MAX2410EEI [MAXIM]

Low-Cost RF Up/Downconverter with LNA and PA Driver; 低成本,RF上/下变频器,带有LNA和PA驱动器
MAX2410EEI
型号: MAX2410EEI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost RF Up/Downconverter with LNA and PA Driver
低成本,RF上/下变频器,带有LNA和PA驱动器

驱动器 射频和微波 射频上变频器 射频下变频器 微波上变频器 微波下变频器
文件: 总12页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1320; Rev 1; 3/98  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Low-Cost Silicon Bipolar Design  
The MAX2410 performs the RF front-end transmit/receive  
function in time-division-duplex (TDD) communication  
systems. It operates over a wide frequency range and  
is op timize d for RF fre q ue nc ie s a round 1.9GHz.  
Applications include most popular cordless and PCS  
standards.  
Integrated Upconvert/Downconvert Function  
Operates from Single +2.7V to +5.5V Supply  
3.2dB Combined Receiver Noise Figure:  
2.4dB (LNA)  
9.8dB (Mixer)  
The MAX2410 contains a low-noise amplifier (LNA), a  
downconverter mixer, a local-oscillator (LO) buffer, an  
upconverter mixer, and a variable-gain power-amplifier  
(PA) driver in a low-cost, plastic surface-mount package.  
The LNA ha s a 2.4d B (typ ic a l) nois e fig ure a nd a  
-10dBm input third-order intercept point (IP3). The down-  
converter mixer has a low 9.8dB noise figure and a  
3.3dBm IP3. Image and LO filtering are implemented off-  
chip for maximum flexibility. The PA driver has 15dB of  
gain, which can be reduced over a 35dB (typical) range.  
Power consumption is only 60mW in receive mode or  
90mW in transmit mode and drops to less than 0.3µW in  
shutdown mode.  
Flexible Power-Amplifier Driver:  
18dBm Output Third-Order Intercept (OIP3)  
35dB Gain Control Range  
LO Buffer for Low LO Drive Level  
Low Power Consumption:  
60mW Receive  
90mW Full-Power Transmit  
0.3µW Shutdown Mode  
Flexible Power-Down Modes Compatible with  
MAX2510/MAX2511 IF Transceivers  
A similar part, the MAX2411A, features the same func-  
tiona lity a s the MAX2410 b ut offe rs a d iffe re ntia l  
bidirectional (transmit and receive) IF port. This allows  
the use of a single IF filter for transmit (TX) and receive  
(RX). For applications requiring a receive function only,  
consult the data sheet for the MAX2406, a low-cost  
downconverter with low-noise amplifier.  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 QSOP  
MAX2410EEI  
MAX2410E/D  
Dice*  
*Dice are specified at T = +25°C, DC parameters only.  
A
________________________Ap p lic a t io n s  
___________________P in Co n fig u ra t io n  
PWT1900  
DECT  
TOP VIEW  
DCS1800/PCS1900  
PHS/PACS  
ISM-Band Transceiver  
Iridium Handsets  
GND  
LNAIN  
GND  
1
2
28 GND  
27 LNAOUT  
26 GND  
3
GND  
4
25 GND  
Fu n c t io n a l Dia g ra m  
V
CC  
5
24 RXMXIN  
23 GND  
MAX2410  
RXEN  
LO  
6
LNAOUT  
RXMXIN  
7
22 IFIN  
LO  
8
21 IFOUT  
20 GND  
LNA  
IFOUT  
LNAIN  
RX MIXER  
TXEN  
9
V
10  
19 TXMXOUT  
18 GND  
LO  
LO  
CC  
RXEN  
TXEN  
POWER  
MANAGEMENT  
GC 11  
GND 12  
MAX2410  
PA DRIVER  
17 GND  
TX MIXER  
PADROUT  
IFIN  
PADROUT 13  
GND 14  
16 PADRIN  
15 GND  
GC PADRIN  
TXMXOUT  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to GND..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
LNAIN Input Power.........................................................+15dBm  
LO, LO Input Power........................................................+10dBm  
PADRIN Input Power ......................................................+10dBm  
RXMXIN Input Power......................................................+10dBm  
IFIN Input Power.............................................................+10dBm  
QSOP (derate 11mW/°C above +70°C) .......................909mW  
Junction Temperature ......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
RXEN, TXEN, GC Voltage ...........................-0.3V to (V + 0.3V)  
CC  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX2410  
DC ELECTRICAL CHARACTERISTICS  
(V = 2.7V to 5.5V, V = 3.0V, RXEN = TXEN = 0.6V, IFOUT and PADROUT pulled up to V with 50resistors, TXMXOUT pulled  
CC  
GC  
CC  
up to V with 125resistor, LNAOUT pulled up to V with 100resistor, all other RF and IF inputs open, T = -40°C to +85°C,  
CC  
CC  
A
unless otherwise noted. Typical values are at T = +25°C and V = 3.0V.)  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
5.5  
Digital Input Voltage High  
RXEN, TXEN pins  
RXEN, TXEN pins  
RXEN = 2V  
2.0  
V
Digital Input Voltage Low  
0.6  
1
V
RXEN Input Bias Current (Note 1)  
TXEN Input Bias Current (Note 1)  
GC Input Bias Current  
0.1  
0.1  
35  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
TXEN = 2V  
1
GC = 3V, TXEN = 2V  
RXEN = 2V  
46  
Supply Current, Receive Mode  
Supply Current, Transmit Mode  
Supply Current, Standby Mode  
Supply Current, Shutdown Mode  
20  
29.5  
44.5  
520  
10  
TXEN = 2V  
30  
RXEN = 2V, TXEN = 2V  
160  
0.1  
V
CC  
= 3V  
AC ELECTRICAL CHARACTERISTICS  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f  
= 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
IFIN  
environment. T = +25°C, unless otherwise noted.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOW-NOISE AMPLIFIER (RXEN = High)  
T
= +25°C  
14.2  
12.6  
16.2  
17.4  
19.1  
A
Gain (Note 1)  
dB  
T
A
= T to T  
MIN MAX  
Noise Figure  
2.4  
-10  
-5  
dB  
Input IP3  
(Note 2)  
dBm  
dBm  
dBm  
Output 1dB Compression  
LO to LNAIN Leakage  
RECEIVE MIXER (RXEN = High)  
RXEN = high or low  
-49  
T
= +25°C  
6.6  
5.4  
8.3  
9.8  
A
Conversion Gain (Note 1)  
dB  
T
A
= T  
to T  
MAX  
10.8  
MIN  
Noise Figure  
Single sideband  
(Note 3)  
9.8  
3.3  
-8  
dB  
Input IP3  
dBm  
dBm  
MHz  
dBm  
Input 1dB Compression  
IFOUT Frequency  
Minimum LO Drive Level  
(Notes 1, 4)  
(Note 5)  
450  
-17  
2
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f  
= 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
IFIN  
environment. T = +25°C, unless otherwise noted.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TRANSMIT MIXER (TXEN = high)  
T
= +25°C  
8.6  
7.3  
10  
11.1  
11.8  
A
Conversion Gain (Note 1)  
dB  
T
A
= T to T  
MIN MAX  
Output IP3  
(Note 6)  
-0.3  
-11.4  
-52  
dBm  
dBm  
dBm  
dB  
Output 1dB Compression Point  
LO Leakage  
Noise Figure  
Single sideband  
(Notes 1, 4)  
8.2  
IFIN Frequency  
450  
MHz  
dBc  
dBc  
dBc  
f
= 2LO-2IF = 2.2GHz  
-44  
-74  
-90  
OUT  
Intermod Spurious Response  
(Note 7)  
f
= 2LO-3IF = 1.8GHz  
= 3LO-6IF = 2.1GHz  
OUT  
f
OUT  
POWER AMPLIFIER DRIVER (TXEN = high)  
T
= +25°C  
13  
15  
16.4  
17  
A
Gain (Note 1)  
dB  
T
A
= T  
to T  
MAX  
12.3  
MIN  
Output IP3  
(Note 3)  
18  
6.3  
35  
12  
dBm  
dBm  
dB  
Output 1dB Compression Point  
Gain-Control Range  
Gain-Control Sensitivity  
(Note 8)  
dB/V  
LOCAL OSCILLATOR INPUTS (RXEN = TXEN = high)  
Receive (TXEN = Low)  
Transmit (RXEN = Low)  
1.10  
1.02  
Input Relative VSWR Normalized to  
Standby-Mode Impedance  
POWER MANAGEMENT (RXEN = TXEN = low)  
Receiver Turn-On Time  
(Notes 1, 9)  
(Notes 1, 10)  
0.5  
0.3  
2.5  
2.5  
µs  
µs  
Transmitter Turn-On Time  
Note 1: Guaranteed by design and characterization.  
Note 2: Two tones at 1.9GHz and 1.901GHz at -32dBm per tone  
Note 3: Two tones at 1.9GHz and 1.901GHz at -22dBm per tone  
Note 4: Mixer operation guaranteed to this frequency. For optimum gain, adjust output match. See the Typical Operating  
Characteristics for graphs of IFIN and IFOUT Impedance vs. IF Frequency.  
Note 5: At this LO drive level the mixer conversion gain is typically 1dB lower than with -10dBm LO drive.  
Note 6: Two tones at 400MHz and 401MHz at -32dBm per tone.  
Note 7: Transmit mixer output at -17dBm.  
Note 8: Calculated from measurements taken at V = 1.0V and V = 1.5V.  
GC  
GC  
Note 9: Time from RXEN = low to RXEN = high transition until the combined receive gain is within 1dB of its final value. Measured  
with 47pF blocking capacitors on LNAIN and LNAOUT.  
Note 10: Time from TXEN = low to TXEN = high transition until the combined transmit gain is within 1dB of its final value. Measured  
with 47pF blocking capacitors on PADRIN and PADROUT.  
_______________________________________________________________________________________  
3
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f = 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
IFIN  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
environment. T = +25°C, unless otherwise noted. All impedance measurements made directly to pin (no matching network).)  
A
TRANSMIT-MODE SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
RECEIVE-MODE SUPPLY CURRENT  
vs. TEMPERATURE  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
38  
36  
34  
32  
30  
28  
26  
24  
23  
22  
21  
20  
19  
18  
17  
TXEN = V  
CC  
RXEN = V  
CC  
RXEN = TXEN = GND  
MAX2410  
V
CC  
= 5.5V  
V
= 5.5V  
CC  
V
CC  
= 4.0V  
V
CC  
= 4.0V  
V
= 5.5V  
CC  
V
= 4.0V  
CC  
V
CC  
= 3.0V  
35  
V
CC  
= 3.0V  
V
CC  
= 3.0V  
V
CC  
= 2.7V  
V
CC  
= 2.7V  
10  
V
CC  
= 2.7V  
-40  
-15  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LNA OUTPUT IMPEDANCE  
vs. FREQUENCY  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
LNA INPUT IMPEDANCE  
vs. FREQUENCY  
MAX2410-06  
MAX2410-05  
120  
100  
80  
60  
40  
20  
0
40  
250  
200  
150  
100  
50  
0
500  
400  
300  
200  
100  
0
RXEN = TXEN = 2.0V  
RXEN = V  
CC  
IMAGINARY  
RXEN = V  
0
-25  
-50  
-75  
-100  
-125  
V
CC  
= 5.5V  
CC  
IMAGINARY  
-40  
-80  
-120  
-160  
-200  
V
CC  
= 4.0V  
REAL  
REAL  
V
CC  
= 3.0V  
35  
V
CC  
= 2.7V  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
60  
85  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
TEMPERATURE (°C)  
FREQUENCY (GHz)  
LNA GAIN vs. TEMPERATURE  
LNA INPUT IP3 vs. TEMPERATURE  
LNA GAIN vs. FREQUENCY  
20  
19  
18  
17  
16  
15  
14  
13  
30  
25  
20  
15  
10  
5
-5  
-6  
1pF SHUNT CAPACITOR AT LNA INPUT  
USING EV KIT MATCHING CIRCUIT (OPTIMIZED  
FOR 1.9GHz)  
RXEN = V  
CC  
RXEN = V  
CC  
V = 5.5V  
CC  
-7  
V
CC  
= 3.0V  
V
CC  
= 4.0V  
RXEN = V  
CC  
-8  
V
CC  
= 2.7V  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
V
= 4.0V  
CC  
V
= 2.7V  
CC  
V
CC  
= 5.5V  
V
CC  
= 3.0V  
0
-40  
-15  
10  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (GHz)  
4
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f = 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
IFIN  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
environment. T = +25°C, unless otherwise noted. All impedance measurements made directly to pin (no matching network).)  
A
PA DRIVER INPUT IMPEDANCE  
vs. FREQUENCY  
LNA OUTPUT 1dB COMPRESSION POINT  
vs. SUPPLY VOLTAGE  
LNA NOISE FIGURE vs. FREQUENCY  
MAX2410-12  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
160  
140  
120  
100  
80  
70  
0
-1  
-2  
-3  
-4  
-5  
-6  
TXEN = V  
RXEN = V  
CC  
CC  
RXEN = V  
CC  
30  
IMAGINARY  
-10  
-50  
-90  
-130  
-170  
-210  
-250  
60  
40  
REAL  
20  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
480  
860  
1240  
1620  
2000  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
PA DRIVER GAIN AND OUTPUT IP3  
vs. GAIN-CONTROL VOLTAGE  
PA DRIVER OUTPUT IMPEDANCE  
vs. FREQUENCY  
PA DRIVER GAIN vs. FREQUENCY  
MAX2410-13  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
200  
175  
150  
125  
100  
75  
50  
USING EV KIT MATCHING NETWORK  
(OPTIMIZED FOR 1.9GHz)  
TXEN = V  
CC  
TXEN = V  
CC  
0
IMAGINARY  
-50  
TXEN = V  
CC  
IP3  
-100  
-150  
-200  
-250  
-300  
-350  
0
GAIN  
-5  
-10  
-15  
-20  
-25  
-30  
50  
REAL  
25  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
GAIN-CONTROL VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
PA DRIVER OUTPUT IP3  
vs. TEMPERATURE  
PA DRIVER OUTPUT 1dB COMPRESSION  
POINT vs. SUPPLY VOLTAGE  
PA DRIVER GAIN vs. TEMPERATURE  
21  
20  
19  
18  
17  
16  
15  
14  
8
6
18  
TXEN = V  
CC  
TXEN = V  
CC  
17  
16  
15  
14  
13  
12  
V
= 2.15V  
GC  
V
= 5.5V  
CC  
V
= 5.5V  
CC  
4
TXEN = V  
V
= 4.0V  
CC  
CC  
V
= 4.0V  
CC  
2
V
= 3.0V  
CC  
V
CC  
= 2.7V  
0
V
CC  
= 3.0V  
V
= 2.7V  
CC  
-2  
-4  
V
GC  
= 1.0V  
-40 -20  
0
20  
40  
60  
80 100  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f = 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
IFIN  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
environment. T = +25°C, unless otherwise noted. All impedance measurements made directly to pin (no matching network).)  
A
RECEIVE MIXER INPUT IMPEDANCE  
PA DRIVER NOISE FIGURE  
vs. GAIN-CONTROL VOLTAGE  
PA DRIVER NOISE FIGURE  
vs. FREQUENCY  
vs. FREQUENCY  
MAX2410-21  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
RXEN = V  
CC  
TXEN = V  
CC  
-20  
TXEN = V  
CC  
MAX2410  
-40  
IMAGINARY  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
REAL  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
GAIN-CONTROL VOLTAGE (V)  
RECEIVE MIXER CONVERSION GAIN  
vs. TEMPERATURE  
IF OUTPUT IMPEDANCE  
RECEIVE MIXER INPUT IP3  
vs. TEMPERATURE  
vs. FREQUENCY  
MAX2410-21  
10  
9
7
6
5
4
3
2
1
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
RXEN = V  
CC  
RXEN = V  
CC  
RXEN = V  
CC  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
V
= 5.5V  
CC  
IMAGINARY  
V
CC  
= 5.5V  
V
= 4.0V  
CC  
8
V
= 2.7V  
CC  
7
V
= 3.0V  
V
CC  
= 2.7V  
CC  
6
REAL  
5
-40  
-15  
10  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80 100  
0
100 200 300 400 500 600 700  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
RECEIVE MIXER CONVERSION GAIN AND  
NOISE FIGURE vs. LO POWER  
RECEIVE MIXER CONVERSION GAIN  
vs. RF FREQUENCY  
TRANSMIT MIXER OUTPUT IMPEDANCE  
vs. FREQUENCY  
MAX2410-27  
16  
14  
12  
10  
8
13  
12  
11  
10  
9
300  
250  
200  
150  
100  
50  
0
RXEN = V  
CC  
TXEN = V  
CC  
-25  
NARROWBAND  
MATCH AT RXMXIN,  
EV KIT MATCH AT IFOUT  
NOISE FIGURE  
IMAGINARY  
REAL  
-50  
-75  
EV KIT MATCHING  
NETWORK AT RXMXIN  
AND IFOUT  
6
-100  
-125  
-150  
-175  
-200  
4
8
GAIN  
2
7
0
RXEN = V  
CC  
0
6
-50  
-100  
-2  
-4  
f
= 400MHz  
1.0  
IF  
5
0.5  
1.5  
2.0  
2.5  
3.0  
-18 -16 -14 -12 -10 -8 -6 -4 -2  
LO POWER (dBm)  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF FREQUENCY (GHz)  
FREQUENCY (GHz)  
6
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2410 EV kit, V  
= 3.0V, V  
= 2.15V, RXEN = TXEN = low, f = 1.5GHz, P  
= -10dBm, f  
= f  
= f  
=
CC  
GC  
LO  
LO  
LNAIN  
PADRIN  
RXMXIN  
1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz, P  
= -32dBm. All measurements performed in 50Ω  
IFIN  
LNAIN  
PADRIN  
RXMXIN  
IFIN  
environment. T = +25°C, unless otherwise noted. All impedance measurements made directly to pin (no matching network).)  
A
TRANSMIT MIXER CONVERSION GAIN  
vs. RF FREQUENCY  
IF INPUT IMPEDANCE  
vs. FREQUENCY  
TRANSMIT MIXER CONVERSION GAIN  
vs. TEMPERATURE  
MAX2410-28 0  
14  
13  
12  
11  
10  
9
12  
10  
8
500  
400  
300  
200  
100  
0
900MHz MATCH  
3GHz MATCH  
TXEN = V  
CC  
TXEN = V  
CC  
-300  
IMAGINARY  
V
CC  
= 5.5V  
-600  
V = 4.0V  
CC  
6
-900  
EV KIT MATCHING NETWORK  
V
CC  
= 2.7V  
4
TXEN = V  
CC  
V
= 3.0V  
60  
CC  
8
-1200  
2
REAL  
7
0
-1500  
6
0.5  
1.0  
1.5.  
2.0  
2.5  
3.0  
3.5  
0
100 200 300 400 500 600 700  
FREQUENCY (GHz)  
-40  
-15  
10  
35  
85  
RF FREQUENCY (GHz)  
TEMPERATURE (°C)  
TRANSMIT MIXER OUTPUT IP3  
vs. TEMPERATURE  
TRANSMIT MIXER GAIN AND NOISE FIGURE  
vs. LO POWER  
LO PORT RETURN LOSS vs. FREQUENCY  
0
5
1.0  
0.5  
0
11  
TXEN = V  
CC  
GAIN  
RXEN = TXEN = V  
CC  
10  
9
10  
15  
20  
25  
30  
35  
40  
V
CC  
= 5.5V  
TXEN = V  
CC  
V
= 4.0V  
CC  
-0.5  
8
NOISE FIGURE  
-1.0  
-1.5  
-2.0  
V
= 3.0V  
CC  
V
CC  
= 2.7V  
7
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
-18 -16 -14 -12 -10 -8 -6 -4 -2  
LO POWER (dBm)  
0
FREQUENCY (GHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1, 3, 4, 12,  
14, 18, 20,  
23, 28  
GND  
Ground. Connect to PC board ground plane with minimal inductance.  
RF Input to the LNA. AC couple to this pin. At 1.9GHz, LNAIN can be easily matched to 50with one  
external shunt 1pF capacitor.  
2
LNAIN  
MAX2410  
Supply Voltage (2.7V to 5.5V). Bypass V to GND at each pin with a 47pF capacitor as close to each  
CC  
pin as possible.  
5, 10  
V
CC  
Logic-Level Enable for Receiver Circuitry. A logic high turns on the receiver. When TXEN and RXEN are  
both at a logic high, the part is placed in standby mode, with a supply current of 160µA (typical). If  
TXEN and RXEN are both at a logic low, the part is set to shutdown mode, with a supply current of  
0.1µA (typical).  
6
RXEN  
7
8
LO  
50Local-Oscillator (LO) Input Port. AC couple to this pin.  
50Inverting Local-Oscillator Input Port. For single-ended operation connect LO directly to GND. If a  
differential LO signal is available, AC couple the inverted LO signal to this pin.  
LO  
Logic-Level Enable for Transmitter Circuitry. A logic high turns on the transmitter. When TXEN and  
RXEN are both at a logic high, the part is placed in standby mode, with 160µA (typical) supply current.  
If TXEN and RXEN are both at a logic low, the part is set to shutdown mode, with 0.1µA (typical) supply  
current.  
9
TXEN  
GC  
Gain-Control Input for Power-Amplifier Driver. By applying an analog control voltage between 0V and  
11  
2.15V, the gain of the PA driver can be adjusted over a 35dB range. Connect to V for maximum gain.  
CC  
Power-Amplifier Driver Output. AC couple to this pin. Use external shunt inductor to V to match this pin  
CC  
13  
15, 17  
16  
PADROUT to 50. This also provides DC bias. See the Typical Operating Characteristics for a plot of PADROUT  
Impedance vs. Frequency.  
GND  
Power-Amplifier Driver Input Ground. Connect to PC board ground plane with minimal inductance.  
RF Input to Variable-Gain Power-Amplifier Driver. AC couple to this pin. Internally matched to 50. This  
input typically provides a 2:1 VSWR at 1.9GHz. See the Typical Operating Characteristics for a plot of  
PADRIN Impedance vs. Frequency.  
PADRIN  
RF Output of Transmit Mixer (Upconverter). AC couple to this pin. Use an external shunt inductor to  
19  
21  
TXMXOUT  
IFOUT  
V
as part of a matching network to 50. This also provides DC bias. See the Typical Operating  
CC  
Characteristics for a plot of TXMXOUT Impedance vs. Frequency.  
IF Output of Receive Mixer (Downconverter). AC couple to this pin. This output is an open collector and  
should be pulled up to V with an inductor. This inductor can be part of the matching network to the  
CC  
desired IF impedance. Alternatively, a resistor can be placed in parallel to this inductor to set a termi-  
nating impedance. See the Typical Operating Circuit for more information.  
IF Input of Transmit Mixer (Upconverter). AC couple to this pin. IFIN presents a high input impedance  
and typically requires a matching network. See the Typical Operating Characteristics for a plot of IFIN  
Impedance vs. Frequency.  
22  
24  
IFIN  
RF Input to Receive Mixer (Downconverter). AC couple to this pin. This input typically requires a matching  
network for connecting to an external filter. See the Typical Operating Characteristics for a plot of RXMXIN  
Impedance vs. Frequency.  
RXMXIN  
25  
26  
GND  
GND  
Receive Mixer Input Ground. Connect to PC board ground plane with minimal inductance.  
LNA Output Ground. Connect to PC board ground plane with minimal inductance.  
LNA Output. AC couple to this pin. This output typically provides a VSWR of better than 2:1 at frequen-  
cies from 1.7GHz to 3GHz with no external matching components. At other frequencies, a matching  
network may be required to match this pin to an external filter. Consult the Typical Operating  
Characteristics for a plot of LNA Output Impedance vs. Frequency.  
27  
LNAOUT  
8
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
Typ ic a l Op e ra t in g Circ u it  
1
2
3
28  
GND  
GND  
LNAOUT  
GND  
220pF  
220pF  
27  
26  
25  
LNA  
OUTPUT  
LNA  
INPUT  
LNAIN  
GND  
1pF  
4
5
GND  
GND  
V
CC  
220pF  
3.9nH  
82nH  
RX  
MIXER  
RFINPUT  
24  
23  
V
CC  
RXMXIN  
GND  
MAX2410  
47pF  
1000pF  
220pF  
TX  
MIXER  
IFINPUT  
22  
7
8
LO  
INPUT  
IFIN  
LO  
LO  
V
CC  
1000pF  
68nH  
68nH  
R
OPT  
V
CC  
1000pF  
50RX  
MIXER  
IFOUTPUT  
10  
21  
20  
IFOUT  
V
CC  
47pF  
GND  
GND  
GND  
V
CC  
V
CC  
18  
17  
1000pF  
1000pF  
18nH  
5.6nH  
220pF  
220pF  
3.9nH  
PA  
DRIVER  
OUTPUT  
TX  
MIXER  
RFOUTPUT  
13  
19  
PADROUT  
TXMXOUT  
220pF  
PA  
DRIVER  
INPUT  
12  
14  
16  
15  
GND  
GND  
PADRIN  
GND  
TXEN  
RXEN  
6
GC  
11  
9
Lo w -No is e Am p lifie r (LNA)  
_______________De t a ile d De s c rip t io n  
The LNA is a wideband, single-ended cascode amplifi-  
er that can be used over a wide range of frequencies  
(re fe r to the LNA Ga in vs . Fre q ue nc y g ra p h in the  
Typical Operating Characteristics). Its port impedances  
are optimized for operation around 1.9GHz, requiring  
only a 1pF shunt capacitor at the LNA input for a VSWR  
of better than 2:1 and a noise figure of 2.4dB. As with  
every LNA, the input match can be traded off for better  
noise figure.  
The MAX2410 consists of five major components: a  
transmit mixer, a variable-gain power-amplifier (PA)  
driver, a low-noise amplifier (LNA), a receive mixer, and  
power-management section.  
The following s e c tions d e s c rib e e a c h b loc k in the  
MAX2410 Functional Diagram.  
_______________________________________________________________________________________  
9
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
RF Output  
P A Drive r  
The transmit mixer output appears on the TXMXOUT  
pin. It is an open-collector output that requires an exter-  
The PA d rive r typ ic a lly ha s 15d B of g a in, whic h is  
adjustable over a 35dB range via the GC pin. At full  
g a in, the PA d rive r ha s a nois e fig ure of 3.5d B a t  
1.9GHz.  
nal pull-up inductor to V  
for DC biasing, which can  
CC  
be part of an impedance-matching network. Consult  
the Typ ic a l Op e ra ting Cha ra c te ris tic s for a p lot of  
TXMXOUT Impedance vs Frequency.  
For input and output matching information, refer to the  
Typical Operating Characteristics for plots of PA Driver  
Input and Output Impedance vs. Frequency.  
IF Input  
The IFIN pin is a self-biasing input that must be AC-  
coupled to the IF source. Refer to the Typical Operating  
Characteristics for plots of Input and Output Impedance  
vs. Frequency.  
MAX2410  
Re c e ive Mix e r  
The receive mixer is a wideband, double-balanced  
design with excellent noise figure and linearity. The  
inputs to the mixer are the RF signal at the RXMXIN pin  
and the LO inputs at LO and LO. The downconverted  
output signal appears at the IFOUT port. The conver-  
sion gain of the receive mixer is typically 8.3dB with a  
noise figure of 9.8dB.  
Local-Oscillator Inputs  
The LO and LO pins are terminated with 50on-chip  
resistors. AC couple the LO signal to these pins. If a  
single-ended LO source is used, connect LO directly to  
GND.  
RF Input  
The RXMXIN input is typically connected to the LNA  
output through an off-chip filter. This input is externally  
matched to 50. See the Typical Operating Circuit  
for an example matching network and the RXMXIN  
Impedance vs. Frequency graph in the Typical Operating  
Characteristics.  
Ad va n c e d S ys t e m  
P o w e r Ma n a g e m e n t  
RXEN and TXEN are the two separate power-control  
inputs for the receiver and the transmitter. If both inputs  
are at logic 0, the part enters shutdown mode and the  
supply current drops below 1µA. When one input is  
brought to a logic 1, the corresponding function is  
enabled. If RXEN and TXEN are both set to logic 1, the  
part enters standby mode as described in the Standby  
Mode section. Table 1 summarizes these operating  
modes.  
Local-Oscillator Inputs  
The LO and LO pins are internally terminated with 50Ω  
on-chip resistors. AC couple the LO signal to these  
pins. If a single-ended LO source is used, connect LO  
directly to ground.  
Power-down is guaranteed with a control voltage at or  
below 0.6V. The power-down function is designed to  
reduce the total power consumption to less than 1µA in  
less than 2.5µs. Complete power-up will happen in the  
same amount of time.  
IF Output Port  
The MAX2410s receive mixer output appears at the  
IFOUT pin, an open-collector output that requires an  
external pull-up inductor to V . This inductor can be  
CC  
part of a matching network to the desired IF imped -  
ance. Alternatively, a resistor can be placed in parallel  
with the pull-up inductor to set a terminating impedance.  
Table 1. Advanced System Power-  
Management Functions  
The MAX2411A, a similar part to the MAX2410, has the  
same functionality as the MAX2410 but offers a differ-  
ential, bidirectional (transmit and receive) IF port. This  
allows sharing of TX and RX IF filters, which for some  
applications provides a lower cost, smaller solution.  
RXEN  
TXEN  
FUNCTION  
Shutdown  
0
0
1
1
0
1
0
1
Transmit  
Receive  
Standby Mode  
Tra n s m it Mix e r  
The transmit mixer takes an IF signal at the IFIN pin and  
upconverts it to an RF frequency at the TXMXOUT pin.  
The conversion gain is typically 10dB and the output  
1d B c omp re s s ion p oint is typ ic a lly -11.4d Bm a t  
1.9GHz.  
10 ______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MAX2410  
Standby Mode  
When the TXEN and RXEN pins are both set to logic 1,  
all functions are disabled and the supply current drops  
to 160µA (typical). This mode is called standby, and it  
corresponds to a standby mode on the compatible IF  
transceiver chips MAX2510 and MAX2511.  
vs. Frequency on all RF and IF pins for use in designing  
matching networks. The LO port (LO and LO) is internally  
terminated with 50resistors and provides a VSWR of  
approximately 1.2:1 to 2GHz and 2:1 up to 3GHz.  
La yo u t Is s u e s  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Be sure to use controlled  
impedance lines on all high-frequency inputs and out-  
puts. Use low-inductance connections to ground on all  
GND pins, and place decoupling capacitors close to all  
Ap p lic a t io n s In fo rm a t io n  
Ex t e n d e d Fre q u e n c y Ra n g e  
The MAX2410 has been characterized at 1.9GHz for use  
in PCS-band applications; however, it operates over a  
much wider frequency range. The LNA gain and noise  
figure, as well as mixer conversion gain, are plotted over  
a wid e fre q ue nc y ra ng e in the Typ ic a l Op e ra ting  
Characteristics. When operating the device at RF fre-  
quencies other than those specified in the AC Electrical  
Characteristics table, it may be necessary to design or  
alter the matching networks on the RF ports. If the IF  
frequency is different than that specified in the AC  
Electrical Characteristics table, the IFIN and IFOUT  
ma tc hing ne tworks mus t b e a lte re d . The Typ ic a l  
Operating Characteristics provide Port Impedance Data  
V
CC  
connections.  
For the power supplies, a star topology works well. In a  
star topology, each V node in the circuit has its own  
CC  
path to the central V , and its own decoupling capaci-  
CC  
tor which provides a low impedance at the RF frequen-  
c y of inte re s t. The c e ntra l V  
nod e ha s a la rg e  
CC  
decoupling capacitor as well, to provide good isolation  
between the different sections of the MAX2410. The  
MAX2410 EV kit layout can be used as a guide to inte-  
grating the MAX2410 into your design.  
_________________________________________Typ ic a l Ap p lic a t io n Blo c k Dia g ra m  
RF  
BPF  
MATCH  
RX MIXER  
LNA  
LNAIN  
IFOUT  
RECEIVE  
IFOUT  
MATCH  
ANTENNA  
RF  
BPF  
IF  
BPF  
T/R  
RXEN  
TXEN  
POWER  
MANAGEMENT  
LO  
LO  
LOCAL  
OSCILLATOR  
MAX2410  
PA DRIVER  
IFIN  
TRANSMIT  
IFIN  
MATCH  
MATCH  
PADROUT  
CBLOCK  
TX MIXER  
IF  
BPF  
RF  
BPF  
GC  
RF  
BPF  
MATCH  
______________________________________________________________________________________ 11  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
________________________________________________________P a c k a g e In fo rm a t io n  
MAX2410  
12 ______________________________________________________________________________________  

相关型号:

MAX2410EEI+T

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2410EVKIT

Evaluation Kit for MAX2410
MAXIM

MAX2410_1

Evaluation Kit
MAXIM

MAX2411

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411A

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AE/D

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AEEI

Low-Cost RF Up/Downconverter with LNA and PA Driver
MAXIM

MAX2411AEEI+

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2411AEEI+T

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2411AEEI-T

Up/Down Converter, 1900MHz Max
MAXIM

MAX2411AEVKIT

Evaluation Kit for the MAX2411A
MAXIM

MAX2411A_1

Evaluation Kit
MAXIM