MAX2014 [MAXIM]

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller; 50MHz至1000MHz , 75分贝对数检测器/控制器
MAX2014
型号: MAX2014
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
50MHz至1000MHz , 75分贝对数检测器/控制器

控制器
文件: 总10页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0583; Rev 0; 6/06  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
General Description  
Features  
The MAX2014 complete multistage logarithmic amplifier is  
designed to accurately convert radio-frequency (RF) sig-  
nal power in the 50MHz to 1000MHz frequency range to  
an equivalent DC voltage. The outstanding dynamic range  
and precision over temperature of this log amplifier make it  
particularly useful for a variety of base-station and other  
wireless applications, including automatic gain control  
(AGC), transmitter power measurements, and received-  
signal-strength indication (RSSI) for terminal devices.  
Complete RF Detector/Controller  
50MHz to 1000MHz Frequency Range  
Exceptional Accuracy Over Temperature  
High Dynamic Range  
2.7V to 5.25V Supply Voltage Range*  
Scaling Stable Over Supply and Temperature  
Variations  
The MAX2014 can also be operated in a controller  
mode where it measures, compares, and controls the  
output power of a variable-gain amplifier as part of a  
fully integrated AGC loop.  
Controller Mode with Error Output  
Shutdown Mode with Typically 1µA of Supply  
Current  
Available in 8-Pin TDFN Package  
This logarithmic amplifier provides much wider mea-  
surement range and superior accuracy compared to  
controllers based on diode detectors, while achieving  
excellent temperature stability over the full -40°C to  
+85°C operating range.  
*See the Power-Supply Connections section.  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
Applications  
AGC Measurement and Control  
RF Transmitter Power Measurement  
RSSI Measurements  
8 TDFN-EP*  
(3mm x 3mm)  
MAX2014ETA-T  
-40°C to +85°C  
T833-2  
T833-2  
8 TDFN-EP*  
(3mm x 3mm)  
MAX2014ETA+T -40°C to +85°C  
Cellular Base-Station, WLAN, Microwave Link,  
Radar, and other Military Applications  
+Denotes lead-free package.  
T = Tape-and-reel package.  
*EP = Exposed paddle.  
Optical Networks  
Functional Diagram  
V
CC  
1, 4  
POWER DETECTORS  
Σ
Σ
Σ
8
2
3
OUT  
INHI  
INLO  
7
50Ω  
7dB  
7dB  
7dB  
SET  
20kΩ  
20kΩ  
5
OFFSET AND COMMON-  
MODE AMP  
PWDN  
MAX2014  
6
GND  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
ABSOLUTE MAXIMUM RATINGS  
CC  
SET, PWDN to GND....................................-0.3V to (V  
Input Power Differential INHI, INLO................................+23dBm  
Input Power Single Ended (INHI or INLO grounded).....+19dBm  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin TDFN (derate 18.5mW/°C above +70°C) .........1480mW  
V
(Pins 1, 4) to GND........................................-0.3V to +5.25V  
θ
θ
(without airflow)..........................................................54°C/W  
(junction to exposed paddle) ...................................8.3°C/W  
JA  
JC  
+ 0.3V)  
CC  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(MAX2014 Typical Application Circuit (Figure 1), V = +3.3V, f = 50MHz to 1000MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ, T = -40°C to  
S
RF  
L
A
+85°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R4 = 75Ω 1ꢀ, PWDN must be  
connected to GND  
4.75  
2.7  
5.25  
3.6  
Supply Voltage  
Supply Current  
V
S
V
R4 = 0Ω  
T
= +25°C, V = 5.25V,  
S
A
17.3  
R4 = 75Ω  
I
mA  
CC  
T
T
= +25°C  
17.3  
0.05  
1
20.5  
A
Supply Current Variation with Temp  
Shutdown Current  
I
I
= -40°C to +85°C  
mA/°C  
µA  
CC  
A
V
= V  
CC  
CC  
PWDN  
CONTROLLER REFERENCE (SET)  
SET Input Voltage Range  
SET Input Impedance  
0.5 to 1.8  
40  
V
kΩ  
DETECTOR OUTPUT (OUT)  
Source Current  
4
mA  
µA  
V
Sink Current  
450  
0.5  
1.8  
Minimum Output Voltage  
Maximum Output Voltage  
V
OUT(MIN)  
V
V
OUT(MAX)  
AC ELECTRICAL CHARACTERISTICS  
(MAX2014 Typical Application Circuit (Figure 1), V = +3.3V, f = 50MHz to 1000MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ, T = -40°C to  
S
RF  
L
A
+85°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
RF Input Frequency Range  
Return Loss  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dB  
f
50 to 1000  
-15  
RF  
S
11  
P
= no signal to 0dBm,  
0.5dB settling accuracy  
IN  
Large-Signal Response Time  
150  
ns  
RSSI MODE—50MHz  
RF Input Power Range  
3dB Dynamic Range  
Range Center  
(Note 2)  
= -40°C to +85°C (Note 3)  
-65 to +5  
70  
dBm  
dB  
T
A
-30  
dBm  
2
_______________________________________________________________________________________  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2014 Typical Application Circuit (Figure 1), V = +3.3V, f = 50MHz to 1000MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ, T = -40°C to  
S
RF  
L
A
+85°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
Temp Sensitivity when T > +25°C  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
P
= +25°C to +85°C,  
= -25dBm  
A
+0.0083  
-0.0154  
dB/°C  
A
IN  
T
A
= -40°C to +25°C,  
= -25dBm  
Temp Sensitivity when T < +25°C  
A
dB/°C  
P
IN  
Slope  
(Note 4)  
T = -40°C to +85°C  
A
19  
-4  
mV/dB  
µV/°C  
Typical Slope Variation  
Intercept  
(Note 5)  
= -40°C to +85°C  
-100  
0.03  
dBm  
Typical Intercept Variation  
RSSI MODE—100MHz  
RF Input Power Range  
3dB Dynamic Range  
Range Center  
T
A
dBm/°C  
(Note 2)  
-65 to +5  
70  
dBm  
dB  
T
= -40°C to +85°C (Note 3)  
A
-30  
dBm  
T
P
= +25°C to +85°C,  
A
Temp Sensitivity when T > +25°C  
+0.0083  
-0.0154  
dB/°C  
dB/°C  
A
= -25dBm  
IN  
T
A
= -40°C to +25°C,  
Temp Sensitivity when T < +25°C  
A
P
= -25dBm  
IN  
Slope  
(Note 4)  
T = -40°C to +85°C  
A
19  
-4  
mV/dB  
µV/°C  
Typical Slope Variation  
Intercept  
(Note 5)  
= -40°C to +85°C  
-100  
0.03  
dBm  
Typical Intercept Variation  
RSSI MODE—900MHz  
RF Input Power Range  
3dB Dynamic Range  
Range Center  
T
A
dBm/°C  
(Note 2)  
-65 to +5  
70  
dBm  
dB  
T
= -40°C to +85°C (Note 3)  
A
-30  
dBm  
T
P
= +25°C to +85°C,  
A
Temp Sensitivity when T > +25°C  
0.0083  
dB/°C  
dB/°C  
A
= -25dBm  
IN  
T
A
= -40°C to +25°C,  
Temp Sensitivity when T < +25°C  
A
-0.0154  
P
= -25dBm  
IN  
Slope  
(Note 4)  
T = -40°C to +85°C  
A
18.1  
-4  
mV/dB  
µV/°C  
Typical Slope Variation  
Intercept  
(Note 5)  
= -40°C to +85°C  
-97  
0.02  
dBm  
Typical Intercept Variation  
T
A
dBm/°C  
Note 1: The MAX2014 is guaranteed by design for T = -40°C to +85°C, as specified.  
A
Note 2: Typical minimum and maximum range of the detector at the stated frequency.  
Note 3: Dynamic range refers to the range over which the error remains within the stated bounds. The error is calculated at T = -40°C  
A
and +85°C, relative to the curve at T = +25°C.  
A
Note 4: The slope is the variation of the output voltage per change in input power. It is calculated by fitting a root-mean-square  
(RMS) straight line to the data indicated by RF input power range.  
Note 5: The intercept is an extrapolated value that corresponds to the output power for which the output voltage is zero.  
It is calculated by fitting an RMS straight line to the data.  
_______________________________________________________________________________________  
3
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Typical Operating Characteristics  
(MAX2014 Typical Application Circuit (Figure 1), V = V  
= 3.3V, P = -10dBm, f = 100MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ,  
S
CC  
IN  
IN  
L
V
= 0V, T = +25°C, unless otherwise noted.)  
PWDN  
A
OUTPUT VOLTAGE vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3
f
= 50MHz, T = +85°C  
A
f
= 50MHz  
IN  
IN  
f
= 50MHz  
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
2
1
V
= 3.6V  
CC  
T
= +85°C  
A
1
T
= -20°C  
A
0
0
V
= 2.7V  
CC  
T
= +85°C  
A
-1  
-2  
-3  
-1  
-2  
-3  
V
= 3.3V  
CC  
T
= -40°C  
A
T
= -40°C  
A
V
= 3.0V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
OUTPUT VOLTAGE vs. INPUT POWER  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
f
= 100MHz  
f
= 100MHz  
IN  
IN  
f
= 50MHz, T = -40°C  
A
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
2
T
= +85°C  
A
1
1
V
= 3.0V  
CC  
V
= 2.7V  
CC  
0
0
T = -20°C  
A
T
= +85°C  
A
-1  
-2  
-3  
-1  
-2  
-3  
T
= -40°C  
A
V
= 3.3V  
T
= -40°C  
CC  
A
V
= 3.6V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
2
1
0
3
f
= 100MHz, T = -40°C  
A
f
= 100MHz, T = +85°C  
A
IN  
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
V
= 3.6V  
CC  
1
V
= 2.7V, 3.0V  
CC  
0
V
= 2.7V  
CC  
V
= 3.0V  
CC  
-1  
-2  
-3  
-1  
-2  
-3  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
V
= 3.6V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
4
_______________________________________________________________________________________  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Typical Operating Characteristics (continued)  
(MAX2014 Typical Application Circuit (Figure 1), V = V  
= 3.3V, P = -10dBm, f = 100MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ,  
S
CC  
IN  
IN  
L
V
= 0V, T = +25°C, unless otherwise noted.)  
PWDN  
A
OUTPUT VOLTAGE vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3
3
f
= 450MHz  
IN  
f
= 450MHz  
f = 450MHz, T = +85°C  
IN A  
NORMALIZED TO DATA AT +25°C  
IN  
NORMALIZED TO DATA AT +25°C  
2
1
2
T
= +85°C  
A
V
CC  
= 3.6V  
1
T
= -20°C  
A
0
0
V
= 2.7V  
CC  
T
= +85°C  
A
V
= 3.0V  
CC  
-1  
-2  
-3  
-1  
-2  
-3  
T
= -40°C  
V
= 3.3V  
A
CC  
T
= -40°C  
A
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3
f
= 450MHz, T = -40°C  
A
IN  
f
= 900MHz  
IN  
NORMALIZED TO DATA AT +25°C  
2
1
V
= 2.7V  
CC  
0
-1  
-2  
-3  
T
= +85°C  
A
T
= -40°C  
A
V
= 3.3V  
CC  
V
= 3.0V  
CC  
V
= 3.6V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
3
f
= 900MHz, T = +85°C  
A
f
= 900MHz  
IN  
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
2
1
T
= +85°C  
A
V
= 3.6V  
CC  
1
T
= -20°C  
A
0
0
V
= 2.7V  
CC  
V
= 3.3V  
CC  
-1  
-2  
-3  
-1  
-2  
-3  
V
= 3.0V  
CC  
T
= -40°C  
A
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
_______________________________________________________________________________________  
5
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Typical Operating Characteristics (continued)  
(MAX2014 Typical Application Circuit (Figure 1), V = V  
= 3.3V, P = -10dBm, f = 100MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ,  
S
CC  
IN  
IN  
L
V
= 0V, T = +25°C, unless otherwise noted.)  
PWDN  
A
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
2
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3
f
= 900MHz, T = -40°C  
A
IN  
f
= 1GHz  
IN  
f
= 1GHz  
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
T
= +85°C  
A
1
1
V
= 2.7V  
CC  
0
0
T
= -20°C  
A
T
= +85°C  
A
-1  
-2  
-3  
-1  
-2  
-3  
T
= -40°C  
A
V
= 3.3V  
CC  
T
= -40°C  
A
V
= 3.0V  
CC  
V
= 3.6V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
OUTPUT VOLTAGE ERROR vs. INPUT POWER  
3
3
f
= 1GHz, T = +85°C  
A
IN  
f
= 1GHz, T = -40°C  
A
IN  
NORMALIZED TO DATA AT +25°C  
NORMALIZED TO DATA AT +25°C  
2
2
V
= 3.6V  
CC  
1
1
V
= 2.7V  
= 3.0V  
CC  
0
0
V
= 2.7V  
CC  
-1  
-2  
-3  
-1  
-2  
-3  
V
= 3.0V  
V
= 3.3V  
CC  
CC  
V
= 3.3V  
CC  
V
CC  
V
= 3.6V  
CC  
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
-80 -70 -60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
OUTPUT VOLTAGE vs. FREQUENCY  
OUTPUT VOLTAGE vs. FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T = +25°C, +85°C  
A
P
P
P
= +5dBm  
= -5dBm  
= -15dBm  
IN  
IN  
IN  
P
= -10dBm  
= -30dBm  
IN  
T
= -40°C  
A
P
P
= -25dBm  
= -35dBm  
IN  
IN  
P
IN  
P
P
= -45dBm  
= -55dBm  
IN  
IN  
P
= -45dBm  
= -60dBm  
IN  
T
= +85°C  
A
P
IN  
P
= -65dBm  
IN  
T
= +25°C  
T
= -40°C  
A
A
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
FREQUENCY INPUT (MHz)  
FREQUENCY INPUT (MHz)  
6
_______________________________________________________________________________________  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Typical Operating Characteristics (continued)  
(MAX2014 Typical Application Circuit (Figure 1), V = V  
= 3.3V, P = -10dBm, f = 100MHz, R1 = 0Ω, R4 = 0Ω, R = 10kΩ,  
IN IN L  
S
CC  
V
= 0V, T = +25°C, unless otherwise noted.)  
PWDN  
A
OUTPUT VOLTAGE vs. FREQUENCY  
RF PULSE RESPONSE  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.6V  
f
= 100MHz  
CC  
IN  
V
OUT  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
P
= -10dBm  
IN  
V
= 2.7V  
CC  
RFIN  
(AC-COUPLED)  
P
IN  
P
IN  
P
IN  
= -30dBm  
= -45dBm  
= -60dBm  
-0.5  
-1.0  
V
= 2.7V, 3.3V, 3.6V  
CC  
0
200  
400  
600  
800  
1000  
TIME (50ns/div)  
FREQUENCY INPUT (MHz)  
S11 MAGNITUDE  
S11 MAGNITUDE  
-10.0  
-12.5  
-15.0  
-17.5  
-20.0  
-22.5  
-25.0  
-10.0  
-12.5  
-15.0  
-17.5  
-20.0  
-22.5  
-25.0  
T
= -20°C  
A
T
A
= -40°C  
A
V
= 2.7V, 3.0V, 3.3V, 3.6V  
CC  
T
= +25°C  
T
= +85°C  
A
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Pin Description  
PIN  
1, 4  
2, 3  
5
NAME  
DESCRIPTION  
Supply Voltage. Bypass with capacitors as specified in the typical application circuits. Place capacitors  
as close to the pin as possible (see the Power-Supply Connections section).  
V
CC  
INHI, INLO Differential RF Inputs  
Power-Down Input. Drive PWDN with a logic-high to power down the IC. PWDN must be connected to  
GND for V between 4.75V and 5.25V with R4 = 75Ω.  
PWDN  
GND  
SET  
S
6
Ground. Connect to the printed circuit (PC) board ground plane.  
Set-Point Input. To operate in detector mode, connect SET to OUT. To operate in controller mode,  
connect a precision voltage source to control the power level of a power amplifier.  
7
Detector Output. In detector mode, this output provides a voltage proportional to the log of the input  
power. In controller mode, this output is connected to a power-control input on a power amplifier (PA).  
8
OUT  
EP  
Exposed Paddle. Connect EP to GND using multiple vias, or the EP can also be left unconnected.  
_______________________________________________________________________________________  
7
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Detailed Description  
Applications Information  
The MAX2014 is a successive detection logarithmic  
amplifier designed for use in RF power measurement  
and AGC applications with a 50MHz to 1000MHz  
frequency range from a single 2.7V to 3.6V power  
supply. It is pin compatible with other leading logarith-  
mic amplifiers.  
Detector (RSSI) Mode  
In detector mode, the MAX2014 acts like an RSSI,  
which provides an output voltage proportional to the  
input power. This is accomplished by providing a feed-  
back path from OUT to SET (R1 = 0Ω; see Figure 1).  
By connecting SET directly to OUT, the op amp gain is  
set to 2V/V due to two internal 20kΩ feedback resistors.  
This provides a detector slope of approximately  
18mV/dB with a 0.5V to 1.8V output range.  
The MAX2014 provides for improved performance with  
a high 75dB dynamic range at 100MHz, and exception-  
al accuracy over the extended temperature range and  
supply voltage range.  
V
S
RF Input  
The MAX2014 differential RF input (INHI, INLO) allows  
for broadband signals between 50MHz and 1000MHz.  
For single-ended signals, AC-couple INLO to ground.  
The RF inputs are internally biased and need to be AC-  
coupled using 680pF capacitors as shown in Figures 1  
and 2. An internal 50Ω resistor between INHI and INLO  
provides a good 50MHz to 1000MHz match.  
R4  
C6  
1
2
V
CC  
C5  
DETECTORS  
8
7
OUT  
SET  
OUT  
C1  
INHI  
20kΩ  
RFIN  
SET Input  
The SET input is used for loop control when in controller  
mode or to set the slope of the output signal (mV/dB)  
when in detector mode. The internal input structure of  
SET is two series 20kΩ resistors connected to ground.  
The center node of the resistors is fed to the negative  
input of the internal output op amp.  
R1  
20kΩ  
C2  
INLO  
3
4
6
5
GND  
V
CC  
PWDN  
MAX2014  
C4  
C3  
Power-Supply Connections  
The MAX2014 requires power-supply bypass capacitors  
connected close to each V  
pin. At each V  
pin,  
CC  
Figure 1. Detector-Mode (RSSI) Typical Application Circuit  
CC  
connect a 0.1µF capacitor (C4, C6) and a 100pF capac-  
itor (C3, C5), with the 100pF capacitor being closest to  
the pin.  
Table 1. Suggested Components of  
Typical Applications Circuits  
For power-supply voltages (V ) between 2.7V and 3.6V,  
S
set R4 = 0Ω (see the typical application circuits, Figures  
DESIGNATION  
C1, C2  
C3, C5  
C4, C6  
R1*  
VALUE  
680pF  
100pF  
0.1µF  
0Ω  
TYPE  
1 and 2 ).  
0603 ceramic capacitors  
0603 ceramic capacitors  
0603 ceramic capacitors  
0603 resistor  
For power-supply voltages (V ) between 4.75V and  
S
5.25V, set R4 = 75Ω 1ꢀ (100ppm/°C max) and PWDN  
must be connected to GND.  
Power-Down Mode  
R4**  
0Ω  
0603 resistor  
The MAX2014 can be powered down by driving PWDN  
with logic-high (logic-high = V ). In power-down  
CC  
*RSSI mode only.  
mode, the supply current is reduced to a typical value  
of 1µA. For normal operation, drive PWDN with a logic-  
low. It is recommended when using power-down that  
an RF signal not be applied before the power-down  
signal is low.  
**V = 2.7V to 3.6V.  
S
8
_______________________________________________________________________________________  
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Controller Mode  
The MAX2014 can also be used as a detector/controller  
POWER AMPLIFIER  
within an AGC loop. Figure 3 depicts one scenario  
where the MAX2014 is employed as the controller for a  
variable-gain PA. As shown in the figure, the MAX2014  
monitors the output of the PA through a directional cou-  
pler. An internal integrator (Figure 2) compares the  
detected signal with a reference voltage determined by  
TRANSMITTER  
COUPLER  
GAIN-CONTROL INPUT  
V
. The integrator, acting like a comparator, increas-  
SET  
IN  
LOGARITHMIC  
DETECTOR  
es or decreases the voltage at OUT, according to how  
closely the detected signal level matches the V ref-  
OUT  
SET  
SET  
erence. The MAX2014 adjusts the power of the PA to a  
level determined by the voltage applied to SET. With R1 =  
0Ω, the controller mode slope is approximately  
19mV/dB (RF = 100MHz).  
SET-POINT  
DAC  
20kΩ  
20kΩ  
Layout Considerations  
As with any RF circuit, the layout of the MAX2014 circuit  
affects the device’s performance. Use an abundant num-  
ber of ground vias to minimize RF coupling. Place the  
input capacitors (C1, C2) and the bypass capacitors  
(C3–C6) as close to the IC as possible. Connect the  
bypass capacitors to the ground plane with multiple vias.  
MAX2014  
Figure 3. System Diagram for Automatic Gain-Control Loop  
Pin Configuration  
V
S
R4  
C6  
TOP VIEW  
OUT SET GND PWDN  
1
2
V
CC  
8
7
6
5
C5  
DETECTORS  
8
7
OUT  
SET  
V
V
OUT  
C1  
INHI  
20kΩ  
RFIN  
SET  
MAX2014  
20kΩ  
C2  
INLO  
3
4
6
5
GND  
1
2
3
4
V
CC  
PWDN  
MAX2014  
V
V
CC  
CC  
INHI INLO  
C4  
C3  
TDFN  
Figure 2. Controller-Mode Typical Application Circuit  
Chip Information  
PROCESS: BiCMOS  
_______________________________________________________________________________________  
9
50MHz to 1000MHz, 75dB Logarithmic  
Detector/Controller  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
H
21-0137  
2
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
MIN. MAX.  
SYMBOL  
PKG. CODE  
T633-1  
N
6
D2  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
A
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T633-2  
6
D
E
0.95 BSC  
T833-1  
8
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
T833-2  
8
A1  
L
T833-3  
8
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
k
0.25 MIN.  
0.20 REF.  
1.50±0.10 2.30±0.10  
0.25±0.05  
0.20±0.05  
0.20±0.05  
A2  
0.50 BSC MO229 / WEED-3  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
H
21-0137  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX2014ETA

Analog Computational Function, BICMOS, PDSO8
MAXIM

MAX2014ETA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014ETA-T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014EUA+T

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2014_V1

50MHz to 1000MHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015

0.1GHz to 2.5GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EUA

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EUA-T

0.1GHz to 2.5GHz, 75dB Logarithmic Detector/Controller
MAXIM

MAX2015EVKIT

Evaluation Kit for the MAX2015
MAXIM

MAX2015_07

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller
MAXIM