MAX3296CHJ-T [MAXIM]

Interface Circuit, BIPolar, PQFP28, 5 X 5 MM, 1 MM HEIGHT, MS-026AAA-HD, TQFP-32;
MAX3296CHJ-T
型号: MAX3296CHJ-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, BIPolar, PQFP28, 5 X 5 MM, 1 MM HEIGHT, MS-026AAA-HD, TQFP-32

接口集成电路
文件: 总28页 (文件大小:727K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1550; Rev 0; 12/99  
to  
3.0V 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
General Description  
Features  
The MAX3286/MAX3296 series of products are high-  
speed laser drivers for fiber optic LAN transmitters,  
optimized for Gigabit Ethernet applications. Each  
device contains a bias generator, laser modulator, and  
comprehensive safety features. Automatic power con-  
trol (APC) adjusts the laser bias current to maintain  
average optical power at a constant level, regardless of  
changes in temperature or laser properties. For lasers  
without a monitor photodiode, these products offer a  
constant-current mode. The circuit can be configured  
for use with conventional shortwave (780nm to 850nm)  
or longwave (1300nm) laser diodes, as well as vertical-  
cavity surface-emitting lasers (VCSELs).  
7ps Deterministic Jitter (MAX3296)  
22ps Deterministic Jitter (MAX3286)  
+3.0V to +5.5V Supply Voltage  
Selectable Laser Pinning (common cathode or  
common anode) (MAX3286/MAX3296)  
30mA Laser Modulation Current  
Temperature Compensation of Modulation  
Current  
Automatic Laser Power Control or Constant Bias  
Current  
The MAX3286 series (MAX3286/MAX3287/MAX3288/  
MAX3289) is optimized for operation at 1.25Gbps, and  
the MAX3296 series (MAX3296/MAX3297/MAX3298/  
MAX3299) is optimized for 2.5Gbps operation. Each  
device can switch 30mA of laser modulation current at  
the specified data rate. Adjustable temperature com-  
pensation is provided to keep the optical extinction  
ratio within specifications over the operating tempera-  
ture range. This series of devices is optimized to drive  
lasers packaged in low-cost TO-46 headers. Deter-  
ministic jitter (DJ) for the MAX3286 is typically 22ps,  
allowing a 72% margin to Gigabit Ethernet DJ specifi-  
cations.  
Integrated Safety Circuits  
Power-On Reset Signal  
16-Pin TSSOP-EP Package Available  
Ordering Information  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
PART  
PIN-PACKAGE  
32 TQFP (5mm x 5mm)  
Dice*  
MAX3286CHJ  
MAX3286C/D  
Ordering Information continued at end of data sheet.  
*Dice are designed to operate from T = 0°C to +110°C, but are  
J
tested and guaranteed only at T = +25°C.  
A
These laser drivers provide extensive safety features to  
guarantee single-point fault tolerance. Safety features  
include dual enable inputs, dual shutdown circuits, and  
a laser-power monitor. The safety circuit detects faults  
that could cause dangerous light output levels. A pro-  
grammable power-on reset pulse initializes the laser  
driver at start-up.  
Pin Configurations  
TOP VIEW  
The MAX3286/MAX3296 are available in a compact,  
5mm x 5mm, 32-pin TQFP package or in die form. The  
MAX3287/MAX3288/MAX3289 and MAX3297/MAX3298/  
MAX3299 are available in smaller 16-pin TSSOP-EP  
packages, which are ideal for small form-factor optical  
modules.  
GND  
1
2
3
4
5
6
7
8
16 TC  
FLTDLY  
15 MODSET  
V
14 V  
CC  
CC  
IN+  
IN-  
MAX3287  
MAX3289  
MAX3297  
MAX3299  
13 OUT-  
12 OUT+  
Applications  
GND  
REF  
MD  
11  
10 BIASDRV  
SHDNDRV  
V
CC  
Gigabit Ethernet Optical Transmitter  
Fibre Channel Optical Transmitter  
ATM LAN Optical Transmitter  
9
TSSOP-EP*  
*Exposed paddle is connected to GND.  
Pin Configurations continued at end of data sheet.  
Typical Application Circuits and Selector Guide appear at  
end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage at V  
..........................................-0.5V to +7.0V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
Voltage at EN, EN, PORDLY, FLTDLY, LV, IN+, IN-,  
REF, POL, POL, MD, MON, BIASDRV,  
MODSET, TC..........................................................-0.5V to (V + 0.5V)  
32-Pin TQFP (derate 14.3mW/°C) ...............................1100mW  
16-Pin TSSOP (derate 27mW/°C)................................2162mW  
Operating Temperature Range...............................0°C to +70°C  
Operating Junction Temperature Range..............0°C to +150°C  
Processing Temperature (die) .........................................+400°C  
Storage Temperature Range.............................-55°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
Voltage at OUT+, OUT-.........................(V  
- 2V) to (V  
+ 2V)  
CC  
Current into FAULT, FAULT, POR, SHDNDRV....-1mA to +25mA  
Current into OUT+, OUT-....................................................60mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +5.5V, T = 0°C to +70°C, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C, R = open;  
CC  
A
CC  
A
TC  
see Figure 1a.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.82kΩ  
MOD  
MIN  
TYP  
MAX  
75  
UNITS  
mA  
mV  
µA  
Supply Current  
I
Figure 1a, R  
52  
CC  
Data Input Voltage Swing  
TTL Input Current  
V
ID  
Total differential signal, peak-peak, Figure 1a  
0 V V  
200  
-100  
2.0  
1660  
100  
PIN  
CC  
TTL Input High Voltage  
TTL Input Low Voltage  
V
IH  
V
V
0.8  
V
IL  
FAULT, FAULT Output High  
Voltage  
V
I
I
= -100µA  
= 1mA  
2.4  
V
V
OH  
OH  
FAULT, FAULT Output Low  
Voltage  
V
0.4  
1
OL  
OL  
BIAS GENERATOR (Note 1)  
BIASDRV Current, Shutdown  
BIASDRV Current Sink  
BIASDRV Current Source  
REF Voltage  
EN = GND  
-1  
µA  
FAULT = low, V  
FAULT = low, V  
0.6V  
0.8  
BIASDRV  
mA  
V  
- 1V  
0.8  
BIASDRV  
CC  
I
2mA, MON = V  
2.45  
1.55  
2.65  
1.7  
2.85  
1.85  
1.2  
V
V
REF  
CC  
MD Nominal Voltage  
V
MD  
APC loop is closed  
Common-cathode configuration  
Common-anode configuration  
Normal operation (FAULT = low)  
0.4  
MD Voltage During Fault  
V
2
V
- 0.8  
CC  
MD Input Current  
MON Input Current  
POWER-ON RESET  
-2  
0.16  
0.44  
2
6
µA  
µA  
V
= V  
CC  
MON  
LV = GND  
LV = open  
3.9  
4.5  
3.0  
POR Threshold  
V
2.65  
POR Hysteresis  
150  
mV  
FAULT DETECTION  
REF Fault Threshold  
MD High Fault Threshold  
MD Low Fault Threshold  
2.95  
V
V
V
+ 5%  
- 20%  
V
+ 20%  
MD  
MD  
MD  
V
- 5%  
CC -  
MD  
V
-
V
CC  
MON Fault Threshold  
MAX3286/MAX3288/MAX3296/MAX3298  
mV  
V
600  
480  
MODSET, TC Fault Threshold  
0.8  
2
_______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +5.5V, T = 0°C to +70°C, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C, R = open;  
CC  
A
CC  
A
TC  
see Figure 1a.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SHUTDOWN  
I
= 10µA, FAULT asserted  
= 15mA, FAULT not asserted  
= 1mA, FAULT not asserted  
V
- 0.4  
SHDNDRV  
CC  
Voltage at SHDNDRV  
I
0
V
- 1.2  
- 2.4  
V
SHDNDRV  
CC  
I
0
V
CC  
SHDNDRV  
LASER MODULATOR  
MAX3286 series  
MAX3296 series  
1.25  
2.5  
Data Rate  
Gbps  
mA  
mA  
%
Minimum Laser Modulation  
Current  
2
Maximum Laser Modulation  
Current  
R
25Ω  
30  
L
R
R
= 1.9k(i  
= 30mA)  
= 5mA)  
-10  
-15  
10  
15  
MOD  
MOD  
MOD  
Tolerance of Modulation Current  
= 13k(i  
MOD  
MAX3286 series  
MAX3296 series  
130  
90  
220  
150  
Modulation-Current Edge  
Speed  
20% to 80%  
ps  
R
(i  
= 13kΩ  
MOD  
MOD  
46  
29  
22  
14  
8
65  
45  
35  
35  
22  
20  
= 5mA)  
R
= 4.1kΩ  
= 15mA)  
MOD  
MOD  
MAX3286 series  
MAX3296 series  
(i  
R
= 1.9kΩ  
= 30mA)  
MOD  
MOD  
(i  
Deterministic Jitter (Note 2)  
ps  
R
= 13kΩ  
= 5mA)  
MOD  
MOD  
(i  
R
= 4.1kΩ  
= 15mA)  
MOD  
MOD  
(i  
R
= 1.9kΩ  
= 30mA)  
MOD  
MOD  
7
(i  
MAX3286 series  
MAX3296 series  
2
2
8
4
Random Jitter, RMS (Note 3)  
Shutdown Modulation Current  
ps  
15  
200  
µA  
Tempco = max, R  
= open; Figure 5  
4000  
50  
MOD  
Modulation-Current  
Temperature Coefficient  
ppm/°C  
Tempco = min, R = open; Figure 5  
TC  
Differential Input Resistance  
Output Resistance  
620  
42  
800  
50  
980  
58  
V
Single ended  
Input Bias Voltage  
V
- 0.3  
CC  
LASER SAFETY CIRCUIT  
PORDLY = open  
0.3  
3
1.25  
µs  
POR Delay  
t
PORDLY  
C
= 0.01µF,  
PORDLY  
5.5  
ms  
MAX3286/MAX3296 only  
Fault Time  
t
(Note 4)  
22  
20  
µs  
µs  
FAULT  
Glitch Rejection at MD  
10  
________________________________________________________________________________________  
3
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +5.5V, T = 0°C to +70°C, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C, R = open;  
CC  
A
CC  
A
TC  
see Figure 1a.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0.2  
TYP  
1
MAX  
UNITS  
C
C
= 0  
FLTDLY  
FLTDLY Duration  
t
µs  
FLTDLY  
= 270pF  
100  
140  
FLTDLY  
EN or EN Minimum Pulse Width  
Required to Reset a Latched  
Fault  
MAX3286/MAX3296 only,  
Figure 1b  
t
6
10  
ns  
EN_RESET  
MAX3286/MAX3296 only,  
Figure 1b  
FAULT Reset After EN, EN, or  
POR Transition  
t
1
2
µs  
µs  
RESET  
SHDNDRV Asserted After EN =  
low or EN = high  
MAX3286/MAX3296 only,  
Figure 1b  
t
3.5  
5.5  
SHUTDN  
Note 1: “Common-anode configuration” refers to a configuration where POL = GND, POL = V , and an NPN device is used to set  
CC  
the laser bias current. “Common-cathode configuration” refers to a configuration where POL = V , POL = GND, and a PNP  
CC  
device is used to set the laser bias current.  
Note 2: Deterministic jitter measured with a repeating K28.5 bit pattern 00111110101100000101. Deterministic jitter is the peak-to-  
peak deviation from the ideal time crossings per ANSI X3.230, Annex A.  
Note 3: For Fibre Channel and Gigabit Ethernet applications, the peak-to-peak random jitter is 14.1 times the RMS jitter.  
Note 4: Delay from a fault on MD until FAULT is asserted high.  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
POR DELAY vs. C  
PORDLY  
EYE DIAGRAM  
FLTDLY DURATION vs. C  
FLTDLY  
100k  
10k  
1k  
10k  
1k  
100  
100  
10  
1
10  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
50ps/div  
CAPACITANCE (pF)  
7
CAPACITANCE (pF)  
2.5Gbps, 1310nm Laser, 2 - 1 PRBS, i  
= 15mA  
MOD  
4
_______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
EN STARTUP  
(COMMON-ANODE CONFIGURATION)  
EYE DIAGRAM  
MD SHUTDOWN  
MD  
EN  
FAULT  
FAULT  
BIASDRV  
SHDNDRV  
OPTICAL  
OUTPUT  
OPTICAL  
OUTPUT  
50ps/div  
10µs/div  
5µs/div  
7
2.5Gbps, 1310nm LASER, 2 - 1 PRBS, i  
= 15mA  
mod  
Pin Description  
PIN  
MAX3287  
NAME  
FUNCTION  
MAX3286  
MAX3296  
MAX3297  
MAX3289  
MAX3299  
MAX3288  
MAX3298  
1
Inverting Fault Indicator. See Table 1.  
No Connect  
FAULT  
N.C.  
2, 16  
3
FAULT  
POR  
Noninverting Fault Indicator. See Table 1.  
4
Power-On Reset. POR is a TTL-compatible output. See Figure 14.  
Ground  
5, 14, 22, 30  
1, 6  
1, 6  
GND  
Enable TTL Input. Laser output is enabled only when EN is high and EN is  
low. If EN is left unconnected, the laser is disabled.  
6
7
8
EN  
EN  
Inverting Enable TTL Input. Laser output is enabled only when EN is low or  
grounded and EN is high. If EN is left unconnected, the laser is disabled.  
Power-On Reset Delay. To extend the delay for the power-on reset circuit,  
connect a capacitor to PORDLY. See Design Procedure.  
PORDLY  
Fault Delay Input. Determines the delay of the FAULT and FAULT outputs.  
A capacitor attached to FLTDLY ensures proper start-up. (See Typical  
Operating Characteristics.) FLTDLY = GND: holds FAULT low and FAULT  
9
2
2
FLTDLY  
LV  
high. When FLTDLY = GND, EN = high, EN = low, and V  
is within the  
CC  
operational range, the safety circuitry is inactive.  
Low-Voltage Operation. Connect to GND for 4.5V to 5.5V operation. Leave  
open for 3.0V to 5.5V operation.  
10  
11, 25,  
26, 29  
3, 11, 14  
3, 11, 14  
V
Supply Voltage  
CC  
_______________________________________________________________________________________  
5
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Pin Description (continued)  
PIN  
MAX3287  
MAX3297  
MAX3289  
MAX3299  
NAME  
FUNCTION  
MAX3286  
MAX3296  
MAX3288  
MAX3298  
12  
13  
4
5
4
5
IN+  
IN-  
Noninverting Data Input  
Inverting Data Input  
Reference Voltage. A resistor connected at REF to MD determines the  
laser power when APC is used with common-cathode lasers.  
15  
17  
18  
7
7
REF  
POL  
POL  
Polarity Input. POL is used for programming the laser-pinning polarity.  
(Table 4)  
Inverting Polarity Input. POL is used for programming the laser-pinning  
polarity (Table 4)  
19  
20  
8
8
I.C.  
MD  
Internally Connected. Do not connect.  
Monitor Diode Connection. MD is used for automatic power control.  
Laser Bias Current Monitor. Used for programming laser bias current in  
VCSEL applications.  
21  
23  
24  
9
9
10  
MON  
SHDN-DRV  
BIASDRV  
Shutdown Driver Output. Provides a redundant laser shutdown.  
Bias-Controlling Transistor Driver. Connects to the base of an external  
PNP or NPN transistor.  
10  
27  
28  
12  
13  
12  
13  
OUT+  
OUT-  
Modulation-Current Output. See Typical Application Circuits.  
Modulation-Current Output. See Typical Application Circuits.  
Modulation-Current Set. The resistor at MODSET programs the tempera-  
ture-stable component of the laser modulation current.  
31  
32  
15  
16  
EP  
15  
16  
EP  
MODSET  
TC  
Temperature-Compensation Set. The resistor at TC programs the tem-  
perature-increasing component of the laser modulation current.  
Exposed  
Paddle  
Ground. This must be soldered to the circuit board ground for proper  
thermal performance. See Layout Considerations.  
Table 2. LV Operating Range  
Table 1. Typical Fault Conditions  
OPERATING VOLTAGE  
PIN  
FAULT CONDITION  
LV  
RANGE (V)  
LV = open and V  
LV = GND and V  
< 3V;  
< 4.5V  
CC  
CC  
V
CC  
Open  
>3.0  
>4.5  
Grounded  
REF  
POL and POL  
MON  
V
> 2.95V  
REF  
POL = POL  
V
< V  
- 540mV  
MON  
CC  
V
V
> 1.15 · V  
< 0.85 · V  
,
MD  
MD  
MD(nom)  
MD(nom)  
MD  
EN and EN  
EN = low or open, EN = high or open  
and V 0.8V  
MODSET  
and TC  
V
MODSET  
TC  
6
_______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
V
CC  
I
I
OUT  
CC  
FERRITE BEAD*  
VOLTS  
0.01µF  
DIFFERENTIAL INPUT  
RESULTING SIGNAL  
V
IN+  
100mVp-p MIN  
830mVp-p MAX  
0.01µF  
V
CC  
OUT-  
OUT+  
V
IN-  
V
V
L = 3.9nH  
MAX3286  
MAX3296  
CC  
CC  
200mVp-p MIN  
1660mVp-p MAX  
V
= V - V  
IN+ IN-  
ID  
50Ω  
50Ω  
i
MOD  
R
L
25Ω  
CURRENT  
i
MOD  
IN+  
IN-  
L = 3.9nH  
V
ID  
BIASDRV  
(OPEN)  
TIME  
MODSET  
R
MODULATION  
CONTROL  
R .= 25Ω  
L
i
3/2  
MOD  
*MURATA  
BLM11HA102  
LASER  
EQUIVALENT  
LOAD  
MOD  
TC  
Figure 1a. Output Load for AC Specification  
_______________Detailed Description  
The MAX3286/MAX3296 series of laser drivers contain  
a bias generator with automatic power control (APC),  
laser modulator, power-on reset (POR) circuit, and  
safety circuitry (Figures 2a and 2b).  
V
CC  
t
PORDLY  
POR  
t
t
RESET  
FAULT  
FAULT  
t
SHUTDN  
Bias Generator  
Figure 3 shows the bias generator circuitry containing a  
power-control amplifier, controlled reference voltage,  
smooth-start circuit, and window comparator. The bias  
generator combined with an external PNP or NPN tran-  
sistor provides DC laser current to bias the laser in a  
light-emitting state. When there is a monitor diode (MD)  
in the laser package, the APC circuitry adjusts the  
laser-bias current to maintain average power over tem-  
SHDNDRV  
OPTICAL  
OUT  
t
EN_RESET  
EN  
FAULT ON MD  
RESET BY EN SHUTDOWN  
BY EN  
NOTE: TIMING IS  
NOT TO SCALE.  
Figure 1b. Fault Timing  
_______________________________________________________________________________________  
7
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
perature and changing laser properties. The MD input  
LV  
POR  
is connected to the anode or cathode of a monitor pho-  
todiode or to a resistor-divider, depending on the specific  
application circuit. Three application circuits are sup-  
ported: common-cathode laser with photodiode, com-  
mon-cathode laser without photodiode, and common-  
anode laser with photodiode (as shown in the Design  
Procedure). The POL and POL inputs determine the laser  
pinning (common cathode, common anode) (Table 4).  
POR CIRCUIT  
PORDLY  
FAULT  
EN  
EN  
FAULT  
SAFETY  
SHDNDRV  
FLTDLY  
POL  
MD  
POL  
BIASDRV  
REF  
BIAS GENERATOR  
MON  
The smooth-start circuitry prevents current spikes to the  
laser during power-up or enable; this ensures compliance  
with safety requirements and extends the life of the laser.  
MD  
IN+  
OUT+  
OUT-  
LASER  
MODULATOR  
IN-  
The power-control amplifier drives an external transistor  
to control the laser bias current. In a fault condition, the  
power-control amplifier’s output is disabled (high  
MODSET  
TC  
Figure 2a. Simplified Laser Driver Functional Diagram  
LV  
PORDLY  
REF  
MAX3286  
MAX3296  
CONTROLLED  
POR  
1.7V  
POR CIRCUIT  
REFERENCE  
REF  
FAULT  
GENERATOR  
FAULT  
MON  
V
- 0.54V  
CC  
SHDNDRV  
1.97V  
SAFETY  
CIRCUITRY  
FLTDLY  
EN  
EN  
MD  
BIASDRV  
1.53V  
POL  
POL  
SMOOTH  
START  
BIAS GENERATOR  
+1.7V  
OUT-  
OUT+  
IN+  
IN-  
INPUT BUFFER  
50  
50Ω  
LASER  
MODULATOR  
V
CC  
MODULATION CURRENT  
GENERATOR  
TC  
MODSET  
R
TC  
R
MOD  
Figure 2b. Laser Driver Functional Diagram  
_______________________________________________________________________________________  
8
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
impedance). This ensures that the PNP or NPN transistor  
is turned off, removing the laser-bias current. (See  
Applications Information.)  
POLARITY _FAULT  
+1.53V  
The REF pin provides a controlled reference voltage  
dependent upon the voltage at MON. The voltage at  
MD  
FAULT  
GLITCH  
REJECT  
POL  
POL  
SMOOTH  
START  
REF is V  
= 2.65 - 2.25(V  
- V  
). A resistor con-  
MON  
REF  
CC  
WINDOW  
+1.97V  
nected at REF determines the laser power when APC is  
used with common-cathode lasers. See the Design  
Procedure for setting the laser power.  
COMPARATOR  
ENABLE  
POWER  
CONTROL  
AMPLIFIER  
ENABLE  
MD  
REF  
BIASDRV  
MON  
Modulation Circuitry  
The modulator circuitry consists of an input buffer, current  
generator, and high-speed current switch (Figure 4). The  
modulator drives up to 30mA of modulation current into  
a 25load.  
+1.7V  
CONTROLLED REFERENCE VOLTAGE  
= 2.65 - 2.25 (V - V  
V
)
MON  
REF  
CC  
Many of the modulator performance specifications  
V
CC  
- 540mV  
REF_FAULT  
MONITOR_FAULT  
depend on the total modulator current (I  
) (Figure 1a).  
OUT  
2.95V  
To ensure good driver performance, the voltage at  
OUT+ and OUT- must not be less than V - 1V.  
CC  
The amplitude of the modulation current is set with  
resistors at the MODSET and TC (temperature coefficient)  
Figure 3. Bias Generator Circuitry  
pins. The resistor at MODSET (R  
) programs the  
MOD  
temperature-stable portion of modulation current, while  
the resistor at TC (R ) programs the temperature-  
TC  
V
CC  
increasing portion of the modulation current. Figure 5  
shows modulation current as a function of temperature  
MAX3286  
MAX3296  
50  
50Ω  
OUT+  
OUT-  
for two extremes: R  
is open (the modulation current  
TC  
IN+  
CURRENT  
SWITCH  
has zero temperature coefficient) and R  
is open  
MOD  
INPUT  
BUFFER  
(the modulation temperature coefficient is 4000ppm).  
Intermediate tempco values of modulation current can  
be obtained as described in the Design Procedure.  
400Ω  
V
- 0.3V  
CC  
400Ω  
Safety Circuitry  
The laser driver can be used with two popular safety  
systems. APC maintains laser safety using local feed-  
back. Safety features monitor laser driver operation and  
force a shutdown if a fault is detected. The shutdown  
condition is latched until reset by a toggle of EN, EN, or  
power.  
IN-  
ENABLE  
CURRENT AMPLIFIER  
96X  
MODULATION CURRENT  
GENERATOR  
4000ppm/°C  
REFERENCE  
1.2V  
REFERENCE  
Another safety system, Open Fiber Control (OFC), uses  
safety interlocks to prevent eye hazards. To accommo-  
date the OFC standard, the MAX3286/MAX3296 series  
provide dual enable inputs and dual fault outputs.  
MOD_FAULT  
TC_FAULT  
The safety circuitry contains fault detection, dual enable  
inputs, latched fault outputs, and a pulse generator  
(Figure 6).  
0.8V  
0.8V  
Safety circuitry monitors the APC circuit to detect unsafe  
levels of laser emission during single-point failures. A  
TC  
MODSET  
R
R
MOD  
TC  
single-point failure can be a short to V  
between any two IC pins.  
or GND, or  
CC  
Figure 4. Laser Modulator Circuitry  
_______________________________________________________________________________________  
9
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Pulse Generator  
During start-up, the laser is not emitting light and the  
APC loop is not closed, triggering a fault signal. To  
allow start-up, an internal fault-delay pulse disables the  
safety system for a programmable period of time, allowing  
the driver to begin operation. The length of the pulse is  
determined by the capacitor connected at FLTDLY and  
should be set 5 to 10 times longer than the APC time  
constant. The internal safety features can be disabled  
by connecting FLTDLY to GND. Note that EN must be  
nodes are monitored for safety faults, and any node  
voltage that differs significantly from its expected value  
results in a fault (Table 1). When a fault condition is  
detected, the laser is shut down. See Applications  
Information for more information on laser safety.  
Shutdown  
The laser drivers offer dual redundant bias shutdown  
mechanisms. The SHDNDRV output drives an optional  
external MOSFET semiconductor. The bias and modu-  
lation drivers have separate, internal disable signals.  
high, EN must be low, and V  
must be in the opera-  
CC  
tional range for laser operation.  
Latched Fault Output  
Two complementary FAULT outputs are provided with  
the MAX3286/MAX3296 series. In the event of a fault,  
these outputs latch until one of three events occurs:  
Fault Detection  
The MAX3286/MAX3296 series have extensive and  
comprehensive fault-detection features. All critical  
1) The power is switched off, then on.  
2) EN is switched low, then high.  
3) EN is switched to high, then low.  
1.3  
R
R
1.9kΩ  
MOD  
TEMPCO = 4000ppm/°C  
TC  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
= OPEN  
Power-On Reset (POR)  
Figure 7 shows the power-on reset (POR) circuit for the  
MAX3286/MAX3296 series devices. A POR signal  
R
= OPEN  
asserts low when V  
is in the operating range. The  
TC  
CC  
TEMPCO = 50ppm/°C  
voltage operating range is determined by the LV pin, as  
shown in Table 2. POR contains an internal delay to  
reject noise on V  
during power-on or hot-plugging.  
CC  
The delay can be extended by adding capacitance to  
the PORDLY pin. The POR comparator includes hys-  
teresis to improve noise rejection. The laser driver is  
0
10 20 30 40 50 60 70 80 90 100 110  
JUNCTION TEMPERATURE (°C)  
shut down while V  
is out of the operating range.  
CC  
Figure 5. Modulation Current vs. Temperature for Maximum  
and Minimum Temperature Coefficient  
PULSE GENERATOR  
(FROM POR CIRCUIT)  
EN  
FLTDLY  
FAULT  
t
FLTDLY  
R
Q
RESET  
DOMINANT  
FAULT  
FAULT  
DETECTION  
REF_FAULT  
LATCH  
S
V
MONITOR_FAULT  
MD_FAULT  
CC  
FAULT  
200ns  
DELAY  
POLARITY_FAULT  
TC_FAULT  
MOD_FAULT  
EN  
SHDNDRV  
MAX3286  
MAX3296  
ENABLE  
Figure 6. Simplified Safety Circuit Schematic  
10 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
0.018mW/mA at +70°C. Using the above equation will  
produce a laser tempco of -3175ppm/°C.  
PORDLY  
To obtain the desired modulation current and tempco  
V
CC  
for the device, the following two equations can be used  
MAX3286  
MAX3296  
to determine the required values of R  
and R  
:
MOD  
TC  
28k  
0.21  
25k  
R
=
250Ω  
TC  
Tempco i  
(
)
MOD  
LV  
VARIABLE  
DELAY  
POR  
(R +250)52Tempco  
TC  
= 0.7s/µF C  
PORDLY  
R
=
250Ω  
MOD  
36k  
(0.1948
Tempco)  
1.2V  
BANDGAP  
where Tempco = -Laser Tempco.  
Figure 8a shows a family of curves derived from these  
equations. The straight diagonal lines depict constant  
tempcos. The curved lines represent constant modula-  
tion currents. If no temperature compensation is  
desired, Figure 8b displays a series of curves that  
Figure 7. Power-On Reset Circuit  
Design Procedure  
show laser modulation current with respect to R  
different loads.  
for  
MOD  
Select Laser  
Select a communications-grade laser with a rise time of  
260ps or better for 1.25Gbps, or 130ps or better for  
2.5Gbps applications. To obtain the MAX3286/  
MAX3296’s AC specifications, the instantaneous output  
The following useful equations were used to derive  
Figure 8a and the equations at the beginning of this  
section. The first assumes R = 25.  
L
1.15  
+ 250Ω  
1.06  
R + 250Ω  
TC  
voltage at OUT+ must remain above V  
- 1V at all  
CC  
+
times. Select a high-efficiency laser that requires low  
modulation current and generates low-voltage swing at  
OUT+. Laser package inductance can be reduced by  
trimming the leads. Typical package leads have induc-  
tance of 25nH/in (1nH/mm), this inductance causes a  
larger voltage swing across the laser. A compensation fil-  
ter network can also be used to reduce ringing, edge  
speed, and voltage swing.  
R
MOD  
i
= 51⋅  
A
[ ]  
MOD  
3  
1+ 4.0 10  
T – 25°C  
(
)
i
= i  
+ i  
MOD(70°C)  
MOD(25°C)  
MOD(25°C)  
(TEMPCO)(70°C–25°C) A  
[ ]  
Programming the Modulation Current  
Programming the Bias Current/APC  
Resistors at the MODSET and TC pins set the ampli-  
Three application circuits are described below: com-  
mon-cathode laser with photodiode, common-cathode  
laser without photodiode, and common-anode laser  
with photodiode. The POL and POL inputs determine  
the laser pinning (common cathode, common anode)  
and affect the smooth-start circuits (Table 4).  
tude of the modulation current. The resistor R  
sets  
MOD  
the temperature-stable portion of the modulation cur-  
rent while the resistor R  
sets the temperature-  
TC  
increasing portion of the modulation current.  
To determine the appropriate temperature coefficient  
from the slope efficiency (α) of the laser, use the following  
equation:  
Common Cathode with Photodiode  
(Optical Feedback)  
α70 α25  
In the common-cathode with photodiode configuration,  
a servo control loop is formed by external PNP Q1, the  
+6  
Laser Tempco =  
(70°C 25°C) 10 ppm/°C  
[
]
α25  
laser diode, the monitor diode, R  
, and the power-  
SET  
control amplifier (Figure 9). The voltage at MD is stabi-  
lized to 1.7V. The monitor photodiode current (I ) is set  
where α is the slope of the laser output power to the  
D
laser current.  
by (V  
- V ) / R  
= 0.95 / R  
. Determine the  
REF  
MD  
SET  
SET  
For example, suppose a laser has a slope efficiency  
desired monitor current (I ), then select R  
= 0.95 / I .  
D
D
SET  
α
of 0.021mW/mA at +25°C, which reduces to  
25  
______________________________________________________________________________________ 11  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
The APC loop is compensated by C  
. A capacitor  
BIASDRV  
1000  
500ppm  
1000ppm  
1500ppm  
must be placed from BIASDRV to V  
to ensure low-  
2000ppm  
CC  
2500ppm  
noise operation and to reject power-supply noise. The  
time constant governs how quickly the laser bias current  
reacts to a change in the average total laser current  
3000ppm  
3500ppm  
(I  
+ i ). A capacitance of 0.1µF is sufficient  
MOD  
BIASDRV  
5mA  
10  
to obtain a loop time constant in excess of 1µs, provid-  
ed that R is chosen appropriately. Resistor R  
10mA  
DEG  
DEG  
may be necessary to ensure the APC loop’s stability  
when low bias currents are desired.  
15mA  
20mA  
25mA  
30mA  
The voltage across R  
250mV at maximum bias current.  
The discrete components used with the common cath-  
ode with photodiode configuration are as follows:  
DEG should not be any larger than  
R = 25Ω  
L
1
1
10  
100  
1000  
R
(k)  
MOD  
R
SET  
= 0.88 / I  
D
Figure 8a. R vs. R  
TC  
for Various Conditions  
MOD  
C
= 0.1µF (typ)  
BIASDRV  
40  
35  
30  
25  
20  
15  
10  
5
Table 3. R and R  
Selection Table  
MOD  
TC  
i
= 30mA  
i
= 15mA  
i
= 5mA  
MOD  
MOD  
MOD  
TEMPCO  
(ppm/°C)  
R
R
R
MOD  
R
R
MOD  
R
TC  
MOD  
TC  
TC  
10Ω  
(k)  
26.7  
9.53  
5.76  
4.12  
3.24  
2.67  
2.26  
(k)  
1.69  
2.0  
(k)  
53.6  
18.7  
11.3  
8.06  
6.19  
5.11  
4.22  
(k)  
3.65  
4.32  
5.23  
6.49  
8.87  
13.3  
26.7  
(k)  
162  
(k)  
11.5  
13.3  
16.2  
20.0  
26.7  
40.2  
80.6  
LOAD  
NOTE: R = OPEN  
TC  
3500  
3000  
2500  
2000  
1500  
1000  
500  
25Ω  
LOAD  
57.6  
34.8  
24.9  
19.1  
15.8  
13.3  
50Ω  
LOAD  
2.49  
3.16  
4.32  
6.49  
13.3  
0
0
2
4
6
8
10  
12  
14  
R
(k)  
MOD  
Figure 8b. Laser-Modulation Current vs. R  
MOD  
Table 4. POL Pin Setup for Each Laser Configuration Type  
DEVICE  
POL  
DESCRIPTION  
LASER PINNING  
POL  
MAX3286/MAX3296  
V
GND  
CC  
Common cathode with  
photodiode  
MAX3287/MAX3297  
MAX3286/MAX3296  
MAX3288/MAX3298  
MAX3286/MAX3296  
MAX3289/MAX3299  
GND  
V
CC  
Common cathode without  
photodiode  
V
GND  
V
CC  
CC  
Common anode with  
photodiode  
MAX3286/MAX3296  
MAX3286/MAX3296  
V
V
Not allowed; fault occurs  
Not allowed; fault occurs  
CC  
CC  
GND  
GND  
12 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
R
= 0.25 / I  
C
connected between BIASDRV and V  
is  
CC  
DEG  
BIASDRV  
BIAS(MAX)  
sufficient to obtain approximately a 1µs APC loop time  
Q1 = general-purpose PNP, β >100, f > 5MHz  
B1 = ferrite bead (see Bias Filter section)  
t
constant. This improves power-supply noise rejection.  
To select the external components:  
M1 = general-purpose PMOS device (optional)  
1) Determine the required laser bias current:  
Common Cathode with Current Feedback  
In the common-cathode configuration with current feed-  
back, a servo control loop is formed by an external PNP  
I
= I + i  
TH MOD/2  
BIAS  
2) Select R  
and R  
.
MD  
SET  
transistor (Q1), R  
, the controlled-reference voltage  
MON  
Maxim recommends R  
= 1k, R  
= 5k, which  
SET  
250mV.  
MD  
block, R  
, R , and the power-control amplifier  
SET  
MD  
results in V  
- V  
CC  
MON  
(Figure 10). The voltage at MD is stabilized to 1.7V. The  
3) Select R  
where R  
= 1kand R  
= 250mV / I , assuming  
BIAS  
voltage at MON is set by the resistors R  
and R  
.
MON  
MON  
= 5k.  
SET  
MD  
R
As in the short-wavelength configuration, a 0.1µF  
SET  
MD  
V
V
CC  
CC  
R
DEG  
MAX3286  
V
CC  
MAX3287  
MAX3296  
MAX3297  
REF  
CONTROLLED REFERENCE VOLTAGE  
MON  
C
BIASDRV  
V
= 2.65V  
REF  
MAX3286/96  
SHDNDRV  
V
CC  
ONLY  
M1  
Q1  
R
POL  
SET  
SMOOTH  
START  
1.7V  
POL  
MD  
BIASDRV  
I
D
POWER CONTROL  
AMPLIFIER  
I
BIAS  
PHOTO  
DIODE  
FERRITE  
BEAD  
B1  
LASER  
Figure 9. Common-Cathode Laser with Photodiode  
V
V
CC  
CC  
R
MON  
MAX3286  
MAX3288  
MAX3296  
MAX3298  
REF  
CONTROLLED REFERENCE VOLTAGE  
= 2.65V - 2.25V (V - V  
MON  
C
BIASDRV  
V
)
MON  
REF  
CC  
MAX3286/96  
SHDNDRV  
V
CC  
ONLY  
M1  
Q1  
R
D
POL  
SET  
SMOOTH  
START  
1.7V  
POL  
MD  
BIASDRV  
I
POWER CONTROL  
AMPLIFIER  
I
BIAS  
R
MD  
FERRITE  
BEAD  
B1  
LASER  
Figure 10. Common Cathode with Current Feedback (PNP Configuration)  
______________________________________________________________________________________ 13  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
The relationship between laser bias current and R  
C
and a degeneration resistor (R  
) must be  
MON  
BIASDRV  
DEG  
is shown in Figure 11. The remaining discrete compo-  
nents used with the common-cathode without photodi-  
ode configuration are as follows:  
connected to the bias transistor (in this case NPN) to  
obtain the desired APC loop time constant. This  
improves power-supply (and ground) noise rejection. A  
capacitance of 0.1µF is sufficient to obtain time con-  
stants of up to 5µs in most cases. The voltage across  
Q1 = general-purpose PNP, β >100, f > 5MHz  
t
B1 = ferrite bead (see Bias Filter section)  
R
DEG  
should not be larger than 250mV at maximum bias  
M1 = general-purpose PMOS device (optional)  
current.  
C
= 0.1µF (typ)  
The discrete components used with the common-anode  
with photodiode configuration are summarized as follows:  
BIASDRV  
Common Anode with Photodiode  
R
= 1.7 / I  
D
SET  
In the common-anode configuration with photodiode, a  
servo control loop is formed by an external NPN transis-  
C
= 0.1µF (typ)  
= 0.25 / I  
BIAS(MAX)  
BIASDRV  
tor (Q1), the laser diode, the monitor diode, R  
, and  
SET  
R
DEG  
the power-control amplifier. The voltage at MD is stabi-  
Q1 = general-purpose NPN, β > 100, f > 5MHz  
t
lized to 1.7V. The monitor photodiode current is set by  
B1 = ferrite bead (see Bias Filter section)  
I = V  
/ R  
(Figure 12). Determine the desired mon-  
MD  
SET  
D
itor current (I ), then select R  
= 1.7V / I .  
D
D
SET  
M1 = general-purpose PMOS (optional)  
Programming POR Delay  
100  
A capacitor may be added to PORDLY to increase the  
delay for which POR will be asserted low (meaning that  
CC  
R
R
= 1kΩ  
= 5kΩ  
SET  
MD  
V
is within the operational range) when powering up  
the part.  
10  
1
The delay will be approximately:  
C
PORDLY  
t =  
s
[ ]  
6  
1.4 10  
(
)
See Typical Operating Characteristics.  
0.1  
10  
100  
1k  
10k  
R
MON  
()  
Figure 11. Common Cathode Without Photodiode Laser  
V
CC  
MAX3286  
MAX3289  
V
CC  
MAX3296  
MAX3299  
V
LASER  
CC  
MON  
MAX3286/96  
FERRITE  
MONITOR  
DIODE  
ONLY  
SHDNDRV  
POL  
BEAD  
B1  
SMOOTH  
START  
1.7V  
V
CC  
POL  
MD  
Q1  
BIASDRV  
C
BIASDRV  
POWER CONTROL  
AMPLIFIER  
I
D
R
SET  
I
BIAS  
R
DEG  
Figure 12. Common Anode With Photodiode  
14 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Designing the Bias Filter and  
UNCOMPENSATED  
Output Pull-Up Beads  
To reduce deterministic jitter, add a ferrite-bead induc-  
tor between the collector of the biasing transistor and  
either the anode or cathode of the laser, depending on  
type (see Typical Operating Characteristics). Use a fer-  
rite-bead inductor with an impedance >100between ƒ =  
10MHz and ƒ = 2GHz, and a DC resistance < 3.  
Maxim recommends the Murata BLM11HA102SG.  
These inductors are also desirable for tying the OUT+  
CORRECTLY COMPENSATED  
OVERCOMPENSATED  
and OUT- pins to V  
.
CC  
Designing the Laser-Compensation  
Filter Network  
TIME  
Laser package inductance causes the laser impedance  
to increase at high frequencies, leading to ringing, over-  
shoot, and degradation of the output eye pattern. A laser-  
compensation filter network can be used to reduce the  
output load seen by the laser driver at high frequencies,  
thereby reducing output ringing and overshoot.  
Figure 13. Laser Compensation  
into the body, for applications intended to support or sus-  
tain life, or for any other application where the failure of  
a Maxim product could create a situation where per-  
sonal injury or death may occur.  
The compensation components (R  
and C  
)
COMP  
COMP  
are most easily determined by experimentation. Begin  
Layout Considerations  
The MAX3286/MAX3296 series are high-frequency  
products. Their performance largely depends upon the  
circuit board layout.  
with R  
= 25and C = 2pF. Increase C  
COMP COMP  
COMP  
until the desired transmitter eye is obtained (Figure 13).  
Quick Shutdown  
To reduce laser shutdown time, a FET device can be  
attached to SHDNDRV as shown in Figure 10. This will  
provide a typical laser power shutdown time of less  
than 10µs.  
Use a multilayer circuit board with a dedicated ground  
plane. Use short laser package leads placed close to  
the modulator outputs. Power supplies must be capaci-  
tively bypassed to the ground plane with surface-mount  
capacitors placed near the power-supply pins.  
Applications Information  
The dominant pole of the APC circuit is normally locat-  
ed at BIASDRV. To prevent a second pole in the APC  
(that can lead to oscillations), ensure that parasitic  
capacitance at MD is minimized.  
Laser Safety and IEC 825  
The International Electrotechnical Commission (IEC)  
determines standards for hazardous light emissions  
from fiber optic transmitters. IEC 825 defines the maxi-  
mum light output for various hazard levels. The MAX3286/  
MAX3296 series provide features that facilitate compli-  
ance with IEC 825.  
Common Questions  
Laser output is ringing or contains overshoot. This is often  
caused by inductive laser packaging. Try reducing the  
length of the laser leads. Modify the compensation com-  
ponents to reduce the driver’s output edge speed (see  
Design Procedure). Extreme ringing can be caused by  
low voltage at the OUT pins. This may indicate that pull-  
up beads or a lower modulation current are needed.  
A common safety requirement is single-point fault toler-  
ance, whereby one unplanned short, open, or resistive  
connection does not cause excess light output. When  
these laser drivers are used as shown in the Typical  
Operating Circuits, the circuits respond to faults as  
shown in Table 5.  
Low-frequency oscillation on the laser output. This is  
more prevalent at low temperatures. The APC may be  
Using these laser drivers alone does not ensure that a  
transmitter design is compliant with IEC 825. The entire  
transmitter circuit and component selections must be  
considered. Customers must determine the level of fault  
tolerance required by their applications, recognizing that  
Maxim products are not designed or authorized for use  
as components in systems intended for surgical implant  
oscillating. Try increasing the value of C  
or  
BIASDRV  
. Ensure that the parasitic  
increasing the value of R  
DEG  
capacitance at the MD node is kept very small (<10pF).  
The APC is not needed. Connect FLTDLY to ground to  
disable fault detection. Connect MD to REF and MON to  
V . BIASDRV and SHDNDRV can be left open.  
CC  
______________________________________________________________________________________ 15  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Table 5. Circuit Response to Various Single-Point Faults  
CIRCUIT RESPONSE TO OVERVOLTAGE OR  
SHORT TO V  
CIRCUIT RESPONSE TO UNDERVOLTAGE OR  
SHORT TO GROUND  
PIN NAME  
CC  
MAX3286/MAX3296 ONLY  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
FAULT  
FAULT  
POR  
Does not affect laser power.  
Does not affect laser power.  
Fault state* occurs.  
PORDLY  
EN  
Normal condition for circuit operation.  
Fault state* occurs.  
Fault state* occurs.  
Normal condition for circuit operation.  
EN  
LV  
Does not affect laser power.  
Fault state* occurs if V  
is less than +4.5V.  
CC  
If POL is a TTL HIGH, a fault state* occurs; other-  
wise, the circuit is in normal operation.  
If POL is a TTL LOW, a fault state* occurs; other-  
wise, the circuit is in normal operation.  
POL  
If POL is a TTL HIGH, a fault state* occurs; other-  
wise, the circuit is in normal operation.  
If POL is a TTL LOW, a fault state* occurs; other-  
wise, the circuit is in normal operation.  
POL  
In common-cathode without photodiode configura-  
tion, a fault state* occurs; otherwise, does not affect  
laser power.  
MON  
(Also MAX3288/98)  
A fault state* occurs.  
SHDNDRV  
(Also MAX3287/97/  
89/99)  
Does not affect laser power. If optional FET is used,  
the laser output is shut off.  
Does not affect laser power.  
ALL DEVICES  
FLTDLY  
IN+, IN-  
REF  
Any fault that occurs cannot be reset. Does not  
affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Fault state* occurs.  
In common cathode configurations, a fault state*  
occurs; otherwise, does not affect laser power.  
MD  
Fault state* occurs.  
A fault state* occurs.  
In common cathode configurations, the laser bias  
current is shut off. In common anode, high laser  
power triggers a fault state*. Shutdown occurs if a  
shutdown FET (M1) is used. If shutdown FET is not  
used, other means must be used to prevent high  
laser power.  
In common anode configurations, the laser bias  
current is shut off. In common cathode, high laser  
power triggers a fault state*. Shutdown occurs if a  
shutdown FET (M1) is used (Figures 9,10).  
BIASDRV  
OUT+, OUT-  
MODSET  
TC  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
Fault state* occurs.  
Fault state* occurs.  
* A fault state will assert the FAULT pins, disable the modulator outputs, disable the bias output, and assert the SHDNDRV pin.  
16 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
The modulator is not needed. Leave TC and MODSET  
open. Connect IN+ to VCC. IN- to REF, and leave OUT+  
and OUT– open.  
Interface Models  
Figures 14–18 show typical input/output models for the  
MAX3286/MAX3296 series of laser drivers. If dice are  
used, replace the package parasitic elements with  
bondwire parasitic elements.  
Wirebonding Die  
The MAX3286/MAX3296 series use bondpads with gold  
metalization. Make connections to the die with gold wire  
only, using ball-bonding techniques. Wedge bonding is  
not recommended. Bondpad size is 4mil square. Die  
thickness is typically 15mils (0.38mm).  
V
V
CC  
CC  
MAX3286  
MAX3296  
MAX3286  
MAX3296  
10k  
4k  
550Ω  
60Ω  
2.5k  
SHDNDRV  
FAULT, FAULT, POR  
Figure 15. SHDNDRV Output  
Figure 14. Logic Outputs  
V
V
CC  
CC  
PACKAGE  
PACKAGE  
50Ω  
50Ω  
OUT-  
OUT+  
1.5nH  
1.5nH  
0.2pF  
1pF  
1pF  
0.2pF  
Figure 16. Modulator Outputs  
______________________________________________________________________________________ 17  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
V
CC  
PACKAGE  
1.5nH  
MAX3286  
MAX3296  
V
CC  
IN+  
IN-  
Q1  
0.2pF  
0.2pF  
1pF  
400Ω  
400Ω  
V
CC  
1.5nH  
Q2  
1pF  
INPUT COMMON MODE VOLTAGE V - 0.3V  
CC  
R
Q1, Q2 > 100kΩ  
IN  
Figure 17. Data Inputs  
V
CC  
MAX3286  
MAX3296  
40Ω  
BIASDRV  
40Ω  
Figure 18. BIASDRV Output  
18 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Selector Guide  
DATA RATE/DEVICE  
LASER CONFIGURATION  
COMMON  
CATHODE  
WITH  
COMMON  
CATHODE  
WITHOUT  
COMMON  
ANODE WITH  
PHOTODIODE  
PACKAGE  
1.25Gbps  
2.5Gbps  
PHOTODIODE  
PHOTODIODE  
Shortwave or  
VCSEL  
Longwave  
VCSEL  
MAX3286  
MAX3287  
MAX3288  
MAX3289  
MAX3296  
MAX3297  
MAX3298  
MAX3299  
32 TQFP/Dice  
16 TSSOP-EP  
16 TSSOP-EP  
16 TSSOP-EP  
Pin Configurations (continued)  
TOP VIEW  
32 31 30 29 28 27 26 25  
FAULT  
1
2
3
4
5
6
7
8
24 BIASDRV  
SHDNDRV  
23  
GND  
1
2
3
4
5
6
7
8
16 TC  
N.C.  
FAULT  
POR  
FLTDLY  
15 MODSET  
22 GND  
21 MON  
20 MD  
19 I.C.  
18 POL  
17 POL  
V
CC  
14 V  
CC  
IN+  
IN-  
MAX3288  
MAX3298  
13 OUT-  
12 OUT+  
MAX3286  
MAX3296  
GND  
GND  
REF  
MD  
11  
10 BIASDRV  
MON  
V
CC  
EN  
EN  
9
PORDLY  
TSSOP-EP*  
9
10 11 12 13 14 15 16  
*Exposed paddle is connected to GND.  
TQFP  
Ordering Information (continued)  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
16 TSSOP-EP**  
16 TSSOP-EP**  
16 TSSOP-EP**  
32 TQFP (5mm x 5mm)  
Dice*  
MAX3287CUE  
MAX3288CUE  
MAX3289CUE  
MAX3296CHJ  
MAX3296C/D  
MAX3297CUE  
MAX3298CUE  
MAX3299CUE  
16 TSSOP-EP**  
16 TSSOP-EP**  
16 TSSOP-EP**  
*Dice are designed to operate from T = 0°C to +110°C, but are  
J
tested and guaranteed only at T = +25°C.  
A
**Exposed paddle  
______________________________________________________________________________________ 19  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Typical Application Circuits  
+3.0V TO +5.5V  
0.01µF  
PMOSFET  
MAX3286/MAX3296  
COMMON-CATHODE LASER  
WITH PHOTODIODE  
0.01µF  
0.01µF  
V
CC  
SHDNDRV  
BIASDRV  
(OPTIONAL)  
MON  
EN  
POL  
FLTDLY  
C
BIASDRV  
0.1µF  
PNP  
TRANSISTOR  
PORDLY  
IN+  
0.01µF  
V
CC  
FERRITE  
BEAD  
DATA  
115Ω  
INPUT  
MAX3286  
MAX3296  
0.01µF  
0.01µF  
IN-  
OUT+  
OUT-  
0.01µF  
C
R
COMP  
POR  
FAULT  
25Ω  
COMP  
FAULT  
LV  
V
CC  
POL EN  
MODSET  
R
REF MD  
GND  
TC  
R
MOD  
TC  
R
SET  
+3.0V TO +5.5V  
0.01µF  
R
MON  
0.01µF  
0.01µF  
MAX3286/MAX3296  
COMMON-CATHODE LASER  
WITHOUT PHOTODIODE  
V
CC  
EN  
POL  
FLTDLY  
PORDLY  
MON  
C
0.1µF  
BIASDRV  
PNP  
TRANSISTOR  
BIASDRV  
0.01µF  
V
CC  
IN+  
FERRITE  
BEAD  
DATA  
115Ω  
INPUT  
MAX3286  
MAX3296  
0.01µF  
0.01µF  
OUT+  
OUT-  
IN-  
SHDNDRV  
0.01µF  
C
COMP  
POR  
FAULT  
FAULT  
LV  
25Ω  
R
COMP  
V
CC  
POL EN  
MODSET  
R
REF MD  
GND  
TC  
R
MD  
5k  
R
TC  
MOD  
R
SET  
1k  
20 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Typical Application Circuits (continued)  
+3.0V TO +5.5V  
0.01µF  
0.01µF  
0.01µF  
MAX3286/MAX3296  
COMMON-ANODE LASER  
WITH PHOTODIODE  
V
CC  
MON  
EN  
POL  
FLTDLY  
V
CC  
PORDLY  
IN+  
0.01µF  
0.01µF  
0.01µF  
18Ω  
OUT-  
OUT+  
FERRITE  
BEAD  
DATA  
INPUT  
115Ω  
C
R
COMP  
MAX3286  
MAX3296  
IN-  
25Ω  
COMP  
0.01µF  
POR  
FAULT  
FAULT  
LV  
V
CC  
NPN  
TRANSISTOR  
BIASDRV  
C
BIASDRV  
0.1µF  
SHDNDRV  
POL EN  
MD  
MODSET  
R
REF  
GND  
TC  
R
DEG  
R
MOD  
TC  
R
SET  
+3.0V TO +5.5V  
0.01µF  
MAX3287/MAX3297  
COMMON-CATHODE LASER  
WITH PHOTODIODE  
V
CC  
R
DEG  
C
0.1µF  
BIASDRV  
PNP  
TRANSISTOR  
BIASDRV  
0.01µF  
V
CC  
IN+  
IN-  
FERRITE  
BEAD  
DATA  
INPUT  
115Ω  
MAX3287  
MAX3297  
0.01µF  
OUT+  
OUT-  
0.01µF  
0.01µF  
C
COMP  
0.01µF  
R
25Ω  
COMP  
FLTDLY  
SHDNDRV  
V
CC  
MODSET  
R
REF MD  
GND  
TC  
R
TC  
MOD  
R
SET  
______________________________________________________________________________________ 21  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Typical Application Circuits (continued)  
+3.0V TO +5.5V  
0.01µF  
R
MON  
MAX3288/MAX3298  
COMMON-CATHODE LASER  
WITHOUT PHOTODIODE  
V
CC  
MON  
C
0.1µF  
BIASDRV  
PNP  
TRANSISTOR  
BIASDRV  
0.01µF  
V
CC  
IN+  
FERRITE  
BEAD  
DATA  
115Ω  
INPUT  
MAX3288  
MAX3298  
0.01µF  
OUT+  
OUT-  
IN-  
0.01µF  
C
R
COMP  
0.01µF  
0.01µF  
FLTDLY  
25Ω  
COMP  
V
CC  
MODSET  
R
REF MD  
GND  
TC  
R
MD  
5k  
R
MOD  
TC  
R
SET  
1k  
+3.0V TO +5.5V  
0.01µF  
18Ω  
MAX3289/MAX3299  
COMMON-ANODE LASER  
WITH PHOTODIODE  
V
CC  
V
CC  
0.01µF  
IN+  
IN-  
0.01µF  
0.01µF  
OUT-  
OUT+  
FERRITE  
BEAD  
DATA  
INPUT  
115Ω  
C
R
COMP  
MAX3289  
MAX3299  
25Ω  
COMP  
0.01µF  
0.01µF  
V
CC  
FLTDLY  
NPN  
TRANSISTOR  
BIASDRV  
C
BIASDRV  
0.1µF  
SHDNDRV  
MD  
MODSET  
R
REF  
GND  
TC  
R
DEG  
R
MOD  
TC  
R
SET  
22 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Chip Topographies  
MAX3286  
MAX3296  
FLTDLY  
LV  
TC  
TC  
FLTDLY  
LV  
MODSET  
MODSET  
HF34Z-1Z  
HF34Z  
V
V
V
CC  
V
CC  
CC  
CC  
0.072"  
0.072"  
(1.829mm)  
(1.829mm)  
IN+  
IN-  
OUT-  
OUT+  
IN+  
IN-  
OUT-  
OUT+  
GND  
REF  
V
V
GND  
REF  
V
V
CC  
CC  
CC  
CC  
0.053"  
0.053"  
(1.346mm)  
(1.346mm)  
TRANSISTOR COUNT: 1154  
TRANSISTOR COUNT: 1154  
SUBSTRATE CONNECTED TO GND  
SUBSTRATE CONNECTED TO GND  
______________________________________________________________________________________ 23  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Package Information  
24 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
Package Information (continued)  
______________________________________________________________________________________ 25  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
NOTES  
26 ______________________________________________________________________________________  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
NOTES  
______________________________________________________________________________________ 27  
3.0V to 5.5V, 1.25Gbps/2.5Gbps  
LAN Laser Drivers  
NOTES  
Maxim makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Maxim assume any lia-  
bility arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “typicals” must be validated for  
each customer application by customer’s technical experts. Maxim products are not designed, intended or authorized for use as components in systems  
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the  
Maxim product could create a situation where personal injury or death may occur.  
28 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3296CTI+T

Interface Circuit, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, QFN-28
MAXIM

MAX3296EVKIT-SW

MAX3296 Shortwave or VCSEL (Common Cathode) Evaluation Kit
MAXIM

MAX3296LWEVKIT

Evaluation Kit for the MAX3286/MAX3296 Longwave (Common Anode)
MAXIM

MAX3296SWEVKIT

Evaluation Kit for the MAX3760[MAX3760EVKIT ]
MAXIM

MAX3297

Dual-Output (Positive and Negative).DC-DC Converter for CCD and LCD[MAX685/MAX685C/D/MAX685EEE/MAX685EEE-T/MAX685EVKIT ]
MAXIM

MAX3297CUE

3.0V to 5.5V, 1.25Gbps/2.5Gbps LAN Laser Drivers
MAXIM

MAX3297CUE+

Interface Circuit, BIPolar, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AB, TSSOP-16
MAXIM

MAX3297CUE-T

暂无描述
MAXIM

MAX3298

3.0V to 5.5V.1.25Gbps/2.5Gbps LAN Laser Drivers
MAXIM

MAX3298CUE

3.0V to 5.5V, 1.25Gbps/2.5Gbps LAN Laser Drivers
MAXIM

MAX3298CUE-T

Interface Circuit, BIPolar, TSSOP-16
MAXIM

MAX3299

3.0V to 5.5V.1.25Gbps/2.5Gbps LAN Laser Drivers
MAXIM