MAX2010EVKIT [MAXIM]

MAX2009/MAX2010 Evaluation Kits; MAX2009 / MAX2010评估套件
MAX2010EVKIT
型号: MAX2010EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

MAX2009/MAX2010 Evaluation Kits
MAX2009 / MAX2010评估套件

文件: 总11页 (文件大小:520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2972; Rev 0; 9/03  
MAX2009/MAX2010 Evaluation Kits  
General Description  
Features  
The MAX2009/MAX2010 evaluation kits (EV kits) simplify  
the evaluation of the MAX2009 and MAX2010. These kits  
are fully assembled and tested at the factory. Standard  
50SMA connectors are included for all inputs and out-  
puts to facilitate evaluation on the test bench.  
Fully Assembled and Tested  
Frequency Range  
1200MHz to 2500MHz (MAX2009)  
500MHz to 1100MHz (MAX2010)  
Up to 12dB ACPR Improvement*  
Independent Adjustable Gain and Phase  
Expansion  
Each EV kit provides a list of equipment required to  
evaluate the device, a test procedure, a circuit  
schematic, a bill of materials (BOM), and artwork for  
each layer of the PC board.  
Low Power Consumption  
*Performance dependent on amplifier, bias, and modulation.  
Component Suppliers  
Ordering Information  
SUPPLIER  
Johnson  
Murata  
PHONE  
WEBSITE  
PART  
TEMP RANGE  
-40 C to +85 C  
-40 C to +85 C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
507-833-8822 www.johnsoncomponents.com  
770-436-1300 www.murata.com  
781-376-3018 www.alphaind.com  
800-745-8656 www.toko.com  
MAX2009EVKIT  
MAX2010EVKIT  
Skyworks  
TOKO  
*EP = Exposed paddle.  
MAX2009 Component List  
MAX2010 Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
8.2pF 0.25pf 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1H8R2C  
100pF 5%, 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1H101J  
C1, C6, C8,  
C1, C2, C3,  
C10  
4
4
2
C10  
1.5pF 0.1pF, 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1H1R5B  
0.01µF 10%, 50V X7R  
ceramic capacitors (0603)  
Murata GRM188R71H103K  
C2, C3  
C4, C5  
2
2
C4, C5  
C6, C8  
0.01µF 10%, 50V X7R  
ceramic capacitors (0603)  
Murata GRM188R71H103K  
15pF 5%, 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1H150J  
2
0.5pF 0.1pF, 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1HR50B  
C7, C9  
0
2
Not installed  
C7, C9  
C11, C12  
2
0
4
2.2pF 0.1pF, 50V C0G  
ceramic capacitors (0402)  
Murata GRP1555C1H2R2B  
C11, C12  
Not installed  
PC board edge mount SMA RF  
connectors (flat-tab launch)  
Johnson 142-0741-856  
PC board edge-mount SMA RF  
connectors (flat-tab launch)  
Johnson 142-0741-856  
J1, J2, J3, J4  
J1, J2, J3, J4  
J5  
4
1
2
2 x 10 header, 0.100in centers  
Molex 10-89-1201  
J5  
R1, R2, R3  
U1  
1
3
1
2 x 10 header, 0.100in centers  
Molex 10-89-1201  
1k5% resistors (0402)  
5.6nH 0.3nH  
chip inductors (0402)  
TOKO LL1005-FH5N6S  
MAX2009 28-pin thin QFN-EP  
Maxim MAX2009ETI-T  
L1, L2  
R1, R2, R3  
U1  
3
1
1k5% resistors (0402)  
Hyperabrupt varactor diodes  
Skyworks SMV1232-079  
VR1, VR2  
2
MAX2010 28-pin thin QFN-EP  
Maxim MAX2010ETI-T  
Hyperabrupt varactor diodes  
Skyworks SMV1232-079  
VR1, VR2  
2
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX2009/MAX2010 Evaluation Kits  
4) With all adjustable power supplies disabled, set  
Quick Start  
The MAX2009/MAX2010 EV kits are fully assembled and  
factory tested. Follow the instructions in the Connections  
and Setup section for proper device evaluation.  
their voltages to the recommended values in Table  
1. Connect these supplies to PB_IN, PD_CS1,  
PD_CS2, and PF_S1*. Connect all ground terminals  
to the header pins labeled GND.  
Test Equipment Required  
This section lists the recommended test equipment to  
verify the operation of the MAX2009/MAX2010. It is  
intended as a guide only, and substitutions may be  
possible:  
5) Enable the +5V (VCC_P) power supply first, fol-  
lowed by the adjustable supplies.  
6) Enable the output power on the network analyzer.  
7) With the recommended settings, the AM-PM  
response of the phase section should provide a  
phase expansion breakpoint of approximately  
4dBm and a slope of approximately 1.2°/dB.  
• Two DC power supplies capable of delivering +5V  
and 20mA of continuous current  
• Four adjustable DC power supplies capable of deliv-  
ering +5V and 5mA of continuous current  
8) To power down: First disable the network analyzer,  
preamplifier, adjustable supplies, and then the +5V  
(VCC_P) supply.  
• One high-current power supply capable of biasing a  
preamplifier  
Table 1. Phase Section Control Voltages  
• One HP 8753D or equivalent network analyzer  
• One preamplifier with a gain of 25dB in the 500MHz  
to 1100MHz (MAX2010) or 1200MHz to 2500MHz  
(MAX2009) frequency range with a minimum output  
1dB compression point of 38dBm  
PIN (J5)  
PB_IN  
VOLTAGE (V)  
0
0
0
5
PD_CS1  
PD_CS2  
PF_S1*  
• One 6dB attenuator  
• One 3dB high-power attenuator  
• Two 6dB high-power attenuators  
*Note: PF_S1 is shorted to PF_S2 on layer 4 of the PC board.  
Testing the Gain Section—Figure 2  
1) With the network analyzer’s output power disabled,  
connect the output attenuator pad of the preamplifi-  
er to the SMA labeled GAIN_IN (J3).  
Connections and Setup  
Test Set Calibration  
1) Set up the test equipment per Figure 1 with the net-  
work analyzer output power disabled.  
2) Connect the SMA labeled GAIN_OUT (J4) to the  
attenuator pad on port 2 of the network analyzer.  
2) Enable the preamplifier.  
3) Set the network analyzer to perform a power sweep  
from -20dBm to +8dBm at the frequency of interest  
and enable the output power. For the best results,  
perform the standard network analyzer calibration  
with everything except the MAX2009/MAX2010 EV kit.  
3) With the +5V supply disabled, connect the positive  
terminal to the header pin labeled VCC_G. Connect  
the ground terminal to a header pin labeled GND.  
4) With all adjustable power supplies disabled, set  
their voltages to the recommended values in Table  
2. Connect these supplies to G_BP, G_FS, and  
G_CS. Connect all ground terminals to the header  
pins labeled GND.  
4) After the calibration, leave the preamplifier connect-  
ed to port 1 of the network analyzer.  
Testing the Phase Section—Figure 1  
1) With the network analyzer’s power disabled, con-  
nect the output attenuator pad of the preamplifier to  
the SMA labeled PHASE_IN (J1).  
5) Enable the +5V (VCC_G) power supply first, fol-  
lowed by the adjustable supplies.  
6) Enable the output power on the network analyzer.  
2) Connect the SMA labeled PHASE_OUT (J2) to the  
attenuator pad on port 2 of the network analyzer.  
7) With the recommended settings, the AM-AM  
response of the gain section should provide a gain  
expansion breakpoint of approximately 5dBm and a  
slope of approximately 0.5dB/dB.  
3) With the +5V supply disabled, connect the positive  
terminal to the header pin labeled VCC_P. Connect  
the ground terminal to a header pin labeled GND.  
8) To power down: First disable the network analyzer,  
preamplifier, adjustable supplies, and then the +5V  
(VCC_G) supply.  
2
_______________________________________________________________________________________  
MAX2009/MAX2010 Evaluation Kits  
Control pin PBRAW should be shorted to the PBEXP  
Table 2. Gain Section Control Voltages  
output pin for most applications. Driving PBRAW direct-  
ly allows for additional control such as obtaining phase  
compression for some and/or all the input power  
sweep. Resistor R3 allows the option of driving PBRAW  
with a low-impedance voltage, which overrides the  
PBEXP output voltage.  
PIN (J5)  
G_BP  
VOLTAGE (V)  
1.2  
5
G_FS  
G_CS  
1.0  
Phase-Expansion Slope  
The phase-expansion slope of the MAX2009/MAX2010 is  
controlled by the PF_S1, PF_S2, PD_CS1, and PD_CS2  
pins. Most applications require PF_S1 and PF_S2 to be  
driven identically, and therefore they are shorted on layer  
4 of the PC board. The phase-expansion slope of the  
MAX2009/MAX2010 must also be adjusted to equal the  
opposite slope of the PAs phase-compression curve.  
Detailed Description  
The following sections describe the tuning methodology  
best implemented with a class A amplifier. Other classes  
of operation may require significantly different settings.  
Supply Decoupling Capacitors  
Capacitors C4 and C5 are 0.01µF ( 10ꢀ% and are used  
for minimizing low-frequency noise on the supply.  
Gain-Expansion Breakpoint  
The G_BP input voltage range of 0.5V to 5.0V  
corresponds to a breakpoint input power range of -3dBm  
to 23dBm. In order to achieve the optimal performance,  
the gain-expansion breakpoint of the MAX2009/  
MAX2010 must be set to equal the gain-  
compression point of the PA. The G_BP control has a  
minimal effect on the small-signal gain when operated  
from 0.5V to 5.0V.  
External Matching Components  
The MAX2009 external matching networks at the input  
and output of the phase and gain sections consist of  
C1, C11, C10, C12, C9, C8, C6, C7, along with some  
high-impedance transmission lines. The MAX2010  
matching consists of C1, C11, L1, L2, C10, C12, C9, C8,  
C6, and C7.  
Phase-Tuning Section  
Varactors VR1 and VR2 provide fine tuning of the  
phase-expansion slope. Resistors R1 and R2 provide a  
high-impedance method to inject control voltage on the  
varactors. Capacitors C2 and C3 are coupling capaci-  
tors that also offset the series parasitic inductance of  
the chip and PC board. If phase-slope fine tuning is not  
required in the users application, then only C2 and C3  
to ground are necessary.  
Gain-Expansion Slope  
Both G_CS and G_FS pins have an input voltage range  
of 0V to V , corresponding to a slope of approximately  
CC  
0.1dB/dB to 0.6dB/dB. The slope is set to maximum  
when V  
= 0V and V  
= +5V, and the slope is at  
GFS  
GCS  
its minimum when V  
= +5V and V  
= 0V. In addi-  
GCS  
GFS  
tion to properly setting the breakpoint, the gain-expan-  
sion slope of the MAX2009/MAX2010 must also be  
adjusted in order to compensate for the PAs gain com-  
pression. The slope should be set using the following  
equation:  
Gain and Phase Controls  
The MAX2009/MAX2010 controls can provide real-time  
software-controlled distortion corrections as well as set-  
and-forget tuning by setting the expansion starting  
point (breakpoint% and the rate of expansion (slope%.  
The gain and phase breakpoints are adjustable over a  
20dB input power range. The phase expansion slope is  
variable from 0.3°/dB to 2.0°/dB and can be adjusted  
for a maximum of 24° of phase expansion. The gain  
expansion slope is variable from 0.1dB/dB to 0.6dB/dB  
and can be adjusted for a maximum of 7dB gain  
expansion.  
PA_SLOPE  
1 + PA_SLOPE  
MAX20XX_SLOPE =  
where:  
MAX20XX_SLOPE = MAX2009/MAX2010 gain sections  
slope in dB/dB.  
PA_SLOPE = PAs gain slope in dB/dB, a negative  
number for compressive behavior.  
Phase-Expansion Breakpoint  
The PB_IN input voltage range of 0V to V  
corre-  
CC  
Unlike with the G_BP pin, modifying the gain-expansion  
slope bias on the G_CS pin causes a change in the  
parts insertion loss and noise figure. For example, a  
smaller slope caused by G_CS results in a better inser-  
tion loss and lower noise figure.  
sponds to a breakpoint input power range of 3.7dBm to  
23dBm. In order to achieve optimal performance, the  
phase-expansion breakpoint of the MAX2009/  
MAX2010 must be set to equal the phase compression  
point of the PA.  
_______________________________________________________________________________________  
3
MAX2009/MAX2010 Evaluation Kits  
placement of components on the PC board. The pack-  
Modifying the EV Kit  
ages exposed paddle (EP% dissipates heat from the  
device and provides a low-impedance electrical con-  
nection. The EP must be solder attached to a PC board  
ground pad. This ground pad should be connected to  
the lower ground plane using multiple ground vias. The  
MAX2009/MAX2010 PC boards use a 3 x 3 grid of  
0.012in diameter plated through holes. The MAX2009  
layout uses high-impedance lines on the input and out-  
put paths of the gain section to aid in matching. In an  
actual application, matching capacitors C7, C9, C11,  
and C12 could be replaced with a microstrip equivalent  
solution to reduce component count. In order to pro-  
vide increased tuning range, the ground plane under  
the varactor control section has been removed. The  
MAX2009/MAX2010 EV kits are constructed on FR4  
with the top dielectric thickness of 0.015in.  
The external varactors on the EV kit can be replaced with  
fixed capacitors if dynamic tuning of the fine phase-  
expansion slope through PF_S1 and PF_S2 is not  
required. A closely matched minimum effective capaci-  
tance of 2pF to 6pF must be presented at these pins.  
Component pads for external filtering components are  
included for pins PB_IN, PB_RAW, G_BP, G_CS, and  
G_FS.  
Pins PF_S1 and PF_S2 are shorted together on the EV  
kit. If independent control is required, disconnect the  
trace connecting these two pins on the bottom side of  
the PC board (pins 19 and 20 of J5%.  
Layout Considerations  
The MAX2009/MAX2010 EV kits can serve as guides to  
board layout. Pay close attention to thermal design and  
NETWORK ANALYZER  
(AG 8753E)  
+5V POWER SUPPLY  
(AG E3631A)  
S21 5 / Ref180  
V
mA  
6dB HIGH POWER  
MARKER 1  
160°  
6dB HIGH POWER  
START -20.0 dBm STOP 8.0 dBm  
J2  
U1  
PHASE_OUT  
+5V POWER SUPPLY  
(AG E3631A)  
MAX2009/  
MAX2010  
V
mA  
J1  
PHASE_IN  
3dB  
6dB  
HIGH  
VCC  
GND  
POWER  
+5V POWER SUPPLY  
(AG E3631A)  
1
2
V
mA  
J5  
20  
Figure 1. Testing the Phase Section  
4
_______________________________________________________________________________________  
MAX2009/MAX2010 Evaluation Kits  
+5V POWER SUPPLY  
(AG E3631A)  
V
mA  
VCC  
GND  
NETWORK ANALYZER  
(AG 8753E)  
3dB HIGH POWER  
S21 2 / Ref-7  
MARKER 1  
-13dB  
J3  
GAIN_IN  
START -20.0 dBm STOP 8.0 dBm  
U1  
+5V POWER SUPPLY  
(AG E3631A)  
MAX2009/  
MAX2010  
V
mA  
6dB  
6dB HIGH POWER  
J4  
GAIN_OUT  
6dB HIGH POWER  
+5V POWER SUPPLY  
(AG E3631A)  
1
V
mA  
J5  
20  
2
Figure 2. Testing the Gain Section  
_______________________________________________________________________________________  
5
MAX2009/MAX2010 Evaluation Kits  
W = 10 mil  
L = 160 mil C6  
J4  
GAIN_OUT  
C7  
28  
27  
26  
25  
24  
23  
22  
J5  
V
GND*  
GND*  
ING  
G_CS  
G_FS  
CCG  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
1
2
C5  
GND*  
PBRAW  
PBEXP  
PBIN  
W = 10 mil  
G_BP  
L = 160 mil C8  
J3  
VCC_G  
PB_RAW  
PB_IN  
U1  
GAIN_IN  
R3  
C9  
GND*  
GND*  
OUTP  
GND*  
MAX2009  
VCC_P  
PD_CS2  
PD_CS1  
PF_S2  
C10  
GND*  
J2  
PHASE_OUT  
EXPOSED  
PADDLE  
C12  
V
CCP  
C4  
20  
8
9
10  
11  
12  
13  
14  
PF_S1  
C1  
J1  
C2  
C3  
PHASE_IN  
R2  
C11  
R1  
VR1  
VR2  
*INTERNALLY CONNECTED TO EXPOSED PADDLE.  
PC BOARD DIELECTRIC FR4.  
RF LAYER DIELECTRIC THICKNESS = 15 mils.  
Figure 3. MAX2009 EV Kit Schematic  
6
_______________________________________________________________________________________  
MAX2009/MAX2010 Evaluation Kits  
C6  
J4  
GAIN_OUT  
C7  
28  
27  
26  
25  
24  
23  
22  
J5  
V
GND*  
GND*  
ING  
G_CS  
G_FS  
CCG  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
1
2
C5  
GND*  
PBRAW  
PBEXP  
PBIN  
G_BP  
C8  
J3  
VCC_G  
PB_RAW  
PB_IN  
U1  
GAIN_IN  
R3  
C9  
GND*  
GND*  
OUTP  
GND*  
MAX2010  
VCC_P  
PD_CS2  
PD_CS1  
PF_S2  
C10  
L2  
GND*  
J2  
PHASE_OUT  
EXPOSED  
PADDLE  
C12  
V
CCP  
C4  
20  
8
9
10  
11  
12  
13  
14  
PF_S1  
C1  
L1  
J1  
C2  
C3  
PHASE_IN  
R2  
C11  
R1  
VR1  
VR2  
*INTERNALLY CONNECTED TO EXPOSED PADDLE.  
PC BOARD DIELECTRIC FR4.  
RF LAYER DIELECTRIC THICKNESS = 15 mils.  
Figure 4. MAX2010 EV Kit Schematic  
_______________________________________________________________________________________  
7
MAX2009/MAX2010 Evaluation Kits  
1.0"  
1.0"  
Figure 5. MAX2009 EV Kit PC Board Layout—Top Silkscreen  
Figure 6. MAX2009 EV Kit PC Board Layout—Top Soldermask  
1.0"  
1.0"  
Figure 7. MAX2009 EV Kit PC Board Layout—Top Layer Metal  
Figure 8. MAX2009 EV Kit PC Board Layout—Inner Layer 2  
(GND)  
8
_______________________________________________________________________________________  
MAX2009/MAX2010 Evaluation Kits  
1.0"  
1.0"  
Figure 9. MAX2009 EV Kit PC Board Layout—Inner Layer 3  
(Routes)  
Figure 10. MAX2009 EV Kit PC Board Layout—Bottom Layer  
Metal  
1.0"  
1.0"  
Figure 11. MAX2009 EV Kit PC Board Layout—Bottom  
Soldermask  
Figure 12. MAX2009 EV Kit PC Board Layout—Bottom  
Silkscreen  
_______________________________________________________________________________________  
9
MAX2009/MAX2010 Evaluation Kits  
1.0"  
1.0"  
Figure 13. MAX2010 EV Kit PC Board Layout—Top Silkscreen  
Figure 14. MAX2010 EV Kit PC Board Layout—Top Soldermask  
1.0"  
1.0"  
Figure 15. MAX2010 EV Kit PC Board Layout—Top Layer Metal  
Figure 16. MAX2010 EV Kit PC Board Layout—Inner Layer 2  
(GND)  
10 ______________________________________________________________________________________  
MAX2009/MAX2010 Evaluation Kits  
1.0"  
1.0"  
Figure 17. MAX2010 EV Kit PC Board Layout—Inner Layer 3  
(Routes)  
Figure 18. MAX2010 EV Kit PC Board Layout—Bottom Layer  
Metal  
1.0"  
1.0"  
Figure 19. MAX2010 EV Kit PC Board Layout—Bottom  
Soldermask  
Figure 20. MAX2010 EV Kit PC Board Layout—Bottom  
Silkscreen  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX2014

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA

Analog Computational Function, BICMOS, PDSO8
MAXIM

MAX2014ETA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA-T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014_V1

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015

0.1GHz to 2.5GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EUA

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EUA-T

0.1GHz to 2.5GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EVKIT

Evaluation Kit for the MAX2015
MAXIM