are the switching frequency of  
INN_  
INP_  
the inputs INN_, INP_, respectively, and where BRF is  
the burst response frequency, and BTD is the burst time  
duration. The typical values of the gate capacitances are  
Integrated Blocking Diodes  
(MAX4940A Only)  
C
N
= 1.2FF, C = 0.4FF.  
P
The high-voltage OUT2A/OUT2B outputs of the  
MAX4940A feature integrated blocking diodes that allow  
the user to implement multilevel pulsing by connect-  
ing the outputs of multiple pulser channels in parallel.  
Internal diodes in series with the OUT2A and OUT2B  
outputs prevent the body diode of the high-side and low-  
side FETs from switching on when a voltage greater than  
See the Typical Operating Characteristics for V  
and  
PP_  
V
NN_  
power consumption.  
Power Supplies and Bypassing  
The MAX4940/MAX4940A operate from independent  
supply voltage sets (only V , V , and V are com-  
DD CC  
EE  
mon to all channels). V  
/V  
supply two channels  
PP1 NN1  
V
NN2  
or V  
is present on the output (see Figure 4).  
PP2  
and V  
/V  
supply the other two channels. The logic  
PP2 NN2  
input circuit operates from a +2.37V to +6V single sup-  
Thermal Protection  
ply (V ). The level-shift driver dual supplies, V /V  
DD  
CC EE  
A thermal shutdown circuit with a typical threshold of  
operate from Q4.75V to Q12.6V.  
+155NC prevents damage due to excessive power dis-  
sipation. When the junction temperature exceeds T =  
The V  
/V  
high-side and low-side supplies are  
J
PP_ NN_  
+155NC, all outputs are disabled. Normal operation typi-  
cally resumes after the IC’s junction temperature drops  
below +130NC.  
driven from a single positive supply up to +220V, from a  
single negative supply up to -220V, or from Q110V dual  
supplies. Either V  
or V  
can be set at 0. Bypass  
PP_  
NN_  
each supply input to ground with a 0.1FF capacitor as  
close as possible to the device.  
Applications Information  
Depending on the applications, additional bypassing may  
AC-Coupling Capacitor Selection  
be needed to maintain the input of both V  
and V  
NN_  
PP_  
The value of all AC-coupling capacitors (between C  
DP_  
stable during output transitions. For example, with C  
OUT  
and C  
, and between C  
and C ) should be  
GN_  
GP_  
DN_  
= 100pF and R  
= 100Iload, the use of an additional  
OUT  
between 1nF to 10nF. The voltage rating of the capacitor  
should be greater than V and V . The capacitors  
10FF (typ) electrolytic capacitor is recommended.  
PP_  
NN_  
should be placed as close as possible to the device.  
______________________________________________________________________________________ 11  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
particular attention to minimize trace lengths and use suf-  
ficient trace width to reduce inductance. Use of surface-  
mount components is recommended.  
Exposed Pad and Layout Concerns  
The MAX4940/MAX4940A provide an exposed pad  
(EP) underneath the TQFN package for improved ther-  
mal performance. EP is internally connected to V  
.
NN1  
Supply Sequencing  
Connect EP to V  
externally. To aid heat dissipation,  
NN1  
In a typical trilevel application when V  
and V  
NN1  
NN2  
connect EP to a similarly sized pad on the component  
side of the PCB. This pad should be connected through  
the solder-side copper by several plated holes to a large  
heat spreading copper area to conduct heat away from  
the device.  
are externally shorted (V  
= V ), the MAX4940/  
NN2  
NN1  
MAX4940A do not require any power sequencing. In  
general, and in particular for the multilevel applica-  
tion, V  
must be less than or equal to V  
(V  
P
NN1  
NN2 NN1  
V
NN2  
) at all times. No other power-supply sequencing is  
required for the MAX4940/MAX4940A.  
The MAX4940/MAX4940A high-speed pulsers require low-  
inductance bypass capacitors to their supply inputs. High-  
speed PCB trace design practices are recommended. Pay  
Timing Diagrams  
t
FPN  
V
PP_  
90%  
10%  
90%  
10%  
t
t
RNO  
FON  
OUT_  
90%  
10%  
10%  
GND  
90%  
t
t
ROP  
FPO  
90%  
10%  
10%  
V
NN_  
t
t
t
RNP  
POH  
PHO  
50%  
50%  
50%  
50%  
50%  
INP_  
INN_  
t
t
PHL  
PLH  
t
t
PLO  
POL  
V
DD  
50%  
50%  
50%  
GND  
CLP_ = HIGH  
Figure 1. Detail Timing (R = 100I, C = 100pF)  
L
L
12 _____________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Timing Diagrams (continued)  
OUT_ (INP_ = HIGH)  
GND  
10%  
OUT_ (INN_ = HIGH)  
10%  
t
DI  
t
EN  
EN  
50%  
50%  
CLP_ = HIGH  
Figure 2. Enable Timing (R = 100I, C = 100pF)  
L
L
______________________________________________________________________________________ 13  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Functional Diagrams  
V
DD  
V
C
C
GP_  
CC_  
DP_  
V
PP_  
V
V
DD  
CC_  
LEVEL  
SHIFTER  
C
DP_  
INP_  
C
GP_A  
GND  
V
DD  
LEVEL  
SHIFTER  
CLP_  
C
GP_A  
V
V
EE_  
EN  
OUT_  
MAX4940  
V
DD  
CC_  
LEVEL  
SHIFTER  
GND  
V
V
DD  
CC_  
C
GN_  
LEVEL  
SHIFTER  
C
DN_  
INN_  
V
NN_  
GND  
V
C
C
GN_  
EE_  
DN_  
Figure 3. MAX4940 Simplified Functional Diagram for One Channel  
14 _____________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Functional Diagrams (continued)  
V
V
CC_  
C
C
GP_  
DD  
DP_  
V
PP_  
V
V
DD  
CC_  
LEVEL  
SHIFTER  
C
DP_  
INP_  
C
GP_A  
*
GND  
V
DD  
LEVEL  
SHIFTER  
CLP_  
C
GP_A  
V
V
EE_  
EN  
OUT_  
MAX4940A  
V
DD  
CC_  
LEVEL  
SHIFTER  
GND  
*
V
V
DD  
CC_  
C
GN_  
LEVEL  
SHIFTER  
C
DN_  
INN_  
V
NN_  
GND  
V
C
C
GN_  
EE_  
DN_  
*OUT2A/OUT2B ONLY.  
Figure 4. MAX4940A Simplified Functional Diagram for One Channel  
______________________________________________________________________________________ 15  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Typical Application Circuits  
3.3nF  
3.3nF  
3.3nF  
3.3nF  
+3.3V  
+12V  
V
PP  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
+
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
INP1A  
CLP1A  
INN1A  
INP2A  
CLP2A  
INN2A  
AGND  
EN  
GND  
1
2
3
4
5
6
7
8
9
V
NN  
V
NN1  
NN2  
V
N.C.  
OUT2A  
GND  
V
PP  
V
PP2  
V
PP2  
MAX4940  
INP2B  
GND  
10 CLP2B  
11 INN2B  
12 INP1B  
13 CLP1B  
14 INN1B  
OUT2B  
N.C. 32  
V
NN  
V
NN2  
V
NN1  
31  
30  
GND 29  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
-12V  
3.3nF  
3.3nF  
3.3nF  
+12V  
V
PP  
3.3nF  
+3.3V  
V
V
PP  
+12V  
-12V  
NN  
100nF  
100nF  
100nF  
100nF  
100nF  
Figure 5. MAX4940 Quad Pulsing with Always-On Active Return-to-Zero  
16 _____________________________________________________________________________________  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Typical Application Circuits (continued)  
3.3nF  
3.3nF  
3.3nF  
3.3nF  
+3.3V  
+12V  
V
PP_H  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
+
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
INP1A  
CLP1A  
INN1A  
INP2A  
CLP2A  
INN2A  
AGND  
EN  
GND  
1
2
3
4
5
6
7
8
9
V
NN_H  
V
V
NN1  
NN2  
NN_L  
V
N.C.  
OUT2A  
GND  
V
PP_L  
V
PP2  
V
PP2  
MAX4940A  
INP2B  
GND  
10 CLP2B  
11 INN2B  
12 INP1B  
13 CLP1B  
14 INN1B  
OUT2B  
N.C. 32  
V
NN_L  
V
31  
30  
V
NN2  
NN1  
NN_H  
V
GND 29  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
-12V  
3.3nF  
+12V  
V
PP_H  
3.3nF  
3.3nF  
3.3nF  
V
V
V
V
PP_L  
+3.3V  
+12V  
-12V  
NN_H  
PP_H  
NN_L  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
Figure 6. MAX4940A Dual Five-Level Pulsing  
______________________________________________________________________________________ 17  
Dual/Quad, Unipolar/Bipolar,  
High-Voltage Digital Pulsers  
Chip Information  
Package Information  
For the latest package outline information and land pat-  
PROCESS: BiCMOS  
terns, go to www.maxim-ic.com/packages.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0135  
56 TQFN  
T5688-3  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

MAX4940ACTN+

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, MO-220, TQFN-56
MAXIM

MAX4940ACTN+T

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX4940CTN+

Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX4940CTN+T

Analog Circuit, 1 Func, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX4940EVKIT

3.5mm Scope Probe Jacks
MAXIM

MAX4940EVKIT+

3.5mm Scope Probe Jacks
MAXIM

MAX4940MB+

3.5mm Scope Probe Jacks
MAXIM
MARKTECH

MAX4943ELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944ELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944ELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944LELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM