MAX24101ELU+ [MAXIM]

Interface Circuit, BICMOS, FCLGA-60;
MAX24101ELU+
型号: MAX24101ELU+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, BICMOS, FCLGA-60

信息通信管理 接口集成电路
文件: 总27页 (文件大小:2068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX24101  
15Gbps Octal Linear Equalizer  
General Description  
Benefits and Features  
●ꢀ 1Gbpsꢀtoꢀ15GbpsꢀLinearꢀEQ  
The MAX24101 restores high-frequency signal level at  
the decision-feedback equalizer (DFE) receiver for high-  
loss backplane and cable channels. This permits the DFE  
receiver to meet BER goals. At 15Gbps, the MAX24101  
can operate in channels with FR4 and cable HF loss more  
of than 30dB at 7.5GHz. The linear transfer function is  
transparent to Adaptive DFE equalizers, permitting DFE  
adaptation to track temperature and changing channel  
conditions.  
●ꢀ IncreasesꢀHigh-FrequencyꢀSignalꢀLevelꢀToꢀHelpꢀRxꢀ  
DFE Achieve BER Goals  
●ꢀ LowerꢀPower,ꢀLowerꢀCost,ꢀAndꢀSmallerꢀBoardꢀ  
Footprint Than CDR Solutions  
●ꢀ Transparent-to-LinkꢀTraining,ꢀOOBꢀAndꢀIdle  
●ꢀ PlugꢀandꢀPlay—SetꢀControlꢀPinsꢀ(AllꢀChannelsꢀSetꢀ  
theꢀSame)ꢀorꢀIndependentꢀControlꢀofꢀEachꢀChannelꢀ  
2
throughꢀI C Bus  
Together with the DFE, integrated into Serializer/  
Deserializer (SERDES), the device adds increased mar-  
gin rather than full signal regeneration. Unlike conven-  
tional equalizers with limiting output stages, the device  
preserves the linear channel characteristics, allowing  
the DFE to linearly operate over the entire channel. This  
permits extending total channel reach and/or improving  
signal-to-noise ratio (SNR). The device typically compen-  
sates for up to 19dB of the total loss in a long channel,  
effectively reducing the channel length seen by the DFE  
receiver.  
2
●ꢀ I CꢀDaisyꢀChainꢀForꢀAddressingꢀUpꢀtoꢀ63ꢀICs  
●ꢀ SelectableꢀEQꢀPeakingꢀSpanningꢀ+6dBꢀtoꢀ+19dBꢀatꢀ  
7.5GHz  
●ꢀ SelectableꢀFlatꢀGainꢀSpanningꢀ-2.9dBꢀtoꢀ+1.7dB  
●ꢀ SelectableꢀOutputꢀLinearꢀSwingꢀSpanningꢀ700mV  
P-P  
toꢀ1000mV  
P-P  
●ꢀ LowꢀInput-ReferredꢀNoiseꢀ<ꢀ1mV  
●ꢀ Data-RateꢀandꢀCodingꢀAgnostic  
RMS  
●ꢀ InputꢀReturnꢀLossꢀBetterꢀThanꢀ16dBꢀTypicalꢀUpꢀtoꢀ  
The device has 8 channels and is packaged in a space-  
saving, 4mm x 13mm, FCLGA package.  
7.5GHz  
●ꢀ Power-DownꢀModeꢀSavesꢀPowerꢀWhenꢀNotꢀInꢀUse  
●ꢀ 4mmꢀxꢀ13mmꢀFCLGAꢀPackage  
Applications  
●ꢀ 1Gbpsꢀtoꢀ15GbpsꢀHigh-SpeedꢀBackplanesꢀandꢀCables  
●ꢀ 12.5GbpsꢀQuadꢀXAUIꢀInterconnect  
●ꢀ 14Gbpsꢀ16GꢀFiberꢀChannelꢀ  
●ꢀ Singleꢀ2.5VꢀSupply  
●ꢀ 131mWꢀPerꢀChannelꢀPowerꢀDissipationꢀwithꢀaꢀ  
700mV ꢀOutput  
●ꢀ 12GbpsꢀSASꢀIII  
P-P  
Typical Application Circuit  
MAX24101  
MAX24101  
MAX LOSS CHANNEL = 48dB AT 7.5GHz  
TX  
RX  
CMOS  
+6dB  
Pre-Em  
CMOS  
DFE AND  
SLICER  
BOARD  
4dB TO 12dB LOSS  
AT 7.5GHz  
BACKPLANE  
6dB TO 24dB LOSS  
AT 7.5GHz  
BOARD  
4dB TO 12dB LOSS  
AT 7.5GHz  
(INCLUDING CONNECTORS)  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX24101.related.  
19-6804; Rev 0; 11/13  
MAX24101  
15Gbps Octal Linear Equalizer  
Absolute Maximum Ratings  
Power-SupplyꢀVoltage..........................................-0.5Vꢀtoꢀ+4.0V  
DCꢀInputꢀVoltageꢀAppliedꢀ(all control pins except SDA  
and SCL) .............................................. -0.5Vꢀtoꢀ(V ꢀ+ꢀ0.3V)  
OutputꢀCurrent.................................................. -90mAꢀtoꢀ+90mA  
OperatingꢀJunctionꢀTemperature.....................................+125ºC  
Storage Temperature Range.............................-40ºCꢀtoꢀ+150°C  
CC  
DCꢀInputꢀVoltageꢀAppliedꢀ(SDA,ꢀSCL) .................-0.5Vꢀtoꢀ+4.0V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
FCLGA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(q )...............10°C/W  
JC  
Junction-to-AmbientꢀThermalꢀResistance  
(q )ꢀ(EIA/JESD51-2ꢀstandard)...................................29°C/W  
JA  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
,
,
CCR  
SupplyꢀVoltage  
2.312  
2.5  
2.75  
V
CCT  
V
CCP  
OperatingꢀAmbientꢀ  
Temperature  
T
-40  
1
+25  
+85  
15  
°C  
A
Data Rate  
Gbps  
CID  
Source Data Coding and  
CID  
DC balanced NRZ, 8B10B or  
Scrambled;ꢀPRBS31  
66  
LFꢀBaselineꢀ(withoutꢀꢀPE)ꢀ  
measured at source; source HF  
pre-emphasis swing can be higher  
Differential Source Diff Low-  
FrequencyꢀVoltage  
V
1200  
150  
mV  
P-P  
LAUNCH  
Source Rise/Fall Time  
Test source 10% to 90%  
DC - 200MHz  
26  
ps  
Source Common-Mode  
Noise  
mV  
mV  
P-P  
Supply Noise  
DC - 1MHz  
50  
P-P  
Electrical Characteristics  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C.ꢀSeeꢀFigure 1 for typical supply filtering.) (Note 2)  
CCR  
CCT  
CCP A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
ꢀ+ꢀ  
ꢀ+ꢀ  
Total supply  
current with all 8  
channels enabled  
TXAx[1:0] = 00  
TXAx[1:0] = 11  
420  
550  
CCR  
Supply Current  
mA  
CCT  
I
511  
4.8  
610  
CCP  
Supply Current During  
Power-Down  
mA  
MaximꢀIntegratedꢀꢀ  
2  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Electrical Characteristics (continued)  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C.ꢀSeeꢀFigure 1 for typical supply filtering.) (Note 2)  
CCR  
CCT  
CCP A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Beyond steady-state supply current  
with supply ramp-up time less than  
200µs  
InrushꢀCurrent  
<ꢀ10  
%
Over-bitꢀrateꢀwithꢀEQꢀpeakingꢀ  
optimized for loss channel, in linear  
range  
ResidualꢀDeterministicꢀJitterꢀ  
(Notes 3, 4)  
DJ  
9
ps  
P-P  
RX  
EQx[3:0]ꢀ=ꢀ1110  
EQx[3:0]ꢀ=ꢀ1001  
EQx[3:0]ꢀ=ꢀ0101  
18.5  
15.7  
13.2  
PeakingꢀGain  
(Compensation at 7.5GHz,  
relative to 100MHz,  
GN  
dB  
P
T ꢀ=ꢀ+85°C  
-3.67  
-1.61  
-1.62  
+0.82  
+1.96  
+3.60  
A
100mV ꢀSineꢀWaveꢀInput)ꢀ  
P-P  
Variationꢀaroundꢀ  
typical  
T ꢀ=ꢀ+25°C  
A
T ꢀ=ꢀ-40°C  
A
FGx[1:0] = 11  
FGx[1:0] = 10  
FGx[1:0] = 01  
FGx[1:0] = 00  
1.68  
0.14  
-1.36  
-2.87  
FlatꢀGainꢀ(100MHz,ꢀEQx[3:0]ꢀ  
= 1000, TXAx[1:0] = 10)  
GN  
dB  
F
T ꢀ=ꢀ+85°C  
-4.05  
-3.32  
-3.40  
1000  
+0.95  
+1.83  
+2.86  
A
Variationꢀaroundꢀ  
typical  
T ꢀ=ꢀ+25°C  
A
T ꢀ=ꢀ-40°C  
A
TXAx[1:0] = 11  
TXAx[1:0] = 10  
TXAx[1:0] = 01  
TXAx[1:0] = 00  
TXAx[1:0] = 11  
TXAx[1:0] = 10  
TXAx[1:0] = 01  
TXAx[1:0] = 00  
1370  
1280  
1040  
920  
-1dBꢀCompressionꢀPointꢀ  
OutputꢀSwingꢀ(atꢀ100MHz)  
V
V
mV  
1dB_OUT  
P-P  
1000  
940  
-1dBꢀCompressionꢀPointꢀ  
OutputꢀSwingꢀ(Noteꢀ5)ꢀ(atꢀ  
7.5GHz)  
mV  
1dB_OUT  
P-P  
700  
600  
100MHz to 7.5GHz, FGx[1:0] = 11,  
EQx[3:0]ꢀ=ꢀ0000,ꢀFigureꢀ3  
0.6  
0.5  
0.8  
1.0  
Input-ReferredꢀNoise  
V
V
mV  
mV  
NOISE  
RMS  
100MHz to 7.5GHz, FGx[1:0] = 11,  
EQx[3:0]ꢀ=ꢀ1010,ꢀFigureꢀ3  
100MHz to 7.5GHz, FGx[1:0] = 11,  
EQx[3:0]ꢀ=ꢀ0000,ꢀFigureꢀ3  
Output-ReferredꢀNoiseꢀ  
(Note 3)  
NOISE  
RMS  
100MHz to 7.5GHz, FGx[1:0] = 11,  
EQx[3:0]ꢀ=ꢀ1010,ꢀFigureꢀ3  
1.97  
MaximꢀIntegratedꢀꢀ  
3  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Electrical Characteristics (continued)  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C.ꢀSeeꢀFigure 1 for typical supply filtering.) (Note 2)  
CCR  
CCT  
CCP A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HIGH SPEED I/O  
InputꢀCommon-ModeꢀVoltage  
InputꢀResistance  
V
2.05  
V
ICM  
DC differential resistance  
100  
50  
R
AC common-mode (single-ended)  
resistance  
IN  
10MHz to 7.5GHz  
1GHz to 7.5GHz  
Differential  
>ꢀ16  
> 10  
100  
InputꢀReturnꢀLoss  
OutputꢀResistance  
S
dB  
11  
Common mode  
DC differential resistance  
R
AC common mode (single-ended)  
resistance  
OUT  
50  
PulseꢀResponseꢀRinging  
Intra-PairꢀSkew  
3
2
%
ps  
ps  
Inter-PairꢀSkew  
4
10MHz to 7.5GHz  
1GHz to 7.5GHz  
Differential  
> 13  
> 8  
OutputꢀReturnꢀLoss  
S
dB  
dB  
22  
Common Mode  
100MHz to 7.5GHz, Figure 4  
(Noteꢀ6)  
ChannelꢀIsolation  
LVCMOS I/O  
V
Coup  
40  
0.7 x  
V
ꢀ+ꢀ  
CC  
0.3  
InputꢀLogic-HighꢀVoltage  
V
V
V
IH  
V
CC  
0.3 x  
V
InputꢀLogic-LowꢀVoltageꢀ  
V
-0.3  
IL  
CC  
V
ꢀ+ꢀ  
CC  
0.2  
OutputꢀLogic-HighꢀVoltage  
OutputꢀLogic-LowꢀVoltage  
V
AtꢀI  
= -200µA  
V
V
OH  
OH  
V
AtꢀI = -200µA  
0.2  
OL  
OL  
OpenꢀStateꢀCurrentꢀTolerance  
InputꢀLogic-HighꢀCurrent  
H
±5  
mA  
mA  
IZ  
V
ꢀ<ꢀV ꢀ<ꢀV  
, all other  
IH(MIN)  
IN  
IH(MAX)  
±450  
CMOSꢀpins  
I
IH  
V
ꢀ<ꢀV ꢀ<ꢀV  
, PGM_IN  
+120  
IH(MIN)  
IL(MIN)  
IN  
IH(MAX)  
V
ꢀ<ꢀV ꢀ<ꢀV  
, all other  
IN  
IL(MAX)  
-450  
-18  
CMOSꢀpins  
ꢀ<ꢀV ꢀ<ꢀV , PGM_IN  
IL(MAX)  
InputꢀLogic-LowꢀCurrent  
I
mA  
IL  
V
IL(MIN)  
IN  
MaximꢀIntegratedꢀꢀ  
4  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Electrical Characteristics (continued)  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C.ꢀSeeꢀFigure 1 for typical supply filtering.) (Note 2)  
CCR  
CCT  
CCP A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C CHARACTERISTICS (SDA, SCL) (Note 7)  
0.3 x  
Low-LevelꢀInputꢀVoltage  
High-LevelꢀInputꢀVoltage  
V
V
V
IL  
V
CC  
0.7 x  
V
IH  
V
CC  
InputꢀHysteresis  
V
200  
10  
mV  
pF  
HYS  
InputꢀCapacitance  
InputꢀLeakageꢀCurrent  
C
IN  
I
±1  
0.4  
0.6  
400  
mA  
IN  
I
I
= 3mA  
SINK  
OutputꢀLowꢀVoltageꢀSDA  
SCLKꢀClockꢀFrequency  
V
V
OL  
ꢀ=ꢀ6mA  
SINK  
f
kHz  
SCLK  
Note 2: The MAX24101 is 100% production tested at T ꢀ=ꢀ+25°CꢀandꢀT ꢀ=ꢀ+85°C. SpecificationꢀatꢀT = -40°C is guaranteed by  
A
A
A
design or characterization, unless otherwise noted.  
Note 3: Guaranteed by design and characterization.  
Note 4:ꢀ MeasuredꢀwithꢀcircuitꢀboardꢀlossꢀoptimizedꢀforꢀbestꢀDJ.ꢀResidualꢀjitterꢀisꢀtheꢀdifferenceꢀinꢀdeterministicꢀjitterꢀbetweenꢀtheꢀ  
referenceꢀdataꢀsourceꢀandꢀdeviceꢀoutput.ꢀDJRESIDUALꢀ=ꢀDJOUTPUTꢀ–ꢀDJSOURCE.ꢀTheꢀdeterministicꢀjitterꢀatꢀtheꢀoutputꢀ  
of the transmission line must be from media induced loss. Measured at point D in Figure 2.ꢀTestꢀPatter:ꢀ66ꢀZeroes,ꢀ1010,ꢀ  
PRBS7,ꢀ66ꢀones,ꢀ0101ꢀInvertedꢀPRBS7.  
Note 5: The output voltage range in which a linear relationship between the input and output maintains less than or equal to 1dB  
compression.  
Note 6:ꢀ Measuredꢀusingꢀaꢀvector-networkꢀanalyzerꢀ(VNA)ꢀwithꢀ-15dBmꢀpowerꢀlevelꢀappliedꢀtoꢀtheꢀadjacentꢀinput.ꢀTheꢀVNAꢀdetectsꢀ  
theꢀsignalꢀatꢀtheꢀoutputꢀofꢀtheꢀvictimꢀchannel.ꢀAllꢀotherꢀinputsꢀandꢀoutputsꢀareꢀterminatedꢀwithꢀ50Ω.  
Note 7:ꢀ ReferꢀtoꢀUM10204:ꢀI2C-busꢀspecificationꢀandꢀuserꢀmanual,ꢀRev.ꢀ03ꢀ–ꢀ19ꢀJuneꢀ2007.  
MaximꢀIntegratedꢀꢀ  
5  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
1µH  
2.5V  
V
CC  
SUPPLY  
100µF  
0.1µF  
100µF  
0.1µF  
Figure 1. Recommended Supply Filtering  
RECEIVE TEST SETUP  
PCB (FRA)  
SIGNAL  
SOURCE  
OSCILLOSCOPE OR  
BIT ERROR DETECTOR  
A
B
D
MAX24101  
6 MIL  
RX  
TX  
6 MIL  
SMA  
CONNECTORS  
SMA  
CONNECTORS  
2in < L < 30in  
L = 2in  
FR4  
4.0 < ε < 4.4  
R
tanδ = 0.022  
Figure 2. Receiver Test Setup (Points Labeled A, B, and D are Referenced for AC Parameter Test Conditions)  
MaximꢀIntegratedꢀꢀ  
6  
www.maximintegrated.com  
 
 
MAX24101  
15Gbps Octal Linear Equalizer  
LOWPASS  
FILTER  
MAX24101  
50  
50Ω  
RX_+  
TX_+  
POWER METER  
GIGATRONICS 8652A  
WITH 80301A HEAD  
(10MHz to 18GHz)  
BALUN  
PSPL 5315A  
(200kHz TO 17GHz)  
RX_-  
TX_-  
4TH OBT  
Figure 3. Noise Test Configuration  
4-PORT VECTOR  
NETWORK ANALYZER  
N52454  
AGGRESSOR  
SIGNAL  
MAX24101  
(0dBm)  
50  
TX1+  
TX1-  
TX2+  
TX2-  
RX1+  
RX1-  
RX2+  
RX2-  
50Ω  
50Ω  
50Ω  
VICTIM  
OUTPUT  
VICTIM  
INPUT  
Figure 4. Channel-Isolation Test Configuration  
MaximꢀIntegratedꢀꢀ  
7  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Typical Operating Characteristics  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)  
CCR  
CCT  
CC_DG A  
DETERMINISTIC JITTER  
vs. EQUALIZATION SETTING  
DETERMINISTIC JITTER  
vs. EQUALIZATION SETTING  
1dB Compression  
(7.5GHz Nyquist)  
toc01  
toc02  
toc03  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
5
0
TXAx[1:0] = 11  
TXAx[1:0] = 00  
3dB Loss, Linear  
Range Operation  
16.7dB Loss, Linear  
Range Operation  
-5  
16.7dB Loss, Linear  
Range Operation  
3dB Loss, Linear  
Range Operation  
-10  
-15  
-20  
Data Rate = 15Gbps, TXAx[1:0] = 10, FGx[2:0] = 10  
EQx[3:0] = 0111, FGx[1:0] = 10  
Data Rate = 10.3Gbps, TXAx[1:0] = 10, FGx[1:0] = 10  
0000 0010 0100 0110 1000 1010 1100 1110  
0000 0010 0100 0110 1000 1010 1100 1110  
-30  
-25  
-20  
-15  
-10  
-5  
INPUT AMPLITUDE (dBV)  
EQUALIZATION SETTING (EQxx[3:0])  
EQUALIZATION SETTING (EQxx[3:0])  
1dB COMPRESSION  
(100MHz Nyquist)  
FREQUENCY RESPONSE  
toc04  
toc05  
10.0  
5.0  
30  
TXAx[1:0] = 11  
FGx[1:0] = 111  
25  
20  
15  
10  
5
FGx[1:0] = 10  
FGx[1:0] = 01  
0.0  
TXAx[1:0] = 00  
-5.0  
-10.0  
-15.0  
-20.0  
-25.0  
FGx[1:0] = 00  
0
EQx[3:0] = 0111, FGx[1:0] = 10  
TXAx[1:0] = 11, EQx[3:0] = 0000  
10  
-5  
-25  
-20  
-15  
-10  
-5  
0
5
10  
0
2
4
6
8
INPUT AMPLITUDE (dBV)  
FREQUENCY (GHz)  
FREQUENCY RESPONSE  
WITH 18in of FR4  
FREQUENCY RESPONSE  
toc06  
toc07  
25  
20  
15  
10  
5
5
0
EQxx[3:0] = 1111  
EQxx[3:0] = 0111  
FR4 with EQx[3:0] = 1110  
EQxx[3:0] = 0100  
-5  
FR4 ONLY  
-10  
-15  
-20  
-25  
EQxx[3:0] = 0010  
0
EQxx[3:0] = 0000  
TXAx[1:0] = 11, FGxx[1:0] = 10  
10  
TXAx[1:0] = 11, FGx[1:0] = 10  
-5  
0
2
4
6
8
0
2
4
6
8
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
MaximꢀIntegratedꢀꢀ  
8  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Typical Operating Characteristics (continued)  
(TypicalꢀvaluesꢀareꢀatꢀV  
ꢀ=ꢀV  
ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀT ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)  
CCR  
CCT  
CC_DG A  
MAX24101 SINGLE-ENDED OUTPUT AFTER 18in OF INPUT FR4  
(EQx[3:0] = 1110, FGx[1:0] = 01, TXAx[1:0] = 11, 13.5Gbps)  
MAX24101 SINGLE-ENDED OUTPUT AFTER 18in FR4 AT INPUT  
(EQx[3:0] = 1110, FGx[1:0] = 01, TXAx[1:0] = 11, 10.3Gbps)  
toc9  
toc8  
50mV/div  
50mV/div  
100mV/div  
50mV/div  
20ps/div  
20ps/div  
SINGLE-ENDED OUTPUT FROM BERT SOURCE AFTER 18in FR4  
(12Gbps)  
SINGLE-ENDED OUTPUT FROM BERT SOURCE  
(12Gbps)  
toc10  
toc11  
100mV/div  
20ps/div  
20ps/div  
MAX24101 SINGLE-ENDED OUTPUT AFTER 18in FR4 AT INPUT  
(EQx[3:0] = 1110, FGx[1:0] = 01, TXAx[1:0] = 11, 12Gbps)  
MAX24101 SINGLE-ENDED TIME DOMAIN OUTPUT VS. EQUALIZATION LEVEL  
(FGx[1:0] = 01, TXAx[1:0] = 11, WITH 18in FR4 AT 1Gbps)  
toc12  
toc13  
EQxx[3:0] = 1111  
EQxx[3:0] = 0000  
62mV/div  
20ps/div  
100ps/div  
MaximꢀIntegratedꢀꢀ  
9  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Pin Configuration  
RX1P  
RX1N  
VCCR  
RX2P  
RX2N  
VCCR  
RX3P  
RX3N  
VCCR  
1
2
3
4
5
6
7
8
9
54 TX1P  
53 TX1N  
52 VCCT  
51 TX2P  
50 TX2N  
49 VCCT  
48 TX3P  
47 TX3N  
46 VCCT  
45 TX4P  
44 TX4N  
43 VCCT  
42 TX5P  
41 TX5N  
40 VCCT  
39 TX6P  
38 TX6N  
37 VCCT  
36 TX7P  
35 TX7N  
34 VCCT  
33 TX8P  
32 TX8N  
31 VCCT  
+
RX4P 10  
RX4N 11  
VCCR 12  
RX5P 13  
RX5N 14  
VCCR 15  
RX6P 16  
RX6N 17  
VCCR 18  
RX7P 19  
RX7N 20  
VCCR 21  
RX8P 22  
RX8N 23  
VCCR 24  
MAX24101  
FCLGA  
4mm x 13mm  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 2  
RX1P,ꢀRX1N  
DifferentialꢀChannelꢀ1ꢀInput,ꢀCML  
3,ꢀ6,ꢀ9,ꢀ12,ꢀ15,ꢀ  
18, 21, 24  
VCCR  
PositiveꢀReceiveꢀPowerꢀSupply,ꢀ2.5V.ꢀFilterꢀeachꢀpinꢀwithꢀaꢀ0.1µFꢀcapacitorꢀtoꢀGND.  
DifferentialꢀChannelꢀ2ꢀInput,ꢀCML  
4, 5  
RX2P,ꢀRX2N  
MaximꢀIntegratedꢀꢀ  
10  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
7, 8  
RX3P,ꢀRX3N  
RX4P,ꢀRX4N  
RX5P,ꢀRX5N  
RX6P,ꢀRX6N  
RX7P,ꢀRX7N  
RX8P,ꢀRX8N  
DifferentialꢀChannelꢀ3ꢀInput,ꢀCML  
DifferentialꢀChannelꢀ4ꢀInput,ꢀCML  
DifferentialꢀChannelꢀ5ꢀInput,ꢀCML  
DifferentialꢀChannelꢀ6ꢀInput,ꢀCML  
DifferentialꢀChannelꢀ7ꢀInput,ꢀCML  
DifferentialꢀChannelꢀ8ꢀInput,ꢀCML  
10, 11  
13, 14  
16,ꢀ17  
19, 20  
22, 23  
I2CꢀEnableꢀInput,ꢀLVCMOS.ꢀHardwireꢀlowꢀforꢀpinꢀcontrol.ꢀHardwireꢀhighꢀforꢀI2C control.  
User must select mode of operation before power-on reset.  
25  
I2C_EN  
VCCP  
26  
PositiveꢀPowerꢀSupply,ꢀ2.5V.ꢀFilterꢀeachꢀpinꢀwithꢀaꢀ0.1µFꢀcapacitorꢀtoꢀGND.ꢀ  
27  
LDO_DIG  
CompensationꢀcapacitorꢀpinꢀforꢀinternalꢀLDO.ꢀBypassꢀpinꢀwithꢀaꢀ0.22µFꢀcapacitorꢀtoꢀGND.  
2
28  
29  
30  
SCL  
SDA  
AnalogꢀI CꢀSerial-InterfaceꢀClockꢀInput.ꢀUseꢀexternalꢀ4.7kΩꢀpullupꢀtoꢀV  
.
CC  
2
AnalogꢀI CꢀSerial-InterfaceꢀDataꢀInputꢀandꢀOutput.ꢀUseꢀexternalꢀ4.7kΩꢀpullupꢀtoꢀV  
.
CC  
2
PGM_OUT  
CascadableꢀI CꢀOutput.ꢀLVCMOS.ꢀSeeꢀtheꢀSlave Address Configuration section.  
31, 34, 37, 40,  
43,ꢀ46,ꢀ49,ꢀ52  
VCCT  
PositiveꢀTransmitꢀPowerꢀSupply,ꢀ2.5V.ꢀFilterꢀeachꢀpinꢀwithꢀaꢀ0.1µFꢀcapacitorꢀtoꢀGND.  
32, 33  
35,ꢀ36  
38, 39  
41, 42  
44, 45  
47, 48  
50, 51  
53, 54  
55  
TX8N,ꢀTX8P  
TX7N,ꢀTX7P  
TX6N,ꢀTX6P  
TX5N,ꢀTX5P  
TX4N,ꢀTX4P  
TX3N,ꢀTX3P  
TX2N,ꢀTX2P  
TX1N,ꢀTX1P  
PGM_IN  
DifferentialꢀChannelꢀ8ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ7ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ6ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ5ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ4ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ3ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ2ꢀOutput,ꢀCML  
DifferentialꢀChannelꢀ1ꢀOutput,ꢀCML  
2
2
CascadableꢀI CꢀInput.ꢀHasꢀ30kΩꢀpulldown,ꢀseeꢀthe I C Address Configuration section.  
Power-DownꢀEnableꢀPin,ꢀLVCMOS.ꢀThree-stateꢀpinꢀtoꢀprogramꢀtheꢀpowerꢀmodeꢀofꢀtheꢀ  
part at startup. For high and open, see Table 5 for settings. Set low for reset. Reset,  
disables all communication to the chip along with resetting the registers to their default  
states.  
56  
ENABLE  
ApplicationꢀSelectꢀInput,ꢀLVCMOS.ꢀSelectꢀbetweenꢀchannelꢀcases:ꢀShortꢀandꢀLong.ꢀSetꢀ  
low or open for long. Set high for short.  
57  
58  
59  
60  
APPLICATION  
OUTPUT_LEVEL  
EQ_PEAKING  
FLAT_GAIN  
OutputꢀLevelꢀControl,ꢀLVCMOS.ꢀThree-stateꢀpinꢀtoꢀprogramꢀtheꢀoutputꢀlevelꢀofꢀallꢀ  
channels. See Table 4 for settings.  
EqualizationꢀControlꢀPin,ꢀLVCMOS.ꢀThree-stateꢀpinꢀtoꢀprogramꢀtheꢀequalizationꢀlevelꢀofꢀ  
all channels. See Table 2 for settings.  
GainꢀAdjustꢀControlꢀPin,ꢀLVCMOS.ꢀThree-stateꢀpinꢀtoꢀprogramꢀtheꢀflatꢀgainꢀlevelꢀofꢀallꢀ  
channels. See Table 3 for settings.  
ExposedꢀPad.ꢀInternallyꢀconnectedꢀtoꢀGND.ꢀGroundꢀreferenceꢀforꢀpowerꢀsupplies,ꢀthree-  
state,ꢀandꢀotherꢀlow-speedꢀpins.ꢀConnectꢀEPꢀtoꢀaꢀlargeꢀgroundꢀplaneꢀtoꢀmaximizeꢀthermalꢀ  
performance.  
EP  
MaximꢀIntegratedꢀꢀ  
11  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Functional Diagram  
8 CHANNELS  
EQUALIZER  
FLAT GAIN  
OUTPUT BUFFER  
TX1P  
50Ω  
50Ω  
RX1P  
RX1N  
TX1N  
LANE 1 OF 8  
EQ_PEAKING  
FLAT GAIN  
OUTPUT LEVEL  
CONTROL  
Input Termination  
Detailed Description  
Theꢀinputꢀterminationꢀconsistsꢀofꢀtwoꢀ50Ωꢀresistorsꢀform-  
ing a differential termination between the input pins. The  
excellent return loss minimizes reflections in a channel.  
Theꢀ MAX24101ꢀ isꢀ anꢀ 8-channelꢀ linearꢀ equalizerꢀ (EQ)ꢀ  
functioning up to 15Gbps. Each channel has a program-  
mable equalization network and programmable flat gain  
adjust.ꢀAllcontrolsforequalization,gain,outputenable/  
disable, etc., are individually programmed through the on-  
chip programming block. The programming block can be  
Table 1. APPLICATION Pin Control  
2
controlledꢀeitherꢀthroughꢀpinꢀcontrolsꢀorꢀtheꢀI C serial bus.  
INPUT LEVEL  
CHANNEL LENGTH  
APPLICATION Pin Control  
Short Channel. 0dB to 18dB channel loss  
before MAX24101.  
High  
The placement range of a linear equalizer is limited by  
its dynamic range and noise performance. To allow the  
widest placement range, the MAX24101 has two optimi-  
zations. The two cases are Short and Long Channels.  
By selecting the case based on channel loss as shown  
in Table 1, the best dynamic range and noise operating  
points are selected for the application.  
Long Channel. 18dB to 33dB channel loss  
before MAX24101.  
Low,ꢀOpen  
MaximꢀIntegratedꢀꢀ  
12  
www.maximintegrated.com  
 
MAX24101  
15Gbps Octal Linear Equalizer  
2
I Ccontrol,theflatgaincanbeadjustedindependentlyꢀ  
Receive Equalizer  
for each channel.  
For the MAX24101, the input data goes into a selectable  
equalization stage. The receive equalizer is designed to  
compensate losses up to 19dB (at 7.5GHz) of channel  
loss. The selectable equalization can be controlled using  
commandsꢀ sentꢀ overꢀ theꢀ I C serial bus or pin control.  
Withpincontroltheequalizationsettinghasthreeavail-  
Output Stage  
The MAX24101 data path transitions from the gain stages  
into a linear output buffer with selectable output level.  
Withꢀpinꢀcontrolꢀtheꢀoutputꢀlevelsꢀcanꢀbeꢀadjustedꢀgloballyꢀ  
as shown in Table 4.WithI C control, the output levels  
canꢀbeꢀadjustedꢀindependentlyꢀforꢀeachꢀchannel.ꢀ  
2
2
able compensation levels and all the channels are con-  
2
trolled globally. See Table 2ꢀforꢀdetails.ꢀWithꢀtheꢀI C serial  
bus,theequalizationhas16settingsandeachchannelꢀ  
canꢀbeꢀadjustedꢀindependently.  
Power Saving  
The MAX24101 features a power-down enable input  
(ENABLE) pin to shut down the device and reduce sup-  
ply current at startup. Set high to power down the output  
stage of all channels. Set open to power up all channels.  
Set low for reset. Reset disables all communication to  
the chip along with resetting the registers to their default  
states.  
Gain Stage  
The MAX24101 data path goes through a wideband flat  
gainꢀstage.ꢀWithꢀpinꢀcontrolꢀtheꢀflatꢀgainꢀcanꢀbeꢀadjustedꢀ  
globallyꢀfromꢀ-2.9dBꢀtoꢀ+1.7dBꢀasꢀshownꢀinꢀTable 3.ꢀWithꢀ  
Table 2. EQ_PEAKING Pin Control  
LONG CHANNEL  
INPUT LEVEL  
MEDIUM CHANNEL  
(APPLICATION = OPEN)  
SHORT CHANNEL  
UNITS  
(APPLICATION = LOW, OPEN)  
+15ꢀ(EQx[3:0]ꢀ=ꢀ1110)  
(APPLICATION = HIGH)  
High  
Open  
Low  
+15ꢀ(EQx[3:0]ꢀ=ꢀ1110)  
+12ꢀ(EQx[3:0]ꢀ=ꢀ1001)  
+9ꢀ(EQx[3:0]ꢀ=ꢀ0101)  
+12ꢀ(EQx[3:0]ꢀ=ꢀ1001)  
+9ꢀ(EQx[3:0]ꢀ=ꢀ0101)  
+6ꢀ(EQx[3:0]ꢀ=ꢀ0011)  
+12ꢀ(EQx[3:0]ꢀ=ꢀ1001)  
+9ꢀ(EQx[3:0]ꢀ=ꢀ0101)  
dB  
Table 3. FLAT_GAIN Pin Control  
LONG CHANNEL  
INPUT LEVEL  
MEDIUM CHANNEL  
SHORT CHANNEL  
UNITS  
(APPLICATION = LOW, OPEN)  
(APPLICATION = OPEN)  
(APPLICATION = HIGH)  
High  
Open  
Low  
1.7 (FGx[1:0] = 11)  
0.1 (FGx[1:0] = 10)  
-1.4 (FGx[1:0] = 01)  
1.7 (FGx[1:0] = 11)  
0.1 (FGx[1:0] = 10)  
-1.4 (FGx[1:0] = 01)  
0.1 (FGx[1:0] = 10)  
-1.4 (FGx[1:0] = 01)  
-2.9 (FGx[1:0] = 00)  
dB  
Table 4. OUTPUT_LEVEL Pin Control  
INPUT LEVEL  
OUTPUT AMPLITUDE  
UNITS  
High  
Open  
Low  
1000 (TXAx[1:0] = 11]  
940 (TXAx[1:0] = 10]  
700 (TXAx[1:0] = 01]  
mV  
P-P  
Table 5. ENABLE and Reset Pin Control  
INPUT LEVEL  
(ENABLE)  
I2C CONTROL MODE  
(I2C_EN = high)  
PIN CONTROL MODE  
(I2C_EN = low)  
Powerꢀdownꢀallꢀchannels  
Powerꢀonꢀallꢀchannels  
Resetꢀ(POR)  
High  
Open  
Low  
UponꢀPORꢀorꢀreset,ꢀpowerꢀdownꢀallꢀchannels  
UponꢀPORꢀorꢀreset,ꢀpowerꢀonꢀallꢀchannels  
Resetꢀ(POR)  
MaximꢀIntegratedꢀꢀ  
13  
www.maximintegrated.com  
 
 
 
MAX24101  
15Gbps Octal Linear Equalizer  
Definitions  
dBVꢀ isꢀ definedꢀ asꢀ dBꢀ relativeꢀ toꢀ 1V  
Applications Information  
(differential).  
P-P  
Linear Equalizer (EQ) Placement and Use, in 3  
Steps  
Placementꢀ ofꢀ linearꢀ equalizersꢀ inꢀ lossyꢀ channelsꢀ isꢀ  
boundedꢀ byꢀ outputꢀ linearityꢀ andꢀ inputꢀ noiseꢀ (I ). See  
Figure 5. Although placement is quite flexible, it is  
important to maintain linear operation with sufficient SNR,  
hence the boundary conditions stated in the following two  
sections.  
Hence,theꢀTxꢀlevelꢀofꢀ1V ꢀisꢀ0dBV,andaꢀTxꢀlevelꢀofꢀ  
P-P  
0.5V ꢀisꢀ-6dBV.  
P-P  
Source Tx Level [dBV]isthetotalmeasuredTxV  
including pre-emphasis.  
,
P-P  
RN  
Desired Margin is a user decision regarding margin  
needed to account for all system min/max variations,  
includingꢀsourceꢀTx,ꢀMAX24101,ꢀandꢀASICꢀreceiver.ꢀ  
Tx1V  
P-P  
W/6dB PE  
POSITION 1  
POSITION 2  
2.0V  
dBV  
0
1.0V  
0.5V  
LINEAR EQ OUTPUT REFERRED -1dB COMPRESSION LEVEL [V  
]
P-P  
H
F
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
L
O
S
LF  
(LONG CID)  
S
S
L
O
P
E (  
N
Y
Q
U
I
S
T
7.5  
G
H
z
S
q
0.2V  
DESIGN  
MARGIN  
W
A
V
E)  
TOTAL GAIN  
AT NYQUIST  
100mV  
50mV  
DFE IRN  
AT BER  
1E-15  
ASIC DFE IR-NOISE AT BER 1E-15 [V  
]
P-P  
-24dB  
20mV  
10mV  
5mV  
LINEAR EQ OR-NOISE AT BER 1E-15 [V  
]
P-P  
LINEAR EQ IR-NOISE AT BER 1E-15 [V  
]
P-P  
2mV  
0
4
8
12  
16  
20  
24  
28  
32  
36  
CHANNEL LOSS [dB]  
PLACEMENT RANGE  
IN LOSSY CHANNEL  
TX  
RX  
CMOS  
1V  
6dbPE  
CMOS  
DFE AND  
SLICER  
PPD  
1
2
Figure 5. Linear Equalizer Placement  
MaximꢀIntegratedꢀꢀ  
14  
www.maximintegrated.com  
 
MAX24101  
15Gbps Octal Linear Equalizer  
Minimum Distance (Nyquist Loss) from Source Tx [dB] =  
Step 1—Maintain EQ Linearity at Low Frequency  
(LF)  
SourceꢀTxꢀLevelꢀ[dBV]ꢀ+  
The source Tx low frequency (LF) amplitude needs to be  
consideredꢀtoꢀkeepꢀlinearꢀEQꢀwithinꢀitsꢀlinearꢀrange.ꢀTheꢀ  
source Tx low-frequency (LF) amplitude is the differential  
peak-peak amplitude after any pre-emphasis has fully set-  
tled,ꢀe.g.,ꢀtheꢀlevelꢀofꢀlongꢀCIDꢀ(continuousꢀidenticalꢀdigits)ꢀ  
sequences. The primary controls over LF levels in Linear  
EQꢀareꢀtheꢀꢀUsedꢀASICꢀSourceꢀTxꢀpre-emphasisꢀ(orꢀde-  
emphasis)ꢀandꢀtheꢀLinearꢀEQꢀFlatꢀGainꢀ(MAX24101).  
LinearꢀEQꢀPeakingꢀGainꢀ[dB]ꢀ+  
LinearꢀEQꢀFlatꢀGainꢀ[dB]ꢀ–  
Linearꢀ EQꢀ Outputꢀ Levelꢀ settingꢀ (-1dBꢀ Compressionꢀ  
level)ꢀ[dBV]ꢀ+  
User System Margin [dB]  
For example:  
SourceꢀTxꢀLevelꢀ=ꢀ0dBV  
Figure 5showsatypicalexamplewithꢀASICSourceTxꢀ  
LinearꢀEQꢀPeakingꢀGainꢀ=ꢀ14dB  
LinearꢀEQꢀFlatꢀGainꢀ=ꢀ0dB  
havingꢀ 6dBꢀ pre-emphasis,ꢀ withꢀ 1V  
peak swing and  
P-P  
0.5V  
swingꢀ afterꢀ pre-emphasisꢀ (e.g.,ꢀ longꢀ CIDꢀ LFꢀ  
P-Pꢀ  
content).ꢀ Noteꢀ thatꢀ 0.5V  
fits easily under the -1dB  
P-P  
Linearꢀ EQꢀ Outputꢀ Levelꢀ settingꢀ (-1dBꢀ Compressionꢀ  
Point)ꢀ=ꢀ-3dBVꢀ  
Compressionline.IftheSourceTxweretohavehigherꢀ  
LFꢀ swing,ꢀ drivingꢀ linearꢀ EQꢀ intoꢀ nonlinearity,ꢀ theꢀ linearꢀ  
EQꢀflat-gainꢀcontrolꢀcanꢀbeꢀusedꢀtoꢀattenuateꢀinputꢀsignalꢀ  
level, as needed, to maintain linearity.  
User System Margin = 2dB  
Then:  
Minimum Distance (Nyquist Loss) from Source Tx = 0  
For example:  
+ꢀ14ꢀ+ꢀ0ꢀ-ꢀ(-3)ꢀ+ꢀ2ꢀ=ꢀ19dB  
MaximumꢀLinearꢀEQꢀFlatꢀGainꢀsettingꢀ=ꢀ  
Linearꢀ EQꢀ Outputꢀ Levelꢀ settingꢀ (-1dBꢀ compression)ꢀ  
[dBV]ꢀ-  
Step 3—Keep Nyquist Level Sufficiently Above  
Noise Floor  
The amplitude of the Nyquist sequence (10101010…)  
must be maintained sufficiently above noise floor to  
achieve BER goals. Hence, Nyquist level at input to  
theLinearEQneedstobesufficientlyabovetheLinearꢀ  
EQꢀ self-noise,ꢀ IRNꢀ (inputꢀ referredꢀ noise).ꢀ Thisꢀ setsꢀ theꢀ  
maximumꢀNyquistꢀchannelꢀlossꢀprecedingꢀtheꢀLinearꢀEQ,ꢀ  
e.g, farthest placement from Source Tx (see Position 2  
in Figure 5).  
SourceꢀTxꢀLevelꢀ[dBV]ꢀ+  
SourceꢀTxꢀPre-Emphasisꢀ(De-emphasis)ꢀ[dB]ꢀ-  
User System Margin [dB]  
For example:  
Linearꢀ EQꢀ Outputꢀ Levelꢀ settingꢀ (-1dBꢀ compression)ꢀ  
[dBV]ꢀ=ꢀ-3dBV  
SourceꢀTxꢀLevelꢀ[dBV]ꢀ=ꢀ0dB  
Maximum Distance (Nyquist Loss) from Source Tx [dB] =  
SourceꢀTxꢀPre-Emphasisꢀ(De-emphasis)ꢀ[dB]ꢀ=ꢀ6dB  
User System Margin = 2dB  
SourceꢀTxꢀLevelꢀ(whichꢀisꢀNyquistꢀlevel)ꢀ[dBV]ꢀ–  
LinearꢀEQꢀIRNppꢀatꢀBERꢀgoalꢀ[dBV]ꢀ–ꢀ  
MarginꢀrequiredꢀtoꢀreduceꢀRJꢀcreationꢀ–  
User System Margin [dB]  
Then:  
MaximumꢀLinearꢀEQꢀFlatꢀGainꢀsettingꢀ=ꢀ(-3)ꢀ-ꢀ0ꢀ+ꢀ6ꢀ-ꢀ2ꢀ  
= 1dB  
For example:  
(There are three Flat Gain settings available lower than  
SourceꢀTxꢀLevelꢀ=ꢀ0dBV  
+1dB:ꢀꢀTheyꢀareꢀ-3dB,ꢀ-1.5dB,ꢀ0dB)  
Linearꢀ EQꢀ IRNppꢀ atꢀ BERꢀ goalꢀ (0.5mVrmsꢀ xꢀ 15.9ꢀ atꢀ  
BERꢀ1E-15)ꢀ[dBV]ꢀ=ꢀ-43dB  
Step 2—Maintain EQ Linearity at High Frequency  
(Nyquist)  
MarginrequiredtoreduceRJcreation(to0.2UIppatꢀ  
BER) = 10dB  
A linear equalizer when placed too close to a Source Tx  
is vulnerable to nonlinear compression at high frequency  
(Nyquist),ꢀ especiallyꢀ ifꢀ theꢀ EQꢀ peakingꢀ gainꢀ isꢀ higherꢀ  
than the preceding channel loss. The -1dB compression  
specification gives maximum output level that guarantees  
linearꢀoperation.AsꢀaꢀfunctionꢀofꢀtheꢀEQꢀsettings,ꢀtheꢀmini-  
mum placement distance from the Source Tx is calculated  
as follows: (see Position 1 in Figure 5).  
User System Margin = 3dB  
Then:  
Maximum Distance (Nyquist Loss) from Source Tx =  
0 - (-43) - 10 - 3 = 30dB  
MaximꢀIntegratedꢀꢀ  
15  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
of SCL. Data is arranged in packets of 9 bits. The first 8  
bits represent data to be transferred (most significant bit  
(MSB) first). The last bit is an acknowledge bit from the  
slave. The recipient of the data holds SDA low during the  
ninthꢀclockꢀcycleꢀofꢀaꢀdataꢀpacketꢀtoꢀacknowledgeꢀ(ACK)ꢀ  
the byte. Leaving SDA left open on the ninth bit signals  
aꢀnot-acknowledgedꢀ(NACK)ꢀcondition.ꢀTheꢀinterpretationꢀ  
of the acknowledge bit by the sender depends on the type  
of transaction and the nature of the byte being received.  
SDA is bidirectional so that the master may send data  
bytes during write transactions and the slave may send  
data bytes during reads.  
Tools—Frequency Response Plotting and EQ  
Placement in Channel Calculator  
Several simple Microsoft Excel spreadsheet tools are  
available to assist in the application of the MAX24101  
LinearEQs.Pleasevisitwww.maximintegrated.com to  
access the latest version of these spreadsheets:  
®
2
I C Interface  
2
TheꢀSDAꢀandꢀSCLꢀpinsꢀareꢀreferredꢀtoꢀasꢀtheꢀslaveꢀI C.  
2
TheꢀslaveꢀI C provides external access to the register set  
within the MAX24101. Typically, an MCU is connected to  
2
theꢀslaveꢀI C.  
Framing and Data Transfer  
Device Addressing  
An individual transaction is framed by a START condition  
andaSTOPcondition.ꢀASTARTconditionoccurswhenꢀ  
abusmasterpullsSDAlowwhileSCLishigh.ꢀASTOPꢀ  
condition occurs when the bus master allows SDA to tran-  
sitionꢀlow-to-highꢀwhenꢀSCLꢀisꢀhigh.ꢀWithinꢀtheꢀframeꢀtheꢀ  
master has exclusive control of the bus. The MAX24101  
supports Repeated START conditions whereby the mas-  
ter may simultaneously end one frame and start another  
withoutꢀreleasingꢀtheꢀbusꢀbyꢀreplacingꢀtheꢀSTOPꢀconditionꢀ  
with a START condition.  
The first byte to be sent after a START condition is a slave  
address byte. The first seven bits of the byte contain the  
target slave address (MSB first). The eighth bit indicates  
thetransactiontype0’=write,1’=read.Eachslaveꢀ  
interfaceꢀonꢀtheꢀbusꢀisꢀassignedꢀaꢀ7-bitꢀslaveꢀaddress.ꢀIfꢀ  
no slave matches the address broadcast by the master  
then SDA will be left open during the acknowledge bit  
andꢀtheꢀmasterꢀreceivesꢀaꢀNACK.ꢀTheꢀmasterꢀmustꢀthenꢀ  
assertꢀaꢀSTOPꢀcondition.ꢀIfꢀaꢀslaveꢀidentifiesꢀtheꢀaddressꢀ  
then it acknowledges it by pulling SDA low. The master  
then proceeds with the transaction identified by the type  
bit. The two-wire interface of the MAX24101 decodes  
slave addresses ranging from 00h to 3Fh.  
WithinꢀaꢀframeꢀtheꢀstateꢀofꢀSDAꢀonlyꢀchangesꢀwhenꢀSCLꢀ  
is low. A data bit is transferred on a low-to-high transition  
Flatgain (vgc)  
VOUT (txa)  
Peak Gain (eq)  
MAX24101FREQUENCY RESPONSE  
UPDATE  
20  
15  
10  
5
MAX24101  
TXA2 VGC3 EQ15  
TXA2 VGC2 EQ7  
TXA1 VGC1 EQ3  
TXA0 VGC0 EQ0  
0
-5  
-10  
0
2E+09  
4E+09  
6E+09  
8E+09  
1E+10  
Frequency (Hz)  
Figure 6. Frequency Response Plotting  
Microsoft Excel is a registered trademark of Microsoft Corp.  
MaximꢀIntegratedꢀꢀ  
16  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
MAX24101 10.3Gbps Linear EQ: Calculate Placement Range in Channel  
ASIC TX  
LINEAR EQ  
ASIC RX  
Entry Box in Yellow: Entry Box  
Pull Down Box in Pink: Pull Down  
Entry Box in Yellow: Entry Box  
ASIC TX SETTINGS  
LINEAR EQ SETTINGS  
ASIC RX SETTINGS  
T = Tx HF Level [mVpp]  
[dBVpp]  
1000  
0.00  
P = Peaking Gain (HF reLF) [dB]  
F = Flat Gain (LF) [dB]  
15  
0
N = Input Ref Noise [dBVrms]  
[Vpp]  
[dBVpp]  
0.5  
7.9  
-42.0  
D = Tx De-Emphasis [dB]  
3.0  
Input Ref  
0.50 n = Refer'd Noise [mVrms]  
Mult Output Ref  
2
1.00  
15.8  
-36.0  
800  
M = Margin [dB]:  
12.0  
STEP 1: Make sure that L (Tx LF Level)  
7.9 [mVpp]  
-42.0 [dBVpp]  
800 CL = LF -1dB Compress [mVpp]  
Nyquist (010101) [Vpp] above N [Vpp@BER]  
(recommend > 16dB for RJ < 0.10UIpp)  
(recommend > 12dB for RJ < 0.16UIpp)  
is less than EQ LF compression level:  
L = Tx LF Level [mVpp]  
[dBVpp]  
708  
-3.00  
<
-1.94 [dBVpp]  
142 CH = HF -1dB Compress [mVpp]  
-1.94  
800  
-1.94  
BER Target = 1E-xx, where xx=  
Vpp/Vrms Multiplier =  
(for BER in 1E-12 to 1E-17 range)  
15  
15.85  
-16.9  
[dBVpp]  
12.0 m = Margin [dB]: Nyquist above n [dBVpp@BER]  
(recommend > 16dB for RJ < 0.10UIpp)  
(recommend > 12dB for RJ < 0.16UIpp)  
RESULTS:  
EQ PLACEMENT [Loss@Nyquist]  
A = Nearest to Tx [dB] >  
Over PVT >  
T - CH (Input Ref)  
B = Farthest from Tx [dB] <  
C = Longest Channel [dB] <  
16.94  
18.94  
30.02 dB  
28.02 dB  
45.02 dB  
43.02 dB  
Over PVT <  
Over PVT <  
=
=
T
-
n (Input Ref)  
-
m
=
=
T + F + P - N - M  
= Keeps Nyquist(010101)  
level below EQ HF  
compression level.  
= Keeps Nyquist (010101) level above  
above EQ IRN (input referred noise)  
to meet BER and constrain RJ gen.  
Keeps Nyquist (010101) level sufficiently  
above DFE IRN (input referred noise)  
to meet BER and constrain RJ generation  
A = Farthest from Rx [dB] <  
B = Nearest to Rx [dB] >  
28.08  
26.08  
6.02 dB  
8.02 dB  
Over PVT <  
Over PVT >  
=
=
CH (Output Ref) - N - M  
Keeps Nyquist above  
DFE IRN to meet BER  
and constrain RJ gen.  
= n (output)  
=
- N  
Keeps EQ ORN (output ref noise)  
below DFE IRN (input ref noise),  
including channel loss on noise.  
If using "Typical" specs, add  
Margin for PVT Variation +/-  
2 dB  
Figure 7. EQ Placement Calculator  
MaximꢀIntegratedꢀꢀ  
17  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Write Transaction  
Read Transaction  
Inꢀ aꢀ writeꢀ transaction,ꢀ theꢀ addressꢀ byteꢀ isꢀ successfullyꢀ  
acknowledged by the slave, and the type bit is set low.  
After the first acknowledge, the master sends a single  
data byte. All signaling is controlled by the master except  
for the SDA line during the acknowledge bits. During  
the acknowledge cycle the direction of the SDA line is  
reversedꢀandꢀtheꢀslaveꢀpullsꢀSDAꢀlowꢀtoꢀreturnꢀaꢀ‘0’ꢀ(ACK)ꢀ  
to the master.  
Inꢀaꢀreadꢀtransaction,ꢀtheꢀslaveꢀaddressꢀbyteꢀisꢀsuccess-  
fully acknowledged by the slave, and the type bit is set  
high.ꢀAfterꢀtheꢀACKꢀtheꢀslaveꢀreturnsꢀaꢀbyteꢀfromꢀtheꢀloca-  
tion identified by the internal memory pointer. This pointer  
is then auto-incremented. The slave then releases SDA  
soꢀthatꢀtheꢀmasterꢀcanꢀACKꢀtheꢀbyte.ꢀIfꢀtheꢀslaveꢀreceivesꢀ  
anꢀACKꢀthenꢀitꢀwillꢀsendꢀanotherꢀbyte.ꢀTheꢀmasterꢀidenti-  
fiesthelastbytebysendingaNACKtotheslave.Theꢀ  
masterꢀthenꢀissuesꢀaꢀSTOPꢀtoꢀterminateꢀtheꢀtransaction.  
The MAX24101 interprets the first data byte as a register  
address. This is used to set an internal memory pointer.  
Subsequent data bytes within the same transaction will  
then be written to the memory location addressed by the  
pointer. The pointer is auto-incremented after each byte.  
There is no limit to the number of bytes which may be  
written in a single burst to the internal registers of the  
MAX24101.  
Thus, to implement a random access read transaction,  
a write must first be issued by the master containing a  
slave address byte and a single data byte (the register  
address). This sets up the memory pointer. A read is then  
sent to retrieve data from this address.  
STOP  
START  
ADDRESS  
R/W ACK  
MSB  
7
LSB  
0
SDA  
6
5
4
3
2
1
SCL  
Figure 8. Device Addressing  
MaximꢀIntegratedꢀꢀ  
18  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
2
2
ThereꢀisꢀlittleꢀdifferenceꢀbetweenꢀaꢀnormalꢀI C serial bus  
I C Access Destination  
and the MAX24101 solution except that there is a new  
signal which controls the programming of the device  
addresses. This signal is daisy-chained through all of the  
The MAX24101 does not provide any security level on the  
I C serial bus. Accesses to unimplemented registers in  
the device are discarded in the case of a write, and return  
an unpredictable value in the case of a read. During burst  
mode accesses, destination addresses are tested on a  
byte-by-byte basis.  
2
2
devicesontheI C bus via the PGM_IN and the PGM_  
OUT pins. The programming of device addresses is done  
as a single parallel write to all devices 1 to N.  
2
TheI C bus is the usual “SCL” and bidirectional “SDA”  
Slave Address Configuration  
with the pullup. The “program_reset” signal is a single bit  
passed through each device as a flying enable. The input  
pin for this signal is PGM_IN and the corresponding output  
pin is PGM_OUT. The PGM_IN pin on the first MAX24101  
in the chain can be tied low or left unconnected because  
the PGM_IN pin has an internal pulldown resistor.  
2
Theꢀ slaveꢀ addressꢀ ofꢀ theꢀ MAX24101ꢀ I C can be set  
using an initialization procedure involving PGM_IN and  
2
PGM_OUT,ꢀinꢀconjunctionꢀwithꢀtheꢀstandardꢀI C signals.  
This procedure facilitates the assignment of a large num-  
ber of slave addresses, enabling several MAX24101s to  
2
becontrolledbyasingleI C serial bus and commands.  
2
AlltransactionsontheI C bus follow standard protocol,  
allowing simple firmware development.  
ACK  
ACK  
STOP  
START  
MSB  
7
LSB  
0
SDA  
7
6
5
4
3
2
1
1
W
SCL  
SDA  
DIRECTION  
TO SLAVE  
FROM SLAVE  
Figure 9. Write Transaction  
ACK  
START  
ACK  
NACK  
STOP  
SDA  
7
1
R
7
0
7
0
SCL  
SDA  
DIRECTION  
TO SLAVE  
TO SLAVE  
FROM SLAVE  
TO SLAVE  
FROM SLAVE  
Figure 10. Read Transaction  
MaximꢀIntegratedꢀꢀ  
19  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
2
address”+’0’)ꢀisꢀthenꢀassignedꢀbyꢀwritingꢀtoꢀpgm_registerꢀ  
(3Ch)ꢀ atꢀ I C address A2h. All devices accept the new  
address value (for example: 10h). Each device then starts  
to increment it on SCL edges while PGM_IN is high. The  
“program_reset” signal ripples down the chain, fixing the  
I C Address Configuration  
2
The new features of this interface compared to a conven-  
tionalꢀI C interface are:  
2
●ꢀ TheꢀdaisyꢀchainꢀPGM_IN and PGM_OUT pins  
2
2
●ꢀ Adevice_addressꢀ register(7bits[7:1]).Bit[0]inthisꢀ  
I Cꢀ addressꢀ suchꢀ thatꢀ deviceꢀ Nꢀ hasꢀ anꢀ I C address of  
(“address”+’0’)+2*N-1ꢀ(forꢀexample:ꢀdeviceꢀ1ꢀatꢀ(10hꢀandꢀ  
12h),ꢀdeviceꢀ2ꢀatꢀ(14hꢀandꢀ16h)ꢀandꢀdeviceꢀ3ꢀatꢀ(18hꢀandꢀ  
2
registerꢀisꢀusedꢀasꢀaꢀI C read/write bit  
●ꢀ Anꢀinternalꢀ“write_once”ꢀbit  
2
1Ah)).ꢀNoteꢀthatꢀeachꢀMAX24101ꢀtakesꢀtwoꢀI C address-  
Atꢀ power-up,ꢀ theꢀ “write_once”ꢀ bitꢀ willꢀ beꢀ setꢀ toꢀ ‘1’ꢀ andꢀ  
theꢀ deviceꢀ I C address will be set to its default value  
(A2h). All MAX24101 devices will respond to read and  
writes to this slave address until a write to register 3Ch is  
performed.TherequiredI C address of device 1 (“7 bit  
es with channels 1 to 4 being controlled by the lower  
address and channels 5 to 8 from the upper address.  
2
2
SDA  
HOST MCU  
SCL  
MAX24101  
#1  
MAX24101  
#2  
MAX24101  
#(N-1)  
MAX24101  
#N  
PGM_IN  
PGM_OUT  
PGM_IN  
PGM_OUT  
PGM_IN  
PGM_OUT  
PGM_IN  
PGM_OUT  
Figure 11. Slave Address Configuration  
MaximꢀIntegratedꢀꢀ  
20  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Startup Sequence  
Programming Tables  
Inthisexample,achainofMAX24101sareloadedwithꢀ  
theꢀrequiredꢀI C slave address.  
Table 6. EQ_PEAKING Bit Control  
2
1)ꢀ Powerꢀupꢀtheꢀdevices.  
EQx[3:0]  
1111  
EQ PEAKING GAIN  
UNITS  
2
19.0  
18.5  
18.0  
17.5  
17.0  
16.4  
15.8  
15.1  
14.4  
13.6  
12.7  
11.7  
10.6  
9.3  
2)ꢀ WriteI Csequence<A2h”ack3Ch”ackaddress”ꢀ  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
andꢀ‘0’ꢀack>.ꢀ  
3) The first device is now accessible at its given  
addressꢀ(“address”ꢀandꢀ‘0’ꢀforꢀtheꢀlowerꢀchannelsꢀandꢀ  
“address+1”ꢀandꢀ‘0’ꢀforꢀtheꢀupperꢀchannels).  
4) By accessing the first device, the SCL pin is tog-  
gled and hence the “program_reset” signal is propa-  
gated through the devices using the PGM_IN and  
PGM_OUT pins. For long chains, a number of access-  
es may be needed before all devices have an assigned  
address since each access results in 27 SCL transi-  
tions and hence 13 devices are allocated an address  
dB  
To reset the slave address requires a power cycle or  
setting the ENABLE pin low.  
7.8  
6.0  
Table 7. FLAT_GAIN Bit Control  
FGx[1:0]  
FLAT GAIN  
1.68  
UNITS  
11  
10  
01  
00  
0.14  
dB  
-1.36  
-2.87  
Table 8. OUTPUT_LEVEL Bit Control  
TXAx[1:0]  
OUTPUT LEVEL  
UNITS  
11  
10  
01  
00  
1000  
940  
700  
600  
mV  
P-P  
MaximꢀIntegratedꢀꢀ  
21  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Register Map  
Table 9. Register Configuration  
2
2
ADDRESS  
00h  
LOWER I C ADDRESS  
Reserved (read only)  
Channel 1  
UPPER I C ADDRESS  
Reserved (read only)  
Channel 5  
01h  
02h  
Channel 2  
Channelꢀ6  
03h  
Channel 3  
Channel 7  
04h  
Channel 4  
Channel 8  
05h  
Channelꢀ1–4ꢀControls  
Reserved  
Channelꢀ5–8ꢀControls  
Reserved  
06h  
07h  
Reserved  
Reserved  
08h  
Reserved  
Reserved  
2
2
3Ch  
I C address  
I C address  
2
The register map is split into two sections depending on the I C address used. In general the lower address  
2
controls the lower four channels and the upper I C address controls the upper four channels.  
2
Register 01h (Lower I C Address): Channel 1  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ1[3]  
EQ1[2]  
EQ1[1]  
EQ1[0]  
FG1[1]  
FG1[0]  
TXA1[1]  
TXA1[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ1[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ1.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG1[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ1.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA1[1:0]: Sets the output amplitude for channel 1. See Table 8 for values.  
2
Register 02h (Lower I C Address): Channel 2  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ2[3]  
EQ2[2]  
EQ2[1]  
EQ2[0]  
FG2[1]  
FG2[0]  
TXA2[1]  
TXA2[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ2[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ2.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG2[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ2.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA2[1:0]: Sets the output amplitude for channel 2. See Table 8 for values.  
MaximꢀIntegratedꢀꢀ  
22  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
2
Register 03h (Lower I C Address): Channel 3  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ3[3]  
EQ3[2]  
EQ3[1]  
EQ3[0]  
FG3[1]  
FG3[0]  
TXA3[1]  
TXA3[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ3[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ3.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG3[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ3.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA3[1:0]: Sets the output amplitude for channel 3. See Table 8 for values.  
2
Register 04h (Lower I C Address): Channel 4  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ4[3]  
EQ4[2]  
EQ4[1]  
EQ4[0]  
FG4[1]  
FG4[0]  
TXA4[1]  
TXA4[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ4[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ3.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG4[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ3.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA4[1:0]: Sets the output amplitude for channel 3. See Table 8 for values.  
2
Register 05h (Lower I C Address): Channel 1–4 Controls  
BIT  
NAME  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
REGCONT14  
CH1OFF  
CH2OFF  
CH3OFF  
CH4OFF  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
REGCONT14:ꢀSelectsꢀchannelꢀsettings,ꢀforꢀchannelsꢀ1–4,ꢀfromꢀpinꢀcontrolꢀorꢀI2C accessible registers. 0 = pin control (equalizer  
2
peaking,ꢀflatꢀgainꢀandꢀoutputꢀamplitude),ꢀ1ꢀ=ꢀI C accessible registers.  
CH1OFF:ꢀDisablesꢀchannelꢀ1.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH2OFF:ꢀDisablesꢀchannelꢀ2.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH3OFF:ꢀDisablesꢀchannelꢀ3.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH4OFF:ꢀDisablesꢀchannelꢀ4.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
2
Register 01h (Upper I C Address): Channel 5  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ5[3]  
EQ5[2]  
EQ5[1]  
EQ5[0]  
FG5[1]  
FG5[0]  
TXA5[1]  
TXA5[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ5[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ5.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG5[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ5.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA5[1:0]: Sets the output amplitude for channel 5. See Table 8 for values.  
MaximꢀIntegratedꢀꢀ  
23  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
2
Register 02h (Upper I C Address): Channel 6  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ6[3]  
EQ6[2]  
EQ6[1]  
EQ6[0]  
FG6[1]  
FG6[0]  
TXA6[1]  
TXA6[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ6[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ6.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG6[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ6.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA6[1:0]:ꢀSetsꢀtheꢀoutputꢀamplitudeꢀforꢀchannelꢀ6.ꢀSeeꢀTableꢀ8ꢀforꢀvalues.  
2
Register 03h (Upper I C Address): Channel 7  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ7[3]  
EQ7[2]  
EQ7[1]  
EQ7[0]  
FG7[1]  
FG7[0]  
TXA7[1]  
TXA7[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ7[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ7.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG7[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ7.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA7[1:0]: Sets the output amplitude for channel 7. See Table 8 for values.  
2
Register 04h (Upper I C Address): Channel 8  
BIT  
NAME  
7
6
5
4
3
2
1
0
EQ8[3]  
EQ8[2]  
EQ8[1]  
EQ8[0]  
FG8[1]  
FG8[0]  
TXA8[1]  
TXA8[0]  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EQ8[3:0]:ꢀSetsꢀtheꢀequalizerꢀpeakingꢀforꢀchannelꢀ8.ꢀSeeꢀTableꢀ6ꢀforꢀvalues.  
FG8[1:0]:ꢀSetsꢀtheꢀflatꢀgainꢀforꢀchannelꢀ8.ꢀSeeꢀTableꢀ7ꢀforꢀvalues.  
TXA8[1:0]: Sets the output amplitude for channel 8. See Table 8 for values.  
2
Register 05h (Upper I C Address): Channel 5-8 Controls  
BIT  
NAME  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
REGCONT58  
CH5OFF  
CH6OFF  
CH7OFF  
CH8OFF  
DEFAULT  
VALUE  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
REGCONT58:ꢀSelectsꢀchannelꢀsettings,ꢀforꢀchannelsꢀ5-8,ꢀfromꢀpinꢀcontrolꢀorꢀI2C accessible registers. 0 = pin control (equalizer  
2
peaking,ꢀflatꢀgainꢀandꢀoutputꢀamplitude),ꢀ1ꢀ=ꢀI C accessible registers.  
CH5OFF:ꢀDisablesꢀchannelꢀ5.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH6OFF:ꢀDisablesꢀchannelꢀ6.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH7OFF:ꢀDisablesꢀchannelꢀ7.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
CH8OFF:ꢀDisablesꢀchannelꢀ8.ꢀ0ꢀ=ꢀenabled,ꢀ1ꢀ=ꢀdisabled.  
MaximꢀIntegratedꢀꢀ  
24  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Exposed Pad Package  
Layout Considerations  
The exposed pad of the MAX24101 package incorpo-  
rates features that provide a very low thermal resistance  
pathforheatremovalfromtheIC.ꢀTheexposedpadonꢀ  
the MAX24101 must be soldered to the circuit board  
for proper thermal performance and correct electrical  
grounding. For more information on exposed-pad pack-  
ages, refer to Maxim Applicationꢀ Note862:HFAN-08.1:ꢀ  
Thermal Considerations of QFN and Other Exposed-  
Paddle Packages.  
Circuit board layout and design can significantly affect the  
performance of the MAX24101. Use good high-frequency  
design techniques, including minimizing ground induc-  
tance and using controlled-impedance transmission lines  
onꢀtheꢀdataꢀsignals.ꢀPower-supplyꢀdecouplingꢀshouldꢀalsoꢀ  
beꢀ placedꢀ asꢀ closeꢀ toꢀ theꢀ V  
pins as possible. There  
CC  
should be sufficient supply filtering. Always connect all  
V
s to a power plane. Take care to isolate the input from  
CC  
the output signals to reduce feed through.  
Interface Schematics  
MAX24101  
MAX24101  
V
CC  
V
CC  
50  
50Ω  
V
- 0.8V  
CC  
TXxP  
TXxN  
50  
50Ω  
RXxP  
RXxN  
Figure 12. CML Equivalent Input Structure  
Figure 13. CML Equivalent Output Structure  
MaximꢀIntegratedꢀꢀ  
25  
www.maximintegrated.com  
MAX24101  
15Gbps Octal Linear Equalizer  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only.ꢀPackageꢀdrawingsꢀmayꢀshowꢀaꢀdifferentꢀsuffixꢀcharacter,ꢀbutꢀ  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
-40°Cꢀtoꢀ+85°C  
PIN-PACKAGE  
MAX24101ELU+  
60ꢀFCLGA-EP*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Chip Information  
PROCESS:ꢀSiGeꢀBiCMOS  
60ꢀFCLGA-EP  
L6043FM+1  
21-0650  
90-0407  
MaximꢀIntegratedꢀꢀ  
26  
www.maximintegrated.com  
 
MAX24101  
15Gbps Octal Linear Equalizer  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
11/13  
Initialꢀrelease  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2013 MaximꢀIntegratedꢀProducts,ꢀInc.ꢀꢀ  
27  

相关型号:

MAX24104ELT+

Line Equalizer, BICMOS, PBGA34, 4 X 6.50 MM, ROHS COMPLIANT, FCLGA-34
MAXIM

MAX2410E/D

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2410EEI

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2410EEI+T

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2410EVKIT

Evaluation Kit for MAX2410
MAXIM

MAX2410_1

Evaluation Kit
MAXIM

MAX2411

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411A

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AE/D

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AEEI

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AEEI+

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2411AEEI+T

Up/Down Converter, 1900MHz Max,
MAXIM