MAX2010ETI+T [MAXIM]

暂无描述;
MAX2010ETI+T
型号: MAX2010ETI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总19页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2930; Rev 0; 8/03  
500MHz to 1100MHz Adjustable  
RF Predistorter  
General Description  
Features  
The MAX2010 adjustable RF predistorter is designed to  
improve power amplifier (PA) adjacent-channel power  
rejection (ACPR) by introducing gain and phase expan-  
sion in a PA chain to compensate for the PA’s gain and  
phase compression. With its +23dBm maximum input  
power level and wide adjustable range, the MAX2010  
can provide up to 12dB of ACPR improvement for  
power amplifiers operating in the 500MHz to 1100MHz  
frequency band. Higher frequencies of operation can  
be achieved with this IC’s counterpart, the MAX2009.  
Up to 12dB ACPR Improvement*  
Independent Gain and Phase Expansion Controls  
Gain Expansion Up to 6dB  
Phase Expansion Up to 21°  
500MHz to 1100MHz Frequency Range  
Exceptional Gain and Phase Flatness  
Group Delay <2.4ns (Gain and Phase Sections  
Combined)  
0.03ns Group Delay Ripple Over a 100MHz Band  
The MAX2010 is unique in that it provides up to 6dB of  
gain expansion and 21° of phase expansion as the input  
power is increased. The amount of expansion is config-  
urable through two independent sets of control: one set  
adjusts the gain expansion breakpoint and slope, while  
the second set controls the same parameters for phase.  
With these settings in place, the linearization circuit can  
be run in either a static set-and-forget mode, or a more  
sophisticated closed-loop implementation can be  
employed with real-time software-controlled distortion  
correction. Hybrid correction modes are also possible  
using simple lookup tables to compensate for factors  
such as PA temperature drift or PA loading.  
Capable of Handling Input Drives Up to +23dBm  
On-Chip Temperature Variation Compensation  
Single +5V Supply  
Low Power Consumption: 75mW (typ)  
Fully Integrated into Small 28-Pin Thin QFN  
Package  
*Performance dependent on amplifier, bias, and modulation.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
The MAX2010 comes in a 28-pin thin QFN exposed  
pad (EP) package (5mm x 5mm) and is specified for  
the extended (-40°C to +85°C) temperature range.  
MAX2010ETI-T  
-40°C to +85°C  
28 Thin QFN-EP*  
*EP = Exposed paddle.  
Applications  
cdma2000™, GSM/EDGE, and iDEN Base Stations  
Feed-Forward PA Architectures  
Functional Diagram/  
Pin Configuration  
Digital Baseband Predistortion Architectures  
Military Applications  
28  
27  
26  
25  
24  
23  
22  
GND*  
GND*  
ING  
1
2
3
4
5
6
7
21 V  
CCG  
GAIN  
CONTROL  
20 GND*  
19 PBRAW  
18 PBEXP  
17 PBIN  
GND*  
GND*  
OUTP  
GND*  
MAX2010  
PHASE  
CONTROL  
16 GND*  
15  
V
CCP  
8
9
10  
11  
12  
13  
14  
cdma2000 is a trademark of Telecommunications Industry  
Assoc.  
*INTERNALLY CONNECTED TO EXPOSED GROUND PADDLE.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
500MHz to 1100MHz Adjustable  
RF Predistorter  
ABSOLUTE MAXIMUM RATINGS  
CCG CCP  
ING, OUTG, GCS, GFS, GBP to GND......-0.3V to (V  
INP, OUTP, PFS_, PDCS_, PBRAW,  
PBEXP, PBIN to GND ............................-0.3V to (V  
V
, V  
to GND..............................................-0.3V to +5.5V  
Continuous Power Dissipation (T = +70°C)  
A
+ 0.3V)  
28-Pin Thin QFN-EP  
CCG  
(derate 21mW/°C above +70°C)...............................1667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
+ 0.3V)  
CCP  
Input (ING, INP, OUTP, OUTG) Level ............................+23dBm  
PBEXP Output Current........................................................ 1mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(MAX2010 EV kit; V  
= V  
= +4.75V to +5.25V; no RF signal applied; INP, ING, OUTP, OUTG are AC-coupled and terminated to  
CCG  
CCP  
50. V  
= open; PBEXP shorted to PBRAW; V  
= V  
= 0.8V; V  
= V  
= V  
= GND; V  
= V ; T = -40°C to  
CCG A  
PF_S1  
PDCS1  
A
PDCS2  
PBIN  
GBP  
GCS  
GFS  
+85°C. Typical values are at V  
= V  
= +5.0V, T = +25°C, unless otherwise noted.)  
CCG  
CCP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
UNITS  
Supply Voltage  
V
, V  
4.75  
V
CCG CCP  
V
5.8  
10  
7
CCP  
Supply Current  
mA  
V
V
12.1  
CCG  
PBIN, PBRAW  
0
0
V
CCP  
CCG  
+2  
Analog Input Voltage Range  
GBP, GFS, GCS  
V
V
V
V
= V  
= V = 0V  
PBRAW  
-2  
GFS  
GBP  
PBIN  
GCS  
Analog Input Current  
= 0 to +5V  
= 0 to +5V  
-100  
-100  
2.0  
+170  
+220  
µA  
Logic-Input High Voltage  
Logic-Input Low Voltage  
Logic Input Current  
PDCS1, PDCS2 (Note 1)  
PDCS1, PDCS2 (Note 1)  
V
V
0.8  
+2  
-2  
µA  
2
_______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
AC ELECTRICAL CHARACTERISTICS  
(MAX2010 EV kit, V  
= V  
= +4.75V to +5.25V, 50environment, P = -20dBm, f = 500MHz to 1100MHz, V  
= +1.0V,  
, T = -40°C to +85°C. Typical val-  
CCG  
CCP  
IN  
IN  
= V  
GCS  
V
GFS  
= +5.0V, V  
= +1.2V, V  
= V  
= V  
= 0V, V  
= +5V, V  
GBP  
PBIN  
PDCS1  
PDCS2  
PF_S1  
PBRAW  
PBEXP A  
ues are at f = 880MHz, V  
= V  
= +5V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
IN  
CCG  
CCP  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Frequency Range  
VSWR  
500  
1100  
MHz  
ING, INP, OUTG, OUTP  
1.3:1  
PHASE CONTROL SECTION  
Nominal Gain  
-5.5  
-1.7  
0.1  
dB  
dB  
dB  
Gain Variation Over Temperature  
Gain Flatness  
T = -40°C to +85°C  
A
Over a 100MHz band  
Phase-Expansion Breakpoint  
Maximum  
V
V
= +5V  
= 0V  
23  
0.7  
1.5  
dBm  
dBm  
dB  
PBIN  
PBIN  
Phase-Expansion Breakpoint  
Minimum  
Phase-Expansion Breakpoint  
Variation Over Temperature  
T
A
= -40°C to +85°C  
V
V
P
= +5V,  
= V  
= -20 dBm to +23 dBm  
PF_S1  
= 0V,  
PDCS2  
21  
16  
14  
PDCS1  
IN  
V
V
V
= 5V,  
= 0V,  
= +1.5V  
PDCS1  
PDCS2  
PF_S1  
Phase Expansion  
Degrees  
V
V
V
= 0V,  
= 5V,  
= +1.5V  
PDCS1  
PDCS2  
PF_S1  
V
V
P
= 0V,  
= V  
PF_S1  
= +5V,  
PDCS2  
6
PDCS1  
= -20dBm to +23dBm  
IN  
IN  
Phase-Expansion Slope  
Maximum  
Degrees  
/dB  
P
= +9dBm  
1.4  
0.6  
0.05  
V
V
P
= 0V,  
PF_S1  
Degrees  
/dB  
Phase-Expansion Slope Minimum  
= V  
= +5V,  
PDCS2  
PDCS1  
= +9dBm  
IN  
IN  
Phase-Slope Variation Over  
Temperature  
Degrees  
/dB  
P
= +9dBm, T = -40°C to +85°C  
A
Phase Ripple  
Over a 100MHz band, deviation from linear phase  
0.02  
5.5  
Degrees  
dB  
Noise Figure  
Absolute Group Delay  
Group Delay Ripple  
Parasitic Gain Expansion  
Interconnects de-embedded  
Over a 100MHz band  
1.3  
ns  
0.01  
+0.4  
ns  
P
= -20dBm to +23dBm  
dB  
IN  
_______________________________________________________________________________________  
3
500MHz to 1100MHz Adjustable  
RF Predistorter  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2010 EV kit, V  
= V  
= +4.75V to +5.25V, 50environment, P = -20dBm, f = 500MHz to 1100MHz, V  
= +1.0V,  
, T = -40°C to +85°C. Typical val-  
CCG  
CCP  
IN  
IN  
= V  
GCS  
V
GFS  
= +5.0V, V  
= +1.2V, V  
= V  
= V  
= 0V, V  
= +5V, V  
GBP  
PBIN  
PDCS1  
PDCS2  
PF_S1  
PBRAW  
PBEXP A  
ues are at f = 880MHz, V  
= V  
= +5V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
IN  
CCG  
CCP  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GAIN CONTROL SECTION  
-14.9  
-24.3  
-7.6  
-1.4  
0.2  
Nominal Gain  
dB  
V
V
= 0V, V  
= +5V  
GFS  
GCS  
GCS  
= +5V, V  
= 0V  
GFS  
Gain Variation Over Temperature  
Gain Flatness  
T
= -40°C to +85°C  
dB  
dB  
A
Over a 100MHz band  
Gain-Expansion Breakpoint  
Maximum  
V
V
= +5V  
23  
dBm  
dBm  
dB  
GBP  
GBP  
Gain-Expansion Breakpoint  
Minimum  
= +0.5V  
-2.5  
-0.5  
Gain-Expansion Breakpoint  
Variation Over Temperature  
T
A
= -40°C to +85°C  
V
V
V
V
= +5V, P = -20dBm to +23dBm  
5.3  
3.1  
GFS  
GFS  
GFS  
GFS  
IN  
Gain-Expansion  
dB  
= 0V, P = -20dBm to +23dBm  
IN  
= +5V, P = +15dBm  
0.43  
0.23  
IN  
Gain-Expansion Slope  
dB/dB  
dB/dB  
= +0V, P = +15dBm  
IN  
Gain-Slope Variation Over  
Temperature  
P
= +15dBm, T = -40°C to +85°C  
-0.01  
IN  
A
Noise Figure  
14.9  
1.12  
0.02  
0.09  
+3  
dB  
ns  
Absolute Group Delay  
Group Delay Ripple  
Phase Ripple  
Interconnects de-embedded  
Over a 100MHz band  
ns  
Over a 100MHz band, deviation from linear phase  
Degrees  
Degrees  
Parasitic Phase Expansion  
P
= -20dBm to +23dBm  
IN  
Note 1: Guaranteed by design and characterization.  
Note 2: All limits reflect losses and characteristics of external components shown in the Typical Application Circuit, unless otherwise  
noted.  
4
_______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics  
Phase Control Section  
PDCS2 IN A  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SMALL-SIGNAL INPUT RETURN LOSS  
vs. FREQUENCY  
SMALL-SIGNAL OUTPUT RETURN LOSS  
vs. FREQUENCY  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
T
A
= +85°C  
B
T
A
= +25°C  
C
A
D
D
C
T
A
= -40°C  
A
1.0  
B
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
0.5  
A = V  
B = V  
C = V  
D = V  
0.6  
0.7  
0.9  
1.1  
0.8  
0.5  
A = V  
B = V  
C = V  
D = V  
0.6  
0.7  
0.9  
1.0  
1.1  
0.8  
SUPPLY VOLTAGE (V)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
= 0V  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
PF_S1  
= 0V  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PF_S1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
= 0V, V  
= 5V, V  
= V  
= 5V  
= 0V, V  
= 5V, V  
= V  
= 5V  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
= 0V  
= 0V  
= 5V  
= 5V  
PF_S1  
PF_S1  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL OUTPUT RETURN LOSS  
vs. FREQUENCY  
LARGE-SIGNAL INPUT RETURN LOSS  
vs. FREQUENCY  
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
-7.0  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
B
A
B
A
T
= -40°C  
= +25°C  
A
T
A
C
D
T
A
= +85°C  
D
C
1.0  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0.5  
P
A = V  
B = V  
C = V  
D = V  
0.6  
0.7  
0.9  
1.0  
1.1  
0.8  
0.5  
P
0.6  
0.7  
0.9  
1.1  
0.8  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
= +15dBm  
= +15dBm  
IN  
IN  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
PDCS2  
= V  
PF_S1  
= 0V  
A = V  
B = V  
C = V  
D = V  
= V  
= V  
= V  
= V  
= V  
= 0V  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS2  
PDCS2  
PDCS2  
PDCS2  
PF_S1  
= 0V, V  
= 5V, V  
= V  
= 5V  
= 0V, V  
= 5V, V  
= V  
= 5V  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
= 0V  
= 0V  
= 5V  
= 5V  
PF_S1  
PF_S1  
_______________________________________________________________________________________  
5
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Phase Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2  
IN  
A
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. COARSE SLOPE  
SMALL-SIGNAL GAIN  
vs. COARSE SLOPE  
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
-7.0  
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
-7.0  
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
V
PF_S1  
= 0V  
T
A
= -40°C  
= +25°C  
= +85°C  
V
PF_S1  
= 1.5V  
T
A
T
A
V
CCP  
= 4.75V, 5.0V, 5.25V  
V
PF_S1  
= 5V  
-7.0  
PDCS1 = 0  
PDCS2 = 0  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
PDCS1 = 0  
PDCS2 = 0  
PDCS1 = 5  
PDCS2 = 0  
PDCS1 = 0  
PDCS2 = 5  
PDCS1 = 5  
PDCS2 = 5  
PDCS1 = 5  
PDCS2 = 0  
PDCS1 = 0  
PDCS2 = 5  
PDCS1 = 5  
PDCS2 = 5  
FREQUENCY (GHz)  
COARSE SLOPE (V)  
COARSE SLOPE (V)  
SUPPLY CURRENT vs. INPUT POWER  
GROUP DELAY vs. FREQUENCY  
NOISE FIGURE vs. FREQUENCY  
6.00  
5.95  
5.90  
5.85  
5.80  
5.75  
5.70  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
B
C
D
D
A
A
B
C
E
5.2  
A
5.0  
0.5  
D
C
B
1.0  
0
4
8
12  
16  
20  
24  
0.5  
A = V  
B = V  
C = V  
D = V  
0.6  
0.7  
0.8  
0.9  
1.1  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
A = V  
B = V  
C = V  
= 0V  
D = V  
= 1.5V  
= 3.0V  
PBIN  
PBIN  
PBIN  
PBIN  
PBIN  
= V  
= V  
= V  
= V  
= V  
PF_S1  
= 0V  
A = V  
B = V  
C = V  
D = V  
= V  
= V  
= V  
= V  
= V  
PF_S1  
= 0V  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS2  
PDCS2  
PDCS2  
PDCS2  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS2  
PDCS2  
PDCS2  
PDCS2  
= 0.5V  
= 1.0V  
E = V  
= 0V, V  
= 5V, V  
= V  
= 5V  
= 0V  
= 0V, V  
= 5V, V  
= V  
= 5V  
= 0V  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
= 5V  
= 5V  
PF_S1  
PF_S1  
INTERCONNECTS DE-EMBEDDED  
6
_______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Phase Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2 IN A  
PHASE EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
15  
10  
5
-4.5  
-4.5  
-4.7  
-4.9  
-5.1  
-5.3  
-5.5  
-5.7  
D
F
E
-4.7  
C
-4.9  
-5.1  
B
B
A
C
B
0
A
-5  
C
-5.3  
-5.5  
-5.7  
D
D
-10  
-15  
-20  
A
E
F
-7  
-2  
3
8
13  
18  
23  
= 5V  
-2  
3
8
13  
18  
23  
-7  
A = V  
B = V  
C = V  
-2  
3
8
13  
18  
23  
-7  
A = V  
B = V  
C = V  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
C = V  
D = V  
= 0V, V  
= V  
A = V  
B = V  
= V  
= 0V  
= 0V  
D = V  
E = V  
= 1.5V  
= 2.0V  
= 2.5V  
PDCS1  
PDCS2  
PDCS1  
PDCS1  
PDCS2  
= 5V, V  
PBIN  
PBIN  
PBIN  
PBIN  
PBIN  
PBIN  
= 0V  
D = V  
E = V  
= 1.5V  
= 2.0V  
= 2.5V  
= 5V  
= 0V  
= 0.5V  
= 1.0V F = V  
PBIN  
PBIN  
PBIN  
PBIN  
PBIN  
PBIN  
PDCS1  
PDCS2  
PDCS2  
= 0.5V  
= 1.0V F = V  
PHASE EXPANSION vs. INPUT POWER  
PHASE EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
15  
10  
5
15  
10  
5
-4.5  
-4.8  
-5.1  
-5.4  
-5.7  
F
B
E
0
0
A
D
-5  
-5  
C
B
D
D
E
-10  
-15  
-20  
-10  
-15  
-20  
A
B
F
C
C
A
-2  
3
8
13  
18  
23  
-2  
3
8
13  
INPUT POWER (dBm)  
= V = 0V  
18  
23  
-7  
A = V  
B = V  
C = V  
-7  
A = V  
B = V  
C = V  
D = V  
-7  
A = V  
B = V  
C = V  
D = V  
-2  
3
8
13  
18  
23  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
= 0V  
D = V  
= 0.5V E = V  
= 1.5V  
= 2.0V  
= 5.0V  
= 0V  
E = V  
= 2.0V  
= 5.0V  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
PDCS1  
PDCS1  
PDCS1  
PDCS1  
PDCS2  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
PF_S1  
= 5.0V  
= 5V, V  
= 0V, V  
= V  
= 0V  
= 0.5V F = V  
PDCS2  
= 5V  
PDCS2  
= 5V  
= 1.0V F = V  
V
= 1.0V  
= 1.5V  
V
PDCS1  
= 5.0V  
PDCS1  
PDCS2  
_______________________________________________________________________________________  
7
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Phase Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2 IN A  
GAIN EXPANSION vs. INPUT POWER  
PHASE EXPANSION vs. INPUT POWER  
-4.0  
-4.2  
-4.4  
-4.6  
-4.8  
-5.0  
-5.2  
-5.4  
-5.6  
-5.8  
0
V
= 5.0, V  
= 1.5V  
V
= 5.0, V  
= 1.5V  
PDCS1  
PF_S1  
PDCS1  
PF_S1  
-5  
-10  
-15  
-20  
-25  
T
A
= -40°C  
T
A
= +25°C  
T
A
= +25°C  
T
A
= +85°C  
T
A
= -40°C  
T
A
= +85°C  
-7  
-2  
3
8
13  
18  
23  
-7  
-2  
3
8
13  
18  
23  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Typical Operating Characteristics  
Gain Control Section  
= +1.0V, f = 880MHz, T = +25°C, unless  
GCS IN A  
(MAX2010 EV kit, V  
otherwise noted.)  
= +5.0V, P = -20dBm, V  
= +1.2V, V  
= +5.0V, V  
CCG  
IN  
GBP  
GFS  
SMALL-SIGNAL INPUT RETURN LOSS  
vs. FREQUENCY  
SMALL-SIGNAL OUTPUT RETURN LOSS  
vs. FREQUENCY  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
0
10  
20  
30  
40  
50  
6.6  
6.5  
6.4  
6.3  
0
10  
20  
30  
40  
50  
C, D  
C, D  
T
A
= +85°C  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
T
A
= +25°C  
A, B  
A, B  
T
A
= -40°C  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
SUPPLY VOLTAGE (V)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
A = V  
B = V  
= 0V, V = 0V C = V  
GFS  
= 5V, V = 0V  
GFS  
A = V  
B = V  
= 0V, V = 0V C = V  
GFS  
= 5V, V = 0V  
GFS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
= 0V, V = 5V D = V  
GFS  
= 5V, V = 5V  
= 0V, V = 5V D = V  
GFS  
= 5V, V = 5V  
GFS  
GFS  
8
_______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Gain Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2 IN A  
LARGE-SIGNAL OUTPUT RETURN LOSS  
vs. FREQUENCY  
LARGE-SIGNAL INPUT RETURN LOSS  
vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
P
IN  
= +15dBm  
P
IN  
= +15dBm  
T
A
= -40°C  
C
D
T
A
= +25°C  
D
T
A
= +85°C  
A
C
A
B
B
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
A = V  
B = V  
= 0V, V = 0V C = V  
= 5V, V = 0V  
GFS  
A = V  
B = V  
= 0V, V = 0V C = V  
GFS  
= 5V, V = 0V  
GFS  
GCS  
GCS  
GFS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
= 0V, V = 5V D = V  
GFS  
= 5V, V = 5V  
= 0V, V = 5V D = V  
GFS  
= 5V, V = 5V  
GFS  
GFS  
SMALL-SIGNAL GAIN vs. V  
SMALL-SIGNAL GAIN vs. V  
GCS  
GCS  
SMALL-SIGNAL GAIN vs. FREQUENCY  
0
0
-5  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
V
CCG  
= 4.75V, 5.0V, 5.25V  
V
= 0V, 1.5V, 5.0V  
GFS  
T
A
= -40°C  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
T
A
= +25°C  
T
A
= +85°C  
V
GFS  
= +1.5V  
4
0
1
2
3
4
5
0
1
2
3
5
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
V
GCS  
(V)  
V
GCS  
(V)  
FREQUENCY (GHz)  
_______________________________________________________________________________________  
9
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Gain Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2 IN A  
NOISE FIGURE vs. FREQUENCY  
GROUP DELAY vs. FREQUENCY  
SUPPLY CURRENT vs. INPUT POWER  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
A
B
B
C, D  
A
C
A
C
E
E
D
B
D
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0
4
12  
16  
20  
24  
8
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
A = V  
B = V  
= 0V, V = 0V C = V  
GFS  
= 5V, V = 0V  
GFS  
A = V  
B = V  
C = V  
= 0V, V = 0V  
D = V  
= 5V, V = 0V  
GFS  
A = V  
B = V  
C = V  
= 0V  
D = V  
E = V  
= 1.5V  
= 3.0V  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GFS  
GCS  
GBP  
GBP  
GBP  
GBP  
= 0V, V = 5V D = V  
GFS  
= 5V, V = 5V  
= 0V, V = 5V  
GFS  
E = V  
= 5V, V = 5V  
= 0.5V  
= 1.0V  
GCS  
GFS  
GFS  
GBP  
= 1.5V, V = 5V  
GFS  
INTERCONNECTS DE-EMBEDDED  
PHASE EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
-5  
-7  
-5  
-8  
C
B
B
A
E
D
A
-9  
-11  
-14  
-17  
-20  
C
-11  
-13  
-15  
D
F
G
H
G
E
H
F
-7  
-2  
8
13  
18  
23  
-7  
-2  
8
13  
18  
23  
3
3
INPUT POWER (dBm)  
A = V  
B = V  
C = V  
D = V  
= 0V  
A = V  
B = V  
C = V  
D = V  
E = V  
GBP  
G = V  
= 2.0V  
= 2.5V  
= 3.5V  
= 5.0V  
= 2.0V  
= 2.5V  
= 3.5V  
= 5.0V  
GBP  
GBP  
F = V  
= 0.5V  
= 1.0V  
= 1.5V  
GBP  
GBP  
GBP  
GBP  
GBP  
GBP  
GBP  
H = V  
10 ______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Operating Characteristics (continued)  
Gain Control Section (continued)  
(MAX2010 EV kit, V  
unless otherwise noted.)  
= +5.0V, P = -20dBm, V  
= 0V, V  
= +5.0V, V  
= V  
= 0V, f = 880MHz, T = +25°C  
CCP  
IN  
PBIN  
PF_S1  
PDCS1  
PDCS2 IN A  
GAIN EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
PHASE EXPANSION vs. INPUT POWER  
-5  
-8  
-5  
-7  
30  
20  
10  
F
E
E
-9  
F
-11  
-13  
A, B  
-11  
D
-15  
-17  
-19  
-21  
-23  
-25  
E
-14  
-17  
-20  
0
C
C
D
C
A, B  
D
A, B  
-10  
F
-20  
-7  
-7  
-2  
8
13  
18  
23  
-7  
-2  
3
8
13  
18  
23  
-2  
8
13  
18  
23  
3
3
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
A = V = 0V  
GFS  
B = V = 0.5V  
A = V  
B = V  
C = V  
= 0V  
A = V  
B = V  
C = V  
= 0V  
D = V = 1.5V  
GFS  
E = V = 2.0V  
D = V  
E = V  
= 1.5V  
= 2.0V  
= 2.5V  
D = V  
E = V  
= 1.5V  
= 2.0V  
= 5.0V  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
GCS  
= 0.5V  
= 1.0V  
= 0.5V  
= 1.0V  
GFS  
GFS  
GCS  
GCS  
GCS  
GCS  
C = V = 1.0V  
GFS  
F = V = 5.0V  
GFS  
F = V  
F = V  
PHASE EXPANSION vs. INPUT POWER  
GAIN EXPANSION vs. INPUT POWER  
PHASE EXPANSION vs. INPUT POWER  
-5  
-6  
-8  
-9  
-5  
-6  
F
E
-7  
-7  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-8  
-8  
-9  
-9  
T = -40°C  
A
-10  
-11  
-12  
-13  
-14  
-10  
-11  
-12  
-13  
-14  
-15  
T = +25°C  
A
T = -40°C  
A
D
T = +25°C  
A
C
T = +85°C  
A
A, B  
T = +85°C  
A
-15  
-7  
-7  
-2  
8
13  
18  
23  
-7  
-2  
3
8
13  
18  
23  
-2  
3
8
13  
18  
23  
3
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
A = V = 0V  
GFS  
D = V = 1.5V  
GFS  
B = V = 0.5V  
E = V = 2.0V  
GFS  
GFS  
C = V = 1.0V  
GFS  
F = V = 5.0V  
GFS  
______________________________________________________________________________________ 11  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Pin Description  
PIN  
NAME  
FUNCTION  
Ground. Internally connected to the exposed paddle.  
1, 2, 4, 5, 7,  
8, 10, 16, 20,  
22, 26, 28  
GND  
RF Gain Input. Connect ING to a coupling capacitor if it is not connected to OUTP. ING is  
interchangeable with OUTG.  
3
6
ING  
RF Phase Output. Connect OUTP to a coupling capacitor if it is not connected to INP. OUTP is  
interchangeable with INP.  
OUTP  
9
INP  
RF Phase Input. Connect INP to a coupling capacitor. This pin is interchangeable with OUTP.  
Fine Phase-Slope Control Input 1. See the Typical Application Circuit.  
11  
12  
13  
14  
PFS1  
PFS2  
Fine Phase-Slope Control Input 2. See the Typical Application Circuit.  
PDCS1  
PDCS2  
Digital Coarse Phase-Slope Control Range Input 1. Set to logical zero for the steepest slope.  
Digital Coarse Phase-Slope Control Range Input 2. Set to logical zero for the steepest slope.  
Phase-Control Supply Voltage. Bypass with a 0.01µF capacitor to ground as close to the device as  
15  
V
CCP  
possible. Phase section can operate without V  
.
CCG  
17  
18  
19  
PBIN  
Phase Breakpoint Control Input  
PBEXP  
PBRAW  
Phase Expansion Output. Connect PBEXP to PBRAW to use PBIN as the breakpoint control voltage.  
Uncompensated Phase Breakpoint Input  
Gain-Control Supply Voltage. Bypass with a 0.01µF capacitor to ground as close to the device as  
21  
V
CCG  
possible. Gain section can operate without V  
.
CCP  
23  
24  
25  
27  
EP  
GBP  
GFS  
Gain Breakpoint Control Input  
Fine Gain-Slope Control Input  
GCS  
OUTG  
GND  
Coarse Gain-Slope Control Input  
RF Gain Output. Connect OUTG to a coupling capacitor. OUTG is interchangeable with ING.  
Exposed Ground Paddle. Solder EP to the ground plane.  
phase breakpoints can be set over a 20dB input power  
range. The phase expansion slope is variable from  
Detailed Description  
The MAX2010 adjustable predistorter can provide up to  
12dB of ACPR improvement for high-power amplifiers  
by introducing gain and phase expansion to compen-  
sate for the PAs gain and phase compression. The  
MAX2010 enables real-time software-controlled distor-  
tion correction, as well as set-and-forget tuning through  
the adjustment of the expansion starting point (break-  
point) and the rate of expansion (slope). The gain and  
0.3°/dB to 2.0°/dB and can be adjusted for a maximum  
of 21° of phase expansion. The gain expansion slope is  
variable from 0.1dB/dB to 0.53dB/dB and can be  
adjusted for a maximum of 6dB gain expansion.  
The following sections describe the tuning methodology  
best implemented with a class A amplifier. Other classes  
of operation may require significantly different settings.  
12 ______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
the PFS1 and PFS2 pins perform the task of fine tuning  
the phase expansion slope. Since off-chip varactor  
diodes are recommended for this function, they must  
be closely matched and identically biased. A minimum  
effective capacitance of 2pF to 6pF is required  
to achieve the full phase slope range as specified in  
the Electrical Characteristics tables.  
Phase Expansion Circuitry  
Figure 1 shows a typical PAs phase behavior with  
respect to input power. For input powers less than the  
breakpoint level, the phase remains relatively constant.  
As the input power becomes greater than the break-  
point level, the phase begins to compress and deterio-  
rate the power amplifiers linearity. To compensate for  
this AM-PM distortion, the MAX2010 provides phase  
expansion, which occurs at the same breakpoint level  
but with the opposite slope. The overall result is a flat  
phase response.  
As shown in Figure 2, the varactors connected to PFS1  
and PFS2 are in series with three internal capacitors on  
each pin. By connecting and disconnecting these inter-  
nal capacitors, a larger change in phase expansion  
slope can be achieved through the logic levels present-  
ed at the PDCS1 and PDCS2 pins. The phase expan-  
Phase Expansion Breakpoint  
The phase expansion breakpoint is typically controlled  
by a digital-to-analog converter (DAC) connected  
through the PBIN pin. The PBIN input voltage range of  
sion slope is at its maximum when both V  
PDCS2  
effect on the small-signal gain.  
and  
PDCS1  
V
equal 0V. The phase tuning has a minimal  
0V to V  
corresponds to a breakpoint input power  
CC  
range of 0.7dBm to 23dBm. To achieve optimal perfor-  
mance, the phase expansion breakpoint of the  
MAX2010 must be set to equal the phase compression  
breakpoint of the PA.  
Gain Expansion Circuitry  
In addition to phase compression, the PA also suffers  
from gain compression (AM-AM) distortion, as shown in  
Figure 3. The PA gain curve remains flat for input pow-  
ers below the breakpoint level, and begins to compress  
at a given rate (slope) for input powers greater than the  
breakpoint level. To compensate for such gain com-  
pression, the MAX2010 generates a gain expansion,  
which occurs at the same breakpoint level with the  
opposite slope. The overall result is a flat gain response  
at the PA output.  
Phase Expansion Slope  
The phase expansion slope of the MAX2010 must also  
be adjusted to equal the opposite slope of the PAs  
phase compression curve. The phase expansion slope  
of the MAX2010 is controlled by the PFS1, PFS2, PDCS1,  
and PDCS2 pins. With pins PFS1 and PFS2 AC-coupled  
and connected to a variable capacitor or varactor diode,  
PA PHASE  
COMPRESSION  
MAX2010  
PHASE EXPANSION  
IMPROVED  
PHASE DISTORTION  
BREAKPOINT  
SLOPE  
P
IN  
(dBm)  
P
(dBm)  
P (dBm)  
IN  
IN  
Figure 1. PA Phase Compression Canceled by MAX2010 Phase Expansion  
______________________________________________________________________________________ 13  
500MHz to 1100MHz Adjustable  
RF Predistorter  
PFS1  
PF_S1  
PHASE-CONTROL  
CIRCUITRY  
PFS2  
2
PDCS1  
PDCS2  
SWITCH  
CONTROL  
MAX2010  
Figure 2. Simplified Phase Slope Internal Circuitry  
PA GAIN  
COMPRESSION  
MAX2010  
GAIN EXPANSION  
IMPROVED  
GAIN DISTORTION  
BREAKPOINT  
SLOPE  
P
IN  
(dBm)  
P
(dBm)  
P (dBm)  
IN  
IN  
Figure 3. PA Gain Compression Canceled by MAX2010 Gain Expansion  
14 ______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Gain Expansion Breakpoint  
Applications Information  
The gain expansion breakpoint is usually controlled by  
a DAC connected through the GBP pin. The GBP input  
voltage range of 0.5V to 5V corresponds to a break-  
point input power range of -2.5dBm to 23dBm. To  
achieve the optimal performance, the gain expansion  
breakpoint of the MAX2010 must be set to equal the  
gain compression point of the PA. The GBP control has  
a minimal effect on the small-signal gain when operat-  
ed from 0.5V to 5V.  
The following section describes the tuning methodology  
best implemented with a class A amplifier. Other classes  
of operation may require significantly different settings.  
Gain and Phase Expansion Optimization  
The best approach to improve the ACPR of a PA is to  
first optimize the AM-PM response of the phase sec-  
tion. For most high-frequency LDMOS amplifiers,  
improving the AM-PM response provides the bulk of the  
ACPR improvement. Figure 4 shows a typical configu-  
ration of the phase tuning circuit. A power sweep on a  
network analyzer allows quick real-time tuning of the  
AM-PM response. First, tune PBIN to achieve the phase  
expansion starting point (breakpoint) at the same point  
where the PAs phase compression begins. Next, use  
control pins PF_S1, PDCS1, and PDCS2 to obtain the  
optimal AM-PM response. The typical values for these  
pins are shown in Figure 4.  
Gain Expansion Slope  
In addition to properly setting the breakpoint, the gain  
expansion slope of the MAX2010 must also be adjusted  
to compensate for the PAs gain compression. The  
slope should be set using the following equation:  
PA_SLOPE  
MAX2010_SLOPE =  
1+ PA_SLOPE  
where:  
To further improve the ACPR, connect the phase out-  
put to the gain input through a preamplifier. The pre-  
amplifier is used to compensate for the high insertion  
loss of the gain section. Figure 5 shows a typical appli-  
cation circuit of the MAX2010 with the phase section  
cascaded to the gain section for further ACPR opti-  
mization. Similar to tuning the phase section, first tune  
the gain expansion breakpoint through the GBP pin  
and adjust for the desired gain expansion with pins  
GCS and GFS. To minimize the effect of GCS on the  
parasitic phase response, minimize the control voltage  
to around 1V. Some retuning of the AM-PM response  
may be necessary.  
MAX2010_SLOPE = MAX2010 gain sections slope in  
dB/dB.  
PA_SLOPE = PAs gain slope in dB/dB, a negative  
number for compressive behavior.  
To modify the gain expansion slope, two adjustments  
must be made to the biases applied on pins GCS and  
GFS. Both GCS and GFS have an input voltage range of  
0V to V , corresponding to a slope of approximately  
CC  
0.1dB/dB to 0.53dB/dB. The slope is set to maximum  
when V  
= 0V and V  
= +5V, and the slope is at its  
GCS  
GFS  
= +5V and V  
minimum when V  
= 0V.  
GCS  
GFS  
Unlike the GBP pin, modifying the gain expansion slope  
bias on the GCS pin causes a change in the parts inser-  
tion loss and noise figure. For example, a smaller slope  
caused by GCS results in a better insertion loss and  
lower noise figure. The GFS does not affect the insertion  
loss. It can provide up to -30% or +30% total slope varia-  
tion around the nominal slope set by GCS.  
Layout Considerations  
A properly designed PC board is an essential part of any  
high-frequency circuit. In order to minimize external com-  
ponents, the PC board can be designed to incorporate  
small values of inductance and capacitance to optimize  
the input and output VSWR (refer to the MAX2009/  
MAX2010 EV Kit). The phase sections PFS1 and PFS2  
pins are sensitive to external parasitics. Minimize trace  
lengths and keep varactor diodes close to the pins.  
Remove the ground plane underneath the traces can fur-  
ther help reduce the parasitic capacitance. For best per-  
formance, route the ground pin traces directly to the  
grounded EP underneath the package. Solder the EP on  
the bottom of the device package evenly to the board  
ground plane to provide a heat transfer path along with  
signal grounding.  
Large amounts of GCS bias adjustment can also lead to  
an undesired (or residual) phase expansion/compres-  
sion behavior. There exists an optimal bias voltage that  
minimizes this parasitic behavior (typically GCS = 1.0V).  
Control voltages higher than the optimal result in para-  
sitic phase expansion, lower control voltages result in  
phase compression. GFS does not contribute to the  
phase behavior and is preferred for slope control.  
______________________________________________________________________________________ 15  
500MHz to 1100MHz Adjustable  
RF Predistorter  
POWER  
AMPLIFIER  
P
OUT  
= 7dBm  
3
6
OUTP  
ING  
MAX2010  
PREAMPLIFIER  
9
INP  
OUTG 27  
P
IN  
= 14dBm  
11  
12  
PFS1  
PFS2  
GBP 23  
GFS 24  
V
PF_S1  
= 1.5V  
PHASE  
CONTROL  
GAIN  
CONTROL  
19  
18  
PBRAW  
PBEXP  
PBIN PDCS1 PDCS2  
17 13 14  
GCS  
25  
V
V
V
= 0.8V  
PBIN  
= 0V  
= 5V  
PDCS1  
PDCS2  
Figure 4. AM-PM Response Tuning Circuit  
Power-Supply Bypassing  
Table 1. Suggested Components of  
Typical Application Circuit  
Bypass each V  
pin with a 0.01µF capacitor.  
CC  
Exposed Pad RF  
DESIGNATION  
C1, C2, C3, C10  
C4, C5  
VALUE  
TYPE  
The exposed paddle (EP) of the MAX2010s 28-pin thin  
QFN-EP package provides a low inductance path to  
ground. It is important that the EP be soldered to the  
ground plane on the PC board, either directly or  
through an array of plated via holes.  
100pF 5%  
0402 ceramic capacitors  
0.01µF 10% 0603 ceramic capacitors  
15pF 5% 0402 ceramic capacitors  
C6, C8  
C11, C12  
L1, L2  
2.2pF 0.1pF 0402 ceramic capacitors  
5.6nH 0.3nH 0402 ceramic inductors  
R1, R2  
1k5%  
0402 resistors  
Skyworks  
SMV1232-079 diodes  
Hyperabrupt varactor  
VR1, VR2  
16 ______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
PREAMPLIFIER  
GAIN = 7dB  
6
3
OUTP  
ING  
MAX2010  
POWER  
AMPLIFIER  
PREAMPLIFIER  
9
INP  
OUTG 27  
P
IN  
= 14dBm  
11  
12  
PFS1  
PFS2  
GBP 23  
GFS 24  
V
PF_S1  
= 1.5V  
PHASE  
CONTROL  
GAIN  
CONTROL  
19  
18  
PBRAW  
PBEXP  
PBIN PDCS1 PDCS2  
17 13 14  
GCS  
25  
V
V
V
= 0.8V  
V
GBP  
V
GFS  
V
GCS  
= 1V  
PBIN  
= 0V  
= 5V  
= 1.5V  
= 1V  
PDCS1  
PDCS2  
Figure 5. MAX2010 Phase and Gain Optimization Circuit  
______________________________________________________________________________________ 17  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Typical Application Circuit  
C6  
POWER  
AMPLIFER  
28  
27  
26  
25  
24  
23  
22  
GND*  
GND*  
ING  
V
CCG  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
GAIN  
OPTIONAL MATCH COMPENSATION  
C8  
GND*  
PBRAW  
PBEXP  
PBIN  
C5  
CONTROL  
GND*  
GND*  
OUTP  
GND*  
MAX2010  
CONTROL  
UNIT  
L2  
C10  
GND*  
PHASE  
CONTROL  
V
CCP  
C12  
PREAMPLIFER  
C4  
8
9
10  
11  
12  
13  
14  
C1  
L1  
C3  
C2  
R2  
C11  
PREAMPLIFER  
R1  
*INTERNALLY CONNECTED TO EXPOSED GROUND PADDLE.  
VR1  
VR2  
Chip Information  
TRANSISTOR COUNT:  
Bipolar: 160  
CMOS: 240  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
500MHz to 1100MHz Adjustable  
RF Predistorter  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX2010ETI+TGH7

RF and Baseband Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, QFN-28
MAXIM

MAX2010ETI-T

500MHz to 1100MHz Adjustable RF Predistorter
MAXIM

MAX2010EVKIT

MAX2009/MAX2010 Evaluation Kits
MAXIM

MAX2014

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA

Analog Computational Function, BICMOS, PDSO8
MAXIM

MAX2014ETA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA-T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014_V1

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015

0.1GHz to 2.5GHz, 75dB Logarithmic Detector/Controller
MAXIM