MAX4940EVKIT+ [MAXIM]

3.5mm Scope Probe Jacks;
MAX4940EVKIT+
型号: MAX4940EVKIT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.5mm Scope Probe Jacks

文件: 总18页 (文件大小:1515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5045; Rev 0; 11/09  
MAX4940 Evaluation Kit/Master Board  
General Description  
Features  
The MAX4940 evaluation kit (EV kit) provides a proven  
design to evaluate the MAX4940 quad, high-voltage  
pulse driver. The MAX4940 EV kit can be driven by the  
MAX4940 Master Board, a signal generator based on the  
Altera EPM1270F256C5N MAX II CPLD.  
Sꢀ 3.5mm_Scope_Probe_Jacks  
Sꢀ Proven_PCB_Layout  
Sꢀ Fully_Assembled_and_Tested  
Sꢀ Stand-Alone_Waveform_Generation_(MAX4940MB+)  
The MAX4940 EV kit comes with a MAX4940CTN+  
installed. Contact the factory for free samples of the pin-  
compatible MAX4940ACTN+ to evaluate this device.  
Ordering Information  
For complete evaluation, including test waveform gen-  
eration, order the MAX4940MB+ together with the  
MAX4940EVKIT+.  
PART  
TYPE  
EV Kit  
MAX4940EVKIT+  
MAX4940MB+  
Master Board (signal generator)  
+Denotes lead(Pb)-free and RoHS compliant.  
Component Lists  
MAX4940 EV Kit  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
Dual-row, right-angle header  
(2 x 8)  
220pF Q10%, 100V X7R ceramic  
capacitors (0402)  
H1  
1
COUT1–COUT4  
4
Murata GRM155R72A221K  
HOUT1A,  
HOUT1B,  
HOUT2A,  
HOUT2B, JU1–  
JU13  
3300pF Q10%, 100V X7R ceram-  
ic capacitors (0402)  
Murata GRM155R72A332K  
C1–C8  
C9–C15  
8
7
4
3
4
17  
2-pin headers  
0.1FF Q10%, 100V X7R ceramic  
capacitors (0603)  
Murata GRM188R72A104K  
1kI Q5%, 1W resistors (2512)  
Panasonic ERJ-1TYJ102U  
ROUT1–ROUT4  
4
4
T1A, T1B, T2A,  
T2B  
0.1FF Q10%, 16V X7R ceramic  
capacitors (0402)  
Murata GRM155R71C104K  
Scope probe jacks, 3.5mm  
C16–C19  
Quad high-voltage pulse driver  
(56 TQFN-EP*)  
Maxim MAX4940CTN+  
U1  
1
10FF Q10%, 25V X7R ceramic  
capacitors (1206)  
Murata GRM31CR71E106K  
C20, C21, C22  
C23–C26  
11  
1
Shunts  
PCB: MAX4940 EVALUATION  
KIT+  
10FF Q20%, 160V aluminum elec-  
trolytic capacitors (G13)  
Panasonic EEV-EB2C100Q  
*EP = Exposed pad.  
_ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ _Maxim Integrated Products_ _ 1  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX4940 Evaluation Kit/Master Board  
Component Lists (continued)  
MAX4940 Master Board  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
JU1  
QTY  
0
DESCRIPTION  
Not installed, 2-pin header  
Red LEDs (0805)  
560pF Q5%, 50V C0G ceramic  
capacitor (0603)  
TDK C1608C0G1H561J  
C8  
1
LED0–LED16  
RLED0–RLED16  
R13  
17  
17  
1
200I Q5% resistors (0603)  
1kI Q5% resistor (0603)  
4.7FF Q10%, 6.3V X5R ceramic  
capacitor (0603)  
TDK C1608X5R0J475K  
C14  
1
12  
13  
1
R14, R16, R19,  
R20, RSW1–  
RSW7  
11  
10kI Q5% resistors (0603)  
C15, C26, C27,  
C34, C35,  
CSW1–CSW7  
0.01FF Q10%, 50V X7R ceramic  
capacitors (0603)  
TDK C1608X7R1H103K  
R15  
R17  
0
1
Not installed, resistor (0603)  
33I Q5% resistor (0603)  
C25, C31, C32,  
C33, C36–C39,  
C55–C59  
0.1FF Q10%, 50V X7R ceramic  
capacitors (0603)  
TDK C1608X7R1H104K  
Momentary pushbutton switch-  
es, normally open  
SW1–SW7  
TP0–TP4  
7
0
Not installed, multipurpose test  
points  
10pF Q5%, 50V C0G ceramic  
capacitor (0603)  
C69  
CPLD, 1270 logic elements  
(256 FBGA)  
Altera EPM1270F256C5N  
TDK C1608C0G1H100J  
U1  
1
1
1FF Q10%, 10V X7R ceramic  
capacitors (0603)  
TDK C1608X7R1A105K  
C201, C202  
FB1  
2
1
3.3V, 1000mA LDO regulator  
(16 TSSOP-EP*)  
Maxim MAX8869EUE33+  
U2  
Y1  
Ferrite bead (0603)  
TDK MMZ1608R301A  
66MHz crystal oscillator  
(7.5mm x 5mm)  
Dual-row, right-angle header  
(2 x 8)  
1
1
H1  
J2  
1
1
PCB: MAX4940 MASTER  
BOARD+  
10-pin header (2 x 5)  
*EP = Exposed pad.  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
www.altera.com  
Altera Corp.  
800-800-3753  
770-436-1300  
800-344-2112  
847-803-6100  
Murata Electronics North America, Inc.  
Panasonic Corp.  
www.murata-northamerica.com  
www.panasonic.com  
TDK Corp.  
www.component.tdk.com  
Note: Indicate that you are using the MAX4940 when contacting these component suppliers.  
2_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
8) Connect the +100V DC power supply to VPP1 on  
Quick Start  
Required Equipment  
the MAX4940 EV kit.  
9) Connect the -100V DC power supply to VNN1 on the  
MAX4940 EV kit  
MAX4940 EV kit.  
MAX4940 Master Board (or equivalent signal  
generator)  
10) Enable the +5V DC power supply.  
11) Enable the Q12V DC power supplies.  
12) Enable the Q100V DC power supplies.  
+5V DC power supply  
Q12V DC dual-tracking power supplies  
13) Set the MAX4940 Master Board to generate wave-  
form A by pressing SW2 until LED2 is lit.  
Q100V DC at 20mA high-voltage, dual-tracking  
power supplies  
14) Verify that the oscilloscope shows expected high-  
voltage outputs from waveform A (OUT1A).  
Recommended: Oscilloscope to view high-voltage  
outputs  
15) Set the MAX4940 Master Board to generate wave-  
form B by pressing SW2 until LED3 is lit.  
Procedure  
The MAX4940 EV kit is fully assembled and tested.  
Follow the steps below to verify board operation:  
16) Verify that the oscilloscope shows expected high-  
voltage outputs from waveform B (OUT1A).  
1) Verify that the jumpers are in their default positions,  
as shown in Table 1 with one exception (JU1 must  
be open).  
17) Set the MAX4940 Master Board to generate wave-  
form C by pressing SW2 until LED4 is lit.  
18) Verify that the oscilloscope shows expected high-  
voltage outputs from waveform C (OUT1A).  
2) Connect the MAX4940 EV kit to the MAX4940  
Master Board signal generator.  
19) Set the MAX4940 Master Board to generate wave-  
form D by pressing SW2 until LED5 is lit.  
3) Connect an oscilloscope probe to T1A on the  
MAX4940 EV kit.  
20) Verify that the oscilloscope shows expected high-  
voltage outputs from waveform D (OUT1A).  
4) Connect all power-supply ground returns to GND.  
5) Connect the +5V DC power supply to the IN +5V  
pad on the MAX4940 Master Board. This powers the  
on-board MAX8869 +3.3V linear regulator, which  
drives the CPLD and the MAX4940’s VDD supply.  
21) Reduce the VPP/VNN supplies to Q5V DC.  
22) Set the MAX4940 Master Board to generate wave-  
form E by pressing SW2 until LED6 is lit.  
23) Verify that the oscilloscope shows expected outputs  
from waveform E (OUT1A).  
6) Connect the +12V DC power supply to VCC on the  
MAX4940 EV kit.  
24) Repeat steps 13–23 to view waveforms OUT1B,  
OUT2A, and OUT2B.  
7) Connect the -12V DC power supply to VEE on the  
MAX4940 EV kit.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 3  
MAX4940 Evaluation Kit/Master Board  
Figure 1. MAX4940 EV Kit System Operation Guide  
4_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
the MAX4940’s internal charge pump. Jumpers JU1–JU5  
Detailed Description of Hardware  
MAX4940 EV Kit  
The MAX4940 EV kit provides a proven layout for the  
MAX4940. Capacitors C1–C8 are the “flying caps” for  
are used to drive EN and the clamp inputs when the EV  
kit board is used without the master board. On-board  
dummy-load circuits are enabled by jumpers JU10–JU13.  
Figure 2. MAX4940 Jumper Guide  
Table_1._MAX4940_EV_Kit_Jumper_Descriptions_(JU1–JU13)  
JUMPER  
SIGNAL  
SHUNT_POSITION  
DESCRIPTION  
Enable input EN connects to VDD, enabling the high-voltage outputs for nor-  
mal operation  
1-2*  
JU1  
EN  
Enable input EN is not connected to VDD (required when driven with  
MAX4940 Master Board, or other external signal source)  
Open  
1-2  
Clamp input CLP1A connects to VDD, enabling the always-on active clamp  
feature (MAX4940 only)  
JU2  
JU3  
CLP1A  
CLP2A  
CLP1A is not connected to VDD (required when driven with MAX4940 Master  
Board, or other external signal source)  
Open*  
1-2  
Clamp input CLP2A connects to VDD, enabling the always-on active clamp  
feature (MAX4940 only)  
CLP2A is not connected to VDD (required when driven with MAX4940 Master  
Board, or other external signal source)  
Open*  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 5  
MAX4940 Evaluation Kit/Master Board  
Table_1._MAX4940_EV_Kit_Jumper_Descriptions_(JU1–JU13)_(continued)  
JUMPER  
SIGNAL  
SHUNT_POSITION  
DESCRIPTION  
Clamp input CLP2B connects to VDD, enabling the always-on active clamp  
feature (MAX4940 only)  
1-2  
JU4  
CLP2B  
CLP2B is not connected to VDD (required when driven with MAX4940 Master  
Board, or other external signal source)  
Open*  
1-2  
Clamp input CLP1B connects to VDD, enabling the always-on active clamp  
feature (MAX4940 only).  
JU5  
CLP1B  
CLP1B is not connected to VDD (required when driven with MAX4940 Master  
Board, or other external signal source)  
Open*  
JU6  
JU7  
JU8  
JU9  
VNN1, VNN2  
VPP1, VPP2  
1-2*  
1-2*  
VNN1 and VNN2 are connected together (required when U1 = MAX4940)  
VPP1 and VPP2 are connected together (required when U1 = MAX4940)  
OUT1A and OUT2A are independent (required when U1 = MAX4940)  
OUT1B and OUT2B are independent (required when U1 = MAX4940)  
Dummy load ROUT1/COUT1 connects to OUT1A  
OUT1A, OUT2A  
OUT1B, OUT2B  
Open*  
Open*  
1-2*  
JU10  
JU11  
JU12  
JU13  
Load-1A  
Load-2A  
Load-2B  
Load-1B  
Open  
1-2*  
Dummy load ROUT1/COUT1 is disconnected  
Dummy load ROUT2/COUT2 connects to OUT2A  
Open  
1-2*  
Dummy load ROUT2/COUT2 is disconnected  
Dummy load ROUT3/COUT3 connects to OUT2B  
Open  
1-2*  
Dummy load ROUT3/COUT3 is disconnected  
Dummy load ROUT4/COUT4 connects to OUT1B  
Open  
Dummy load ROUT4/COUT4 is disconnected  
*Default position.  
Figure 3. MAX4940A Jumper Guide  
6_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
SW2. The burst frequency is determined by SW3, and  
the number of times the waveform repeats is determined  
by SW4. Waveform E automatically activates continuous-  
wave mode, repeating the waveform continuously. For  
waveform E, the enable output EN is driven with a 10%  
duty-cycle signal with approximately a 100ms period.  
MAX4940 Master Board  
The EPM1270F256C5N (U1) is from Altera’s MAX II fam-  
ily of CPLDs. Contact Altera for any questions regarding  
the CPLD. See the Component Suppliers table for con-  
tact information.  
The MAX8869 (U2) is a high-current, low-dropout (LDO)  
linear regulator, preset to 3V output. This regulator sup-  
plies the CPLD and the MAX4940 EV kit VDD supply.  
The use of an oscilloscope is recommended to confirm  
that the correct operation mode is selected.  
Pushbutton Switch Operation  
The MAX4940 Master Board firmware is controlled by  
pushbutton switches SW1–SW7. SW1 toggles between  
run and stop mode. Pressing and releasing SW2 selects  
the waveform. Pressing and releasing SW3 selects the  
burst frequency. SW4 selects the number of times to  
repeat the waveform. Pressing SW7 resets the MAX4940  
Master Board configuration to run waveform A at the fast-  
est burst clock, one pulse every 50Fs.  
Evaluating the MAX4940A  
With power disconnected, replace U1 with the MAX4940A  
IC. Configure the jumpers according to Table 2. Jumpers  
JU2–JU7 must be open. Move the shunts from JU6  
and JU7 to JU8 and JU9. Follow the steps in the  
Quick Start section except a signal source must be used  
in place of the master board. In addition, use two separate  
power supplies for VPP1/VNN1 and VPP2/VNN2. Refer to  
the MAX4940A IC data sheet for more information.  
Every 50Fs the MAX4940 Master Board self-triggers the  
selected waveform. The waveform data is determined by  
Table_2._MAX4940A_Jumper_Descriptions_(JU1–JU13)  
JUMPER  
SIGNAL  
SHUNT_POSITION  
DESCRIPTION  
Enable input EN connects to VDD, enabling the high-voltage outputs for  
normal operation  
1-2*  
JU1  
EN  
Enable input EN is not connected to VDD (required when driven with  
MAX4940 Master Board, or other external signal source)  
Open  
JU2  
JU3  
JU4  
JU5  
JU6  
JU7  
CLP1A  
CLP2A  
Open*  
Open*  
Open*  
Open*  
Open  
CLP1A is not connected to VDD (required when U1 = MAX4940A)  
CLP2A is not connected to VDD (required when U1 = MAX4940A)  
CLP2B is not connected to VDD (required when U1 = MAX4940A)  
CLP1B is not connected to VDD (required when U1 = MAX4940A)  
VNN1 and VNN2 are independent (required when U1 = MAX4940A)  
VPP1 and VPP2 are independent (required when U1 = MAX4940A)  
CLP2B  
CLP1B  
VNN1, VNN2  
VPP1, VPP2  
Open  
OUT1A and OUT2A are connected together (required when U1 =  
MAX4940A)  
JU8  
JU9  
OUT1A, OUT2A  
OUT1B, OUT2B  
Load-1A  
1-2  
1-2  
OUT1B and OUT2B are connected together (required when U1 =  
MAX4940A)  
1-2*  
Open  
1-2*  
Dummy load ROUT1/COUT1 connects to OUT1A  
Dummy load ROUT1/COUT1 is disconnected  
Dummy load ROUT2/COUT2 and in connects to OUT2A  
Dummy load ROUT2/COUT2 is disconnected  
Dummy load ROUT3/COUT3 connects to OUT2B  
Dummy load ROUT3/COUT3 is disconnected  
Dummy load ROUT4/COUT4 connects to OUT1B  
Dummy load ROUT4/COUT4 is disconnected  
JU10  
JU11  
JU12  
JU13  
Load-2A  
Open  
1-2*  
Load-2B  
Open  
1-2*  
Load-1B  
Open  
*Default position.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 7  
MAX4940 Evaluation Kit/Master Board  
Table_3._MAX4940_Master_Board_Control_Table  
SIGNAL  
SWITCH  
LED  
STATE  
MEANING  
Blinking  
Run mode  
Stop mode  
Run/Stop  
SW1  
LED1  
On  
LED2  
LED3  
On  
Waveform A (see Figure 4)  
Waveform B (see Figure 5)  
Waveform C (see Figure 6)  
Waveform D (see Figure 7)  
Waveform E (see Figure 8)  
Reserved  
On  
LED4  
On  
Waveform  
SW2  
LED5  
On  
LED6  
On  
LED7  
On  
LED8  
On  
0.5MHz  
LED9  
On  
1MHz  
LED10  
LED11  
LED12  
LED13  
LED14  
LED15  
On  
2.53MHz  
On  
On  
5.5MHz  
Burst clock timebase  
SW3  
SW4  
8.25MHz  
On  
11MHz  
On  
15MHz  
On  
33MHz  
Flashes 1 time  
Flashes 2 times  
Flashes 3 times  
Flashes 4 times  
1 pulse every 50Fs  
2 pulses every 50Fs  
3 pulses every 50Fs  
4 pulses every 50Fs  
Pulse repeat  
LED16  
Table_4._SW1_Run/Stop_Functions  
Table_6._SW3_Burst_Clock_Functions  
FUNCTION  
Run mode  
Stop mode  
INDICATOR  
LED1 blinking  
LED1 on  
FUNCTION__(MHz)  
INDICATOR  
0.5  
1
LED8  
LED9  
2.53  
5.5  
8.25  
11  
LED10  
LED11  
LED12  
LED13  
LED14  
LED15  
Note: Each time SW1 is pressed and released, the next func-  
tion is selected.  
Table_5._SW2_Waveform_Functions  
15  
FUNCTION  
INDICATOR  
REMARKS  
33  
NRZ pulses with EN, INP  
first (see Figure 4)  
Waveform A  
LED2  
Note: Each time SW3 is pressed and released, the next func-  
tion is selected.  
NRZ pulses with EN, INN  
first (see Figure 5)  
Waveform B  
Waveform C  
Waveform D  
LED3  
LED4  
LED5  
Table_7._SW4_Functions  
RZ pulses with clamp, INP  
first (see Figure 6)  
FUNCTION  
INDICATOR  
1 pulse every 50Fs  
2 pulses every 50Fs  
3 pulses every 50Fs  
4 pulses every 50Fs  
LED16 flashes 1 time  
LED16 flashes 2 times  
LED16 flashes 3 times  
LED16 flashes 4 times  
RZ pulses with clamp, INN  
first (see Figure 7)  
Waveform E  
Reserved  
LED6  
LED7  
CW pulses (see Figure 8)  
Reserved  
Note: Each time SW2 is pressed and released, the next func-  
tion is selected.  
Note: Each time SW4 is pressed and released, the next func-  
tion is selected.  
8_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
Figure 4. Waveform A: NRZ Pulses with EN, INP First  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 9  
MAX4940 Evaluation Kit/Master Board  
Figure 5. Waveform B: NRZ Pulses with EN, INN First  
10_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
Figure 6. Waveform C: RZ Pulses with Clamp, INP First  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 11  
MAX4940 Evaluation Kit/Master Board  
Figure 7. Waveform D: RZ Pulses with Clamp, INN First  
12_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
Figure 8. Waveform E: Alternating INP and INN  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 13  
MAX4940 Evaluation Kit/Master Board  
Figure 9. MAX4940 EV Kit Schematic  
14_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
1.0”  
1.0”  
Figure 10. MAX4940 EV Kit Component Placement Guide—  
Component Side  
Figure 11. MAX4940 EV Kit PCB Layout—Component Side  
1.0”  
Figure 12. MAX4940 EV Kit PCB Layout—Solder Side  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 15  
MAX4940 Evaluation Kit/Master Board  
Figure 13. MAX4940 Master Board Schematic  
16_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
MAX4940 Evaluation Kit/Master Board  
1.0”  
1.0”  
Figure 14. MAX4940 Master Board Component Placement  
Guide—Component Side  
Figure 15. MAX4940 Master Board PCB Layout—Component  
Side  
1.0”  
Figure 16. MAX4940 Master Board PCB Layout—Ground Layer 2  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 17  
MAX4940 Evaluation Kit/Master Board  
1.0”  
1.0”  
Figure 17. MAX4940 Master Board PCB Layout—Power Layer 3  
Figure 18. MAX4940 Master Board PCB Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18_____________________ ________ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
©
2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4940MB+

3.5mm Scope Probe Jacks
MAXIM
MARKTECH

MAX4943ELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944ELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944ELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944LELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4944LELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4945AELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4945AELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4945BELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4945ELA+T

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM

MAX4945LELA+

Buffer/Inverter Based Peripheral Driver, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, UDFN-8
MAXIM