MAX19708ETM [MAXIM]

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48;
MAX19708ETM
型号: MAX19708ETM
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48

电信 电信集成电路
文件: 总37页 (文件大小:547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3764; Rev 0; 8/05  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
General Description  
Features  
Dual 10-Bit, 11Msps Rx ADC and Dual 10-Bit,  
The MAX19708 is an ultra-low-power, mixed-signal ana-  
log front-end (AFE) designed for TD-SCDMA handsets  
and data cards. Optimized for high dynamic perfor-  
mance at ultra-low power, the device integrates a dual  
10-bit, 11Msps receive (Rx) ADC; dual 10-bit, 11Msps  
transmit (Tx) DAC with TD-SCDMA baseband filters;  
three fast-settling 12-bit aux-DAC channels for ancillary  
RF front-end control; and a 10-bit, 333ksps housekeep-  
ing aux-ADC. The typical operating power in Tx-Rx  
FAST mode is 36.9mW at a 5.12MHz clock frequency.  
11Msps Tx DAC  
Ultra-Low Power  
36.9mW at fCLK = 5.12MHz, Fast Mode  
19.8mW at fCLK = 5.12MHz, Slow Mode  
Low-Current Standby and Shutdown Modes  
Integrated TD-SCDMA Filters with > 55dB  
Stopband Rejection  
Programmable Tx DAC Common-Mode DC Level  
and I/Q Offset Trim  
The Rx ADCs feature 55dB SNR and 77.4dBc SFDR at a  
1.87MHz input frequency with an 11MHz clock frequen-  
cy. The analog I/Q input amplifiers are fully differential  
Excellent Dynamic Performance  
SNR = 55dB at fIN = 1.87MHz (Rx ADC)  
SFDR = 73dBc at fOUT = 620kHz (Tx DAC)  
and accept 1.024V  
full-scale signals. Typical I/Q  
P-P  
Three 12-Bit, 1µs Aux-DACs  
channel matching is 0.08° phase and 0.02dB gain.  
10-Bit, 333ksps Aux-ADC with 4:1 Input Mux and  
The Tx DACs with TD-SCDMA lowpass filters feature -3dB  
cutoff frequency of 1.32MHz and > 55dB stopband rejec-  
Data Averaging  
Excellent Gain/Phase Match  
0.08ꢀ Phase, 0.02dB Gain (Rx ADC) at  
fIN = 1.87MHz  
tion at f  
= 4.32MHz. The analog I-Q full-scale output  
IMAGE  
voltage range is selectable at 410mV or 500mV differ-  
ential. The output DC common-mode voltage is selec-  
table from 0.9V to 1.4V. The I/Q channel offset is  
adjustable to optimize radio lineup sideband/carrier sup-  
pression. Typical I-Q channel matching is 0.02dB gain  
and 0.04° phase.  
Multiplexed Parallel Digital I/O  
Serial-Interface Control  
Versatile Power-Control Circuits  
Shutdown, Standby, Idle, Tx/Rx Disable  
The Rx ADC and Tx DAC share a single, 10-bit parallel,  
high-speed digital bus allowing half-duplex operation  
for time-division duplex (TDD) applications. A 3-wire  
serial interface controls power-management modes, the  
aux-DAC channels, and the aux-ADC channels.  
Miniature 48-Pin Thin QFN Package  
(7mm x 7mm x 0.8mm)  
Pin Configuration  
The MAX19708 operates on a single +2.7V to +3.3V  
analog supply and +1.8V to +3.3V digital I/O supply.  
The MAX19708 is specified for the extended (-40°C to  
+85°C) temperature range and is available in a 48-pin,  
thin QFN package. The Selector Guide at the end of the  
data sheet lists other pin-compatible versions in this  
AFE family.  
TOP VIEW  
36 35 34 33  
31 30 29 28 27 26 25  
32  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DAC2 37  
DAC1 38  
D9  
D8  
D7  
D6  
OV  
V
DD  
39  
IDN 40  
IDP 41  
Applications  
DD  
GND  
42  
43  
OGND  
D5  
TD-SCDMA Handsets  
V
DD  
MAX19708  
D4  
QDN 44  
QDP 45  
REFIN 46  
TD-SCDMA Data Cards  
D3  
Portable Communication Equipment  
EXPOSED PADDLE (GND)  
D2  
COM  
47  
D1  
D0  
Ordering Information  
REFN 48  
1
2
3
4
6
7
8
9
10 11 12  
5
PART*  
PIN-PACKAGE  
48 Thin QFN-EP**  
48 Thin QFN-EP**  
PKG CODE  
T4877-4  
MAX19708ETM  
MAX19708ETM+  
T4877-4  
THIN QFN  
*All devices are specified over the -40°C to +85°C operating range.  
**EP = Exposed paddle.  
+Denotes lead-free package.  
Functional Diagram and Selector Guide appear at end of  
data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ABSOLUTE MAXIMUM RATINGS  
V
to GND, OV to OGND ..............................-0.3V to +3.6V  
DD  
D0–D9, DOUT, T/R, SHDN, SCLK, DIN, CS,  
CLK to OGND .....................................-0.3V to (OV  
DD  
GND to OGND.......................................................-0.3V to +0.3V  
IAP, IAN, QAP, QAN, IDP, IDN, QDP,  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
QDN, DAC1, DAC2, DAC3 to GND.....................-0.3V to V  
ADC1, ADC2 to GND.................................-0.3V to (V  
REFP, REFN, REFIN, COM to GND ...........-0.3V to (V  
48-Pin Thin QFN (derate 27.8mW/°C above +70°C) .....2.22W  
DD  
+ 0.3V)  
+ 0.3V)  
Thermal Resistance θ ..................................................36°C/W  
DD  
DD  
JA  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFP  
REFN  
C
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
COM  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage  
Output Supply Voltage  
V
2.7  
1.8  
3.0  
3.3  
V
V
DD  
OV  
V
DD  
DD  
Ext1-Tx, Ext3-Tx, and SPI2-Tx states;  
transmit DAC operating mode (Tx):  
f
= 5.12MHz, f  
= 620kHz on both  
10.3  
12.6  
12.3  
6.6  
CLK  
OUT  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext2-Tx, Ext4-Tx, and SPI4-Tx states;  
transmit DAC operating mode (Tx):  
f
= 5.12MHz, f  
= 620kHz on both  
CLK  
OUT  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext1-Rx, Ext4-Rx, and SPI3-Rx states;  
receive ADC operating mode (Rx):  
f
= 5.12MHz, f = 1.87MHz on both  
IN  
V
Supply Current  
mA  
CLK  
DD  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext2-Rx, Ext3-Rx, and SPI1-Rx states;  
receive ADC operating mode (Rx):  
f
= 5.12MHz, f = 1.87MHz on both  
IN  
CLK  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext2-Tx, Ext4-Tx, and SPI4-Tx states;  
transmit DAC operating mode (Tx):  
f
= 11MHz, f  
= 620kHz on both  
14.1  
16  
CLK  
OUT  
channels, aux-DACs ON and at midscale,  
aux-ADC ON  
2
_______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Ext1-Tx, Ext3-Tx, and SPI2-Tx states;  
transmit DAC operating mode (Tx):  
f
= 11MHz, f  
= 620kHz on both  
11.7  
CLK  
OUT  
channels, aux-DACs ON and at midscale,  
aux-ADC ON  
Ext1-Rx, Ext4-Rx, and SPI3-Rx states;  
receive ADC operating mode (Rx):  
f
= 11MHz, f = 1.87MHz on both  
13.7  
16  
CLK  
IN  
channels, aux-DACs ON and at midscale,  
aux-ADC ON  
mA  
V
Supply Current  
Ext2-Rx, Ext3-Rx, and SPI1-Rx states;  
receive ADC operating mode (Rx):  
DD  
f
= 11MHz, f = 1.87MHz on both  
8
CLK  
IN  
channels, aux-DACs ON and at midscale,  
aux-ADC ON  
Standby mode: CLK = 0 or OV  
;
DD  
aux-DACs ON and at midscale,  
aux-ADC ON  
2.9  
4
7
Idle mode: f  
= 11MHz; aux-DACs ON  
CLK  
5.5  
and at midscale, aux-ADC ON  
Shutdown mode: CLK = 0 or OV  
0.52  
µA  
DD  
Ext1-Rx, Ext2-Rx, Ext3-Rx, Ext4-Rx,  
SPI1-Rx, SPI3-Rx states; receive ADC  
operating mode (Rx): f  
= 11MHz,  
CLK  
1.5  
mA  
f
IN  
= 1.87MHz on both channels;  
aux-DACs ON and at midscale,  
aux-ADC ON  
Ext1-Tx, Ext2-Tx, Ext3-Tx, Ext4-Tx,  
SPI2-Tx, SPI4-Tx states; transmit DAC  
OV  
Supply Current  
DD  
operating mode (Tx): f  
= 11MHz, f  
110  
1
CLK  
OUT  
= 620kHz on both channels; aux-DACs  
ON and at midscale, aux-ADC ON  
µA  
Standby mode: CLK = 0 or OV ; aux-  
DD  
DACs ON and at midscale, aux-ADC ON  
Idle mode: f  
and at midscale, aux-ADC ON  
= 11MHz; aux-DACs ON  
CLK  
19  
Shutdown mode: CLK = 0 or OV  
0.1  
DD  
_______________________________________________________________________________________  
3
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Rx ADC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
LSB  
%FS  
%FS  
dB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
0.9  
0.4  
0.1  
1.5  
0.01  
10  
Guaranteed no missing code (Note 2)  
Residual DC offset error  
-1.0  
-5  
+1.2  
+5  
Gain Error  
Include reference error  
-7.0  
-0.25  
+10.5  
+0.25  
DC Gain Matching  
Offset Matching  
LSB  
Gain Temperature Coefficient  
18.4  
2
ppm/°C  
LSB  
Offset error (V  
5%)  
5%)  
DD  
Power-Supply Rejection  
PSRR  
Gain error (V  
0.07  
%FS  
DD  
Rx ADC ANALOG INPUT  
Input Differential Range  
V
Differential or single-ended inputs  
Switched capacitor load  
0.512  
V
V
ID  
Input Common-Mode Voltage  
Range  
V
V
/ 2  
DD  
CM  
R
491  
5
kΩ  
IN  
Input Impedance  
C
pF  
IN  
Rx ADC CONVERSION RATE  
Maximum Clock Frequency  
f
(Note 3)  
11  
MHz  
CLK  
Channel I  
Channel Q  
5
Clock  
Cycles  
Data Latency (Figure 3)  
5.5  
Rx ADC DYNAMIC CHARACTERISTICS (Note 4)  
f
f
f
f
f
f
f
f
= 1.875MHz, f  
= 11MHz  
53.3  
53.2  
63.5  
55  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
CLK  
CLK  
CLK  
CLK  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
HD3  
dB  
dB  
= 3.5MHz, f  
= 11MHz  
55  
CLK  
= 1.875MHz, f  
= 3.5MHz, f  
= 11MHz  
54.9  
54.9  
77.4  
78.3  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
Third-Harmonic Distortion  
Intermodulation Distortion  
= 11MHz  
CLK  
= 1.875MHz, f  
= 3.5MHz, f  
= 11MHz  
dBc  
dBc  
dBc  
dBc  
dB  
= 11MHz  
CLK  
= 1.875MHz, f  
= 3.5MHz, f  
= 11MHz  
-84.3  
-85  
= 11MHz  
CLK  
f = 1.8MHz, -7dBFS;  
1
IMD  
-72.7  
-74.4  
f = 1MHz, -7dBFS  
2
Third-Order Intermodulation  
Distortion  
f = 1.8MHz, -7dBFS;  
1
f = 1MHz, -7dBFS  
2
IM3  
f
f
= 1.875MHz, f  
= 11MHz  
-75.6  
-76.3  
3.5  
-63  
IN  
CLK  
Total Harmonic Distortion  
THD  
= 3.5MHz, f  
= 11MHz  
IN  
CLK  
Aperture Delay  
ns  
ns  
Overdrive Recovery Time  
1.5x full-scale input  
2
4
_______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Rx ADC INTERCHANNEL CHARACTERISTICS  
f
= 1.875MHz at -0.5dBFS, f  
=
INX,Y  
INX,Y  
Crosstalk Rejection  
-90  
dB  
1MHz at -0.5dBFS (Note 5)  
Amplitude Matching  
Phase Matching  
f
= 1.875MHz at -0.5dBFS (Note 6)  
= 1.875MHz at -0.5dBFS (Note 6)  
0.02  
0.08  
dB  
IN  
f
IN  
Degrees  
Tx DAC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
DNL  
0.45  
0.4  
Guaranteed monotonic (Note 2)  
-1  
-4  
+1  
+4  
T
> +25°C  
< +25°C  
1
1
A
A
Residual DC Offset  
Full-Scale Gain Error  
V
mV  
mV  
OS  
T
-5.5  
-50  
+5.5  
+50  
Include reference error (peak-to-peak error)  
Tx PATH DYNAMIC PERFORMANCE  
Corner Frequency  
Passband Ripple  
Group Delay Variation in Passband  
Error-Vector Magnitude  
3dB corner  
DC to 640kHz (Note 2)  
DC to 640kHz  
1.05  
1.32  
0.15  
50  
1.65  
0.5  
MHz  
dB  
P-P  
ns  
%
EVM  
DC to 700kHz  
2
f
= 4.32MHz, f  
= 800kHz, f  
=
IMAGE  
OUT  
CLK  
Stopband Rejection  
55  
62.5  
dBc  
5.12MHz  
2MHz  
21.5  
49  
4MHz  
Spot relative to  
100kHz  
5MHz  
58  
Baseband Attenuation  
dB  
10MHz  
20MHz  
90  
90  
DAC Conversion Rate  
In-Band Noise Density  
f
(Note 3)  
11  
MHz  
CLK  
f
= 620kHz, f  
= 5.12MHz,  
OUT  
CLK  
N
-120.6  
dBc/Hz  
D
offset = 500kHz  
Third-Order Intermodulation  
Distortion  
IM3  
f = 620kHz, f = 640kHz  
82  
10  
73  
dBc  
pVs  
dBc  
1
2
Glitch Impulse  
Spurious-Free Dynamic Range to  
Nyquist  
SFDR  
f
= 11MHz, f  
= 620kHz  
60  
CLK  
OUT  
Total Harmonic Distortion to  
Nyquist  
THD  
SNR  
f
f
= 11MHz, f  
= 11MHz, f  
= 620kHz  
= 620kHz  
-71  
-60  
dB  
dB  
CLK  
CLK  
OUT  
Signal-to-Noise Ratio to Nyquist  
56.5  
OUT  
_______________________________________________________________________________________  
5
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Tx PATH INTERCHANNEL CHARACTERISTICS  
I-to-Q Output Isolation  
f
= 500kHz, f  
= 620kHz  
OUTX,Y  
90  
dB  
dB  
OUTX,Y  
Gain Mismatch Between DAC  
Outputs  
Measured at DC  
-0.30  
0.02  
+0.31  
Phase Mismatch Between DAC  
Outputs  
f
= 620kHz, f  
= 11MHz  
0.04  
800  
Degrees  
OUT  
CLK  
Differential Output Impedance  
Ω
Tx PATH ANALOG OUTPUT  
Bit E7 = 0 (default)  
Bit E7 = 1  
410  
500  
1.4  
Full-Scale Output Voltage (Table 8)  
V
mV  
V
FS  
Bits CM1 = 0, CM0 = 0 (default)  
Bits CM1 = 0, CM0 = 1  
Bits CM1 = 1, CM0 = 0  
Bits CM1 = 1, CM0 = 1  
1.27  
1.48  
1.25  
1.1  
Output Common-Mode Voltage  
(Table 11)  
V
COM  
0.9  
Rx ADC–Tx DAC INTERCHANNEL CHARACTERISTICS  
ADC f = f  
= 1.875MHz, DAC f  
= 11MHz  
CLK  
=
OUTI  
INI  
INQ  
Receive Transmit Isolation  
90  
dB  
f
= 620kHz, f  
OUTQ  
AUXILIARY ADC (ADC1, ADC2)  
Resolution  
N
10  
Bits  
V
AD1 = 0 (default)  
AD1 = 1  
2.048  
Full-Scale Reference  
V
REF  
V
DD  
0 to  
Analog Input Range  
V
V
REF  
Analog Input Impedance  
Input-Leakage Current  
At DC  
500  
kΩ  
µA  
Measured at unselected input from 0 to  
0.1  
V
REF  
Gain Error  
GE  
ZE  
Includes reference error  
-5  
+5  
%FS  
mV  
Zero-Code Error  
Differential Nonlinearity  
Integral Nonlinearity  
Supply Current  
2
DNL  
INL  
0.53  
0.45  
210  
LSB  
LSB  
µA  
6
_______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AUXILIARY DACs (DAC1, DAC2, DAC3)  
Resolution  
N
12  
Bits  
Integral Nonlinearity  
INL  
1.25  
LSB  
Guaranteed monotonic over codes 100 to  
4000 (Note 2)  
Differential Nonlinearity  
DNL  
-1.0  
0.65  
+1.2  
0.1  
LSB  
Gain Error  
GE  
ZE  
R > 200kΩ  
L
0.7  
0.6  
%FS  
%FS  
V
Zero-Code Error  
Output-Voltage Low  
Output-Voltage High  
DC Output Impedance  
Settling Time  
R > 200kΩ  
L
V
OL  
V
R > 200kΩ  
L
2.56  
V
OH  
DC output at midscale  
4
1
Ω
From 1/4 FS to 3/4 FS, within 10 LSB  
From 0 to FS transition  
µs  
Glitch Impulse  
24  
nVs  
Rx ADC-Tx DAC TIMING CHARACTERISTICS  
CLK Rise to Channel-I Output Data  
Valid  
t
Figure 3 (Note 2)  
Figure 3 (Note 2)  
Figure 6 (Note 2)  
5.3  
6.8  
10  
7.0  
9.1  
8.5  
ns  
ns  
ns  
DOI  
CLK Fall to Channel-Q Output  
Data Valid  
t
11.3  
DOQ  
I-DAC DATA to CLK Fall Setup  
Time  
t
DSI  
Q-DAC DATA to CLK Rise Setup  
Time  
t
Figure 6 (Note 2)  
Figure 6 (Note 2)  
Figure 6 (Note 2)  
10  
0
ns  
ns  
ns  
DSQ  
CLK Fall to I-DAC Data Hold Time  
t
DHI  
CLK Rise to Q-DAC Data Hold  
Time  
t
0
DHQ  
CLK Duty Cycle  
50  
15  
%
%
ns  
CLK Duty-Cycle Variation  
Digital Output Rise/Fall Time  
20% to 80%  
2.5  
SERIAL-INTERFACE TIMING CHARACTERISTICS (Figure 7, Note 2)  
Falling Edge of CS to Rising Edge  
of First SCLK Time  
t
10  
ns  
CSS  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Period  
t
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
CH  
t
t
25  
25  
50  
10  
80  
t
CL  
CP  
CS  
t
t
SCLK to CS Setup Time  
CS High Pulse Width  
t
CSW  
CS High to DOUT Active High  
t
Bit AD0 set  
200  
CSD  
_______________________________________________________________________________________  
7
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFP  
REFN  
C
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
COM  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
4.36  
200  
200  
MAX  
UNITS  
Bit AD0 set, no averaging (see Table 15),  
= 11MHz,  
CLK divider = 4 (see Table 16)  
CS High to DOUT Low (Aux-ADC  
Conversion Time)  
t
f
µs  
CONV  
CLK  
DOUT Low to CS Setup Time  
SCLK Low to DOUT Data Out  
CS High to DOUT High Impedance  
t
t
Bit AD0, AD10 set  
Bit AD0, AD10 set  
Bit AD0, AD10 set  
ns  
ns  
ns  
DCS  
t
14.5  
CD  
CHZ  
MODE-RECOVERY TIMING CHARACTERISTICS (Figure 8)  
From shutdown to Rx mode, ADC settles  
to within 1dB SINAD  
82.2  
29  
Shutdown Wake-Up Time  
Idle Wake-Up Time (With CLK)  
Standby Wake-Up Time  
t
µs  
µs  
µs  
WAKE,SD  
From shutdown to Tx mode, DAC settles to  
within 10 LSB error  
From idle to Rx mode with CLK present  
during idle, ADC settles to within 1dB SINAD  
9.6  
7.6  
17.5  
24  
t
t
WAKE,ST0  
From idle to Tx mode with CLK present  
during idle, DAC settles to 10 LSB error  
From standby to Rx mode, ADC settles to  
within 1dB SINAD  
WAKE,ST1  
From standby to Tx mode, DAC settles to  
10 LSB error  
Enable Time from Tx to Rx (Ext2-Tx  
to Ext2-Rx, Ext4-Tx to Ext4-Rx, and  
SPI4-Tx to SPI3-Rx States)  
t
ADC settles to within 1dB SINAD  
DAC settles to within 10 LSB error  
ADC settles to within 1dB SINAD  
DAC settles to within 10 LSB error  
500  
500  
8.1  
7.0  
ns  
ns  
µs  
µs  
ENABLE, RX  
Enable Time from Rx to Tx (Ext1-Rx  
to Ext1-Tx, Ext4-Rx to Ext4-Tx, and  
SPI3-Rx to SPI4-Tx States)  
t
ENABLE, TX  
Enable Time from Tx to Rx (Ext1-Tx  
to Ext1-Rx, Ext3-Tx to Ext3-Rx, and  
SPI1-Tx to SPI1-Rx States)  
t
ENABLE, RX  
Enable Time from Rx to Tx (Ext2-Rx  
to Ext2-Tx, Ext3-Rx to Ext3-Tx, and  
SPI1-Rx to SPI2-Tx States)  
t
ENABLE,TX  
INTERNAL REFERENCE (V  
Positive Reference  
= V ; V  
, V  
, V  
levels are generated internally)  
REFIN  
DD REFP REFN COM  
V
V
- V  
0.256  
V
V
REFP  
REFN  
COM  
Negative Reference  
- V  
-0.256  
COM  
V
/ 2  
V
/ 2  
DD  
DD  
Common-Mode Output Voltage  
V
V
/ 2  
V
COM  
DD  
2
- 0.15  
+ 0.15  
Maximum REFP/REFN/COM  
Source Current  
I
mA  
SOURCE  
8
_______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFP  
REFN  
C
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25°C.) (Note 1)  
COM  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mA  
Maximum REFP/REFN/COM  
Sink Current  
I
2
SINK  
Differential Reference Output  
V
V
- V  
REFN  
+0.460 +0.512 +0.548  
18  
V
REF  
REFP  
Differential Reference Temperature  
Coefficient  
REFTC  
ppm/°C  
BUFFERED EXTERNAL REFERENCE (external V  
= 1.024V applied; V  
, V  
, V  
levels are generated internally)  
REFIN  
REFP REFN COM  
Reference Input Voltage  
V
1.024  
0.512  
V
V
V
REFIN  
Differential Reference Output  
Common-Mode Output Voltage  
V
V
- V  
REFP REFN  
DIFF  
V
V
/ 2  
COM  
DD  
Maximum REFP/REFN/COM  
Source Current  
I
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
SINK  
REFIN Input Current  
-0.7  
500  
µA  
REFIN Input Resistance  
kΩ  
DIGITAL INPUTS (CLK, SCLK, DIN, CS, D0–D9, T/R, SHDN)  
Input High Threshold  
Input Low Threshold  
V
0.7 x OV  
V
V
INH  
DD  
V
0.3 x OV  
DD  
INL  
D0–D9, CLK, SCLK, DIN, CS, T/R,  
SHDN = OGND or OV  
Input Leakage  
DI  
-1  
+1  
µA  
pF  
IN  
DD  
Input Capacitance  
DC  
5
5
IN  
DIGITAL OUTPUTS (D0–D9, DOUT)  
Output-Voltage Low  
V
I
I
= 200µA  
0.2 x OV  
DD  
V
V
OL  
SINK  
Output-Voltage High  
V
= 200µA  
0.8 x OV  
-1  
OH  
SOURCE  
DD  
Tri-State Leakage Current  
Tri-State Output Capacitance  
I
+1  
µA  
pF  
LEAK  
C
OUT  
Note 1: Specifications from T = +25°C to +85°C are guaranteed by production tests. Specifications from T = +25°C to -40°C are  
A
A
guaranteed by design and characterization.  
Note 2: Guaranteed by design and characterization.  
Note 3: The minimum clock frequency (f  
) for the MAX19708 is 1.5MHz (typ). The minimum aux-ADC sample rate clock frequen-  
CLK  
cy (ACLK) is determined by f  
and the chosen aux-ADC clock-divider value. The minimum aux-ADC ACLK > 1.5MHz /  
CLK  
128 = 11.7kHz. The aux-ADC conversion time does not include the time to clock the serial data out of the SPI. The maximum  
conversion time (for no averaging, NAVG = 1) will be t (max) = (12 x 1 x 128) / 1.5MHz = 1024µs.  
CONV  
Note 4: SNR, SINAD, SFDR, HD3, and THD are based on a differential analog input voltage of -0.5dBFS referenced to the amplitude  
of the digital outputs. SINAD and THD are calculated using HD2 through HD6.  
Note 5: Crosstalk rejection is measured by applying a high-frequency test tone to one channel and a low-frequency tone to the second  
channel. FFTs are performed on each channel. The parameter is specified as the power ratio of the first and second channel  
FFT test tone.  
Note 6: Amplitude and phase matching is measured by applying the same signal to each channel, and comparing the two output  
signals using a sine-wave fit.  
_______________________________________________________________________________________  
9
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFP  
REFN  
C
COM  
= 0.33µF, T = +25°C, unless otherwise noted.)  
A
Rx ADC CHANNEL-IA  
TWO-TONE FFT PLOT  
Rx ADC CHANNEL-IA FFT PLOT  
Rx ADC CHANNEL-QA FFT PLOT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
0
f = 1.885MHz  
f
= 1.882886MHz  
f
= 1.882886MHz  
QA  
1
IA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f = 1.985MHz  
2
A
= -7dBFS  
IA  
PER TONE  
4096-POINT  
DATA RECORD  
f
f
2
1
HD3  
HD2  
HD2  
HD3  
0
1.1  
2.2  
3.3  
4.4  
5.5  
0
1.1  
2.2  
3.3  
4.4  
5.5  
0
1.1  
2.2  
3.3  
4.4  
5.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Rx ADC CHANNEL-QA  
TWO-TONE FFT PLOT  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
57  
55  
53  
51  
49  
47  
45  
57  
f = 1.885MHz  
1
f = 1.985MHz  
2
55  
53  
51  
49  
47  
45  
A
= -7dBFS  
IA  
QA  
IA  
QA  
IA  
PER TONE  
4096-POINT  
DATA RECORD  
f
f
2
1
0
1.1  
2.2  
3.3  
4.4  
5.5  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT AMPLITUDE  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
80  
75  
70  
65  
60  
55  
50  
-64  
60  
55  
50  
45  
40  
35  
30  
25  
20  
f
= 1.875MHz  
IN  
IA  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
IA  
QA  
IA  
QA  
QA  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT AMPLITUDE (dBFS)  
10 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25°C, unless otherwise noted.)  
A
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT AMPLITUDE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. SAMPLING RATE  
vs. ANALOG INPUT AMPLITUDE  
60  
55  
50  
45  
40  
35  
30  
25  
20  
80  
75  
70  
65  
60  
55  
50  
45  
40  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
f
= 1.875MHz  
f
= 1.875MHz  
IN  
f
= 1.875MHz  
IN  
IN  
QA  
QA  
IA  
IA  
IA  
QA  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
2
3
4
5
6
7
8
9
10 11  
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
SAMPLING RATE (MHz)  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. SAMPLING RATE  
Rx ADC SPURIOUS-FREE DYNAMIC  
RANGE vs. SAMPLING RATE  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
57.0  
56.5  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
52.0  
57.0  
56.5  
56.0  
55.5  
80  
78  
76  
74  
72  
70  
68  
66  
f
= 1.875MHz  
f
= 1.875MHz  
f
= 1.875MHz  
IN  
IN  
IN  
IA  
QA  
QA  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
52.0  
QA  
IA  
IA  
2
3
4
5
6
7
8
9
10 11  
2
3
4
5
6
7
8
9
10 11  
35  
40  
45  
50  
55  
60  
65  
SAMPLING RATE (MHz)  
SAMPLING RATE (MHz)  
CLOCK DUTY CYCLE (%)  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. CLOCK DUTY CYCLE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
Rx ADC OFFSET ERROR  
vs. TEMPERATURE  
57.0  
56.5  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
52.0  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
1.00  
f
= 1.875MHz  
f = 1.875MHz  
IN  
IN  
0.75  
0.50  
0.25  
0
IA  
QA  
IA  
IA  
QA  
-0.25  
-0.50  
-0.75  
-1.00  
QA  
35  
40  
45  
50  
55  
60  
65  
35  
40  
45  
50  
55  
60  
65  
-40  
-15  
10  
35  
60  
85  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFP  
REFN  
C
COM  
= 0.33µF, T = +25°C, unless otherwise noted.)  
A
Tx PATH SPURIOUS-FREE DYNAMIC  
RANGE vs. SAMPLING RATE  
Rx ADC GAIN ERROR  
vs. TEMPERATURE  
77  
Tx PATH SPURIOUS-FREE DYNAMIC  
RANGE vs. OUTPUT FREQUENCY  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
78.0  
75.5  
73.0  
70.5  
68.0  
65.5  
63.0  
f
= 617kHz  
OUT  
76  
ID  
75  
74  
QA  
ID  
73  
72  
71  
70  
69  
68  
67  
IA  
QD  
QD  
8
-40  
-15  
10  
35  
60  
85  
2
3
4
5
6
7
9
10 11  
100 200 300 400 500 600 700 800  
OUTPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
SAMPLING RATE (MHz)  
Tx PATH SPURIOUS-FREE DYNAMIC  
RANGE vs. OUTPUT AMPLITUDE  
Tx PATH CHANNEL-ID SPECTRAL PLOT  
Tx PATH CHANNEL-QD SPECTRAL PLOT  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 617kHz  
f
= 617kHz  
QD  
f
= 620kHz  
ID  
OUT  
QA  
IA  
0.20 0.73 1.26 1.79 2.32 2.85 3.38 3.91 4.44 4.97 5.50  
FREQUENCY (MHz)  
0.20 0.73 1.26 1.79 2.32 2.85 3.38 3.91 4.44 4.97 5.50  
FREQUENCY (MHz)  
-30  
-25  
-20  
-15  
-10  
-5  
0
OUTPUT AMPLITUDE (dBFS)  
Tx PATH CHANNEL-ID SPECTRAL PLOT  
WITH IMAGE REJECTION  
Tx PATH CHANNEL-ID TWO-TONE  
SPECTRAL PLOT  
Tx PATH CHANNEL-QD TWO-TONE  
SPECTRAL PLOT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
= 800kHz,  
= 5.12MHz  
f = 560kHz,  
1
f = 660kHz  
2
f = 560kHz,  
1
f = 660kHz  
2
ID  
CLK  
IMAGE REJECTION  
0.200  
1.184  
2.168  
3.152  
4.136  
5.120  
0.20 0.73 1.26 1.79 2.32 2.85 3.38 3.91 4.44 4.97 5.50  
FREQUENCY (MHz)  
0.20 0.73 1.26 1.79 2.32 2.85 3.38 3.91 4.44 4.97 5.50  
FREQUENCY (MHz)  
0.692  
1.676  
2.660  
3.644  
4.628  
FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25°C, unless otherwise noted.)  
A
TRANSMIT FILTER  
FREQUENCY RESPONSE  
SUPPLY CURRENT vs. SAMPLING RATE  
Rx ADC INTEGRAL NONLINEARITY  
1.00  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
Ext4 MODE  
0
0.75  
0.50  
I
Tx MODE  
Rx MODE  
-20  
VDD  
0.25  
0
-40  
-0.25  
-0.50  
-0.75  
-1.00  
-60  
-80  
I
VDD  
-100  
0.1  
1
10  
2
3
4
5
6
7
8
9
10 11  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
FREQUENCY (MHz)  
SAMPLING RATE (MHz)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
Tx PATH INTEGRAL NONLINEARITY  
Tx PATH DIFFERENTIAL NONLINEARITY  
0.520  
0.515  
0.510  
0.505  
0.500  
0.8  
0.6  
0.4  
0.75  
0.60  
0.45  
0.30  
0.15  
0
V
- V  
REFN  
REFP  
0.2  
0
-0.15  
-0.30  
-0.45  
-0.60  
-0.75  
-0.2  
-0.4  
-0.6  
-0.8  
-40  
-15  
10  
35  
60  
85  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
TRANSMIT FILTER PASSBAND RIPPLE  
AUX-DAC INTEGRAL NONLINEARITY  
AUX-DAC DIFFERENTIAL NONLINEARITY  
0.04  
0.02  
2.0  
1.5  
0.8  
0.6  
0.4  
0.2  
0
0
1.0  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
-0.14  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.2  
-0.4  
-0.6  
-0.8  
0
0.3  
0.6  
0.9  
1.2  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
FREQUENCY (MHz)  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
______________________________________________________________________________________ 13  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 11MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25°C, unless otherwise noted.)  
A
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
AUX-ADC INTEGRAL NONLINEARITY  
AUX-ADC DIFFERENTIAL NONLINEARITY  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.8  
0.4  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.4  
-0.8  
0.001  
0.01  
0.1  
1
10  
100  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
OUTPUT SOURCE CURRENT (mA)  
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
AUX-DAC SETTLING TIME  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
STEP FROM 1/4FS TO 3/4FS  
500mV/div  
0.001  
0.01  
0.1  
1
10  
100  
500ns/div  
OUTPUT SINK CURRENT (mA)  
Pin Description  
PIN  
NAME  
FUNCTION  
Upper Reference Voltage. Bypass with a 0.33µF capacitor to GND as close to REFP as possible.  
1
REFP  
2, 8, 11, 31,  
33, 39, 43  
Analog Supply Voltage. Bypass V  
a 0.1µF capacitor.  
to GND with a combination of a 2.2µF capacitor in parallel with  
DD  
V
DD  
3
4
IAP  
IAN  
Channel-IA Positive Analog Input. For single-ended operation, connect signal source to IAP.  
Channel-IA Negative Analog Input. For single-ended operation, connect IAN to COM.  
Analog Ground. Connect all GND pins to ground plane.  
5, 7, 12, 32, 42  
GND  
CLK  
QAN  
6
9
Conversion Clock Input. Clock signal for both receive ADCs and transmit DACs.  
Channel-QA Negative Analog Input. For single-ended operation, connect QAN to COM.  
14 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
10  
QAP  
Channel-QA Positive Analog Input. For single-ended operation, connect signal source to QAP.  
Digital I/O. Outputs for receive ADC in Rx mode. Inputs for transmit DAC in Tx mode. D9 is the most  
significant bit (MSB) and D0 is the least significant bit (LSB).  
13–18, 21–24  
D0–D9  
OGND  
19  
20  
Output-Driver Ground  
Output-Driver Power Supply. Supply range from +1.8V to V . Bypass OV  
DD  
to OGND with a  
DD  
OV  
DD  
combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
25  
26  
SHDN  
Active-Low Shutdown Input. Apply logic-low to place the MAX19708 in shutdown.  
Aux-ADC Digital Output  
DOUT  
Transmit- or Receive-Mode Select Input. T/R logic-low input sets the device in receive mode. A  
logic-high input sets the device in transmit mode.  
27  
T/R  
28  
29  
DIN  
SCLK  
CS  
3-Wire Serial-Interface Data Input. Data is latched on the rising edge of the SCLK.  
3-Wire Serial-Interface Clock Input  
30  
3-Wire Serial-Interface Chip-Select Input. Logic-low enables the serial interface.  
Analog Input for Auxiliary ADC  
34  
ADC2  
ADC1  
DAC3  
DAC2  
DAC1  
IDN, IDP  
35  
Analog Input for Auxiliary ADC  
36  
Analog Output for Auxiliary DAC3  
37  
Analog Output for Auxiliary DAC2  
38  
Analog Output for Auxiliary DAC1 (AFC DAC, V = 1.1V During Power-Up)  
OUT  
40, 41  
44, 45  
46  
Tx Path Channel-ID Differential Voltage Output  
QDN, QDP Tx Path Channel-QD Differential Voltage Output  
REFIN  
COM  
Reference Input. Connect to V  
for internal reference.  
DD  
47  
Common-Mode Voltage I/O. Bypass COM to GND with a 0.33µF capacitor.  
Negative Reference I/O. Rx ADC conversion range is (V  
0.1µF capacitor.  
- V  
). Bypass REFN to GND with a  
REFP  
REFN  
48  
REFN  
EP  
Exposed Paddle. Exposed paddle is internally connected to GND. Connect EP to the GND plane.  
and AFC level setting. The aux-ADC features data aver-  
aging to reduce processor overhead and a selectable  
clock-divider to program the conversion rate.  
Detailed Description  
The MAX19708 integrates a dual, 10-bit Rx ADC and a  
dual, 10-bit Tx DAC with TD-SCDMA baseband filters  
while providing ultra-low power and high dynamic per-  
formance at 11Msps conversion rate. The Rx ADC ana-  
log input amplifiers are fully differential and accept  
The MAX19708 includes a 3-wire serial interface to  
control operating modes and power management. The  
serial interface is SPI™ and MICROWIRE™ compatible.  
The MAX19708 serial interface selects shutdown, idle,  
standby, transmit (Tx), and receive (Rx) modes, as well  
as controlling aux-DAC and aux-ADC channels.  
1.024V  
full-scale signals. The Tx DAC analog out-  
P-P  
puts are fully differential with 410mV or 500mV full-  
scale output, selectable common-mode DC level, and  
adjustable I/Q offset trim.  
The Rx ADC and Tx DAC share a common digital I/O to  
reduce the digital interface to a single 10-bit parallel  
multiplexed bus. The 10-bit digital bus operates on a  
single +1.8V to +3.3V supply.  
The MAX19708 integrates three 12-bit auxiliary DAC  
(aux-DAC) channels and a 10-bit, 333ksps auxiliary  
ADC (aux-ADC) with 4:1 input multiplexer. The aux-DAC  
channels feature 1µs settling time for fast AGC, VGA,  
SPI is a trademark of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 15  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
is the difference between V  
and V  
. See the  
REFN  
Dual 10-Bit Rx ADC  
The ADC uses a seven-stage, fully differential, pipelined  
architecture that allows for high-speed conversion while  
minimizing power consumption. Samples taken at the  
inputs move progressively through the pipeline stages  
every half clock cycle. Including the delay through the  
output latch, the total clock-cycle latency is 5 clock  
cycles for channel IA and 5.5 clock cycles for channel  
REFP  
Reference Configurations section for details.  
Input Track-and-Hold (T/H) Circuits  
Figure 1 displays a simplified diagram of the Rx ADC  
input track-and-hold (T/H) circuitry. Both ADC inputs  
(IAP, QAP, IAN, and QAN) can be driven either differen-  
tially or single-ended. Match the impedance of IAP and  
IAN, as well as QAP and QAN, and set the input signal  
QA. The ADC full-scale analog input range is  
V
REF  
REF  
common-mode voltage within the V /2 ( 200mV) Rx  
DD  
ADC range for optimum performance.  
with a V / 2 ( 0.2V) common-mode input range. V  
DD  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
IAP  
IAN  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
CLK  
HOLD  
HOLD  
INTERNAL  
BIAS  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
TRACK  
TRACK  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
QAP  
QAN  
OUT  
C2a  
C2b  
S4c  
S1  
MAX19708  
OUT  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 1. Rx ADC Internal T/H Circuits  
16 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 1. Rx ADC Output Codes vs. Input Voltage  
DIFFERENTIAL INPUT  
VOLTAGE  
DIFFERENTIAL INPUT (LSB)  
OFFSET BINARY (D0–D9)  
OUTPUT DECIMAL CODE  
V
V
x 512/512  
x 511/512  
511 (+Full Scale - 1 LSB)  
510 (+Full Scale - 2 LSB)  
+1  
11 1111 1111  
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1023  
1022  
513  
512  
511  
1
REF  
REF  
V
V
x 1/512  
x 0/512  
x 1/512  
REF  
REF  
0 (Bipolar Zero)  
-1  
-V  
REF  
-V  
x 511/512  
x 512/512  
-511 (-Full Scale +1 LSB)  
-512 (-Full Scale)  
REF  
REF  
-V  
0
multiplexed at the D0–D9 outputs. CHI data is updated  
on the rising edge and CHQ data is updated on the  
falling edge of the CLK. Including the delay through the  
output latch, the total clock-cycle latency is 5 clock  
cycles for CHI and 5.5 clock cycles for CHQ.  
2 x V  
REF  
V
= V  
- V  
1 LSB =  
REF  
REFP REFN  
1024  
V
V
REF  
REF  
11 1111 1111  
11 1111 1110  
11 1111 1101  
Digital Input/Output Data (D0–D9)  
D0–D9 are the Rx ADC digital logic outputs when the  
MAX19708 is in receive mode. This bus is shared with  
the Tx DAC digital logic inputs and operates in half-  
duplex mode. D0–D9 are the Tx DAC digital logic inputs  
when the MAX19708 is in transmit mode. The logic level  
10 0000 0001  
10 0000 0000  
01 1111 1111  
(COM)  
is set by OV  
from 1.8V to V . The digital output cod-  
DD  
DD  
ing is offset binary (Table 1). Keep the capacitive load  
on the digital outputs D0–D9 as low as possible  
(< 15pF) to avoid large digital currents feeding back into  
the analog portion of the MAX19708 and degrading its  
dynamic performance. Buffers on the digital outputs iso-  
late the outputs from heavy capacitive loads. Adding  
100Ω resistors in series with the digital outputs close to  
the MAX19708 will help improve ADC performance.  
Refer to the MAX19708EVKIT schematic for an example  
of the digital outputs driving a digital buffer through  
100Ω series resistors.  
00 0000 0011  
00 0000 0010  
00 0000 0001  
00 0000 0000  
-512 -511 -510 -509  
-1 0+  
(COM)  
INPUT VOLTAGE (LSB)  
1
+512  
+509 +510 +511  
Figure 2. Rx ADC Transfer Function  
During SHDN, IDLE, and STBY states, D0–D9 are inter-  
nally pulled up to prevent floating digital inputs. To  
ensure no current flows through D0–D9 I/O, the external  
Rx ADC System Timing Requirements  
Figure 3 shows the relationship between the clock, ana-  
log inputs, and the resulting output data. Channel I  
(CHI) and channel Q (CHQ) are sampled on the rising  
edge of the clock signal (CLK) and the resulting data is  
bus needs to be either tri-stated or pulled up to OV  
and should not be pulled to ground.  
DD  
______________________________________________________________________________________ 17  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
5.5 CLOCK-CYCLE LATENCY (CHQ)  
5 CLOCK-CYCLE LATENCY (CHI)  
CHI  
CHQ  
t
CLK  
t
t
CH  
CL  
CLK  
t
DOQ  
t
DOI  
D0–D9  
D0Q  
D1I  
D1Q  
D2I  
D2Q  
D3I  
D3Q  
D4I  
D4Q  
D5I  
D5Q  
D6I  
D6Q  
Figure 3. Rx ADC System Timing Diagram  
Table 2. Tx Path Output Voltage vs. Input Codes  
(Internal Reference Mode V  
= 1.024V, External Reference Mode V  
Full Scale)  
P-P  
= V ; V = 410 for 820mV  
REFIN FS P-P  
REFDAC  
REFDAC  
Full Scale and V = 500 for 1V  
FS  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
OFFSET BINARY (D0–D9)  
INPUT DECIMAL CODE  
V
1023  
1023  
REFDAC  
1024  
V
×
×
11 1111 1111  
1023  
(
)
)
FS  
V
1021  
1023  
REFDAC  
1024  
V
(
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1022  
513  
512  
511  
1
FS  
V
3
1023  
REFDAC  
1024  
V
×
×
(
(
)
)
FS  
V
1
1023  
REFDAC  
1024  
V
FS  
V  
1
1023  
REFDAC  
1024  
V
×
(
)
FS  
V  
1021  
1023  
1023  
1023  
REFDAC  
1024  
V
×
(
(
)
)
FS  
V  
REFDAC  
1024  
V
×
0
FS  
The TD-SCDMA filters are tuned for 1.32MHz cutoff fre-  
quency and > 55dB image rejection at f  
Dual 10-Bit Tx DAC and Transmit Path  
The dual 10-bit digital-to-analog converters (Tx DAC)  
operate with clock speeds up to 11MHz. The Tx DAC  
digital inputs, D0–D9, are multiplexed on a single 10-bit  
bus. The voltage reference determines the Tx path full-  
scale voltage at IDP, IDN and QDP, QDN analog out-  
puts. See the Reference Configurations section for  
setting reference voltage. Each Tx path output channel  
integrates a lowpass filter tuned to meet the TD-SCDMA  
spectral mask requirements.  
=
IMAGE  
= 5.12MHz. See  
4.32MHz, f  
= 800kHz, and f  
OUT  
CLK  
Figure 4 for an illustration of the filter frequency response.  
Buffer amplifiers follow the TD-SCDMA filters. The amplifi-  
er outputs (IDN, IDP, QDN, QDP) are biased at an  
adjustable common-mode DC level and designed to  
drive a differential input stage with 70kΩ input imped-  
ance. This simplifies the analog interface between RF  
18 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
DAC sin(x)/x  
RESPONSE  
OCCUPIED  
CHANNEL  
AMPLITUDE  
TD-SCDMA  
FILTER RESPONSE  
0dB  
-3dB  
Tx PATH:  
-15dB  
SFDR = 73dBc  
THD = -71dB  
SNR = 56.5dB  
-49.3dB  
-55dB (min)  
-57.1dB  
FREQ (MHz)  
4.32  
IMAGE  
5.12  
0.8  
CHANNEL EDGE  
1.27  
NOT TO SCALE  
f
f
CLK  
C
Figure 4. TD-SCDMA Filter Frequency Response  
quadrature upconverters and the MAX19708. Many RF  
upconverters require a 0.9V to 1.4V common-mode bias.  
The MAX19708 common-mode DC bias eliminates dis-  
crete level-setting resistors and code-generated level  
shifting while preserving the full dynamic range of each  
Tx DAC. The Tx DAC differential analog outputs cannot  
be used in single-ended mode because of the internally  
generated common-mode DC level. Table 2 shows the  
Tx path output voltage vs. input codes. Table 11 shows  
the selection of DC common-mode levels. See Figure 5  
for an illustration of the Tx DAC analog output levels.  
3-Wire Serial Interface and  
Operation Modes  
The 3-wire serial interface controls the MAX19708 oper-  
ation modes as well as the three 12-bit aux-DACs and  
the 10-bit aux-ADC. Upon power-up, program the  
MAX19708 to operate in the desired mode. Use the 3-  
wire serial interface to program the device for shutdown,  
idle, standby, Rx, Tx, aux-DAC controls, or aux-ADC  
conversion. A 16-bit data register sets the mode control  
as shown in Table 3. The 16-bit word is composed of  
A3–A0 control bits and D11–D0 data bits. Data is shifted  
in MSB first (D11) and LSB last (A0). Tables 4, 5, and 6  
show the MAX19708 operating modes and SPI com-  
mands. The serial interface remains active in all modes.  
The buffer amplifiers also feature a programmable full-  
scale output level of 410mV or 500mV and indepen-  
dent DC offset trim on each I/Q channel. Both features  
are configured through the SPI interface. The DC offset  
correction is used to optimize sideband and carrier sup-  
pression in the Tx signal path (see Tables 8 and 10).  
SPI Register Description  
Program the control bits, A3–A0, in the register as shown  
in Table 3 to select the operating mode. Modify A3–A0  
bits to select from ENABLE-16, Aux-DAC1, Aux-DAC2,  
Aux-DAC3, IOFFSET, QOFFSET, Aux-ADC, ENABLE-8,  
and COMSEL modes. ENABLE-16 is the default operat-  
ing mode. This mode allows for shutdown, idle, and  
standby states as well as switching between FAST,  
SLOW, Rx and Tx modes. Table 4 shows the MAX19708  
power-management modes. Table 5 shows the T/R pin-  
controlled external Tx-Rx switching modes. Table 6  
shows the SPI-controlled Tx-Rx switching modes.  
Tx DAC Timing  
Figure 6 shows the relationship between the clock, input  
data, and analog outputs. Data for the I channel (ID) is  
latched on the falling edge of the clock signal, and Q-  
channel (QD) data is latched on the rising edge of the  
clock signal. Both I and Q outputs are simultaneously  
updated on the next rising edge of the clock signal.  
______________________________________________________________________________________ 19  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
MAX19708  
EXAMPLE:  
Tx DAC  
FILTER  
I-CH  
Tx RFIC INPUT REQUIREMENTS  
• DC COMMON-MODE BIAS =  
1.0V (MIN), 1.2V (TYP)  
0
90  
• BASEBAND INPUT = 410mV  
DC-COUPLED  
Tx DAC  
FILTER  
Q-CH  
FULL SCALE = 1.305V  
COMMON-MODE LEVEL  
SELECT CM1 = 1, CM0 = 0  
V
= 1.10V  
COM  
V
V
= 1.10V  
COM  
DIFF  
=
410mV  
ZERO SCALE = 0.895V  
0V  
Figure 5. Tx DAC Common-Mode DC Level at IDN, IDP or QDN, QDP Differential Outputs  
CLK  
t
t
DHQ  
DSQ  
Q: N - 2  
I: N - 1  
Q: N - 1  
Q: N  
I: N + 1  
D0–D9  
I: N  
t
t
DHI  
DSI  
N - 2  
N - 2  
ID  
N - 1  
N - 1  
N
N
QD  
Figure 6. Tx DAC System Timing Diagram  
20 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 3. MAX19708 Mode Control  
D11  
D10  
15  
D9  
14  
D8  
13  
D7  
12  
D6  
11  
D5  
10  
D4  
9
D3  
8
D2  
7
D1  
6
D0 A3 A2 A1  
A0  
REGISTER  
NAME  
(MSB)  
5
4
3
2
1 (LSB)  
E11 = 0  
Reserved Reserved  
E10 = 0  
ENABLE-16  
E9  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
0
0
0
0
Aux-DAC1  
Aux-DAC2  
Aux-DAC3  
IOFFSET  
1D11  
2D11  
3D11  
1D10  
2D10  
3D10  
1D9 1D8 1D7 1D6 1D5 1D4 1D3 1D2 1D1 1D0  
2D9 2D8 2D7 2D6 2D5 2D4 2D3 2D2 2D1 2D0  
3D9 3D8 3D7 3D6 3D5 3D4 3D3 3D2 3D1 3D0  
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
IO5 IO4 IO3 IO2 IO1 IO0  
QO5 QO4 QO3 QO2 QO1 QO0  
QOFFSET  
COMSEL  
CM1 CM0  
AD11 = 0  
Reserved  
Aux-ADC  
AD10  
AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0  
0
1
1
0
1
0
1
0
ENABLE-8  
E3  
E2  
E1  
E0  
— = Not used.  
Table 4. Power-Management Modes  
ADDRESS  
DATA BITS  
T/R  
FUNCTION  
(POWER  
MODE  
DESCRIPTION  
COMMENT  
MANAGEMENT)  
A3 A2 A1 A0 E9* E3 E2 E1 E0 PIN 27  
Rx ADC = OFF  
Tx DAC = OFF  
Aux-DAC = OFF  
Aux-ADC = OFF  
CLK = OFF  
Device is in complete  
shutdown.  
Overrides T/R pin.  
1X000  
XX001  
1X010  
X
X
X
SHDN  
SHUTDOWN  
REF = OFF  
0000  
(16-Bit Mode)  
or  
1000  
(8-Bit Mode)  
Rx ADC = OFF  
Tx DAC = OFF  
Aux-DAC = Last State Moderate idle power.  
CLK = ON  
REF = ON  
Fast turn-on time.  
IDLE  
IDLE  
Overrides T/R pin.  
Rx ADC = OFF  
Tx DAC = OFF  
Aux-DAC = Last State  
Aux-ADC = OFF  
CLK = OFF  
Slow turn-on time.  
Low standby power.  
Overrides T/R pin.  
STBY  
STANDBY  
REF = ON  
X = Don’t care.  
*Bit E9 is not available in 8-bit mode.  
______________________________________________________________________________________ 21  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 5. External Tx-Rx Control Using T/R Pin (T/R = 0 = Rx Mode, T/R = 1 = Tx Mode)  
FUNCTION  
STATE Rx TO Tx-Tx TO Rx  
SWITCHING SPEED  
ADDRESS  
DATA BITS  
T/R  
DESCRIPTION  
COMMENT  
A3 A2 A1 A0 E3 E2 E1 E0 PIN 27  
Rx Mode:  
Moderate Power:  
Fast Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enable  
0
Ext1-Rx  
0011  
FAST-SLOW  
Ext1-Tx  
Tx Mode:  
Low Power:  
Slow Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
1
Rx Mode:  
Low Power:  
Slow Rx to Tx when T/R  
transitions 0 to 1.  
Ext2-Rx  
(Default)  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
0
0100  
SLOW-FAST  
Ext2-Tx  
Tx Mode:  
Moderate Power:  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enable  
Fast Tx to Rx when T/R  
transitions 1 to 0.  
1
0000  
(16-Bit Mode)  
or  
1000  
Rx Mode:  
Low Power:  
Slow Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
(8-Bit Mode)  
0
Ext3-Rx  
0101  
SLOW-SLOW  
Ext3-Tx  
Tx Mode:  
Low Power:  
Slow Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
1
Rx Mode:  
Moderate Power:  
Fast Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enable  
0
Ext4-Rx  
0110  
FAST-FAST  
Tx Mode:  
Moderate Power:  
Fast Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enable  
1
Ext4-Tx  
In ENABLE-16 mode, the aux-DACs have independent  
control bits E4, E5, and E6, bit E7 sets the Tx path full-  
scale ouputs, and bit E9 enables the aux-ADC. Table 7  
shows the auxiliary DAC enable codes. Table 8 shows  
the full-scale output selection. Table 9 shows the auxil-  
iary ADC enable code. Bits E11 and E10 are reserved.  
Program bits E11 and E10 to logic-low.  
Modes aux-DAC1, aux-DAC2, and aux-DAC3 select the  
aux-DAC channels named DAC1, DAC2, and DAC3  
and hold the data inputs for each DAC. Bits _D11–_D0  
22 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 6. Tx-Rx Control Using SPI Commands  
FUNCTION  
(Tx-Rx SWITCHING  
SPEED)  
ADDRESS  
DATA BITS  
T/R  
MODE  
DESCRIPTION  
COMMENTS  
A3 A2 A1 A0 E3 E2 E1 E0 PIN 27  
Rx Mode:  
Low Power:  
Slow Rx to Tx through  
SPI command.  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
1011  
1100  
1101  
1110  
X
X
X
X
SPI1-Rx  
SLOW  
SLOW  
FAST  
FAST  
Tx Mode:  
Low Power:  
Slow Tx to Rx through  
SPI command.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
SPI2-Tx  
SPI3-Rx  
SPI4-Tx  
0000  
(16-Bit Mode)  
or  
1000  
(8-Bit Mode)  
Rx Mode:  
Moderate Power:  
Fast Rx to Tx through  
SPI command.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enabled  
Tx Mode:  
Moderate Power:  
Fast Tx to Rx through  
SPI command.  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enabled  
X = Don’t care.  
Table 7. Aux-DAC Enable Table  
(ENABLE-16 Mode)  
Table 8. Tx Path Full-Scale Select  
(ENABLE-16 Mode)  
E6 E5  
E4  
Aux-DAC3  
Aux-DAC2  
Aux-DAC1  
ON  
E7  
0 (Default)  
1
Tx-PATH OUTPUT FULL SCALE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
ON  
ON  
410mV  
500mV  
1
ON  
ON  
OFF  
ON  
0
ON  
OFF  
OFF  
ON  
1
ON  
OFF  
ON  
Table 9. Aux-ADC Enable Table  
(ENABLE-16 Mode)  
0
OFF  
OFF  
OFF  
OFF  
1
ON  
OFF  
ON  
E9  
0 (Default)  
1
SELECTION  
0
OFF  
OFF  
Aux-ADC is Powered ON  
Aux-ADC is Powered OFF  
1
OFF  
are the data inputs for each aux-DAC and can be pro-  
grammed through SPI. The MAX19708 also includes  
two 6-bit registers that can be programmed to adjust  
the offsets for the Tx path I and Q channels indepen-  
dently (see Table 10). Use the COMSEL mode to select  
the output common-mode voltage with bits CM1 and  
CM0 (see Table 11). Use aux-ADC mode to start the  
auxiliary ADC conversion (see the 10-Bit, 333ksps  
Auxiliary ADC section for details). Use ENABLE-8  
mode for faster enable and switching between shut-  
down, idle, and standby states as well as switching  
between FAST, SLOW, Rx and Tx modes.  
Shutdown mode offers the most dramatic power sav-  
ings by shutting down all the analog sections of the  
MAX19708 and placing the Rx ADC digital outputs in  
______________________________________________________________________________________ 23  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 10. Offset Control Bits for I and Q Channels (IOFFSET or QOFFSET Mode)  
BITS IO5–IO0 WHEN IN IOFFSET MODE, BITS QO5–QO0 WHEN IN QOFFSET MODE  
OFFSET 1 LSB =  
(VFS / 1023)  
P-P  
IO5/QO5  
IO4/QO4  
IO3/QO3  
IO2/QO2  
IO1/QO1  
IO0/QO0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
-31 LSB  
-30 LSB  
-29 LSB  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
1
0
-2 LSB  
-1 LSB  
0mV  
0mV (Default)  
1 LSB  
2 LSB  
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29 LSB  
30 LSB  
31 LSB  
Note: For transmit full-scale select of 410mꢀV 1 LSB = ꢁ820mꢀ  
/ 1023) = 0.8016mꢀ. For transmit full scale select of 500mꢀV 1 LSB =  
P-P  
ꢁ1ꢀ  
/ 1023) = 0.9775mꢀ.  
P-P  
Table 11. Common-Mode Select  
(COMSEL Mode)  
mode. When the Rx ADC outputs transition from tri-  
state to ON, the last converted word is placed on the  
digital outputs.  
CM1  
CM0  
Tx PATH OUTPUT COMMON MODE (V)  
In standby mode, the reference is powered, but the rest  
of the device functions are off. The wake-up time from  
standby mode is 17.5µs to enter Rx mode and 24µs to  
enter Tx mode. When the Rx ADC outputs transition  
from tri-state to active, the last converted word is  
placed on the digital outputs.  
0
0
1
1
0
1
0
1
1.40 (Default)  
1.25  
1.10  
0.90  
FAST and SLOW Rx and Tx Modes  
In addition to the external Tx-Rx control, the MAX19708  
also features SLOW and FAST modes for switching  
between Rx and Tx operation. In FAST Tx mode, the Rx  
ADC core is powered on but the ADC core digital out-  
puts are tri-stated on the D0–D9 bus; likewise, in FAST  
Rx mode, the transmit path (DAC core and Tx filter) is  
powered on but the DAC core digital inputs are tri-stat-  
ed on the D0–D9 bus. The switching time between Tx to  
Rx or Rx to Tx is FAST because the converters are on  
and do not have to recover from a power-down state. In  
FAST mode, the switching time between Rx to Tx and Tx  
to Rx is 0.5µs. However, power consumption is higher  
tri-state mode. When the Rx ADC outputs transition  
from tri-state to ON, the last converted word is placed  
on the digital outputs. The Tx DAC previously stored  
data is lost when coming out of shutdown mode. The  
wake-up time from shutdown mode is dominated by the  
time required to charge the capacitors at REFP, REFN,  
and COM. In internal reference mode and buffered  
external reference mode, the wake-up time is typically  
82.2µs to enter Rx mode and 29µs to enter Tx mode.  
In idle mode, the reference and clock distribution cir-  
cuits are powered, but all other functions are off. The  
Rx ADC outputs are forced to tri-state. The wake-up  
time is 9.6µs to enter Rx mode and 7.6µs to enter Tx  
24 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
in this mode because both the Tx and Rx cores are  
and Tx modes. Using the T/R pin provides faster switch-  
ing between Rx and Tx modes. To override the external  
Tx-Rx control, program the MAX19708 through the serial  
interface. During SHDN, IDLE, or STBY modes, the T/R  
input is overridden. To restore external Tx-Rx control,  
program bit E3 low and exit the SHDN, IDLE, or STBY  
modes through the serial interface.  
always on. To prevent bus contention in these states,  
the Rx ADC output buffers are tri-stated during Tx and  
the Tx DAC input bus is tri-stated during Rx.  
In SLOW mode, the Rx ADC core is off during Tx; like-  
wise the Tx DAC and filters are turned off during Rx to  
yield lower power consumption in these modes. For  
example, the power in SLOW Tx mode is 35.1mW. The  
power consumption during Rx is 24mW compared to  
41.1mW power consumption in FAST mode. However,  
the recovery time between states is increased. The  
switching time in SLOW mode between Rx to Tx is 7µs  
and Tx to Rx is 8.1µs.  
SPI Timing  
The serial digital interface is a standard 3-wire connec-  
tion (CS, SCLK, DIN) compatible with SPI/QSPI™/  
MICROWIRE/DSP interfaces. Set CS low to enable the  
serial data loading at DIN or output at DOUT. Following a  
CS high-to-low transition, data is shifted synchronously,  
most significant bit first, on the rising edge of the serial  
clock (SCLK). After 16 bits are loaded into the serial  
input register, data is transferred to the latch when CS  
transitions high. CS must transition high for a minimum of  
80ns before the next write sequence. The SCLK can idle  
either high or low between transitions. Figure 7 shows  
the detailed timing diagram of the 3-wire serial interface.  
External T/R Switching Control vs.  
Serial-Interface Control  
Bit E3 in the ENABLE-16 or ENABLE-8 register deter-  
mines whether the device Tx-Rx mode is controlled  
externally through the T/R input (E3 = low) or through the  
SPI command (E3 = high). By default, the MAX19708 is  
in the external Tx-Rx control mode. In the external control  
mode, use the T/R input (pin 27) to switch between Rx  
QSPI is a trademark of Motorola, Inc.  
16-BIT OR 8-BIT WRITE INTO SPI (DIN)  
16-BIT OR 8-BIT WRITE  
INTO SPI DURING  
10-BIT READ OUT OF AUX-ADC (DOUT) WITH  
SIMULTANEOUS 16-BIT WRITE INTO SPI (DIN)  
AUX-ADC CONVERSION  
t
CSS  
t
CP  
t
CS  
CS  
t
CSW  
t
CONV  
t
CL  
t
t
CHZ  
DCS  
t
CSD  
t
CH  
t
DS  
SCLK  
t
CD  
t
DH  
MSB  
BIT D11  
(DIN)  
MSB  
D11 (16-BIT)  
D3 (8-BIT)  
LSB  
BIT A0  
(DIN)  
D10 (16-BIT)  
D2 (8-BIT)  
LSB  
A0  
BIT D10  
(DIN)  
BIT D1  
(DIN)  
DIN  
MSB  
LSB  
AUX-ADC  
IS BUSY  
DOUT  
TRI-  
STATED  
BIT AD0  
CLEARED  
LSB  
MSB  
BIT D9  
(DOUT)  
LSB  
BIT D0  
(HELD)  
DOUT = TRI-STATED WHEN  
AUX-ADC IS IDLE  
DOUT = ACTIVE WHEN  
BIT AD0 IS SET  
DOUT  
BIT D0  
AUX-ADC  
DATA READY  
(DOUT)  
Figure 7. Serial-Interface Timing Diagram  
______________________________________________________________________________________ 25  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
clock with low jitter and fast rise and fall times (< 2ns).  
Mode-Recovery Timing  
Specifically, sampling occurs on the rising edge of the  
clock signal, requiring this edge to provide the lowest  
possible jitter. Any significant clock jitter limits the SNR  
performance of the on-chip Rx ADC as follows:  
Figure 8 shows the mode-recovery timing diagram.  
WAKE  
t
is the wakeup time when exiting shutdown, idle,  
or standby mode and entering Rx or Tx mode. t  
ENABLE  
is the recovery time when switching between either Rx  
or Tx mode. t or t is the time for the Rx ADC  
WAKE  
ENABLE  
to settle within 1dB of specified SINAD performance and  
Tx DAC settling to 10 LSB error. t and t  
times are measured after either the 16-bit serial com-  
mand is latched into the MAX19708 by a CS transition  
high (SPI controlled) or a T/R logic transition (external  
Tx-Rx control). In FAST mode, the recovery time is 0.5µs  
to switch between Tx or Rx modes.  
1
SNR = 20 × log  
WAKE  
ENABLE  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the clock jitter.  
Clock jitter is especially critical for undersampling  
applications. Consider the clock input as an analog  
input and route away from any analog input or other  
digital signal lines. The MAX19708 clock input operates  
System Clock Input (CLK)  
Both the Rx ADC and Tx DAC share the CLK input. The  
CLK input accepts a CMOS-compatible signal level set  
with an OV  
/ 2 voltage threshold and accepts a 50%  
DD  
15% duty cycle.  
by OV  
from 1.8V to V . Since the interstage con-  
DD  
DD  
version of the device depends on the repeatability of  
the rising and falling edges of the external clock, use a  
CS  
SCLK  
DIN  
16-BIT SERIAL DATA INPUT  
ADC DIGITAL OUTPUT.  
SINAD SETTLES WITHIN 1dB  
D0–D9  
ID/QD  
t
TO Rx MODE OR t  
,
ENABLE RX  
WAKE, SD, ST_  
DAC ANALOG OUTPUT.  
OUTPUT SETTLES TO 10 LSB ERROR  
t
TO Tx MODE OR t  
,
ENABLE TX  
WAKE, SD, ST_  
t
,
EXTERNAL T/R CONTROL  
ENABLE TX  
T/R  
Rx - > Tx  
t
,
EXTERNAL T/R CONTROL  
ENABLE RX  
T/R  
Tx - > Rx  
Figure 8. Mode-Recovery Timing Diagram  
26 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
a conversion has no effect (see Table 12). Bit AD1  
determines the internal reference of the auxiliary ADC  
(see Table 13). Bits AD2 and AD3 determine the auxil-  
iary ADC input source (see Table 14). Bits AD4, AD5,  
and AD6 select the number of averages taken when a  
single start-convert command is given. The conversion  
time increases as the number of averages increases  
(see Table 15). The conversion clock can be divided  
down from the system clock by properly setting bits  
AD7, AD8, and AD9 (see Table 16). The aux-ADC out-  
put data can be written out of DOUT by setting bit  
AD10 high (see Table 17).  
12-Bit, Auxiliary Control DACs  
The MAX19708 includes three 12-bit aux-DACs (DAC1,  
DAC2, DAC3) with 1µs settling time for controlling vari-  
able-gain amplifier (VGA), automatic gain-control  
(AGC), and automatic frequency-control (AFC) func-  
tions. The aux-DAC output range is 0.1V to 2.56V.  
During power-up, the VGA and AGC outputs (DAC2  
and DAC3) are at zero. The AFC DAC (DAC1) is at 1.1V  
during power-up. The aux-DACs can be independently  
controlled through the SPI bus, except during SHDN  
mode where the aux-DACs are turned off completely  
and the output voltage is set to zero. In STBY and IDLE  
modes the aux-DACs maintain the last value. On wakeup  
from SHDN, the aux-DACs resume the last values.  
The aux-ADC features a 4:1 input multiplexer to allow  
measurements on four input sources. The input sources  
are selected by AD3 and AD2 (see Table 14). Two of  
the multiplexer inputs (ADC1 and ADC2) can be con-  
nected to external sources such as an RF power detec-  
tor like the MAX2208 or temperature sensor like the  
MAX6613. The other two multiplexer inputs are internal  
Loading on the aux-DAC outputs should be carefully  
observed to achieve specified settling time and stabili-  
ty. The capacitive load must be kept to a maximum of  
5pF including package and trace capacitance. The  
resistive load must be greater than 200kΩ. If capacitive  
loading exceeds 5pF, then add a 10kΩ resistor in  
series with the output. Adding the series resistor helps  
drive larger load capacitance (< 15pF) at the expense  
of slower settling time.  
connections to V  
and OV  
that monitor the power-  
DD  
DD  
supply voltages. The internal V  
and OV  
connec-  
DD  
DD  
tions are made through integrated resistor-dividers that  
yield V / 2 and OV / 2 measurement results. The  
DD  
DD  
aux-ADC voltage reference can be selected between  
10-Bit, 333ksps Auxiliary ADC  
The MAX19708 integrates a 333ksps, 10-bit aux-ADC  
with an input 4:1 multiplexer. In the aux-ADC mode reg-  
ister, setting bit AD0 begins a conversion with the auxil-  
iary ADC. Bit AD0 automatically clears when the  
conversion is complete. Setting or clearing AD0 during  
an internal 2.048V bandgap reference or V (see  
DD  
Table 13). The V  
reference selection is provided to  
DD  
allow measurement of an external voltage source with a  
full-scale range extending beyond the 2.048V level. The  
input source voltage range cannot extend above V  
.
DD  
Table 14. Auxiliary ADC Input Source  
Table 12. Auxiliary ADC Convert  
AD0  
SELECTION  
AD3  
AD2  
AUX-ADC INPUT SOURCE  
0
1
Aux-ADC Idle (Default)  
Aux-ADC Start-Convert  
0
0
1
1
0
1
0
1
ADC1 (Default)  
ADC2  
V
/ 2  
DD  
OV  
/ 2  
DD  
Table 13. Auxiliary ADC Reference  
AD1  
SELECTION  
0
1
Internal 2.048V Reference (Default)  
Internal V  
Reference  
DD  
______________________________________________________________________________________ 27  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
The conversion requires 12 clock edges (1 for input  
Table 15. Auxiliary ADC Averaging  
sampling, 1 for each of the 10 bits, and 1 at the end for  
loading into the serial output register) to complete one  
conversion cycle (when no averaging is being done).  
Each conversion of an average (when averaging is set  
greater than 1) requires 12 clock edges. The conver-  
sion clock is generated from the system clock input  
(CLK). An SPI-programmable divider divides the sys-  
tem clock by the appropriate divisor (set with bits AD7,  
AD8, and AD9; see Table 16) and provides the conver-  
sion clock to the auxiliary ADC. The auxiliary ADC has a  
maximum conversion rate of 333ksps. The maximum  
conversion clock frequency is 4MHz (333ksps x 12  
clocks). Choose the proper divider value to keep the  
conversion clock frequency under 4MHz, based upon  
the system CLK frequency supplied to the MAX19708  
AD6 AD5 AD4  
AUX-ADC AVERAGING  
1 Conversion (No Averaging) (Default)  
Average of 2 Conversions  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
X
Average of 4 Conversions  
Average of 8 Conversions  
Average of 16 Conversions  
Average of 32 Conversions  
Average of 32 Conversions  
X = Don’t care.  
Table 16. Auxiliary ADC Clock (CLK)  
Divider  
(see Table 16). The total conversion time (t  
) of the  
CONV  
auxiliary ADC can be calculated as t  
= (12 x  
CONV  
N
x N  
) / f  
; where N  
is the number of  
AVG  
DIV  
CLK  
AVG  
AD9  
0
AD8  
0
AD7  
0
AUX-ADC CONVERSION CLOCK  
CLK Divided by 1 (Default)  
CLK Divided by 2  
averages (see Table 15), N  
is the CLK divisor (see  
DIV  
Table 16), and f  
is the system CLK frequency.  
CLK  
0
0
1
DOUT is normally in a tri-state condition. Upon setting  
the auxiliary ADC start conversion bit (bit AD0), DOUT  
becomes active and goes high, indicating that the aux-  
ADC is busy. When the conversion cycle is complete  
(including averaging), the data is placed into an output  
register and DOUT goes low, indicating that the output  
data is ready to be driven onto DOUT. When bit AD10 is  
set (AD10 = 1), the aux-ADC enters a data output mode  
where data is available on DOUT upon the next asser-  
tion low of CS. The auxiliary ADC data is shifted out of  
DOUT (MSB first) with the data transitioning on the  
falling edge of the serial clock (SCLK). DOUT enters a  
tri-state condition when CS is deasserted high. When bit  
AD10 is cleared (AD10 = 0), the aux-ADC data is not  
available on DOUT (see Table 17).  
0
1
0
CLK Divided by 4  
0
1
1
CLK Divided by 8  
1
0
0
CLK Divided by 16  
1
0
1
CLK Divided by 32  
1
1
0
CLK Divided by 64  
1
1
1
CLK Divided by 128  
Table 17. Auxiliary ADC Data Output  
Mode  
AD10  
SELECTION  
0
Aux-ADC Data is Not Available on DOUT (Default)  
DIN can be written independent of DOUT state. A 16-  
bit instruction at DIN updates the device configuration.  
To prevent modifying internal registers while reading  
data from DOUT, hold DIN at a high state. This effec-  
tively writes all ones into address 1111. Since address  
1111 does not exist, no internal registers are affected.  
Aux-ADC Enters Data Output Mode Where  
Data is Available on DOUT  
1
28 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Table 18. Reference Modes  
V
REFIN  
REFERENCE MODE  
Internal Reference Mode. V  
with a 0.33µF capacitor.  
is internally generated to be 0.512V. Bypass REFP, REFN, and COM each  
REF  
> 0.8V x V  
DD  
Buffered External Reference Mode. An external 1.024V 10% reference voltage is applied to REFIN. V  
is  
REF  
1.024V 10%  
internally generated to be V  
/ 2. Bypass REFP, REFN, and COM each with a 0.33µF capacitor. Bypass  
REFIN  
REFIN to GND with a 0.1µF capacitor.  
Reference Configurations  
25Ω  
The MAX19708 features an internal precision 1.024V  
bandgap reference that is stable over the entire power-  
supply and temperature ranges. The REFIN input pro-  
vides two modes of reference operation. The voltage at  
IAP  
0.1μF  
22pF  
V
IN  
REFIN (V  
) sets the reference operation mode  
REFIN  
(Table 18).  
COM  
0.33μF  
0.1μF  
In internal reference mode, connect REFIN to V  
REF  
REFP, and REFN are low-impedance outputs with  
.
DD  
V
is an internally generated 0.512V 4%. COM,  
IAN  
V
V
= V  
= V  
/ 2, V  
/ 2 - V  
= V  
/ 2 + V  
/ 2, and  
REF  
COM  
REFN  
DD  
DD  
REFP  
DD  
25Ω  
25Ω  
22pF  
22pF  
/ 2. Bypass REFP, REFN, and  
REF  
MAX19708  
COM each with a 0.33µF capacitor. Bypass REFIN to  
GND with a 0.1µF capacitor.  
QAP  
In buffered external reference mode, apply 1.024V  
10% at REFIN. In this mode, COM, REFP, and REFN  
0.1μF  
V
IN  
are low-impedance outputs with V  
= V  
/ 2,  
COM  
DD  
V
V
= V  
/ 2 + V / 4, and V  
REFIN  
= V  
/ 2 -  
REFP  
REFIN  
DD  
REFN  
DD  
/ 4. Bypass REFP, REFN, and COM each with a  
0.33μF  
0.1μF  
0.33µF capacitor. Bypass REFIN to GND with a 0.1µF  
capacitor. In this mode, the Tx path full-scale output is  
proportional to the external reference. For example, if  
QAN  
the V  
is increased by 10% (max), the Tx path full-  
REFIN  
25Ω  
22pF  
scale output is also increased by 10% or 451mV.  
Applications Information  
Using Balun Transformer AC-Coupling  
An RF transformer (Figure 9) provides an excellent  
solution to convert a single-ended signal source to a  
fully differential signal for optimum ADC performance.  
Connecting the center tap of the transformer to COM  
Figure 9. Balun Transformer-Coupled Single-Ended-to-  
Differential Input Drive for Rx ADC  
pared to single-ended mode. Figure 10 shows an RF  
transformer converting the MAX19708 Tx DAC differen-  
tial analog outputs to single-ended.  
provides a V  
/ 2 DC level shift to the input. A 1:1  
DD  
transformer can be used, or a step-up transformer can  
be selected to reduce the drive requirements. In gener-  
al, the MAX19708 provides better SFDR and THD with  
fully differential input signals than single-ended signals,  
especially for high input frequencies. In differential  
mode, even-order harmonics are lower as both inputs  
(IAP, IAN, QAP, QAN) are balanced, and each of the  
Rx ADC inputs only requires half the signal swing com-  
Using Op-Amp Coupling  
Drive the MAX19708 Rx ADC with op amps when a  
balun transformer is not available. Figures 11 and 12  
show the Rx ADC being driven by op amps for AC-cou-  
pled single-ended and DC-coupled differential applica-  
tions. Amplifiers such as the MAX4454 and MAX4354  
provide high speed, high bandwidth, low noise, and  
______________________________________________________________________________________ 29  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
low distortion to maintain the input signal integrity. The  
op-amp circuit shown in Figure 12 can also be used to  
interface with the Tx DAC differential analog outputs to  
provide gain or buffering. The Tx DAC differential ana-  
log outputs cannot be used in single-ended mode  
because of the internally generated common-mode  
level. Also, the Tx DAC analog outputs are designed to  
drive a differential input stage with input impedance ≥  
70kΩ. If single-ended outputs are desired, use an  
amplifier to provide differential-to-single-ended conver-  
sion and select an amplifier with proper input common-  
mode voltage range.  
IDP  
V
OUT  
MAX19708  
IDN  
QDP  
V
OUT  
TDD Mode  
The MAX19708 is optimized to operate in TD-SCDMA  
applications. When FAST mode is selected, the  
MAX19708 can switch between Tx and Rx modes  
through the T/R pin in typically 0.5µs. The Rx ADC and  
Tx DAC operate independently. The Rx ADC and Tx  
DAC digital bus are shared forming a single 10-bit par-  
allel bus. Using the 3-wire serial interface or external  
T/R pin, select between Rx mode to enable the Rx ADC  
or Tx mode to enable the Tx DAC. When operating in  
Rx mode, the Tx DAC bus is not enabled and in Tx  
mode the Rx ADC bus is tri-stated, eliminating any  
unwanted spurious emissions and preventing bus con-  
tention. In TDD mode, the MAX19708 uses 41.1mW  
QDN  
Figure 10. Balun Transformer-Coupled Differential-to-Single-  
Ended Output Drive for Tx DAC  
REFP  
1kΩ  
1kΩ  
R
50Ω  
ISO  
V
IN  
0.1μF  
IAP  
C
22pF  
IN  
power in Rx mode at f  
42.3mW in Tx mode.  
= 11MHz and the DAC uses  
CLK  
100Ω  
100Ω  
COM  
IAN  
TD-SCDMA Application  
REFN  
0.1μF  
Figure 13 illustrates a typical TD-SCDMA application  
circuit. The MAX19708 is designed to interface directly  
with the MAX2507 and MAX2392 radio front-ends to  
provide a complete “RF-to-Bits” front-end solution. The  
MAX19708 provides several features that allow direct  
interface to the MAX2392 and MAX2507:  
R
ISO  
50Ω  
C
22pF  
IN  
REFP  
MAX19708  
Integrated Tx filters reduce component count,  
lower cost, and meet TD-SCDMA spectral mask  
requirements  
R
ISO  
1kΩ  
V
IN  
0.1μF  
50Ω  
Programmable DC common-mode Tx output levels  
eliminate discrete DC-level-shifting components  
while preserving Tx DAC full dynamic range  
QAP  
C
22pF  
IN  
100Ω  
100Ω  
1kΩ  
Optimized Tx full-scale output level eliminates dis-  
crete amplifiers for I/Q gain control  
REFN  
0.1μF  
R
50Ω  
ISO  
Tx-I/Q offset correction eliminates discrete trim  
DACs for offset trim to improve sideband/carrier  
suppression  
QAN  
C
IN  
22pF  
One microsecond settling time aux-DACs for VGA  
and AGC control allow fast, accurate Tx power and  
Rx gain control  
Figure 11. Single-Ended Drive for Rx ADC  
30 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
R4  
R5  
600Ω  
600Ω  
R
22Ω  
ISO  
R1  
600Ω  
IAN  
C
IN  
5pF  
R2  
600Ω  
MAX19708  
R6  
R7  
600Ω  
600Ω  
COM  
R3  
600Ω  
R8  
600Ω  
R9  
600Ω  
R
ISO  
22Ω  
IAP  
C
IN  
5pF  
R10  
R11  
600Ω  
600Ω  
Figure 12. Rx ADC DC-Coupled Differential Drive  
10-BIT ADC  
Rx-I  
MAX2392  
Rx  
ENCODE  
T/R  
ZIF RECEIVER  
Rx-Q  
AGC  
HALF-  
DUPLEX  
BUS  
D9  
D0  
10-BIT DAC  
Tx-I  
MAX2507  
DIRECT  
MODULATOR  
CLK  
Tx  
SOURCE  
FILTER  
DIGITAL  
BASEBAND  
ASIC  
Tx-Q  
PA DETECT  
VGA  
SCLK  
DIN  
12-BIT DAC  
DAC1  
SYSTEM  
CONTROL  
CLK DIST  
SPI REG  
TCXO  
CS  
SHDN  
DAC2  
DAC3  
0V  
REFIN  
REFP  
REFN  
REF  
1.024V  
BUFFER  
MAX19708  
V
DD  
DD  
COM  
ADC  
10-BIT, 333ksps  
DOUT  
TEMPERATURE MEASURE  
4:1 MUX  
Figure 13. Typical Application Circuit for TD-SCDMA Radio  
______________________________________________________________________________________ 31  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
input lines to each respective converter to minimize  
channel-to-channel crosstalk. Keep all signal lines  
short and free of 90° turns.  
Grounding, Bypassing, and  
Board Layout  
The MAX19708 requires high-speed board layout design  
techniques. Refer to the MAX19708 EV kit data sheet for  
a board layout reference. Place all bypass capacitors as  
close to the device as possible, preferably on the same  
side of the board as the device, using surface-mount  
Dynamic Parameter Definitions  
ADC and DAC Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the device are measured using  
the best-straight-line fit (DAC Figure 14a).  
devices for minimum inductance. Bypass V  
to GND  
DD  
with a 0.1µF ceramic capacitor in parallel with a 2.2µF  
capacitor. Bypass OV to OGND with a 0.1µF ceramic  
DD  
capacitor in parallel with a 2.2µF capacitor. Bypass REFP,  
REFN, and COM each to GND with a 0.33µF ceramic  
capacitor. Bypass REFIN to GND with a 0.1µF capacitor.  
Multilayer boards with separated ground and power  
planes yield the highest level of signal integrity. Use a  
split ground plane arranged to match the physical loca-  
tion of the analog ground (GND) and the digital output-  
driver ground (OGND) on the device package.  
Connect the MAX19708 exposed backside paddle to  
GND plane. Join the two ground planes at a single  
point so the noisy digital ground currents do not inter-  
fere with the analog ground plane. The ideal location  
for this connection can be determined experimentally  
at a point along the gap between the two ground  
planes. Make this connection with a low-value, surface-  
mount resistor (1Ω to 5Ω), a ferrite bead, or a direct  
short. Alternatively, all ground pins could share the  
same ground plane, if the ground plane is sufficiently  
isolated from any noisy digital system’s ground plane  
(e.g., downstream output buffer or DSP ground plane).  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes (ADC) and a monotonic transfer function  
(ADC and DAC) (DAC Figure 14b).  
ADC Offset Error  
Ideally, the midscale transition occurs at 0.5 LSB above  
midscale. The offset error is the amount of deviation  
between the measured transition point and the ideal  
transition point.  
DAC Offset Error  
Offset error (Figure 14a) is the difference between the  
ideal and actual offset point. The offset point is the out-  
put value when the digital input is midscale. This error  
affects all codes by the same amount and usually can  
be compensated by trimming.  
Route high-speed digital signal traces away from sensi-  
tive analog traces. Make sure to isolate the analog  
7
6
6
1 LSB  
5
4
5
DIFFERENTIAL LINEARITY  
ERROR (-0.25 LSB)  
4
AT STEP  
011 (0.5 LSB)  
3
2
3
2
1
0
1 LSB  
DIFFERENTIAL  
LINEARITY ERROR (+0.25 LSB)  
AT STEP  
1
0
001 (0.25 LSB)  
000  
001  
010  
011  
100  
101  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 14b. Differential Nonlinearity  
Figure 14a. Integral Nonlinearity  
32 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
ADC Gain Error  
Ideally, the ADC full-scale transition occurs at 1.5 LSB  
below full scale. The gain error is the amount of devia-  
tion between the measured transition point and the  
ideal transition point with the offset error removed.  
components to the Nyquist frequency excluding the  
fundamental and the DC offset.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
ADC Dynamic Parameter Definitions  
Aperture Jitter  
Figure 15 shows the aperture jitter (t ), which is the  
AJ  
ENOB = (SINAD - 1.76) / 6.02  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first five  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 15).  
2
2
2
2
2
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error) and results directly  
from the ADC’s resolution (N bits):  
(V +V +V +V +V )  
2
3
4
5
6
THD = 20 x log  
V
1
where V is the fundamental amplitude and V –V are  
the amplitudes of the 2nd- through 6th-order harmonics.  
1
2
6
Third Harmonic Distortion (HD3)  
HD3 is defined as the ratio of the RMS value of the third  
harmonic component to the fundamental input signal.  
SNR(max) = 6.02dB x N + 1.76dB (in dB)  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset.  
Signal-to-Noise and Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise. RMS noise includes all spectral  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f and f ,  
1
2
are present at the inputs. The intermodulation products  
are (f f ), (2 f ), (2 f ), (2 f f ), (2 f f ).  
1
2
1
2
1
2
2
1
The individual input tone levels are at -7dBFS.  
CLK  
3rd-Order Intermodulation (IM3)  
IM3 is the power of the worst 3rd-order intermodulation  
product relative to the input power of either input tone  
ANALOG  
INPUT  
when two tones, f and f , are present at the inputs. The  
1
2
3rd-order intermodulation products are (2 x f  
f ). The individual input tone levels are at -7dBFS.  
f ), (2 f  
2 2  
1
t
AD  
1
t
AJ  
SAMPLED  
DATA (T/H)  
Power-Supply Rejection  
Power-supply rejection is defined as the shift in offset  
and gain error when the power supply is changed 5%.  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in such a way that the signal’s slew rate does not  
HOLD  
TRACK  
TRACK  
T/H  
Figure 15. T/H Aperture Timing  
______________________________________________________________________________________ 33  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
limit the ADC’s performance. The input frequency is  
(V2 +V2 +... +V2)  
2
3
n
then swept up to the point where the amplitude of the  
THD = 20 x log  
digitized conversion result has decreased by 3dB. Note  
that the T/H performance is usually the limiting factor  
for the small-signal input bandwidth.  
V
1
where V is the fundamental amplitude and V through  
1
2
V are the amplitudes of the 2nd through nth harmonic  
n
Full-Power Bandwidth  
up to the Nyquist frequency.  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as the full-  
power bandwidth frequency.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component up to the Nyquist frequency excluding DC.  
DAC Dynamic Parameter Definitions  
Total Harmonic Distortion  
THD is the ratio of the RMS sum of the output harmonics  
up to the Nyquist frequency divided by the fundamental:  
Selector Guide  
SAMPLING RATE  
PART  
DESCRIPTION  
(Msps)  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Integrated TD-SCDMA  
Filters, Three 12-Bit Auxiliary DACs  
MAX19700  
7.5  
11  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Integrated TD-SCDMA  
Filters, Three 12-Bit Auxiliary DACs, 10-Bit Auxiliary ADC with 4:1  
Input Mux  
MAX19708  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Three 12-Bit Auxiliary  
DACs, 10-Bit Auxiliary ADC with 4:1 Input Mux  
MAX19705/MAX19706 /MAX19707  
7.5/22/45  
Future product—contact factory for availability.  
34 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Functional Diagram  
V
DD  
= +2.7V TO +3.3V  
OV = +1.8V TO +3.3V  
DD  
IAP  
IAN  
10-BIT  
ADC  
MAX19708  
SHDN  
T/R  
QAP  
QAN  
10-BIT  
ADC  
D0–D9  
HALF-  
DUPLEX  
BUS  
IDP  
IDN  
10-BIT  
DAC  
FILTER  
FILTER  
QDP  
QDN  
10-BIT  
DAC  
SYSTEM  
CLOCK  
CLK  
PROGRAMMABLE  
OFFSET/GAIN/CM  
SERIAL  
INTERFACE  
AND SYSTEM  
CONTROL  
DIN  
SCLK  
CS  
12-BIT  
DAC  
DAC1  
DAC2  
DAC3  
12-BIT  
DAC  
REFIN  
REFP  
REFN  
COM  
1.024V  
REFERENCE  
BUFFER  
12-BIT  
DAC  
V
DD  
0V  
DD  
ADC1  
ADC2  
10-BIT  
ADC  
DOUT  
4:1 MUX  
GND  
OGND  
______________________________________________________________________________________ 35  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
DETAIL B  
e
C
C
L
L
L
L1  
L
L
e
e
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
A
A1  
A2  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
REV.  
DOCUMEN2T C1ON-T0RO1L N4O.4  
D
2
1
36 ______________________________________________________________________________________  
10-Bit, 11Msps, Ultra-Low-Power  
Analog Front-End  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
REV.  
DOCUMEN2T C1ON-T0RO1L N4O.4  
D
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 37  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Springer  

相关型号:

MAX19708ETM+

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-48
MAXIM

MAX1970EEE

Dual, 180∑ Out-of-Phase, 1.4MHz, 750mA Step- Down Regulator with POR and RSI/PFO
MAXIM

MAX1970EEE+

Switching Regulator, Current-mode, 0.75A, 1600kHz Switching Freq-Max, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1970EEE+T

Switching Regulator, Current-mode, 0.75A, 1600kHz Switching Freq-Max, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1970_09

Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step- Down Regulator with POR and RSI/PFO
MAXIM

MAX1971

Dual, 180∑ Out-of-Phase, 1.4MHz, 750mA Step- Down Regulator with POR and RSI/PFO
MAXIM

MAX19710

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
MAXIM

MAX19710ETN

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
MAXIM

MAX19710ETN+

暂无描述
MAXIM

MAX19710ETN+T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710ETN-T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710EVCMODU+

Low-Voltage and Low-Power Operation
MAXIM