MAX2411AEEI [MAXIM]

Low-Cost RF Up/Downconverter with LNA and PA Driver; 低成本,RF上/下变频器,带有LNA和PA驱动器
MAX2411AEEI
型号: MAX2411AEEI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost RF Up/Downconverter with LNA and PA Driver
低成本,RF上/下变频器,带有LNA和PA驱动器

驱动器 射频和微波 射频上变频器 射频下变频器 微波上变频器 微波下变频器
文件: 总14页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1324; Rev 1; 2/98  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Low-Cost Silicon Bipolar Design  
The MAX2411A performs the RF front-end transmit/  
receive function in time-division-duplex (TDD) communi-  
cation systems. It operates over a wide frequency range  
and is optimized for RF frequencies around 1.9GHz.  
Applications include most popular cordless and PCS  
standards. The MAX2411A includes a low-noise amplifier  
(LNA), a downconverter mixer, a local-oscillator buffer, an  
upconverter mixer, and a variable-gain power-amplifier  
(PA) driver in a low-cost, plastic surface-mount package.  
The MAX2411A’s unique bidirectional, differential IF port  
reduces cost and component count by allowing the trans-  
mit and receive paths to share the same IF filter.  
Integrated Upconvert/Downconvert Function  
Operates from a Single +2.7V to +5.5V Supply  
3.2dB Combined Receiver Noise Figure:  
2.4dB (LNA)  
9.2dB (mixer)  
Flexible Power-Amplifier Driver:  
18dBm Output Third-Order Intercept (OIP3)  
35dB Gain-Control Range  
LO Buffer for Low LO Drive Level  
The LNA has a 2.4dB typical noise figure and a -10dBm  
input third-order intercept point (IP3). The downconvert-  
er mixer has a low 9.2dB noise figure and 4dBm input  
IP3. Image and local-oscillator filtering are implemented  
off-chip for maximum flexibility. The PA driver amplifier  
has 15dB of gain, which can be reduced over a 35dB  
range. Power consumption is only 60mW in receive  
mode and 90mW in transmit mode and drops to less  
than 3µW in shutdown mode.  
Low Power Consumption:  
60mW Receive  
90mW Full-Power Transmit  
0.3µW Shutdown Mode  
Flexible Power-Down Modes Compatible with  
MAX2510/MAX2511 IF Transceivers  
_______________Ord e rin g In fo rm a t io n  
For applications requiring separate, single-ended IF  
inp ut a nd outp ut p orts , re fe r to the MAX2410 d a ta  
sheet. For applications requiring only a receive func-  
tion, Maxim offers a low-cost downconverter with LNA  
(see the MAX2406 data sheet).  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 QSOP  
MAX2411AEEI  
MAX2411AE/D  
Dice*  
*Dice are specified at T = 25°C, DC parameters only.  
A
________________________Ap p lic a t io n s  
P in Co n fig u ra t io n  
PWT1900  
DECT  
DCS1800/PCS1900  
PHS/PACS  
ISM-Band Transceivers  
Iridium Handsets  
TOP VIEW  
GND  
LNAIN  
GND  
1
2
28 GND  
27 LNAOUT  
26 GND  
25 GND  
24 RXMXIN  
23 GND  
22 IF  
Typical Operating Circuit appears on last page.  
3
MAX2411A  
GND  
4
Fu n c t io n a l Dia g ra m  
V
CC  
5
LNAOUT  
RXMXIN  
RX MIXER  
RXEN  
LO  
6
7
LNAIN  
LNA  
LO  
8
21 IF  
IF  
IF  
LO  
LO  
TXEN  
9
20 GND  
19 TXMXOUT  
18 GND  
17 GND  
16 PADRIN  
15 GND  
RXEN  
TXEN  
POWER  
MANAGEMENT  
V
CC  
10  
MAX2411A  
GC 11  
GND 12  
PA DRIVER  
PADROUT  
TX MIXER  
TXMXOUT  
PADROUT 13  
GND 14  
GC PADRIN  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to GND ................................................................-0.3V to 6V  
Continuous Power Dissipation (T = +70°C)  
A
LNAIN Input Power ...........................................................15dBm  
LO, LO Input Power ..........................................................10dBm  
PADRIN Input Power.........................................................10dBm  
RXMXIN Input Power ........................................................10dBm  
IF, IF Input Power (transmit mode) ...................................10dBm  
QSOP (derate 11mW/°C above +70°C)........................909mW  
Junction Temperature ......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature .........................................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Voltage at RXEN, TXEN, GC.......................-0.3V to (V + 0.3V)  
CC  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MX241A  
DC ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +5.5V, V  
= +3.0V, RXEN = TXEN = 0.6V, PADROUT pulled up to V with 50resistor; IF, IF pulled up to V  
CC  
GC  
CC CC  
with 50resistor, TXMXOUT pulled up to V with 125resistor, LNAOUT pulled up to V with 100resistor, all RF inputs open,  
CC  
CC  
T
A
= -40°C to +85°C. Typical values are at +25°C and V = +3.0V, unless otherwise noted.)  
CC  
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
UNITS  
V
Supply-Voltage Range  
5.5  
Digital Input Voltage High  
RXEN, TXEN pins  
RXEN, TXEN pins  
RXEN = 2.0V  
2.0  
V
Digital Input Voltage Low  
0.6  
1
V
RXEN Input Bias Current (Note 1)  
TXEN Input Bias Current (Note 1)  
GC Input Bias Current  
0.1  
0.1  
35  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
TXEN = 2.0V  
1
GC = 3V, TXEN = 2V  
RXEN = 2.0V  
51.1  
29.6  
44.7  
520  
10  
Supply Current, Receive Mode  
Supply Current, Transmit Mode  
Supply Current, Standby Mode  
Supply Current, Shutdown Mode  
20  
TXEN = 2.0V  
30  
RXEN = 2.0V, TXEN = 2.0V  
160  
0.1  
V
CC  
= 3.0V  
AC ELECTRICAL CHARACTERISTICS  
(MAX2411A EV kit, V  
= +3.0V, V  
= +2.15V, RXEN = TXEN = low, a ll me a sure me nts pe rforme d in 50e nvironme nt,  
CC  
GC  
f
LO  
= 1.5GHz, P  
= -10d Bm, f  
= f  
= f  
= 1.9GHz, P  
= -32d Bm, P  
= P  
= -22d Bm,  
LO  
LNAIN  
PADRIN  
RXMXIN  
LNAIN  
PADRIN  
RXMXIN  
f
= 400MHz, P = -32dBm (Note 1), T = +25°C, unless otherwise noted.)  
IF, IF  
IF  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOW-NOISE AMPLIFIER (RXEN = high)  
T
= +25°C  
14.2  
12.6  
16.2  
17.4  
19.1  
A
Gain (Note 2)  
dB  
T
A
= T to T  
MIN MAX  
Noise Figure  
2.4  
-10  
-5  
dB  
Input IP3  
(Note 3)  
dBm  
dBm  
dBm  
Output 1dB Compression  
LO to LNAIN Leakage  
RECEIVE MIXER (RXEN = high)  
RXEN = high or low  
-49  
T
= +25°C  
8.5  
7.5  
9.4  
10.0  
10.9  
A
Conversion Gain (Note 2)  
dB  
T
A
= -40°C to +85°C  
Noise Figure  
Single sideband  
(Note 4)  
9.2  
4.0  
dB  
Input IP3  
dBm  
dBm  
MHz  
dBm  
Input 1dB Compression  
IF Frequency  
-7.7  
(Notes 2, 5)  
(Note 6)  
450  
Minimum LO Drive Level  
-17  
2
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2411A EV kit, V  
= +3.0V, V  
= +2.15V, RXEN = TXEN = low, a ll me a sure me nts pe rforme d in 50e nvironme nt,  
CC  
GC  
f
LO  
= 1.5GHz, P  
= -10d Bm, f  
= f  
= f  
= 1.9GHz, P  
= -32d Bm, P  
= P  
= -22d Bm,  
RXMXIN  
LO  
LNAIN  
PADRIN  
RXMXIN  
LNAIN  
PADRIN  
f
= 400MHz, P = -32dBm (Note 1), all impedance measurements made directly to pin (no matching network), T = +25°C,  
IF, IF  
I
F
A
unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TRANSMIT MIXER (TXEN = high)  
T
= +25°C  
6.8  
5.7  
8.5  
9.3  
A
Conversion Gain (Note 1)  
dB  
T
A
= T  
to T  
MAX  
10.4  
MIN  
Output IP3  
(Notes 1, 7)  
0.5  
-11.1  
-58  
dBm  
dBm  
dBm  
dB  
Output 1dB Compression Point  
LO Leakage  
Noise Figure  
Single sideband  
(Notes 2, 5)  
8.3  
IF Frequency  
450  
MHz  
F
OUT  
F
OUT  
F
OUT  
= 2LO-2IF = 2.2GHz  
-45.5  
-70  
Intermod Spurious Response  
(Note 8)  
= 2LO-3IF = 1.8GHz  
= 3LO-6IF = 2.1GHz  
dBc  
-90  
PA DRIVER (TXEN = high)  
T
= +25°C  
13  
15  
16.4  
17  
A
Gain (Note 2)  
dB  
T
A
= T  
to T  
MAX  
12.3  
MIN  
Output IP3  
(Note 4)  
18  
6.3  
35  
12  
dBm  
dBm  
dB  
Output 1dB Compression Point  
Gain-Control Range  
Gain-Control Sensitivity  
(Note 9)  
dB/V  
LOCAL-OSCILLATOR INPUTS (RXEN = TXEN = high)  
Receive mode (TXEN = low)  
Transmit mode (RXEN = low)  
1.10  
1.02  
Input Relative VSWR  
POWER MANAGEMENT (RXEN = TXEN = low)  
Receiver Turn-On Time (Notes 2, 10)  
Transmitter Turn-On Time (Notes 2, 11)  
RXEN = low to high  
TXEN = low to high  
0.5  
0.3  
2.5  
2.5  
µs  
µs  
Note 1: Power delivered to IF SMA connector of MAX2411A EV kit. Power delivered to MAX2411A IC is approximately 1.0dB less  
due to balun losses.  
Note 2: Guaranteed by design and characterization.  
Note 3: Two tones at 1.9GHz and 1.901GHz at -32dBm per tone.  
Note 4: Two tones at 1.9GHz and 1.901GHz at -22dBm per tone.  
Note 5: Mixer operation guaranteed to this frequency. For optimum gain, adjust output match. See the Typical Operating  
Characteristics for graphs of IF port impedance versus IF frequency.  
Note 6: At this LO drive level, the mixer conversion gain is typically 1dB lower than with -10dBm LO drive.  
Note 7: Two tones at 400MHz and 401MHz at -32dBm per tone.  
Note 8: Transmit mixer output at -17dBm.  
Note 9: Calculated from measurements taken at V = 1.0V and V = 1.5V.  
GC  
GC  
Note 10: Time from RXEN = low to RXEN = high transition until the combined receive gain is within 1dB of its final value. Measured  
with 47pF blocking capacitors on LNAIN and LNAOUT.  
Note 11: Time from TXEN = low to TXEN = high transition until the combined transmit gain is within 1dB of its final value. Measured  
with 47pF blocking capacitors on PADRIN and PADROUT.  
_______________________________________________________________________________________  
3
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(MAX2411A EV kit, V = +3.0V, V = +2.15V, RXEN = TXEN = low, all measurements performed in 50environment,  
CC  
GC  
f
LO  
= 1.5GHz, P = -10dBm, f  
= f  
= f  
= 1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm,  
RXMXIN  
LO  
LNAIN  
PADRIN  
RXMXIN  
LNAIN  
PADRIN  
f
= 400MHz, P = -32dBm (Note 1), all impedance measurements made directly to pin (no matching network), T = +25°C,  
IF, IF  
IF  
A
unless otherwise noted.)  
RECEIVE-MODE SUPPLY CURRENT  
vs. TEMPERATURE  
TRANSMIT-MODE SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
vs. TEMPERATURE  
24  
23  
22  
21  
20  
19  
18  
17  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
38  
36  
34  
32  
30  
28  
26  
RXEN = V  
CC  
TXEN = V  
RXEN = TXEN = GND  
CC  
V
CC  
= 5.5V  
MX241A  
V
= 5.5V  
CC  
V
CC  
= 4.0V  
V
CC  
= 4.0V  
= 3.0V  
V
= 5.5V  
CC  
V
= 4.0V  
CC  
V
CC  
= 3.0V  
V
CC  
V
CC  
= 3.0V  
V
CC  
= 2.7V  
V
= 2.7V  
10  
V
CC  
= 2.7V  
CC  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LNA INPUT IMPEDANCE  
vs. FREQUENCY  
LNA OUTPUT IMPEDANCE  
vs. FREQUENCY  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
MAX2411A-05  
MAX2411A-06  
250  
200  
150  
100  
50  
0
500  
400  
300  
200  
100  
0
40  
120  
100  
80  
60  
40  
20  
0
RXEN = TXEN = 2.0V  
RXEN = V  
CC  
IMAGINARY  
0
-25  
V
CC  
= 5.5V  
RXEN = V  
CC  
IMAGINARY  
-40  
-80  
-120  
-160  
-200  
-50  
V
= 4.0V  
CC  
-75  
REAL  
REAL  
-100  
V
CC  
= 3.0V  
35  
V
CC  
= 2.7V  
0
-125  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-40  
-15  
10  
60  
85  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
TEMPERATURE (°C)  
FREQUENCY (GHz)  
LNA GAIN vs. FREQUENCY  
LNA GAIN vs. TEMPERATURE  
LNA INPUT IP3 vs. TEMPERATURE  
30  
25  
20  
15  
10  
5
20  
19  
18  
17  
16  
15  
14  
13  
-5  
-6  
1pF SHUNT CAPACITOR AT LNA INPUT  
USING EV KIT MATCHING CIRCUIT  
(OPTIMIZED FOR 1.9GHz)  
RXEN = V  
CC  
RXEN = V  
CC  
V
CC  
= 5.5V  
-7  
V
CC  
= 3.0V  
V
CC  
= 4.0V  
-8  
V
CC  
= 2.7V  
RXEN = V  
CC  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
V
= 4.0V  
CC  
V
CC  
= 2.7V  
10  
V
CC  
= 5.5V  
V
CC  
= 3.0V  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80 100  
FREQUENCY (GHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2411A EV kit, V = +3.0V, V = +2.15V, RXEN = TXEN = low, all measurements performed in 50environment, f = 1.5GHz,  
CC  
GC  
LO  
P
P
= -10dBm, f  
= f  
= f  
= 1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz,  
LO  
LNAIN  
PADRIN  
RXMXIN  
LNAIN  
PADRIN  
RXMXIN  
IF, IF  
= -32dBm (Note 1), all impedance measurements made directly to pin (no matching network), T = +25°C, unless otherwise noted.)  
IF  
A
LNA OUTPUT 1dB COMPRESSION POINT  
vs. SUPPLY VOLTAGE  
PA DRIVER INPUT IMPEDANCE  
vs. FREQUENCY  
LNA NOISE FIGURE vs. FREQUENCY  
MAX2411A-12  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-1  
-2  
-3  
-4  
-5  
-6  
160  
140  
120  
100  
80  
70  
TXEN = V  
CC  
RXEN = V  
RXEN = V  
CC  
CC  
30  
IMAGINARY  
-10  
-50  
-90  
-130  
-170  
-210  
-250  
60  
40  
REAL  
20  
0
100  
480  
860  
1240  
1620  
2000  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
FREQUENCY (GHz)  
PA DRIVER OUTPUT IMPEDANCE  
vs. FREQUENCY  
PA DRIVER GAIN AND OUTPUT IP3  
vs. GC VOLTAGE  
PA DRIVER GAIN vs. FREQUENCY  
MAX2411A-13  
200  
175  
150  
125  
100  
75  
50  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
USING EV KIT  
MATCHING NETWORK  
(OPTIMIZED FOR 1.9GHz)  
TXEN = V  
CC  
TXEN = V  
CC  
0
IMAGINARY  
-50  
IP3  
TXEN = V  
CC  
-100  
-150  
-200  
-250  
-300  
-350  
0
GAIN  
-5  
-10  
-15  
-20  
-25  
-30  
50  
REAL  
25  
0
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
GC VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
PA DRIVER OUTPUT IP3  
vs. TEMPERATURE  
PA DRIVER OUTPUT 1dB COMPRESSION  
vs. SUPPLY VOLTAGE  
PA DRIVER GAIN vs. TEMPERATURE  
21  
20  
19  
18  
17  
16  
15  
14  
18  
17  
16  
15  
14  
13  
12  
8
6
TXEN = V  
TXEN = V  
CC  
CC  
V
GC  
= 2.15V  
V
= 5.5V  
CC  
V
= 5.5V  
CC  
4
V
= 4.0V  
TXEN = V  
CC  
CC  
V
= 4.0V  
CC  
2
V
= 3.0V  
CC  
V
CC  
= 2.7V  
0
V
CC  
= 3.0V  
V
= 2.7V  
CC  
-2  
-4  
V
GC  
= 1.0V  
-40  
-15  
10  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80 100  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2411A EV kit, V = +3.0V, V = +2.15V, RXEN = TXEN = low, all measurements performed in 50environment, f = 1.5GHz,  
CC  
GC  
LO  
P
P
= -10dBm, f  
= f  
= f  
= 1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f  
= 400MHz,  
LO  
LNAIN  
PADRIN  
RXMXIN  
LNAIN  
PADRIN  
RXMXIN  
IF, IF  
= -32dBm (Note 1), all impedance measurements made directly to pin (no matching network), T = +25°C, unless otherwise noted.)  
IF  
A
PA DRIVER NOISE FIGURE  
RECEIVE MIXER INPUT IMPEDANCE  
PA DRIVER  
vs. GAIN-CONTROL VOLTAGE  
vs. FREQUENCY  
NOISE FIGURE vs. FREQUENCY  
MAX2410A-21  
10  
9
8
7
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
RXEN = V  
CC  
-20  
TXEN = V  
CC  
-40  
IMAGINARY  
TXEN = V  
CC  
MX241A  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
REAL  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
FREQUENCY (GHz)  
GAIN-CONTROL VOLTAGE (V)  
FREQUENCY (GHz)  
RECEIVE MIXER CONVERSION  
GAIN vs. TEMPERATURE  
RECEIVE MIXER INPUT IP3  
vs. TEMPERATURE  
RECEIVE MIXER CONVERSION GAIN  
vs. RF FREQUENCY  
18  
16  
14  
12  
10  
8
12  
11  
10  
9
6
5
4
3
2
1
0
IF = 400MHz  
RXEN = V  
CC  
V
CC  
= 5.5V  
V
= 4.0V  
CC  
V
CC  
= 5.5V  
NARROW BAND MATCH  
AT RXMXIN, EV KIT  
MATCH AT IF, IF  
V
CC  
= 2.7V  
8
7
V
= 3.0V  
CC  
EV KIT  
MATCHING NETWORK  
AT RXMXIN AND IFOUT  
6
6
V
= 2.7V  
CC  
5
4
4
2
3
0
RXEN = V  
CC  
RXEN = V  
CC  
2
-2  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RF FREQUENCY (GHz)  
RECEIVE MIXER GAIN AND NOISE FIGURE  
vs. LO POWER  
IF OR IF OUTPUT IMPEDANCE  
vs. FREQUENCY  
TRANSMIT MIXER OUTPUT IMPEDANCE  
vs. FREQUENCY  
MAX2411A-27  
MAX2411Atoc26  
14  
13  
12  
11  
10  
9
300  
250  
200  
150  
100  
50  
0
1000  
800  
600  
400  
200  
0
0
TXEN = V  
CC  
RXEN = V  
CC  
RXEN = V  
CC  
-25  
-300  
-600  
-900  
-1200  
-1500  
NOISE FIGURE  
IMAGINARY  
REAL  
-50  
IMAGINARY  
-75  
-100  
-125  
-150  
-175  
-200  
GAIN  
SINGLE-ENDED  
8
7
0
6
-50  
-100  
5
REAL  
4
-18 -16 -14 -12 -10 -8 -6 -4 -2  
LO POWER (dBm)  
0
0
200  
400  
600  
800  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
6
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX2411A EV kit, V = +3.0V, V = +2.15V, RXEN = TXEN = low, all measurements performed in 50environment, f = 1.5GHz,  
CC  
GC  
LO  
P
= -10dBm, f  
= f  
PADRIN  
= f  
RXMXIN  
= 1.9GHz, P  
= -32dBm, P  
= P  
= -22dBm, f = 400MHz, P = -32dBm  
IF, IF IF  
LO  
LNAIN  
LNAIN  
PADRIN  
RXMXIN  
(Note 1), all impedance measurements made directly to pin (no matching network), T = +25°C, unless otherwise noted.)  
A
TRANSMIT MIXER CONVERSION GAIN  
vs. TEMPERATURE  
TRANSMIT MIXER OUTPUT IP3  
vs. TEMPERATURE  
TRANSMIT MIXER CONVERSION GAIN  
vs. RF FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
0
3.5  
2.5  
12  
10  
8
TXEN = V  
NARROW BAND AT TXMXOUT,  
EV KIT MATCH AT IF, IF  
CC  
TXEN = V  
CC  
V
CC  
= 5.5V  
V
= 5.5V  
CC  
V
CC  
= 4.0V  
V
= 2.7V  
CC  
1.5  
V
CC  
= 4.8V  
6
EV KIT MATCH NETWORK  
AT TXMXOUT AND IF, IF  
0.5  
4
V
CC  
= 3.0V  
-0.5  
-1.5  
2
V
CC  
= 2.7V  
TXEN = V  
CC  
IF = 400MHz  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
RF FREQUENCY (GHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TRANSMIT MIXER GAIN AND NOISE FIGURE  
vs. LO POWER  
IF OR IF OUTPUT IMPEDANCE  
vs. FREQUENCY  
LO PORT RETURN LOSS vs. FREQUENCY  
MAX2411Atoc32  
10  
0
5
1000  
800  
600  
400  
200  
0
0
TXEN = V  
CC  
RXEN = V  
CC  
RXEN = TXEN = V  
CC  
9
8
7
6
5
-300  
-600  
-900  
-1200  
-1500  
IMAGINARY  
NF  
10  
15  
20  
25  
30  
35  
40  
GAIN  
SINGLE-ENDED  
REAL  
-18  
-15  
-12  
-9  
-6  
-3  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
200  
400  
600  
800  
1000  
LO POWER (dBm)  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1, 3, 4, 12, 14,  
18, 20, 23, 28  
GND  
Ground. Connect GND to the PC board ground plane with minimal inductance.  
RF Input to LNA. AC couple to this pin. At 1.9GHz, LNAIN can be easily matched to 50with one  
external shunt 1pF capacitor.  
2
LNAIN  
Supply Voltage (2.7V to 5.5V). Bypass V to GND at each pin with a 47pF capacitor as close to  
CC  
each pin as possible.  
5, 10  
V
CC  
MX241A  
Logic-Level Enable for Receiver Circuitry. A logic high turns on the receiver. When TXEN and  
RXEN are both at a logic high, the part is placed in standby mode, with a 160µA (typical) supply  
current. If TXEN and RXEN are both at a logic low, the part is set to shutdown mode, with a  
0.1µA (typical) supply current.  
6
RXEN  
7
8
LO  
50Local-Oscillator (LO) Input Port. AC couple to this pin.  
50Inverting Local-Oscillator Input Port. For single-ended operation, connect LO directly to  
GND. If a differential LO signal is available, AC couple the inverted LO signal to this pin.  
LO  
Logic-Level Enable for Transmitter Circuitry. A logic high turns on the transmitter. When TXEN  
and RXEN are both at a logic high, the part is placed in standby mode, with a 160µA (typical)  
supply current. If TXEN and RXEN are both at a logic low, the part is set to shutdown mode, with  
a 0.1µA (typical) supply current.  
9
TXEN  
GC  
Gain-Control Input for PA Driver. By applying an analog control voltage between 0V and 2.15V, the  
11  
gain of the PA driver can be adjusted over a 35dB range. Connect to V for maximum gain.  
CC  
Power Amplifier Driver Output. AC couple to this pin. Use external shunt inductor to V to match  
CC  
13  
15, 17  
16  
PADROUT  
GND  
PADROUT to 50. This also provides DC bias. See the Typical Operating Characteristics for a  
plot of PADROUT Impedance vs. Frequency.  
PA Driver Input Grounds. Connect GND to the PC board ground plane with minimal inductance.  
RF Input to Variable-Gain Power Amplifier Driver. Internally matched to 50. AC couple to this  
pin. This input typically provides a 2:1 VSWR at 1.9GHz. AC couple to this pin. See the Typical  
Operating Characteristics for a plot of PADRIN Impedance vs. Frequency.  
PADRIN  
RF Output of Transmit Mixer (upconverter). Use an external shunt inductor to V as part of a  
CC  
19  
21  
TXMXOUT  
matching network to 50. This also provides DC bias. AC couple to this pin. See the Typical  
Operating Characteristics for a plot of TXMXOUT Impedance vs. Frequency.  
Differential IF Port of Transmit (Tx) and Receive (Rx) Mixers, Inverting Side. In Rx mode, this output  
is an open collector and should be pulled up to V with an inductor. This inductor can be part of  
CC  
the matching network to the desired IF impedance in both Tx and Rx modes. Additionally, a resistor  
may be placed across IF and IF to set a terminating impedance. In Tx mode, this input is internally  
AC-coupled; however, AC couple to this pin externally. For single-ended operation, connect this  
IF  
port to V and bypass with 1000pF capacitor to GND.  
CC  
Differential IF Port of Tx and Rx Mixers, Noninverting Side. In Rx mode, this output is an open collec-  
tor and should be pulled up to V with an inductor. This inductor can be part of the matching net-  
CC  
work to the desired IF impedance in both Tx and Rx modes. Additionally, a resistor may be placed  
across IF and IF to set a terminating impedance. In Tx mode, this input is internally AC coupled;  
however, AC couple to this pin externally.  
22  
IF  
8
_______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
_________________________________________________P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
RF Input to Receive Mixer (downconverter). This input typically requires a matching network for  
connecting to an external filter. AC couple to this pin. See the Typical Operating Characteristics  
for a plot of RXMXIN Impedance vs. Frequency.  
24  
RXMXIN  
25  
26  
GND  
GND  
Receive Mixer Input Ground. Connect GND to the PC board ground plane with minimal inductance.  
LNA Output Ground. Connect GND to the PC board ground plane with minimal inductance.  
LNA Output. AC couple to this pin. This output typically provides a VSWR of better than 2:1 at fre-  
quencies from 1.7GHz to 3GHz with no external matching components. At other frequencies, a  
matching network may be required to match LNAOUT to an external filter. Consult the Typical  
Operating Characteristics for a plot of LNA Output Impedance vs. Frequency.  
27  
LNAOUT  
proper operation. These inductors are typically used as  
part of an IF matching network.  
_______________De t a ile d De s c rip t io n  
The MAX2411A consists of five major components: a  
tra ns mit mixe r followe d b y a va ria b le -g a in p owe r-  
amplifier (PA) driver as well as a low-noise amplifier  
(LNA), receive mixer, and power-management section.  
In transmit mode, IF and IF are high-impedance inputs  
that are internally AC coupled to the transmit mixer.  
This internal AC coupling prevents the DC bias voltage  
required for the receive mixer outputs from reaching  
the transmit mixer inputs.  
The following sections describe each of the blocks in  
the MAX2411A Functional Diagram.  
Re c e ive Mix e r  
The receive mixer is a wideband, double-balanced  
design with excellent noise figure and linearity. Inputs to  
the mixer are the RF signal at the RXMXIN pin and the  
LO inputs at LO and LO. The downconverted output sig-  
nal appears at the IF port. For more information, see the  
Bidirectional IF Port section. The conversion gain of the  
receive mixer is typically 9.4dB with a 9.2dB noise figure.  
Lo w -No is e Am p lifie r (LNA)  
The LNA is a wideband, single-ended cascode amplifi-  
er that can be used over a wide range of frequencies.  
Re fe r to the LNA Ga in vs . Fre q ue nc y g ra p h in the  
Typical Operating Characteristics. Its port impedances  
are optimized for operation around 1.9GHz, requiring  
only a 1pF shunt capacitor at the LNA input for a VSWR  
of better than 2:1 and a noise figure of 2.4dB. As with  
every LNA, the input match can be traded off for better  
noise figure.  
RF Input  
The RXMXIN input is typically connected to the LNA out-  
put through an off-chip filter. This input is externally  
matched to 50. See the Typical Operating Circuit for an  
example matching network and the Receive Mixer Input  
Impedance vs. Frequency graph in the Typical Operating  
Characteristics.  
P A Drive r  
The PA d rive r ha s typ ic a lly 15d B of g a in, whic h is  
adjustable over a 35dB range via the GC pin. At full gain,  
the PA driver has a noise figure of 3.5dB at 1.9GHz.  
For input and output matching information, refer to the  
Typical Operating Characteristics for plots of PA Driver  
Input and Output Impedance vs. Frequency.  
Local-Oscillator Inputs  
The LO and LO pins are internally terminated with 50Ω  
on-chip resistors. AC couple the local-oscillator signal  
to these pins. If a single-ended LO source is used, con-  
nect LO directly to ground.  
Bid ire c t io n a l IF P o rt  
The MAX2411A has a unique bidirectional differential IF  
port, which can eliminate the need for separate transmit  
and receive IF filters, reducing cost and component count.  
Consult the Typical Operating Circuit for more information.  
For single-ended operation, connect the unused IF port to  
Tra n s m it Mix e r  
The transmit mixer takes an IF signal at the IF port and  
upconverts it to an RF frequency at the TXMXOUT pin.  
For more information on the IF port, see the Bidirectional  
IF Port section. The conversion gain is typically 8.5dB,  
a nd the outp ut 1d B c omp re s s ion p oint is typ ic a lly  
11.1dBm at 1.9GHz.  
V
CC  
and bypass with a 1000pF capacitor to GND.  
In receive mode, the IF and IF pins are open-collector  
outputs that need external inductive pull-ups to V for  
CC  
_______________________________________________________________________________________  
9
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
RF Output  
Table 1. Advanced System Power-  
Management Function  
The transmit mixer output appears on the TXMXOUT  
pin, an open-collector output that requires an external  
pull-up inductor for DC biasing, which can be part of an  
imp e d a nc e ma tc hing ne twork. Cons ult the Typ ic a l  
Op e ra ting Cha ra c te ris tic s for a p lot of TXMXOUT  
Impedance vs. Frequency.  
RXEN  
TXEN  
FUNCTION  
Shutdown  
0
0
1
1
0
1
0
1
Transmit  
Receive  
Ad va n c e d S ys t e m P o w e r Ma n a g e m e n t  
RXEN and TXEN are the two separate power-control  
inputs for the receiver and transmitter. If both inputs  
are at logic 0, the part enters shutdown mode, and  
the supply current drops below 1µA. When one input  
is brought to logic 1, the corresponding function is  
enabled. If RXEN and TXEN are both set to logic 1, the  
part enters standby mode, as described in the Standby  
Mode section. Table 1 summarizes these operating  
modes.  
Standby mode  
MX241A  
at RF frequencies other than those specified in the AC  
Electrical Characteristics table, it may be necessary to  
design or alter the matching networks on the RF ports. If  
the IF frequency is different from that specified in the AC  
Electrical Characteristics table, the IF, IF matching net-  
work mus t a ls o b e a lte re d . The Typ ic a l Op e ra ting  
Characteristics provide port impedance data versus fre-  
quency on all RF and IF ports for use in designing  
matching networks. The LO port (LO and LO) is internal-  
ly terminated with 50resistors and provides a VSWR of  
approximately 1.2:1 to 2GHz and 2:1 up to 3GHz.  
Power-down is guaranteed with a control voltage at or  
below 0.6V. The power-down function is designed to  
reduce the total power consumption to less than 1µA in  
less than 2.5µs. Complete power-up happens in the  
same amount of time.  
La yo u t Is s u e s  
A p rop e rly d e s ig ne d PC b oa rd is e s s e ntia l to a ny  
RF/microwave circuit. Be sure to use controlled imped-  
ance lines on all high-frequency inputs and outputs.  
Use low-inductance connections to ground on all GND  
Standby Mode  
When the TXEN and RXEN pins are both set to logic 1,  
all functions are disabled, and the supply current drops  
to 160µA (typ); this mode is called Standby. This mode  
corresponds to a standby mode on the compatible IF  
transceiver chips MAX2510 and MAX2511.  
pins, and place decoupling capacitors close to all V  
CC  
connections.  
For the power supplies, a star topology works well.  
__________Ap p lic a t io n s In fo rm a t io n  
Each V  
node in the circuit has its own path to the  
CC  
Ex t e n d e d Fre q u e n c y Ra n g e  
The MAX2411A has been characterized at 1.9GHz for  
use in PCS-band applications. However, it operates  
over a much wider frequency range. The LNA gain and  
noise figure, PA driver gain, and mixer conversion gain  
are plotted over a wide frequency range in the Typical  
Operating Characteristics. When operating the device  
central V and a decoupling capacitor that provides a  
low impedance at the RF frequency of interest. The  
CC  
central V  
node has a large decoupling capacitor  
CC  
a s we ll. This p rovid e s g ood is ola tion b e twe e n the  
different sections of the MAX2411A. The MAX2411A  
EV kit layout can be used as a guide to integrating the  
MAX2411A into your design.  
10 ______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
_________________________________________Typ ic a l Ap p lic a t io n Blo c k Dia g ra m  
RF BPF  
MATCH  
IF  
LNAIN  
IF  
MATCH  
ANTENNA  
IF  
IF BPF  
T/R  
TXEN  
RXEN  
POWER  
MANAGEMENT  
RF BPF  
LO  
LO  
LOCAL  
OSCILLATOR  
MAX2411  
PA DRIVER  
PA  
MATCH  
PADROUT  
RF BPF  
GC  
MATCH  
RF BPF  
______________________________________________________________________________________ 11  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
___________________________________________________Typ ic a l Op e ra t in g Circ u it  
1
28  
GND  
GND  
220pF  
220pF  
220pF  
LNA INPUT  
(1.9GHz)  
2
3
27  
26  
LNA  
OUTPUT  
LNAIN  
GND  
LNAOUT  
GND  
1pF  
4
25  
GND  
GND  
MX241A  
V
CC  
3.9nH  
Rx MIXER  
INPUT (1.9GHz)  
5
24  
23  
V
CC  
RXMXIN  
GND  
MAX2411A  
47pF  
V
CC  
27nH  
7
8
1000pF  
27nH  
27nH  
LO INPUT  
LO  
LO  
22  
21  
IF  
IF  
220pF  
1000pF  
400MHz  
V
CC  
V
CC  
1000pF  
IF SAW  
FILTER  
(200)  
10  
27nH  
V
CC  
47pF  
20  
1000pF  
GND  
GND  
GND  
V
CC  
17  
18  
1000pF  
220pF  
18nH  
V
CC  
PA OUTPUT  
(1.9GHz)  
13  
12  
14  
PADROUT  
GND  
1000pF  
5.6nH  
GND  
220pF  
3.9nH  
Tx MIXER  
OUTPUT  
(1.9GHz)  
19  
TXMXOUT  
9
6
TXEN  
RXEN  
GC  
TXEN  
RXEN  
GC  
220pF  
16  
15  
PA DRIVER  
INPUT  
11  
PADRIN  
GND  
12 ______________________________________________________________________________________  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
MX241A  
P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 13  
Lo w -Co s t RF Up /Do w n c o n ve rt e r  
w it h LNA a n d PA Drive r  
NOTES  
MX241A  
14 ______________________________________________________________________________________  

相关型号:

MAX2411AEEI+

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2411AEEI+T

Up/Down Converter, 1900MHz Max,
MAXIM

MAX2411AEEI-T

Up/Down Converter, 1900MHz Max
MAXIM

MAX2411AEVKIT

Evaluation Kit for the MAX2411A
MAXIM

MAX2411A_1

Evaluation Kit
MAXIM

MAX24188

Low-Cost IEEE 1588 Clock
MAXIM

MAX24188ETK+

Low-Cost IEEE 1588 Clock
MAXIM

MAX24188ETK2

ATM/SONET/SDH IC,
MICROSEMI

MAX24188ETK2T

ATM/SONET/SDH IC,
MICROSEMI

MAX241C

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX241C/D

Transceiver
MAXIM

MAX241CAI

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM