MAX19710 [MAXIM]

10-Bit, 7.5Msps, Full-Duplex Analog Front-End; 10位, 7.5Msps ,全双工模拟前端
MAX19710
型号: MAX19710
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
10位, 7.5Msps ,全双工模拟前端

文件: 总37页 (文件大小:818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0526; Rev 0; 5/06  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
General Description  
Features  
Dual 10-Bit, 7.5Msps Rx ADC and Dual 10-Bit,  
The MAX19710 is an ultra-low-power, highly integrated  
mixed-signal analog front-end (AFE) ideal for wideband  
communication applications operating in full-duplex (FD)  
mode. Optimized for high dynamic performance and  
ultra-low power, the device integrates a dual 10-bit,  
7.5Msps receive (Rx) ADC; dual 10-bit, 7.5Msps transmit  
(Tx) DAC; three fast-settling 12-bit aux-DAC channels for  
ancillary RF front-end control; and a 10-bit, 333ksps  
housekeeping aux-ADC. The typical operating power in  
FD mode is 30mW at a 7.5MHz clock frequency.  
7.5Msps Tx DAC  
Ultra-Low Power  
30mW at fCLK = 7.5MHz, FD Mode  
21.3mW at fCLK = 7.5MHz, Slow Rx Mode  
21.9mW at fCLK = 7.5MHz, Slow Tx Mode  
Low-Current Standby and Shutdown Modes  
Programmable Tx DAC Common-Mode DC Level  
and I/Q Offset Trim  
Excellent Dynamic Performance  
SNR = 54.9dB at fIN = 3.3MHz (Rx ADC)  
The Rx ADCs feature 54.8dB SINAD and 79.8dBc SFDR  
at 3.3MHz input frequency with a 7.5MHz clock frequen-  
cy. The analog I/Q input amplifiers are fully differential  
SFDR = 73.8dBc at fOUT = 620kHz (Tx DAC)  
Three 12-Bit, 1μs Aux-DACs  
and accept 1.024V  
full-scale signals. Typical I/Q  
P-P  
10-Bit, 333ksps Aux-ADC with 4:1 Input Mux and  
channel matching is 0.01ꢀ phase and 0.01dB gain.  
Data Averaging  
The Tx DACs feature 73.8dBc SFDR at f = 620kHz  
OUT  
Excellent Gain/Phase Match  
0.01° Phase, 0.01dB Gain (Rx ADC) at  
fIN = 1.8MHz  
and f  
= 7.5MHz. The analog I-Q full-scale output volt-  
CLK  
age range is 400mV differential. The output DC com-  
mon-mode voltage is from 0.89V to 1.36V. The I/Q  
channel offset is adjustable to optimize radio lineup side-  
band/carrier suppression. Typical I-Q channel matching  
is 0.01dB gain and 0.15ꢀ phase.  
Multiplexed Parallel Digital I/O  
Serial-Interface Control  
Versatile Power-Control Circuits  
Shutdown, Standby, Idle, Tx/Rx Disable  
Two independent 10-bit parallel, high-speed digital  
buses used by the Rx ADC and Tx DAC allow full-  
duplex operation for frequency-division duplex applica-  
tions. The Rx ADC and Tx DAC can be disabled  
independently to optimize power management. A 3-wire  
serial interface controls power-management modes, the  
aux-DAC channels, and the aux-ADC channels.  
Miniature 56-Pin Thin QFN Package  
(7mm x 7mm x 0.8mm)  
Pin Configuration  
TOP VIEW  
The MAX19710 operates on a single 2.7V to 3.3V analog  
supply and 1.8V to 3.3V digital I/O supply. The  
MAX19710 is specified for the extended (-40ꢀC to  
+85ꢀC) temperature range and is available in a 56-pin,  
thin QFN package. The Selector Guide at the end of the  
data sheet lists other pin-compatible versions in this AFE  
family. For time-division duplex (TDD) applications, refer  
to the MAX19705–MAX19708 AFE family of products.  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
28  
27  
26  
25  
24  
23  
22  
21  
ADC1  
DAC3  
DA3  
DA2  
DA1  
DA0  
43  
44  
DAC2 45  
DAC1 46  
V
47  
OV  
DD  
DD  
IDN 48  
IDP 49  
GND 50  
OGND  
AD9  
Applications  
MAX19710  
AD8  
V
51  
20 AD7  
19 AD6  
18 AD5  
17 AD4  
16 AD3  
15 AD2  
DD  
QDN 52  
QDP 53  
Broadband Access  
Radio  
Portable Communication  
Equipment  
REFIN 54  
COM 55  
REFN 56  
Private Mobile Radio  
EXPOSED PADDLE (GND)  
Ordering Information  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
PART*  
PIN-PACKAGE  
56 Thin QFN-EP**  
56 Thin QFN-EP**  
PKG CODE  
THIN QFN  
NOTE: THE PIN 1 INDICATOR IS “+” FOR LEAD-FREE DEVICES.  
MAX19710ETN  
MAX19710ETN+  
T5677-1  
T5677-1  
Functional Diagram and Selector Guide appear at end of  
data sheet.  
*All devices are specified over the -40ꢀC to +85ꢀC operating range.  
**EP = Exposed paddle. +Denotes lead-free package.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND, OV  
to OGND ..............................-0.3V to +3.6V  
DD  
Continuous Power Dissipation (T = +70ꢀC)  
A
GND to OGND.......................................................-0.3V to +0.3V  
IAP, IAN, QAP, QAN, IDP, IDN, QDP,  
QDN, DAC1, DAC2, DAC3 to GND.....................-0.3V to V  
ADC1, ADC2 to GND.................................-0.3V to (V  
REFP, REFN, REFIN, COM to GND ...........-0.3V to (V  
AD0–AD9, DA0–DA9, SCLK, DIN, CS/WAKE,  
56-Pin Thin QFN-EP (derate 27.8mW/ꢀC above +70ꢀC)2.22W  
Thermal Resistance θ ..................................................36ꢀC/W  
JA  
Operating Temperature Range ...........................-40ꢀC to +85ꢀC  
Junction Temperature......................................................+150ꢀC  
Storage Temperature Range.............................-60ꢀC to +150ꢀC  
Lead Temperature (soldering, 10s) .................................+300ꢀC  
DD  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
CLK, DOUT to OGND .........................-0.3V to (OV  
+ 0.3V)  
DD  
MAX9710  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
C
= C  
= C  
= 0.33µF, C < 5pF on all aux-DAC outputs, T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
REFP  
REFN  
COM  
L
A
MIN  
T
A
= +25ꢀC.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage  
Output Supply Voltage  
V
2.7  
1.8  
3.0  
3.3  
V
V
DD  
OV  
V
DD  
DD  
FD mode: f  
= 7.5MHz, f  
= 620kHz  
CLK  
OUT  
on both DAC channels;  
= 1.875MHz on both ADC channels;  
aux-DACs ON and at midscale, aux-ADC  
ON  
f
IN  
10  
7.3  
7.1  
12  
9
SPI2-Tx mode: f  
= 7.5MHz, f  
=
CLK  
OUT  
620kHz on both DAC channels; Rx ADC  
OFF; aux-DACs ON and at midscale, aux-  
ADC ON  
V
Supply Current  
mA  
DD  
SPI1-Rx mode: f  
= 7.5MHz, f  
=
CLK  
IN  
1.875MHz on both ADC channels; Tx DAC  
OFF (Tx DAC outputs at 0V); aux-DACs  
ON and at midscale, aux-ADC ON  
9
SPI4-Tx mode: f  
= 7.5MHz, f  
=
CLK  
OUT  
620kHz on both DAC channels; Rx ADC  
ON (output tri-stated); aux-DACs ON and  
at midscale, aux-ADC ON  
9.7  
12  
2
_______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
SPI3-Rx mode: f = 7.5MHz, f  
MIN  
TYP  
MAX  
UNITS  
=
IN  
CLK  
1.875MHz on both channels; Tx DAC ON  
(Tx DAC outputs at midscale); aux-DACs  
ON and at midscale, aux-ADC ON  
9.5  
12  
mA  
Standby mode: CLK = 0 or OV  
;
DD  
aux-DACs ON and at midscale,  
aux-ADC ON  
2.7  
3.5  
V
Supply Current  
DD  
Idle mode: f  
and at midscale, aux-ADC ON  
= 7.5MHz; aux-DACs ON  
CLK  
4.6  
0.5  
6
5
Shutdown mode: CLK = 0 or OV , or  
DD  
aux-ADC OFF  
µA  
FD mode: f  
= 7.5MHz, f  
= 620kHz  
CLK  
OUT  
on both DAC channels; f = 1.875MHz on  
IN  
both ADC channels; aux-DACs ON and at  
midscale, aux-ADC ON  
0.94  
0.90  
mA  
SPI1-Rx and SPI3-Rx modes: f  
=
CLK  
7.5MHz, f = 1.875MHz on both ADC  
IN  
channels; DAC input bus tri-stated; aux-  
DACs ON and at midscale, aux-ADC ON  
SPI2-Tx and SPI4-Tx modes: f  
=
CLK  
7.5MHz, f  
= 620kHz on both DAC  
OUT  
OV  
Supply Current  
DD  
52  
channels; ADC output bus tri-stated; aux-  
DACs ON and at midscale, aux-ADC ON  
Standby mode: CLK = 0 or OV ; aux-  
DD  
DACs ON and at midscale, aux-ADC ON  
0.1  
12.8  
0.1  
µA  
Idle mode: f  
= 7.5MHz; aux-DACs ON  
CLK  
and at midscale, aux-ADC ON  
Shutdown mode: CLK = 0 or OV , or  
DD  
aux-ADC OFF  
Rx ADC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
LSB  
%FS  
%FS  
dB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
0.5  
0.4  
0.2  
0.9  
0.04  
11  
No missing codes over temperature (Note 2)  
Residual DC offset error  
-0.8  
-5  
+1.0  
+5  
Gain Error  
Includes reference error  
-5  
+5  
DC Gain Matching  
Offset Matching  
-0.15  
+0.15  
LSB  
_______________________________________________________________________________________  
3
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
30  
MAX  
UNITS  
Gain Temperature Coefficient  
ppm/ꢀC  
Offset (V  
5%)  
0.2  
DD  
Power-Supply Rejection  
PSRR  
LSB  
Gain (V  
5%)  
0.05  
DD  
MAX9710  
Rx ADC ANALOG INPUT  
Input Differential Range  
V
Differential or single-ended inputs  
Switched capacitor load  
0.512  
V
V
ID  
Input Common-Mode Voltage  
Range  
V
V
/ 2  
DD  
CM  
R
720  
5
kΩ  
IN  
Input Impedance  
C
pF  
IN  
Rx ADC CONVERSION RATE  
Maximum Clock Frequency  
f
(Note 3)  
7.5  
MHz  
CLK  
Channel IA  
Channel QA  
5
Clock  
Cycles  
Data Latency  
5.5  
Rx ADC DYNAMIC CHARACTERISTICS (Note 4)  
f
f
f
f
f
f
f
f
f
f
= 1.875MHz  
= 3.3MHz  
53.2  
53.1  
64.2  
54.8  
54.9  
54.7  
54.8  
73.9  
79.8  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
THD  
dB  
dB  
= 1.875MHz  
= 3.3MHz  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Third-Harmonic Distortion  
Intermodulation Distortion  
= 1.875MHz  
= 3.3MHz  
dBc  
dBc  
dBc  
dBc  
= 1.875MHz  
= 3.3MHz  
-71.7  
-74.3  
-76.8  
-83.8  
-62.8  
= 1.875MHz  
= 3.3MHz  
HD3  
f
f
= 1.8MHz, A  
= -7dBFS;  
= -7dBFS  
IN1  
IN2  
IN1  
IMD  
-72  
-83  
= 1MHz, A  
IN2  
Third-Order Intermodulation  
Distortion  
f
f
= 1.8MHz, A  
= -7dBFS;  
= -7dBFS  
IN1  
IN2  
IN1  
IM3  
dBc  
ns  
= 1MHz, A  
IN2  
Aperture Delay  
3.5  
2
Aperture Jitter  
ps  
RMS  
Overdrive Recovery Time  
1.5x full-scale input  
2
ns  
Rx ADC INTERCHANNEL CHARACTERISTICS  
f
= 1.8MHz, A  
= -0.5dBFS, f  
=
INX,Y  
INX,Y  
INY,X  
Crosstalk Rejection  
-91  
dB  
1MHz, A  
= -0.5dBFS (Note 5)  
INY,X  
Amplitude Matching  
Phase Matching  
f
= 1.8MHz, A = -0.5dBFS (Note 6)  
0.01  
0.01  
dB  
IN  
IN  
f
IN  
= 1.8MHz, A = -0.5dBFS (Note 6)  
Degrees  
IN  
4
_______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Tx DAC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
Differential Nonlinearity  
Residual DC Offset  
Full-Scale Gain Error  
INL  
DNL  
0.3  
0.2  
1.2  
1.6  
Guaranteed monotonic (Note 2)  
-0.75  
-4  
+0.75  
+4  
V
OS  
-40  
+40  
mV  
Tx DAC DYNAMIC PERFORMANCE  
DAC Conversion Rate  
f
(Note 3)  
7.5  
MHz  
CLK  
In-Band Noise Density  
N
f
= 620kHz  
-120  
-79  
dBFS/Hz  
D
OUT  
Third-Order Intermodulation  
Distortion  
IM3  
f
= 620kHz, f  
= 640kHz  
dBc  
pVs  
dBc  
OUT1  
OUT2  
Glitch Impulse  
10  
Spurious-Free Dynamic Range to  
Nyquist  
SFDR  
f
= 620kHz  
61  
73.8  
OUT  
Total Harmonic Distortion to  
Nyquist  
THD  
SNR  
f
f
= 620kHz  
= 620kHz  
-72.2  
55.1  
-59.7  
+0.4  
dBc  
dB  
OUT  
OUT  
Signal-to-Noise Ratio to Nyquist  
Tx DAC INTERCHANNEL CHARACTERISTICS  
I-to-Q Output Isolation  
f
= 2MHz, f  
= 2.2MHz  
92  
dB  
dB  
OUTX,Y  
OUTY,X  
Gain Mismatch Between I and Q  
Channels  
Measured at DC  
-0.4  
0.01  
Phase Mismatch Between I and Q  
Channels  
f
= 620kHz  
0.15  
800  
Degrees  
OUT  
Differential Output Impedance  
Ω
Tx DAC ANALOG OUTPUT  
Full-Scale Output Voltage  
V
400  
mV  
V
FS  
Bits CM1 = 0, CM0 = 0 (default)  
Bits CM1 = 0, CM0 = 1  
Bits CM1 = 1, CM0 = 0  
Bits CM1 = 1, CM0 = 1  
1.29  
1.14  
0.96  
0.78  
1.36  
1.2  
1.42  
1.27  
1.15  
1.03  
Output Common-Mode Voltage  
V
COMD  
1.05  
0.89  
Rx ADC–Tx DAC INTERCHANNEL CHARACTERISTICS  
ADC f = f  
= 1.8MHz, DAC f  
=
INI  
INQ  
OUTI  
Receive Transmit Isolation  
92  
dB  
f
= 620kHz  
OUTQ  
AUXILIARY ADCs (ADC1, ADC2)  
Resolution  
N
10  
Bits  
_______________________________________________________________________________________  
5
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
AD1 = 0 (default)  
MIN  
TYP  
MAX  
UNITS  
2.048  
Full-Scale Reference  
V
V
REF  
AD1 = 1  
V
DD  
0 to  
MAX9710  
Analog Input Range  
V
V
REF  
Analog Input Impedance  
Input-Leakage Current  
Measured at DC  
500  
kΩ  
µA  
Measured at unselected input from 0 to  
0.1  
V
REF  
Gain Error  
GE  
ZE  
Includes reference error, AD1 = 0  
-5  
+5  
%FS  
mV  
Zero-Code Error  
Differential Nonlinearity  
Integral Nonlinearity  
Supply Current  
2
0.6  
0.6  
210  
DNL  
INL  
LSB  
LSB  
µA  
AUXILIARY DACs (DAC1, DAC2, DAC3)  
Resolution  
N
12  
Bits  
Integral Nonlinearity  
INL  
From code 100 to code 4000  
1.25  
0.65  
LSB  
Guaranteed monotonic over code 100 to  
code 4000 (Note 2)  
Differential Nonlinearity  
DNL  
-1.0  
2.57  
+1.2  
0.2  
LSB  
R > 200kΩ  
L
Output-Voltage Low  
Output-Voltage High  
DC Output Impedance  
V
V
V
OL  
V
R > 200kΩ  
L
OH  
DC output at midscale  
4
1
Ω
From code 1024 to code 3072, within 10  
LSB  
Settling Time  
µs  
Glitch Impulse  
From code 0 to code 4095  
24  
nVs  
Rx ADC–Tx DAC TIMING CHARACTERISTICS  
CLK Rise to Channel-I Output Data  
Valid  
t
Figure 3 (Note 2)  
Figure 3 (Note 2)  
Figure 5 (Note 2)  
5.5  
6.5  
10  
8.2  
9.3  
11.5  
13.0  
ns  
ns  
ns  
DOI  
CLK Fall to Channel-Q Output  
Data Valid  
t
DOQ  
I-DAC DATA to CLK Fall Setup  
Time  
t
DSI  
Q-DAC DATA to CLK Rise Setup  
Time  
t
Figure 5 (Note 2)  
Figure 5 (Note 2)  
Figure 5 (Note 2)  
10  
0
ns  
ns  
ns  
DSQ  
CLK Fall to I-DAC Data Hold Time  
t
DHI  
CLK Rise to Q-DAC Data Hold  
Time  
t
0
DHQ  
CLK Duty Cycle  
50  
15  
%
%
CLK Duty-Cycle Variation  
Digital Output Rise/Fall Time  
20% to 80%  
2.4  
ns  
6
_______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
C
= C  
= C  
= 0.33µF, C < 5pF on all aux-DAC outputs, T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
REFP  
REFN  
COM  
L
A
MIN  
T
A
= +25ꢀC.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SERIAL-INTERFACE TIMING CHARACTERISTICS (Figures 6 and 8, Note 2)  
Falling Edge of CS/WAKE to Rising  
Edge of First SCLK Time  
t
10  
ns  
CSS  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Period  
t
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
CH  
t
t
25  
25  
50  
10  
80  
t
CL  
CP  
CS  
t
t
SCLK to CS/WAKE Setup Time  
CS/WAKE High Pulse Width  
t
CSW  
CS/WAKE High to DOUT  
Active High  
t
Bit AD0 set  
200  
4.3  
ns  
µs  
CSD  
CS/WAKE High to DOUT Low  
(Aux-ADC Conversion Time)  
Bit AD0 set, no averaging, f  
CLK divider = 2  
= 7.5MHz,  
CLK  
t
CONV  
DOUT Low to CS/WAKE  
Setup Time  
t
t
Bit AD0, AD10 set  
Bit AD0, AD10 set  
Bit AD0, AD10 set  
200  
ns  
ns  
ns  
DCS  
SCLK Low to DOUT Data Out  
t
14.5  
CD  
CS/WAKE High to DOUT High  
Impedance  
200  
CHZ  
MODE-RECOVERY TIMING CHARACTERISTICS (Figure 7)  
From shutdown to Rx mode, ADC settles  
to within 1dB SINAD  
500  
From shutdown to Tx mode, DAC settles to  
within 10 LSB error  
26.2  
Shutdown Wake-Up Time  
(With CLK)  
From aux-ADC enable to aux-ADC start  
conversion  
t
10  
28  
µs  
WAKE,SD  
From shutdown to aux-DAC output valid  
From shutdown to FD mode, ADC settles  
to within 1dB SINAD, DAC settles to within  
10 LSB error  
500  
From idle to Rx mode, ADC settles to within  
1dB SINAD  
7.3  
5.2  
From idle to Tx mode, DAC settles to 10  
LSB error  
Idle Wake-Up Time  
(With CLK)  
t
µs  
WAKE,ST0  
From idle to FD mode, ADC settles to  
within 1dB SINAD, DAC settles to within 10  
LSB error  
7.3  
_______________________________________________________________________________________  
7
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
From standby to Rx mode, ADC settles to  
within 1dB SINAD  
7.5  
From standby to Tx mode, DAC settles to  
10 LSB error  
MAX9710  
22.2  
22.2  
Standby Wake-Up Time  
(With CLK)  
t
µs  
WAKE,ST1  
From standby to FD mode, ADC settles to  
within 1dB SINAD, DAC settles to within 10  
LSB error  
Enable Time from Tx to Rx,  
Fast Mode  
t
ADC settles to within 1dB SINAD  
DAC settles to within 10 LSB error  
ADC settles to within 1dB SINAD  
DAC settles to within 10 LSB error  
0.1  
0.1  
7.3  
5.2  
µs  
µs  
µs  
µs  
ENABLE,RX  
Enable Time from Rx to Tx,  
Fast Mode  
t
ENABLE,TX  
ENABLE,RX  
Enable Time from Tx to Rx,  
Slow Mode  
t
Enable Time from Rx to Tx,  
Slow Mode  
t
ENABLE,TX  
INTERNAL REFERENCE (V  
Positive Reference  
= V ; V  
, V  
, V  
levels are generated internally)  
REFIN  
DD REFP REFN COM  
V
V
- V  
0.256  
V
V
REFP  
REFN  
COM  
Negative Reference  
- V  
-0.256  
COM  
V
/ 2  
V
/ 2  
DD  
DD  
Common-Mode Output Voltage  
V
V
/ 2  
V
COM  
DD  
2
- 0.15  
+ 0.15  
Maximum REFP/REFN/COM  
Source Current  
I
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
mA  
V
SINK  
Differential Reference Output  
V
V
- V  
REFN  
+0.490 +0.512 +0.534  
30  
REF  
REFP  
Differential Reference Temperature  
Coefficient  
REFTC  
ppm/ꢀC  
BUFFERED EXTERNAL REFERENCE (external V  
= 1.024V applied; V  
, V  
, V  
levels are generated internally)  
REFIN  
REFP REFN COM  
Reference Input Voltage  
V
1.024  
0.512  
V
V
V
REFIN  
Differential Reference Output  
Common-Mode Output Voltage  
V
V
- V  
REFP REFN  
DIFF  
V
V
/ 2  
COM  
DD  
Maximum REFP/REFN/COM  
Source Current  
I
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
SINK  
REFIN Input Current  
-0.7  
500  
µA  
REFIN Input Resistance  
kΩ  
8
_______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC input  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC output,  
= C = C = 0.33µF, C < 5pF on all aux-DAC outputs, T = T to T , unless otherwise noted. Typical values are at  
C
REFP  
= +25ꢀC.) (Note 1)  
REFN  
COM  
L
A
MIN  
MAX  
T
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (CLK, SCLK, DIN, CS/WAKE, DA9–DA0)  
Input High Threshold  
Input Low Threshold  
V
0.7 x OV  
V
V
INH  
DD  
V
0.3 x OV  
DD  
INL  
CLK, SCLK, DIN, CS/WAKE = OGND or  
OV  
-1  
+1  
DD  
Input Leakage  
DI  
µA  
pF  
IN  
DA9–DA0 = OV  
-1  
-5  
+1  
+5  
DD  
DA9–DA0 = OGND  
Input Capacitance  
DC  
5
5
IN  
DIGITAL OUTPUTS (AD9–AD0, DOUT)  
Output-Voltage Low  
V
I
I
= 200µA  
0.2 x OV  
DD  
V
V
OL  
SINK  
Output-Voltage High  
V
= 200µA  
0.8 x OV  
-1  
OH  
SOURCE  
DD  
Tri-State Leakage Current  
Tri-State Output Capacitance  
I
+1  
µA  
pF  
LEAK  
C
OUT  
Note 1: Specifications from T = +25ꢀC to +85ꢀC guaranteed by production tests. Specifications at T < +25ꢀC guaranteed by  
A
A
design and characterization.  
Note 2: Guaranteed by design and characterization.  
Note 3: The minimum clock frequency (f  
) for the MAX19710 is 1.5MHz (typ). The minimum aux-ADC sample rate clock frequency  
CLK  
(A  
) is determined by f  
and the chosen aux-ADC clock-divider value. The minimum aux-ADC A  
> 1.5MHz / 128 =  
CLK  
CLK  
CLK  
11.7kHz. The aux-ADC conversion time does not include the time to clock the serial data out of DOUT. The maximum con-  
version time (for no averaging, NAVG = 1) will be t (max) = (12 x 1 x 128) / 1.5MHz = 1024µs.  
CONV  
Note 4: SNR, SINAD, SFDR, HD3, and THD are based on a differential analog input voltage of -0.5dBFS referenced to the amplitude  
of the digital outputs. SINAD and THD are calculated using HD2 through HD6.  
Note 5: Crosstalk rejection is measured by applying a high-frequency test tone to one channel and a low-frequency tone to the sec-  
ond channel. FFTs are performed on each channel. The parameter is specified as the power ratio of the first and second  
channel FFT test tones.  
Note 6: Amplitude and phase matching are measured by applying the same signal to each channel, and comparing the two output  
signals using a sine-wave fit.  
_______________________________________________________________________________________  
9
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Typical Operating Characteristics  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC  
output, C  
= C  
= C = 0.33µF, T = +25ꢀC, unless otherwise noted.)  
REFP  
REFN  
COM A  
Rx ADC CHANNEL-IA  
TWO-TONE FFT PLOT  
Rx ADC CHANNEL-QA FFT PLOT  
Rx ADC CHANNEL-IA FFT PLOT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
FUNDAMENTAL  
f
A
= 1.8019362MHz  
FUNDAMENTAL  
= 1.8019362MHz  
= -0.524dBFS  
SINAD = 54.897dB  
SNR = 54.927dB  
THD = -76.609dBc  
SFDR = 83.379dBc  
IN  
f
A
IN  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
= -0.488dBFS  
IN  
f
f
IN2  
IN1  
SINAD = 54.773dB  
SNR = 54.83dB  
THD = -73.651dBc  
SFDR = 77.541dBc  
f
f
A
= 1.7471383MHz  
= 1.8421213MHz  
IN1  
IN2  
IN1  
MAX9710  
= A = -7dBFS  
IN2  
IMD = -64dBc  
3
2
6
5
4
2
3
5
6
2f - f  
4
2f - f  
IN2 IN1  
IN1 IN2  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
FREQUENCY (MHz)  
Rx ADC CHANNEL-QA  
TWO-TONE FFT PLOT  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT FREQUENCY  
0
57  
56  
55  
54  
53  
52  
51  
50  
57  
56  
55  
54  
53  
52  
51  
50  
f
f
IN2  
IN1  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IA  
IA  
f
f
A
= 1.7471383MHz  
= 1.8421213MHz  
IN1  
IN2  
IN1  
= A = -7dBFS  
IN2  
IMD = -64dBc  
QA  
QA  
2f - f  
2f - f  
IN2 IN1  
IN1 IN2  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-T0-NOISE RATIO  
vs. ANALOG INPUT AMPLITUDE  
90  
85  
80  
75  
70  
65  
60  
55  
50  
60  
55  
50  
45  
40  
35  
30  
25  
20  
90  
85  
80  
75  
70  
65  
60  
55  
50  
f
= 1.875MHz  
IN  
QA  
IA  
IA  
IA  
QA  
QA  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
-30  
-25  
-20  
-15  
-10  
-5  
0
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT AMPLITUDE (dBFS)  
10 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC  
output, C = C = C = 0.33µF, T = +25ꢀC, unless otherwise noted.)  
REFP  
REFN  
COM  
A
Rx ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT AMPLITUDE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT AMPLITUDE  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT AMPLITUDE  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
25  
20  
f
= 1.875MHz  
IN  
f
= 1.875MHz  
IN  
f
= 1.875MHz  
IN  
IA  
QA  
QA  
IA  
QA  
IA  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. SAMPLING FREQUENCY  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. SAMPLING FREQUENCY  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. SAMPLING FREQUENCY  
85  
80  
75  
70  
65  
60  
55  
57.0  
56.5  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
52.0  
57.0  
56.5  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
52.0  
f
= 1.875MHz  
IN  
f
= 1.875MHz  
f
= 1.875MHz  
IN  
IN  
IA  
IA  
IA  
QA  
QA  
QA  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING FREQUENCY  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. CLOCK DUTY CYCLE  
58  
57  
56  
55  
54  
53  
52  
90  
85  
80  
75  
70  
65  
60  
55  
58  
57  
56  
55  
54  
53  
52  
f
= 1.875MHz  
f = 1.875MHz  
IN  
f
= 1.875MHz  
IN  
IN  
IA  
IA  
IA  
QA  
QA  
QA  
35  
40  
45  
50  
55  
60  
65  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
35  
40  
45  
50  
55  
60  
65  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
______________________________________________________________________________________ 11  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC  
output, C = C = C = 0.33µF, T = +25ꢀC, unless otherwise noted.)  
REFP  
REFN  
COM  
A
Rx ADC TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
Rx ADC OFFSET ERROR vs. TEMPERATURE  
1.00  
0.75  
0.50  
0.25  
0
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
f
= 1.875MHz  
IA  
IN  
f = 1.875MHz  
IN  
IA  
MAX9710  
QA  
IA  
QA  
QA  
-0.25  
-0.50  
-0.75  
-1.00  
-40  
-15  
10  
35  
60  
85  
35  
40  
45  
50  
55  
60  
65  
35  
40  
45  
50  
55  
60  
65  
TEMPERATURE (°C)  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
Tx DAC SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING FREQUENCY  
Tx DAC SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY  
Rx ADC GAIN ERROR vs. TEMPERATURE  
90  
85  
80  
75  
70  
65  
60  
55  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
90  
85  
80  
75  
70  
65  
60  
f
= f / 10  
OUT CLK  
QD  
QD  
QA  
ID  
ID  
IA  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8  
OUTPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
Tx DAC SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT AMPLITUDE  
Tx DAC CHANNEL-ID SPECTRAL PLOT  
Tx DAC CHANNEL-QD SPECTRAL PLOT  
90  
80  
70  
60  
50  
40  
30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 2.2MHz  
f
= 2.2MHz  
OUT  
OUT  
f
= 2MHz  
OUT  
QD  
ID  
-30  
-25  
-20  
-15  
-10  
-5  
0
0
0.76  
1.52  
2.28  
3.04  
3.80  
0
0.76  
1.52  
2.28  
3.04  
3.80  
OUTPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC  
output, C  
= C  
= C  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
COM A  
REFP  
REFN  
Tx DAC CHANNEL-ID TWO-TONE  
SPECTRAL PLOT  
Tx DAC CHANNEL-QD TWO-TONE  
SPECTRAL PLOT  
SUPPLY CURRENT  
vs. SAMPLING FREQUENCY  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
FD MODE  
f
f
= 600kHz,  
= 800kHz  
f
f
= 600kHz,  
= 800kHz  
OUT1  
OUT2  
OUT1  
OUT2  
f
f
= 1.875MHz  
= 620kHz  
IN  
OUT  
-90  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
SAMPLING FREQUENCY (MHz)  
0.76  
1.52  
2.28  
3.04  
3.80  
0
0.76  
1.52  
2.28  
3.04  
3.80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Tx DAC INTEGRAL NONLINEARITY  
Rx ADC INTEGRAL NONLINEARITY  
Rx ADC DIFFERENTIAL NONLINEARITY  
0.8  
0.6  
0.4  
0.2  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.25  
-0.50  
-0.75  
-0.25  
-0.50  
-0.75  
-1.00  
-1.00  
0
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
Tx DAC DIFFERENTIAL NONLINEARITY  
AUX-DAC INTEGRAL NONLINEARITY  
0.5  
0.4  
2.0  
1.5  
1.0  
0.5  
0
0.520  
0.515  
0.510  
0.505  
0.500  
V
- V  
REFN  
REFP  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL INPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 7.5MHz (50% duty cycle), Rx ADC  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, CM1 = 0, CM0 = 0, differential Rx ADC input, differential Tx DAC  
output, C = C = C = 0.33µF, T = +25ꢀC, unless otherwise noted.)  
REFP  
REFN  
COM  
A
AUX-DAC DIFFERENTIAL NONLINEARITY  
AUX-ADC INTEGRAL NONLINEARITY  
1.0  
0.8  
2.0  
1.5  
1.0  
0.5  
0
0.6  
MAX9710  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL INPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
AUX-ADC DIFFERENTIAL NONLINEARITY  
3.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
0.001  
0.01  
0.1  
1
10  
100  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
OUTPUT SOURCE CURRENT (mA)  
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
AUX-DAC SETTLING TIME  
MAX19710 toc42  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
STEP FROM CODE 1024 TO CODE 3072  
1V/div  
CS/WAKE  
500mV/div  
AUX-DAC  
OUTPUT  
400ns/div  
0.001  
0.01  
0.1  
1
10  
100  
OUTPUT SINK CURRENT (mA)  
14 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Reference Voltage Input Terminal. Bypass with a 0.33µF capacitor to GND as close to REFP  
as possible.  
1
REFP  
2, 8, 11, 39,  
41, 47, 51  
Analog Supply Voltage. Bypass V  
a 0.1µF capacitor.  
to GND with a combination of a 2.2µF capacitor in parallel with  
DD  
V
DD  
3
IAP  
IAN  
Channel-IA Positive Analog Input. For single-ended operation, connect signal source to IAP.  
Channel-IA Negative Analog Input. For single-ended operation, connect IAN to COM.  
Analog Ground. Connect all GND pins to ground plane.  
4
5, 7, 12, 40, 50  
GND  
CLK  
QAN  
QAP  
6
9
Conversion Clock Input. Clock signal for both receive ADCs and transmit DACs.  
Channel-QA Negative Analog Input. For single-ended operation, connect QAN to COM.  
Channel-QA Positive Analog Input. For single-ended operation, connect signal source to QAP.  
10  
Receive ADC Digital Outputs. AD9 is the most significant bit (MSB) and AD0 is the least significant  
bit (LSB).  
13–22  
23  
AD0–AD9  
OGND  
Output-Driver Ground  
Output-Driver Power Supply. Supply range from +1.8V to V . Bypass OV  
DD  
combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
to OGND with a  
DD  
24  
OV  
DD  
Transmit DAC Digital Inputs. DA9 is the most significant bit (MSB) and DA0 is the least significant bit  
25–34  
DA0–DA9  
(LSB). DA0–DA9 are internally pulled up to OV  
DD.  
35  
36  
37  
DOUT  
DIN  
Aux-ADC Digital Output  
3-Wire Serial-Interface Data Input. Data is latched on the rising edge of SCLK.  
3-Wire Serial-Interface Clock Input  
SCLK  
3-Wire Serial-Interface Chip-Select/WAKE Input. When the MAX19710 is in shutdown, CS/WAKE  
controls the wake-up function. See the Wake-Up Function section.  
38  
CS/WAKE  
42  
43  
44  
45  
46  
48  
49  
52  
53  
54  
55  
ADC2  
ADC1  
DAC3  
DAC2  
DAC1  
IDN  
Selectable Auxiliary ADC Analog Input 2  
Selectable Auxiliary ADC Analog Input 1  
Auxiliary DAC3 Analog Output (V  
Auxiliary DAC2 Analog Output (V  
= 0 at Power-Up)  
= 0 at Power-Up)  
OUT  
OUT  
Auxiliary DAC1 Analog Output (AFC DAC, V  
= 1.1V at Power-Up)  
OUT  
Tx Path Channel-ID Differential Negative Output  
Tx Path Channel-ID Differential Positive Output  
Tx Path Channel-QD Differential Negative Output  
Tx Path Channel-QD Differential Positive Output  
IDP  
QDN  
QDP  
REFIN  
COM  
Reference Input. Connect to V  
for internal reference.  
DD  
Common-Mode Voltage I/O. Bypass COM to GND with a 0.33µF capacitor.  
Negative Reference Voltage Input Terminal. Rx ADC conversion range is (V  
REFN to GND with a 0.33µF capacitor.  
- V  
). Bypass  
REFP  
REFN  
56  
REFN  
EP  
Exposed Paddle. Exposed paddle is internally connected to GND. Connect EP to the GND plane.  
ential and accept 1.024V  
full-scale signals. The Tx  
P-P  
Detailed Description  
DAC analog outputs are fully differential with 400mV  
full-scale output, selectable common-mode DC level,  
and adjustable channel ID–QD offset trim.  
The MAX19710 integrates a dual, 10-bit Rx ADC and a  
dual, 10-bit Tx DAC while providing ultra-low power  
and high dynamic performance at 7.5Msps conversion  
rate. The Rx ADC analog input amplifiers are fully differ-  
______________________________________________________________________________________ 15  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
The MAX19710 integrates three 12-bit auxiliary DACs  
(aux-DACs) and a 10-bit, 333ksps auxiliary ADC (aux-  
ADC) with 4:1 input multiplexer. The aux-DAC channels  
feature 1µs settling time for fast AGC, VGA, and AFC  
level setting. The aux-ADC features data averaging to  
reduce processor overhead and a selectable clock-  
divider to program the conversion rate.  
MAX19710 operates from a single 2.7V to 3.3V analog  
supply and a 1.8V to 3.3V digital supply.  
Dual 10-Bit Rx ADC  
The ADC uses a seven-stage, fully differential, pipelined  
architecture that allows for high-speed conversion while  
minimizing power consumption. Samples taken at the  
inputs move progressively through the pipeline stages  
every half clock cycle. Including the delay through the  
output latch, the total clock-cycle latency is 5 clock  
cycles for channel IA and 5.5 clock cycles for channel  
The MAX19710 includes a 3-wire serial interface to con-  
trol operating modes and power management. The seri-  
al interface is SPI™ and MICROWIRE™ compatible.  
The MAX19710 serial interface selects shutdown, idle,  
standby, FD, transmit (Tx), and receive (Rx) modes, as  
well as controls aux-DAC and aux-ADC channels.  
MAX9710  
QA. The ADC full-scale analog input range is  
V
REF  
with a V / 2 ( 0.8V) common-mode input range. V  
DD  
REF  
is the difference between V  
and V  
. See the  
REFN  
REFP  
The MAX19710 features two independent, high-speed,  
10-bit buses for the Rx ADC and Tx DAC, which allow  
full-duplex (FD) operation for frequency-division duplex  
applications. Each bus can be disabled to optimize  
power management through the 3-wire interface. The  
Reference Configurations section for details.  
Input Track-and-Hold (T/H) Circuits  
Figure 1 displays a simplified diagram of the Rx ADC  
input track-and-hold (T/H) circuitry. Both ADC inputs  
(IAP, QAP, IAN, and QAN) can be driven either differen-  
MICROWIRE is a trademark of National Semiconductor Corp.  
SPI is a trademark of Motorola, Inc.  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
IAP  
IAN  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
QAP  
QAN  
OUT  
C2a  
C2b  
S4c  
S1  
MAX19710  
OUT  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 1. Rx ADC Internal T/H Circuits  
16 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Table 1. Rx ADC Output Codes vs. Input Voltage  
DIFFERENTIAL INPUT  
VOLTAGE  
DIFFERENTIAL INPUT (LSB)  
OFFSET BINARY (AD0–AD9)  
OUTPUT DECIMAL CODE  
V
V
x 512/512  
x 511/512  
511 (+Full Scale - 1 LSB)  
510 (+Full Scale - 2 LSB)  
+1  
11 1111 1111  
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1023  
1022  
513  
512  
511  
1
REF  
REF  
V
V
x 1/512  
x 0/512  
x 1/512  
REF  
REF  
0 (Bipolar Zero)  
-1  
-V  
REF  
-V  
x 511/512  
x 512/512  
-511 (-Full Scale + 1 LSB)  
-512 (-Full Scale)  
REF  
REF  
-V  
0
nal (CLK) and the resulting data is multiplexed at the  
AD0–AD9 outputs. Channel IA data is updated on the ris-  
ing edge and channel QA data is updated on the falling  
edge of CLK. Including the delay through the output  
latch, the total clock-cycle latency is 5 clock cycles for  
channel IA and 5.5 clock cycles for channel QA.  
2 x V  
REF  
V
= V  
- V  
1 LSB =  
REF  
REFP REFN  
1024  
V
V
REF  
REF  
11 1111 1111  
11 1111 1110  
11 1111 1101  
Digital Output Data (AD0–AD9)  
10 0000 0001  
10 0000 0000  
01 1111 1111  
AD0–AD9 are the Rx ADC digital logic outputs of the  
(COM)  
MAX19710. The logic level is set by OV  
from 1.8V to  
DD  
V
DD  
. The digital output coding is offset binary (Table 1).  
Keep the capacitive load on the digital outputs AD0–AD9  
as low as possible (< 15pF) to avoid large digital currents  
feeding back into the analog portion of the MAX19710  
and degrading its dynamic performance. Buffers on the  
digital outputs isolate the outputs from heavy capacitive  
loads. Adding 100Ω resistors in series with the digital out-  
puts close to the MAX19710 will help improve ADC per-  
formance. Refer to the MAX19710EVKIT schematic for an  
example of the digital outputs driving a digital buffer  
through 100Ω series resistors.  
00 0000 0011  
00 0000 0010  
00 0000 0001  
00 0000 0000  
-512 -511 -510 -509  
-1 0+  
(COM)  
INPUT VOLTAGE (LSB)  
1
+512  
+509 +510 +511  
Figure 2. Rx ADC Transfer Function  
During SHDN, IDLE, STBY, SPI2, and SPI4 states, digital  
outputs AD0–AD9 are tri-stated.  
tially or single-ended. Match the impedance of IAP and  
IAN, as well as QAP and QAN, and set the input signal  
Dual 10-Bit Tx DACs  
The dual 10-bit digital-to-analog converters (Tx DACs)  
operate with clock speeds up to 7.5MHz. The Tx DAC  
digital inputs, DA0–DA9, are multiplexed on a single  
10-bit transmit bus. The voltage reference determines  
the Tx DAC full-scale voltage at IDP, IDN and QDP,  
QDN analog outputs. See the Reference Configurations  
section for setting the reference voltage.  
common-mode voltage within the V  
/ 2 ( 0.8V) Rx  
DD  
ADC range for optimum performance.  
Rx ADC System Timing Requirements  
Figure 3 shows the relationship between the clock, ana-  
log inputs, and the resulting output data. Channels IA  
and QA are sampled on the rising edge of the clock sig-  
______________________________________________________________________________________ 17  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
5.5 CLOCK-CYCLE LATENCY (QA)  
5 CLOCK-CYCLE LATENCY (IA)  
IA  
QA  
t
CLK  
t
CL  
t
CH  
MAX9710  
CLK  
t
DOQ  
t
DOI  
D0–D9  
D0Q  
D1I  
D1Q  
D2I  
D2Q  
D3I  
D3Q  
D4I  
D4Q  
D5I  
D5Q  
D6I  
D6Q  
Figure 3. Rx ADC System Timing Diagram  
Table 2. Tx DAC Output Voltage vs. Input Codes  
(Internal Reference Mode V  
Full Scale)  
= 1.024V, External Reference Mode V  
= V  
, V = 400 for 800mV  
REFIN FS P-P  
REFDAC  
REFDAC  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
OFFSET BINARY (DA0–DA9)  
INPUT DECIMAL CODE  
V
1023  
1023  
REFDAC  
1024  
V
×
×
11 1111 1111  
1023  
(
(
)
)
FS  
V
1023  
1023  
REFDAC  
1024  
V
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1022  
513  
512  
511  
1
FS  
V
1023  
1023  
REFDAC  
1024  
V
×
×
(
(
)
)
FS  
V
1023  
1023  
REFDAC  
1024  
V
FS  
V
1023  
1023  
REFDAC  
1024  
V
×
(
)
FS  
V
1023  
1023  
REFDAC  
1024  
V
×
×
(
(
)
)
FS  
V
1023  
1023  
REFDAC  
1024  
0
V
FS  
The Tx DAC outputs (IDN, IDP, QDN, QDP) are biased at  
an adjustable common-mode DC level and designed to  
drive a differential input stage with 70kΩ input imped-  
ance. This simplifies the analog interface between RF  
quadrature upconverters and the MAX19710. Many RF  
upconverters require a 0.89V to 1.36V common-mode  
bias. The MAX19710 common-mode DC bias eliminates  
discrete level-setting resistors and code-generated level  
shifting while preserving the full dynamic range of each  
Tx DAC. The Tx DAC differential analog outputs can-  
not be used in single-ended mode because of the  
internally generated common-mode DC level. Table 2  
shows the Tx DAC output voltage vs. input codes. Table  
10 shows the selection of DC common-mode levels.  
See Figure 4 for an illustration of the Tx DAC analog  
output levels.  
The Tx DAC also features independent DC offset trim on  
each ID–QD channel. This feature is configured through  
the SPI interface. The DC offset correction is used to opti-  
mize sideband and carrier suppression in the Tx signal  
path (see Table 9).  
18 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
MAX19710  
EXAMPLE:  
Tx DAC  
CH-ID  
Tx RFIC INPUT REQUIREMENTS  
• DC COMMON-MODE BIAS = 0.9V (MIN), 1.3V (TYP)  
0°  
• BASEBAND INPUT = 400mV DC-COUPLED  
90°  
Tx DAC  
CH-QD  
FULL SCALE = 1.56V  
COMMON-MODE LEVEL  
V
= 1.36V  
COMD  
SELECT CM1 = 0, CM0 = 0  
= 1.36V  
V
COMD  
V
= 400mV  
FS  
ZERO SCALE = 1.16V  
0V  
Figure 4. Tx DAC Common-Mode DC Level at IDN, IDP or QDN, QDP Differential Outputs  
CLK  
t
t
DHQ  
DSQ  
Q: N - 2  
I: N - 1  
Q: N - 1  
Q: N  
I: N + 1  
D0–D9  
I: N  
t
t
DHI  
DSI  
N - 2  
N - 2  
ID  
N - 1  
N - 1  
N
N
QD  
Figure 5. Tx DAC System Timing Diagram  
______________________________________________________________________________________ 19  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Tx DAC Timing  
Figure 5 shows the relationship among the clock, input  
data, and analog outputs. Channel ID data is latched  
on the falling edge of the clock signal, and channel  
QD data is latched on the rising edge of the clock sig-  
nal, at which point both ID and QD outputs are simul-  
taneously updated.  
Auxiliary ADC section for details). Use ENABLE-8 mode  
for faster enable and switching between shutdown, idle,  
and standby states as well as switching between FAST,  
SLOW, Rx and Tx modes and the FD mode.  
The WAKEUP-SEL register selects the operating mode  
that the MAX19710 is to enter immediately after coming  
out of shutdown (Table 11). See the Wake-Up Function  
section for more information.  
3-Wire Serial Interface and  
Operation Modes  
Shutdown mode offers the most dramatic power sav-  
ings by shutting down all the analog sections (including  
the reference) of the MAX19710. In shutdown mode,  
the Rx ADC digital outputs are in tri-state mode, the Tx  
The 3-wire serial interface controls the MAX19710 oper-  
ation modes as well as the three 12-bit aux-DACs and  
the 10-bit aux-ADC. Upon power-up, program the  
MAX19710 to operate in the desired mode. Use the 3-  
wire serial interface to program the device for shutdown,  
idle, standby, FD, Rx, Tx, aux-DAC controls, or aux-ADC  
conversion. A 16-bit data register sets the mode control  
as shown in Table 3. The 16-bit word is composed of  
four control bits (A3–A0) and 12 data bits (D11–D0).  
Data is shifted in MSB first (D11) and LSB last (A0) for-  
mat. Table 4 shows the MAX19710 power-management  
modes. Table 5 shows the SPI-controlled Tx, Rx, and FD  
modes. The serial interface remains active in all modes.  
MAX9710  
DAC digital inputs are internally pulled to OV , and  
DD  
the Tx DAC outputs are at 0V. When the Rx ADC out-  
puts transition from tri-state to active mode, the last  
converted word is placed on the digital output bus. The  
Tx DAC previously stored data is lost when coming out  
of shutdown mode. The wake-up time from shutdown  
mode is dominated by the time required to charge the  
capacitors at REFP, REFN, and COM. In internal refer-  
ence mode and buffered external reference mode, the  
wake-up time is typically 500µs to enter Rx mode,  
26.2µs to enter Tx mode, and 500µs to enter  
FD mode.  
SPI Register Description  
Program the control bits, A3–A0, in the register as shown  
in Table 3 to select the operating mode. Modify A3–A0  
bits to select from ENABLE-16, Aux-DAC1, Aux-DAC2,  
Aux-DAC3, IOFFSET, QOFFSET, COMSEL, Aux-ADC,  
ENABLE-8, and WAKEUP-SEL modes. ENABLE-16 is  
the default operating mode (see Table 6). This mode  
allows for shutdown, idle, and standby states as well as  
switching between FAST, SLOW, Rx and Tx modes.  
Tables 4 and 5 show the required SPI settings for  
each mode.  
In all operating modes the Tx DAC inputs DA0–DA9 are  
internally pulled to OV . To reduce the supply current of  
DD  
the MAX19710 in shutdown mode do not pull DA0–DA9  
low. This consideration is especially important in shut-  
down mode to achieve the lowest quiescent current.  
In idle mode, the reference and clock distribution cir-  
cuits are powered, but all other functions are off. The  
Rx ADC outputs AD0–AD9 are forced to tri-state. The  
Tx DAC DA0–DA9 inputs are internally pulled to OV  
,
DD  
while the Tx DAC outputs are at 0V. The wake-up time  
is 7.3µs to enter Rx mode, 5.2µs to enter Tx mode, and  
7.3µs to enter FD mode. When the Rx ADC outputs  
transition from tri-state to active, the last converted  
word is placed on the digital output bus.  
In ENABLE-16 mode, the aux-DACs have independent  
control bits E4, E5, and E6, and bit E9 enables the aux-  
ADC. Table 7 shows the auxiliary DAC enable codes.  
Table 8 shows the auxiliary ADC enable code. Bits E11  
and E10 are reserved. Program bits E11 and E10 to  
logic-low. Bits E3, E7, and E8 are not used.  
In standby mode, the reference is powered but all other  
device functions are off. The wake-up time from stand-  
by mode is 7.5µs to enter Rx mode, 22.2µs to enter Tx  
mode, and 22.2µs to enter FD mode. When the Rx ADC  
outputs transition from tri-state to active, the last con-  
verted word is placed on the digital output bus.  
Modes aux-DAC1, aux-DAC2, and aux-DAC3 select the  
aux-DAC channels named DAC1, DAC2, and DAC3 and  
hold the data inputs for each DAC. Bits _D11–_D0 are  
the data inputs for each aux-DAC and can be pro-  
grammed through SPI. The MAX19710 also includes  
two 6-bit registers that can be programmed to adjust the  
offsets for the Tx DAC ID and QD channels indepen-  
dently (see Table 9). Use the COMSEL mode to select  
the output common-mode voltage with bits CM1 and  
CM0 (see Table 10). Use the aux-ADC mode to start the  
auxiliary ADC conversion (see the 10-Bit, 333ksps  
FAST and SLOW Rx and Tx Modes  
The MAX19710 features FAST and SLOW modes for  
switching between Rx and Tx operation. In FAST Tx  
mode, the Rx ADC core is powered on but the ADC digi-  
tal outputs AD0–AD9 are tri-stated. The Tx DAC digital  
bus is active and the DAC core is fully operational.  
20 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Table 3. MAX19710 Mode Control  
D11  
D10  
D9  
D8  
D7  
12  
D6  
11  
D5  
10  
D4  
9
D3  
8
D2  
7
D1  
6
D0 A3 A2 A1  
A0  
REGISTER  
NAME  
(MSB)  
15  
14  
13  
5
4
3
2
1 (LSB)  
E11 = 0  
Reserved Reserved  
E10 = 0  
ENABLE-16  
E9  
E6  
E5  
E4  
E2  
E1  
E0  
0
0
0
0
Aux-DAC1  
Aux-DAC2  
Aux-DAC3  
IOFFSET  
1D11  
2D11  
3D11  
1D10  
2D10  
3D10  
1D9 1D8 1D7 1D6 1D5 1D4 1D3 1D2 1D1 1D0  
2D9 2D8 2D7 2D6 2D5 2D4 2D3 2D2 2D1 2D0  
3D9 3D8 3D7 3D6 3D5 3D4 3D3 3D2 3D1 3D0  
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
IO5 IO4 IO3 IO2 IO1 IO0  
QO5 QO4 QO3 QO2 QO1 QO0  
QOFFSET  
COMSEL  
CM1 CM0  
AD11 = 0  
Reserved  
Aux-ADC  
AD10  
AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0  
0
1
1
1
ENABLE-8  
E2  
E1  
E0  
1
1
0
0
0
0
0
1
WAKEUP-SEL  
W2  
W1  
W0  
— = Not used.  
Table 4. Power-Management Modes  
ADDRESS  
DATA BITS  
FUNCTION (POWER  
MANAGEMENT)  
MODE  
DESCRIPTION  
COMMENT  
A3 A2 A1 A0 E9* E2 E1 E0  
Rx ADC = OFF  
Tx DAC = OFF  
(TX DAC outputs at 0V)  
Aux-DAC = OFF  
Aux-ADC = OFF  
CLK = OFF  
Device is in  
complete shutdown.  
1
0
0
0
SHDN  
SHUTDOWN  
REF = OFF  
Rx ADC = OFF  
Tx DAC = OFF  
(TX DAC outputs at 0V)  
Aux-DAC = Last State  
CLK = ON  
0000  
(16-Bit Mode)  
or  
1000  
(8-Bit Mode)  
Fast turn-on time.  
Moderate idle  
power.  
X**  
X**  
0
0
0
1
1
0
IDLE  
IDLE  
REF = ON  
Rx ADC = OFF  
Tx DAC = OFF  
(TX DAC outputs at 0V)  
Aux-DAC = Last State  
CLK = OFF  
Slow turn-on time.  
Low standby power.  
STBY  
STANDBY  
REF = ON  
X = Don’t care.  
*Bit E9 is not available in 8-bit mode.  
**In IDLE and STBY modes, the aux-ADC can be turned on or off.  
______________________________________________________________________________________ 21  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Table 5. MAX19710 Tx, Rx, and FD Control Using SPI Commands  
ADDRESS  
DATA BITS  
FUNCTION  
(Tx-Rx SWITCHING SPEED)  
MODE  
DESCRIPTION  
COMMENT  
A3 A2 A1 A0 E2 E1 E0  
Rx Mode:  
Rx ADC = ON  
Rx Bus = Enabled  
Tx DAC = OFF  
(Tx DAC outputs at 0V)  
Tx Bus = OFF (all inputs  
are pulled high)  
Slow transition to Tx  
mode from this  
mode.  
0
1
1
0
1
0
SPI1-Rx  
SLOW  
SLOW  
Low power.  
MAX9710  
Tx Mode:  
Slow transition to Rx  
mode from this  
mode.  
Rx ADC = OFF  
Rx Bus = Tri-state  
Tx DAC = ON  
Tx Bus = ON  
SPI2-Tx  
SPI3-Rx  
Low power.  
0000  
(16-Bit Mode)  
and  
1000  
(8-Bit Mode)  
Rx Mode:  
Rx ADC = ON  
Rx Bus = Enabled  
Tx DAC = ON  
(Tx DAC outputs at  
midscale)  
Fast transition to Tx  
mode from this  
mode. Moderate  
power.  
1
0
1
FAST  
Tx Bus = OFF (all inputs  
are pulled high)  
Tx Mode:  
Fast transition to Rx  
mode from this  
mode. Moderate  
power.  
Rx ADC = ON  
Rx Bus = Tri-state  
Tx DAC = ON  
Tx Bus = ON  
1
1
0
SPI4-Tx  
FAST  
FD Mode:  
Default Mode  
Fast transition to any  
mode. Moderate  
power.  
Rx ADC = ON  
Rx Bus = ON  
Tx DAC = ON  
Tx Bus = ON  
1
1
1
FD  
FAST  
In FAST Rx mode, the Tx DAC core is powered on. The  
Tx DAC outputs are set to midscale. In this mode, the Tx  
DAC input bus is disconnected from the DAC core and  
In SLOW Tx mode, the Rx ADC core is powered off and  
the ADC digital outputs AD0–AD9 are tri-stated. The Tx  
DAC digital bus is active and the DAC core is fully oper-  
ational. In SLOW Rx mode, the Tx DAC core is powered  
off. The Tx DAC outputs are set to 0. In SLOW Rx mode,  
the Tx DAC input bus is disconnected from the DAC  
DA0–DA9 are internally pulled to OV . The Rx ADC  
DD  
digital bus is active and the ADC core is fully opera-  
tional.  
core and DA0–DA9 are internally pulled to OV . The  
DD  
In FAST mode, the switching time from Tx to Rx, or Rx to  
Tx is minimized because the converters are on and do  
not have to recover from a power-down state. In FAST  
mode, the switching time from Rx to Tx and Tx to Rx is  
0.1µs. Power consumption is higher in FAST mode  
because both Tx and Rx cores are always on.  
Rx ADC digital bus is active and the ADC core is fully  
operational. The switching times for SLOW modes are  
5.2µs for Rx to Tx and 7.3µs for Tx to Rx.  
22 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Table 6. MAX19710 Default (Power-On) Register Settings  
D11  
D10  
D9  
14  
0
D8  
D7  
D6  
11  
0
D5  
10  
0
D4  
9
D3  
8
D2  
7
D1  
D0  
5
REGISTER  
NAME  
16  
(MSB)  
15  
13  
12  
6
0
1
1
FD mode  
0
1
ENABLE-16  
0
0
0
0
0
1
0
0
0
1
1
Aux-ADC  
= ON  
Aux-DAC1 to  
Aux-DAC3 = ON  
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
Aux-DAC1  
Aux-DAC2  
Aux-DAC3  
IOFFSET  
DAC1 output set to 1.1V  
0
0
0
0
0
0
0
0
DAC2 output set to 0V  
0
0
0
0
0
DAC3 output set to 0V  
0
0
No offset on channel ID  
0
0
0
0
0
QOFFSET  
COMSEL  
No offset on channel QD  
0
= 1.36V  
0
0
0
0
0
0
0
0
V
COMD  
0
0
0
Aux-ADC  
0
Aux-ADC = ON, Conversion = IDLE, Aux-ADC REF = 2.048V, MUX = ADC1,  
Averaging = 1, Clock Divider = 1, DOUT = Disabled  
1
1
FD mode  
1
1
1
ENABLE-8  
1
WAKEUP-SEL  
Wake-up state = FD mode  
Table 8. Aux-ADC Enable Table  
(ENABLE-16 Mode)  
Table 7. Aux-DAC Enable Table  
(ENABLE-16 Mode)  
E9  
0 (Default)  
1
SELECTION  
E6 E5  
E4  
Aux-DAC3  
Aux-DAC2  
Aux-DAC1  
ON  
Aux-ADC is Powered ON  
Aux-ADC is Powered OFF  
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
ON  
ON  
ON  
1
ON  
OFF  
ON  
0
ON  
OFF  
1
ON  
OFF  
OFF  
ON  
Power consumption in SLOW Tx mode is 21.9mW, and  
21.3mW in SLOW Rx mode. Power consumption in FAST  
Tx mode is 29.1mW, and 28.5mW in FAST Rx mode.  
0
OFF  
OFF  
OFF  
OFF  
ON  
1
ON  
OFF  
ON  
0
OFF  
FD Mode  
The MAX19710 features an FD mode, which is ideal for  
applications supporting frequency-division duplex. In  
FD mode, both Rx ADC and Tx DAC, as well as their  
1
OFF  
OFF  
0
Default mode  
______________________________________________________________________________________ 23  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Table 9. Offset Control Bits for ID and QD Channels (IOFFSET or QOFFSET Mode)  
BITS IO5–IO0 WHEN IN IOFFSET MODE, BITS QO5–QO0 WHEN IN QOFFSET MODE  
OFFSET 1 LSB =  
(VFS / 1023)  
P-P  
IO5/QO5  
IO4/QO4  
IO3/QO3  
IO2/QO2  
IO1/QO1  
IO0/QO0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
-31 LSB  
-30 LSB  
-29 LSB  
MAX9710  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
1
0
-2 LSB  
-1 LSB  
0mV  
0mV (Default)  
1 LSB  
2 LSB  
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29 LSB  
30 LSB  
31 LSB  
Note: 1 LSB = (800mV  
/ 1023) = 0.782mV.  
P-P  
Table 10. Common-Mode Select  
(COMSEL Mode)  
Table 11. WAKEUP-SEL Register  
POWER MODE AFTER WAKE-UP  
(WAKE-UP STATE)  
W2  
W1  
W0  
CM1  
CM0  
Tx PATH OUTPUT COMMON MODE (V)  
Invalid Value. This value is ignored  
when inadvertently written to the  
WAKEUP-SEL register.  
0
0
1
1
0
1
0
1
1.36 (Default)  
1.20  
0
0
0
1.05  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
IDLE  
0.89  
STBY  
SPI1-SLOW Rx  
SPI2-SLOW Tx  
SPI3-FAST Rx  
SPI4-FAST Tx  
FD (Default)  
respective digital buses, are active and the device can  
receive and transmit simultaneously. Switching from FD  
mode to other Rx or Tx modes is fast (0.1µs) since  
the on-board converters are already powered.  
Consequently, power consumption in this mode is the  
maximum of all operating modes. In FD mode the  
MAX19710 consumes 30mW.  
function. At the first rising edge of CS/WAKE, the  
MAX19710 is forced to a preset operating mode deter-  
mined by the WAKEUP-SEL register. This mode is  
termed the wake-up state. If the WAKEUP-SEL register  
has not been programmed, the wake-up state for the  
MAX19710 is FD mode by default (Tables 6, 11). The  
WAKEUP-SEL register cannot be programmed with W2  
Wake-Up Function  
The MAX19710 uses the SPI interface to control the  
operating modes of the device including the shutdown  
and wake-up functions. Once the device has been  
placed in shutdown through the appropriate SPI com-  
mand, the first pulse on CS/WAKE performs a wake-up  
24 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
t
CSW  
CS/WAKE  
t
t
t
CS  
CSS  
CP  
SCLK  
t
CH  
t
CL  
t
t
DH  
DS  
LSB  
MSB  
DIN  
Figure 6. Serial-Interface Timing Diagram  
CS/WAKE  
SCLK  
DIN  
16-BIT SERIAL DATA INPUT  
ADC DIGITAL OUTPUT SINAD  
SETTLES TO WITHIN 1dB  
AD0–AD9  
ID/QD  
t
TO Rx MODE OR t  
,
ENABLE RX  
WAKE,SD,ST_  
DAC ANALOG OUTPUT  
SETTLES TO 10 LSB ERROR  
t
TO Tx MODE OR t  
,
ENABLE TX  
WAKE,SD,ST_  
Figure 7. Mode-Recovery Timing Diagram  
= 0, W1 = 0, and W0 = 0. If this value is inadvertently  
written to the device, it is ignored and the register con-  
tinues to store its previous value. Upon wake-up, the  
MAX19710 enters the power mode determined by the  
WAKEUP-SEL register, however, all other settings (Tx  
DAC offset, Tx DAC common-mode voltage, aux-DAC  
settings, aux-ADC state) are restored to their values  
prior to shutdown.  
serial clock (SCLK). After 16 bits are loaded into the serial  
input register, data is transferred to the latch when  
CS/WAKE transitions high. CS/WAKE must transition high  
for a minimum of 80ns before the next write sequence.  
SCLK can idle either high or low between transitions.  
Figure 6 shows the detailed timing diagram of the 3-wire  
serial interface.  
Mode-Recovery Timing  
Figure 7 shows the mode-recovery timing diagram.  
The only SPI line that is monitored by the MAX19710  
during shutdown is CS/WAKE. Any information transmit-  
ted to the MAX19710 concurrent with the CS/WAKE  
wake-up pulse is ignored.  
t
is the wake-up time when exiting shutdown, idle,  
WAKE  
or standby mode and entering Rx, Tx, or FD mode.  
is the recovery time when switching between  
t
ENABLE  
either Rx or Tx mode. t  
or t  
is the time for  
WAKE  
ENABLE  
SPI Timing  
The serial digital interface is a standard 3-wire connection  
CS/WAKE, SCLK, DIN) compatible with SPI/QSPI™/  
MICROWIRE/DSP interfaces. Set CS/WAKE low to enable  
the serial data loading at DIN or output at DOUT. Following  
a CS/WAKE high-to-low transition, data is shifted synchro-  
nously, most significant bit first, on the rising edge of the  
the Rx ADC to settle within 1dB of specified SINAD per-  
formance and Tx DAC settling to 10 LSB error. t  
WAKE  
and t  
times are measured after the 16-bit serial  
ENABLE  
command is latched into the MAX19710 by a CS/WAKE  
transition high. In FAST mode, the recovery time is 0.1µs  
to switch between Tx or Rx modes.  
QSPI is a trademark of Motorola, Inc.  
______________________________________________________________________________________ 25  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Loading on the aux-DAC outputs should be carefully  
System Clock Input (CLK)  
Both the Rx ADC and Tx DAC share the CLK input. The  
CLK input accepts a CMOS-compatible signal level set  
observed to achieve the specified settling time and sta-  
bility. The capacitive load must be kept to a maximum  
of 5pF including package and trace capacitance. The  
resistive load must be greater than 200kΩ. If capacitive  
loading exceeds 5pF, then add a 10kΩ resistor in  
series with the output. Adding the series resistor helps  
drive larger load capacitance (< 15pF) at the expense  
of slower settling time.  
by OV  
from 1.8V to V . Since the interstage con-  
DD  
DD  
version of the device depends on the repeatability of  
the rising and falling edges of the external clock, use a  
clock with low jitter and fast rise and fall times (< 2ns).  
Specifically, sampling occurs on the rising edge of the  
clock signal, requiring this edge to provide the lowest  
possible jitter. Any significant clock jitter limits the SNR  
performance of the on-chip Rx ADC as follows:  
10-Bit, 333ksps Auxiliary ADC  
The MAX19710 integrates a 333ksps, 10-bit aux-ADC  
with an input 4:1 multiplexer. In the aux-ADC mode reg-  
ister, setting bit AD0 begins a conversion with the auxil-  
iary ADC. Bit AD0 automatically clears when the  
conversion is complete. Setting or clearing AD0 during  
a conversion has no effect (see Table 12). Bit AD1  
determines the internal reference of the auxiliary ADC  
(see Table 13). Bits AD2 and AD3 determine the auxil-  
iary ADC input source (see Table 14). Bits AD4, AD5,  
and AD6 select the number of averages taken when a  
single start-convert command is given. The conversion  
time increases as the number of averages increases  
(see Table 15). The conversion clock can be divided  
down from the system clock by properly setting bits  
AD7, AD8, and AD9 (see Table 16). The aux-ADC out-  
put data can be written out of DOUT by setting bit  
AD10 high (see Table 17).  
MAX9710  
1
SNR = 20 × log  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the clock jitter.  
Clock jitter is especially critical for undersampling  
applications. Consider the clock input as an analog  
input and route away from any analog input or other  
digital signal lines. The MAX19710 clock input operates  
with an OV  
/ 2 voltage threshold and accepts a 50%  
DD  
10% duty cycle.  
When the clock signal is stopped at CLK input (CLK =  
0V or OV ), all internal registers hold their last value  
DD  
and the MAX19710 saves the last power-management  
mode or Tx/Rx/FD command. All converter circuits (Rx  
ADC, Tx DAC, aux-ADC, and aux-DACs) hold their last  
value. When the clock signal is restarted at CLK, allow  
7.5µs (clock wake-up time) for the internal clock circuit-  
ry to settle before updating the Tx DAC, reading a valid  
Rx ADC conversion result, or starting an aux-ADC con-  
version. This ensures the converters (Rx ADC, Tx DAC,  
aux-ADC) meet all dynamic performance specifica-  
tions. The aux-DAC channels are not dependent on  
CLK, so they may be updated when CLK is idle.  
The aux-ADC features a 4:1 input multiplexer to allow  
measurements on four input sources. The input sources  
are selected by AD3 and AD2 (see Table 14). Two of  
the multiplexer inputs (ADC1 and ADC2) can be con-  
nected to external sources such as an RF power detec-  
tor like the MAX2208 or temperature sensor like the  
MAX6613. The other two multiplexer inputs are internal  
connections to V  
and OV  
that monitor the power-  
DD  
DD  
supply voltages. The internal V  
and OV  
connec-  
DD  
DD  
tions are made through integrated dividers that yield  
12-Bit, Auxiliary Control DACs  
The MAX19710 includes three 12-bit aux-DACs (DAC1,  
DAC2, DAC3) with 1µs settling time for controlling vari-  
able-gain amplifier (VGA), automatic gain-control  
(AGC), and automatic frequency-control (AFC) func-  
tions. The aux-DAC output range is 0.2V to 2.57V as  
V
/ 2 and OV / 2 measurement results. The aux-  
DD  
DD  
ADC voltage reference can be selected between an  
internal 2.048V bandgap reference or V (see Table  
DD  
13). The V  
reference selection is provided to allow  
DD  
measurement of an external voltage source with a full-  
scale range extending beyond the 2.048V level. The  
defined by V  
- V . During power-up, the VGA and  
OL  
OH  
input source voltage range cannot extend above V  
.
DD  
AGC outputs (DAC2 and DAC3) are at zero. The AFC  
DAC (DAC1) is at 1.1V during power-up. The aux-DACs  
can be independently controlled through the SPI bus,  
except during SHDN mode where the aux-DACs are  
turned off completely and the output voltage is set to  
zero. In STBY and IDLE modes the aux-DACs maintain  
the last value. On wake-up from SHDN, the aux-DACs  
resume the last values.  
The conversion requires 12 clock edges (1 for input  
sampling, 1 for each of the 10 bits, and 1 at the end for  
loading into the serial output register) to complete one  
conversion cycle (when no averaging is being done).  
Each conversion of an average (when averaging is set  
greater than 1) requires 12 clock edges. The conver-  
sion clock is generated from the system clock input  
(CLK). An SPI-programmable divider divides the system  
26 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Table 12. Auxiliary ADC Convert  
Table 16. Auxiliary ADC Clock (CLK)  
Divider  
AD0  
SELECTION  
0
1
Aux-ADC Idle (Default)  
Aux-ADC Start-Convert  
AD9  
AD8  
AD7  
Aux-ADC CONVERSION CLOCK  
CLK Divided by 1 (Default)  
CLK Divided by 2  
0
0
0
0
0
1
0
1
0
CLK Divided by 4  
Table 13. Auxiliary ADC Reference  
0
1
1
CLK Divided by 8  
AD1  
SELECTION  
1
0
0
CLK Divided by 16  
0
1
Internal 2.048V Reference (Default)  
1
0
1
CLK Divided by 32  
Internal V  
Reference  
DD  
1
1
0
CLK Divided by 64  
1
1
1
CLK Divided by 128  
Table 14. Auxiliary ADC Input Source  
AD3  
AD2  
Aux-ADC INPUT SOURCE  
ADC1 (Default)  
ADC2  
Table 17. Auxiliary ADC Data Output  
Mode  
0
0
1
1
0
1
0
1
AD10  
SELECTION  
V
/ 2  
DD  
0
Aux-ADC Data is Not Available on DOUT (Default)  
OV  
/ 2  
DD  
Aux-ADC Enters Data Output Mode Where  
Data is Available on DOUT  
1
Table 15. Auxiliary ADC Averaging  
Reading DOUT from the Aux-ADC  
AD6 AD5 AD4  
Aux-ADC AVERAGING  
1 Conversion (No Averaging) (Default)  
Average of 2 Conversions  
DOUT is normally in a high-impedance condition. Upon  
setting the auxiliary ADC start conversion bit (bit AD0),  
DOUT becomes active and goes high, indicating that  
the aux-ADC is busy. When the conversion cycle is  
complete (including averaging), the data is placed into  
an output register and DOUT goes low, indicating that  
the output data is ready to be driven onto DOUT. When  
bit AD10 is set (AD10 = 1), the aux-ADC enters a data  
output mode where data is available at DOUT on the  
next low assertion of CS/WAKE. The auxiliary ADC data  
is shifted out of DOUT (MSB first) with the data transi-  
tioning on the falling edge of the serial clock (SCLK).  
Since a DOUT read requires 16 bits, DOUT holds the  
value of the last conversion data bit for the last 6 bits (6  
least significant bits) following the aux-ADC conversion  
data. DOUT enters a high-impedance state when  
CS/WAKE is deasserted high. When bit AD10 is cleared  
(AD10 = 0), the aux-ADC data is not available on DOUT  
(see Table 17).  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
X
Average of 4 Conversions  
Average of 8 Conversions  
Average of 16 Conversions  
Average of 32 Conversions  
Average of 32 Conversions  
X = Don’t care.  
clock by the appropriate divisor (set with bits AD7,  
AD8, and AD9; see Table 16) and provides the conver-  
sion clock to the auxiliary ADC. The auxiliary ADC has a  
maximum conversion rate of 333ksps. The maximum  
conversion clock frequency is 4MHz (333ksps x 12  
clocks). Choose the proper divider value to keep the  
conversion clock frequency under 4MHz, based upon  
the system CLK frequency supplied to the MAX19710  
After the aux-ADC completes a conversion, the data  
result is loaded to an output register waiting to be shift-  
ed out. No further conversions are possible until data is  
shifted out. This means that if the first conversion com-  
mand sets AD10 = 0, AD0 = 1, then it cannot be fol-  
lowed by conversion commands setting AD10 = 0, AD0  
= 1 or AD10 = 1, AD0 = 1. If this sequence of com-  
mands is inadvertently used then DOUT is disabled. To  
resume normal operation set AD0 = 0.  
(see Table 16). The total conversion time (t  
) of the  
= (12 x  
CONV  
auxiliary ADC can be calculated as t  
CONV  
is the number of  
is the CLK divisor (see  
is the system CLK frequency.  
N
x N  
) / f  
; where N  
AVG  
DIV  
CLK  
AVG  
averages (see Table 15), N  
DIV  
Table 16), and f  
CLK  
______________________________________________________________________________________ 27  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
The fastest method to perform sequential conversions  
with the aux-ADC is by sending consecutive com-  
mands setting AD10 = 1, AD0 = 1. With this sequence  
the CS/WAKE falling edge shifts data from the previous  
conversion on to DOUT and the rising edge of  
CS/WAKE loads the next conversion command at DIN.  
Allow enough time for each conversion to complete  
before sending the next conversion command. See  
Figure 8 for single and continuous conversion examples.  
1. SINGLE AUX-ADC CONVERSION WITH CONVERSION DATA READOUT AT A LATER TIME  
t
t
t
CHZ  
CSD  
CD  
CS/WAKE  
MAX9710  
1
0
16  
1
1
16  
1
0
16  
1
1
10 11  
DIN SET HIGH DURING SINGLE READ  
D9 D1 D0 D0 HELD  
16  
SCLK  
DIN  
0
1
0
1
1
1
0
0
1
1
DOUT  
AD10 = 0, AD0 = 1,  
PERFORM CONVERSION,  
DOUT DISABLED  
AUX-ADC REGISTER  
ADDRESS  
IF AUX-ADC CONVERSION  
CONVERSION RESULT DATA  
BIT D0 IS HELD FOR THE SIX  
LEAST SIGNIFICANT BITS  
DOES NOT NEED TO BE  
READ IMMEDIATELY, THE SPI  
INTERFACE IS FREE AND  
CAN BE USED FOR OTHER  
FUNCTIONS, SUCH AS  
HOUSEKEEPING AUX-DAC  
ADJUSTMENT, ETC.  
AUX-ADC REGISTER  
ADDRESS  
FIRST FALLING EDGE OF  
CS/WAKE AFTER DOUT IS  
ENABLED STARTS SHIFTING THE  
AUX-ADC CONVERSION DATA ON  
THE FALLING EDGE OF SCLK  
DOUT TRANSITIONS TO  
HIGH IMPEDANCE  
DOUT TRANSITIONS FROM  
HIGH IMPEDANCE TO LOGIC-  
HIGH INDICATING START OF  
CONVERSION  
AD10 = 1, AD0 = 0,  
AUX-ADC IDLE  
10-BIT AUX-ADC  
CONVERSION RESULT IS  
SHIFTED OUT ON DOUT ON  
THE FALLING EDGE OF SCLK  
MSB FIRST  
(NO CONVERSION),  
DOUT ENABLED AND  
CONVERSION DATA IS  
SHIFTED OUT ON NEXT  
CS/WAKE FALLING EDGE  
DOUT TRANSITIONS LOW  
INDICATING END OF CONVERSION,  
DATA IS AVAILABLE AND CAN BE  
SHIFTED OUT IF DOUT IS ENABLED,  
AD0 CLEARED  
2. CONTINUOUS AUX-ADC CONVERSIONS  
t
CONV  
CS/WAKE  
t
DCS  
1
16  
1
1
0
10 11 12 13 14 15 16  
1
10 11 12 13 14 15 16  
SCLK  
DIN  
0
0
1
0
1
1
1
1
0
1
1
1
0
1
1
0
1
1
1
D9  
D1 D0  
D0 HELD  
D9  
D1 D0  
D0 HELD  
DOUT  
AD10 = 1, AD0 = 1,  
PERFORM CONVERSION,  
DOUT ENABLED  
AD10 = 1, AD0 = 1,  
PERFORM CONVERSION,  
DOUT ENABLED  
AD10 = 1, AD0 = 1,  
PERFORM CONVERSION,  
DOUT ENABLED  
FIRST 10-BIT AUX-ADC  
CONVERSION RESULT IS  
SHIFTED OUT ON DOUT ON  
THE FALLING EDGE OF SCLK  
MSB FIRST  
SECOND 10-BIT AUX-ADC  
CONVERSION RESULT IS  
SHIFTED OUT ON DOUT ON  
THE FALLING EDGE OF SCLK  
MSB FIRST  
AUX-ADC REGISTER  
ADDRESS  
DOUT TRANSITIONS FROM  
HIGH IMPEDANCE TO LOGIC-  
HIGH INDICATING START OF  
FIRST CONVERSION  
DOUT TRANSITIONS HIGH  
INDICATING START OF  
SECOND CONVERSION  
DOUT TRANSITIONS HIGH  
INDICATING START OF  
THIRD CONVERSION  
DOUT TRANSITIONS LOW  
INDICATING END OF FIRST  
CONVERSION, DATA IS AVAILABLE  
AND CAN BE SHIFTED OUT IF DOUT  
IS ENABLED, AD0 CLEARED  
DOUT TRANSITIONS LOW  
INDICATING END OF SECOND  
CONVERSION, DATA IS AVAILABLE  
AND CAN BE SHIFTED OUT IF DOUT  
IS ENABLED, AD0 CLEARED  
DOUT TRANSITIONS LOW  
INDICATING END OF THIRD  
CONVERSION, DATA IS AVAILABLE  
AND CAN BE SHIFTED OUT IF DOUT  
IS ENABLED, AD0 CLEARED  
Figure 8. Aux-ADC Conversions Timing  
28 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
DIN can be written independent of DOUT state. A 16-bit  
Reference Configurations  
The MAX19710 features an internal precision 1.024V-  
bandgap reference that is stable over the entire power-  
supply and temperature ranges. The REFIN input  
provides two modes of reference operation. The volt-  
instruction at DIN updates the device configuration. To  
prevent modifying internal registers while reading data  
from DOUT, hold DIN at a high state (only applies if  
sequential aux-ADC conversions are not executed).  
This effectively writes all ones into address 1111. Since  
address 1111 does not exist, no internal registers  
are affected.  
age at REFIN (V  
mode (Table 18).  
) sets the reference operation  
REFIN  
In internal reference mode, connect REFIN to V  
REF  
level. COM, REFP, and REFN are low-impedance out-  
.
DD  
V
is an internally generated 0.512V 4% reference  
25Ω  
puts with V  
= V  
DD  
/ 2, V  
REF  
= V  
/ 2 + V  
/ 2,  
REF  
COM  
= V  
DD  
/ 2 - V  
REFP  
DD  
IAP  
and V  
/ 2. Bypass REFP, REFN,  
REFN  
0.1μF  
22pF  
and COM each with a 0.33µF capacitor. Bypass REFIN  
to GND with a 0.1µF capacitor.  
V
IN  
In buffered external reference mode, apply 1.024V  
10% at REFIN. In this mode, COM, REFP, and REFN  
COM  
IAN  
0.33μF  
0.1μF  
are low-impedance outputs with V  
= V  
/ 2,  
COM  
REFN  
DD  
DD  
V
V
= V  
/ 2 + V / 4, and V  
REFIN  
= V  
/ 2 -  
REFP  
REFIN  
DD  
/ 4. Bypass REFP, REFN, and COM each with a  
0.33µF capacitor. Bypass REFIN to GND with a 0.1µF  
capacitor. In this mode, the Tx path full-scale output is  
proportional to the external reference. For example, if  
25Ω  
22pF  
22pF  
MAX19710  
the V  
is increased by 10% (max), the Tx path full-  
REFIN  
25Ω  
scale output is also increased by 10% or 440mV.  
QAP  
Applications Information  
0.1μF  
V
IN  
Using Balun Transformer AC-Coupling  
An RF transformer (Figure 9) provides an excellent  
solution to convert a single-ended signal source to a  
fully differential signal for optimum ADC performance.  
Connecting the center tap of the transformer to COM  
0.33μF  
0.1μF  
provides a V  
/ 2 DC level shift to the input. A 1:1  
DD  
transformer can be used, or a step-up transformer can  
be selected to reduce the drive requirements. In gener-  
al, the MAX19710 provides better SFDR and THD with  
fully differential input signals than single-ended signals,  
especially for high input frequencies. In differential  
mode, even-order harmonics are lower as both inputs  
(IAP, IAN, QAP, QAN) are balanced, and each of the  
QAN  
25Ω  
22pF  
Figure 9. Balun Transformer-Coupled Single-Ended-to-  
Differential Input Drive for Rx ADC  
Table 18. Reference Modes  
V
REFIN  
REFERENCE MODE  
Internal Reference Mode. V  
with a 0.33µF capacitor.  
is internally generated to be 0.512V. Bypass REFP, REFN, and COM each  
REF  
> 0.8V x V  
DD  
Buffered External Reference Mode. An external 1.024V 10% reference voltage is applied to REFIN. V  
is  
REF  
1.024V 10%  
internally generated to be V  
/ 2. Bypass REFP, REFN, and COM each with a 0.33µF capacitor. Bypass  
REFIN  
REFIN to GND with a 0.1µF capacitor.  
______________________________________________________________________________________ 29  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Rx ADC inputs only requires half the signal swing com-  
pared to single-ended mode. Figure 10 shows an RF  
transformer converting the MAX19710 Tx DAC differen-  
tial analog outputs to single-ended.  
IDP  
IDN  
V
OUT  
Using Op-Amp Coupling  
Drive the MAX19710 Rx ADC with op amps when a  
balun transformer is not available. Figures 11 and 12  
show the Rx ADC being driven by op amps for AC-cou-  
pled single-ended and DC-coupled differential applica-  
tions. Amplifiers such as the MAX4454 and MAX4354  
provide high speed, high bandwidth, low noise, and  
low distortion to maintain the input signal integrity. The  
op-amp circuit shown in Figure 12 can also be used to  
interface with the Tx DAC differential analog outputs to  
provide gain or buffering. The Tx DAC differential ana-  
log outputs cannot be used in single-ended mode  
because of the internally generated common-mode  
level. Also, the Tx DAC analog outputs are designed to  
drive a differential input stage with input impedance ≥  
70kΩ. If single-ended outputs are desired, use an  
amplifier to provide differential-to-single-ended conver-  
sion and select an amplifier with proper input common-  
mode voltage range.  
MAX19710  
QDP  
V
OUT  
MAX9710  
QDN  
Figure 10. Balun Transformer-Coupled Differential-to-Single-  
Ended Output Drive for Tx DAC  
REFP  
1kΩ  
1kΩ  
R
50Ω  
ISO  
V
IN  
0.1μF  
FDD Application  
Figure 13 illustrates a typical FDD application circuit. The  
MAX19710 interfaces directly with a ZIF radio front-end to  
provide a complete “RF-to-Bits” solution for FDD applica-  
tions such as private mobile radio (PMR), broadband  
access radio, and proprietary radio systems. The  
MAX19710 provides several system benefits to digital  
baseband developers:  
IAP  
C
22pF  
IN  
100Ω  
100Ω  
COM  
IAN  
REFN  
0.1μF  
R
ISO  
50Ω  
Fast Time-to-Market  
C
22pF  
IN  
High-Performance, Low-Power Analog Functions  
Low-Risk, Proven Analog Front-End Solution  
No Mixed-Signal Test Times  
No NRE Charges  
REFP  
MAX19710  
R
ISO  
1kΩ  
V
IN  
0.1μF  
No IP Royalty Charges  
50Ω  
QAP  
Enables Digital Baseband and Scale with 65nm to  
90nm CMOS  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
Grounding, Bypassing, and  
Board Layout  
The MAX19710 requires high-speed board layout design  
techniques. Refer to the MAX19710 EV kit data sheet for a  
board layout reference. Place all bypass capacitors as  
close to the device as possible, preferably on the same  
side of the board as the device, using surface-mount  
REFN  
0.1μF  
R
ISO  
50Ω  
QAN  
C
IN  
22pF  
devices for minimum inductance. Bypass V  
to GND  
DD  
with a 0.1µF ceramic capacitor in parallel with a 2.2µF  
Figure 11. Single-Ended Drive for Rx ADC  
30 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
R4  
R5  
600Ω  
600Ω  
R
22Ω  
ISO  
R1  
600Ω  
IAN  
C
IN  
5pF  
R2  
600Ω  
MAX19710  
R6  
R7  
600Ω  
600Ω  
COM  
R3  
600Ω  
R8  
600Ω  
R9  
600Ω  
R
ISO  
22Ω  
IAP  
C
IN  
5pF  
R10  
R11  
600Ω  
600Ω  
Figure 12. Rx ADC DC-Coupled Differential Drive  
capacitor. Bypass OV  
to OGND with a 0.1µF ceramic  
from any noisy digital system’s ground plane (e.g.,  
downstream output buffer or DSP ground plane).  
DD  
capacitor in parallel with a 2.2µF capacitor. Bypass REFP,  
REFN, and COM each to GND with a 0.33µF ceramic  
capacitor. Bypass REFIN to GND with a 0.1µF capacitor.  
Route high-speed digital signal traces away from sensi-  
tive analog traces. Make sure to isolate the analog  
input lines to each respective converter to minimize  
channel-to-channel crosstalk. Keep all signal lines short  
and free of 90ꢀ turns.  
Multilayer boards with separated ground and power  
planes yield the highest level of signal integrity. Use a  
split ground plane arranged to match the physical loca-  
tion of the analog ground (GND) and the digital output-  
driver ground (OGND) on the device package. Connect  
the MAX19710 exposed backside paddle to the GND  
plane. Join the two ground planes at a single point so  
the noisy digital ground currents do not interfere with  
the analog ground plane. The ideal location for this  
connection can be determined experimentally at a  
point along the gap between the two ground planes.  
Make this connection with a low-value, surface-mount  
resistor (1Ω to 5Ω), a ferrite bead, or a direct short.  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
Dynamic Parameter Definitions  
ADC and DAC Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the device are measured using  
the best-straight-line fit (DAC Figure 14a).  
______________________________________________________________________________________ 31  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
V
DD  
= 2.7V TO 3.3V  
OV = 1.8V TO V  
DD  
DD  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
IAP  
10-BIT  
ADC  
DATA MUX  
IAN  
QAP  
MAX9710  
10-BIT  
ADC  
QAN  
IDP  
FDD ZIF  
TRANSCEIVER  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
10-BIT  
DAC  
DATA MUX  
IDN  
DIGITAL  
BASEBAND  
ASIC  
QDP  
QDN  
10-BIT  
DAC  
AGC  
SYSTEM  
CLOCK  
CLK  
PROGRAMMABLE  
OFFSET/CM  
CS/WAKE  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND SYSTEM  
CONTROL  
DAC1  
12-BIT  
AUX-DAC  
TCXO  
DAC2  
DAC3  
12-BIT  
AUX-DAC  
DOUT  
REFIN  
REFP  
COM  
REFN  
1.024V  
REFERENCE  
BUFFER  
12-BIT  
AUX-DAC  
ADC1  
ADC2  
BATTERY VOLTAGE MONITOR  
TEMPERATURE MEASUREMENT  
10-BIT  
AUX-ADC  
MAX19710  
V
DD  
/ 2  
OV / 2  
DD  
GND  
OGND  
Figure 13. Typical FDD Application Circuit  
32 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Differential Nonlinearity (DNL)  
7
6
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes (ADC) and a monotonic transfer function  
(ADC and DAC) (DAC Figure 14b).  
5
4
ADC Offset Error  
Ideally, the midscale transition occurs at 0.5 LSB above  
midscale. The offset error is the amount of deviation  
between the measured transition point and the ideal  
transition point.  
AT STEP  
011 (0.5 LSB)  
3
2
1
0
AT STEP  
001 (0.25 LSB)  
DAC Offset Error  
Offset error (Figure 14a) is the difference between the  
ideal and actual offset point. The offset point is the out-  
put value when the digital input is midscale. This error  
affects all codes by the same amount and usually can  
be compensated by trimming.  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
Figure 14a. Integral Nonlinearity  
ADC Gain Error  
Ideally, the ADC full-scale transition occurs at 1.5 LSB  
below full scale. The gain error is the amount of devia-  
tion between the measured transition point and the  
ideal transition point with the offset error removed.  
6
5
4
1 LSB  
DIFFERENTIAL LINEARITY  
ERROR (-0.25 LSB)  
ADC Dynamic Parameter Definitions  
Aperture Jitter  
3
Figure 15 shows the aperture jitter (t ), which is the  
AJ  
1 LSB  
sample-to-sample variation in the aperture delay.  
2
1
0
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 15).  
DIFFERENTIAL  
LINEARITY ERROR (+0.25 LSB)  
000  
001  
010  
011  
100  
101  
DIGITAL INPUT CODE  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error) and results directly  
from the ADC’s resolution (N bits):  
Figure 14b. Differential Nonlinearity  
CLK  
SNR(max) = 6.02 x N + 1.76  
(in dB)  
ANALOG  
INPUT  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
HOLD  
TRACK  
TRACK  
Signal-to-Noise and Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise. RMS noise includes all spectral  
T/H  
Figure 15. T/H Aperture Timing  
______________________________________________________________________________________ 33  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
components to the Nyquist frequency excluding the  
Power-Supply Rejection  
Power-supply rejection is defined as the shift in offset  
and gain error when the power supply is changed 5%.  
fundamental and the DC offset.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in such a way that the signal’s slew rate does not  
limit the ADC’s performance. The input frequency is  
then swept up to the point where the amplitude of the  
digitized conversion result has decreased by 3dB. Note  
that the T/H performance is usually the limiting factor  
for the small-signal input bandwidth.  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first five  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
MAX9710  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as the full-  
power bandwidth frequency.  
2
2
2
3
2
2
5
2
6
(V +V +V +V +V )  
4
THD = 20 x log  
V
1
where V is the fundamental amplitude and V –V are  
1
2
6
the amplitudes of the 2nd- through 6th-order harmonics.  
DAC Dynamic Parameter Definitions  
Total Harmonic Distortion  
THD is the ratio of the RMS sum of the output harmonics  
up to the Nyquist frequency divided by the fundamental:  
Third Harmonic Distortion (HD3)  
HD3 is defined as the ratio of the RMS value of the third  
harmonic component to the fundamental input signal.  
(V2 +V2 +...+V2)  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset.  
2
3
n
THD = 20 x log  
V
1
where V is the fundamental amplitude and V through  
1
2
V are the amplitudes of the 2nd through nth harmonic  
n
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
up to the Nyquist frequency.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component up to the Nyquist frequency excluding DC.  
relative to the total input power when two tones, f  
IN1  
and f , are present at the inputs. The intermodulation  
IN2  
products are (f  
f
), (2 f ), (2 f ), (2 f  
IN1  
IN2 IN1 IN2 IN1  
). The individual input tone levels  
f
), (2 f  
f
IN2  
IN2  
IN1  
are at -7dBFS.  
3rd-Order Intermodulation (IM3)  
IM3 is the power of the worst 3rd-order intermodulation  
product relative to the input power of either input tone  
when two tones, f  
and f , are present at the inputs.  
IN1  
IN2  
The 3rd-order intermodulation products are (2 x f  
IN1  
f
), (2 f  
IN2  
f
). The individual input tone levels  
IN2  
IN1  
are at-7dBFS.  
Selector Guide  
PART  
SAMPLING RATE (Msps)  
INTEGRATED CDMA Tx FILTERS  
MAX19710  
MAX19711  
MAX19712  
MAX19713  
7.5  
11  
22  
45  
No  
Yes  
No  
No  
34 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Functional Diagram  
V
DD  
= 2.7V TO 3.3V  
OV = 1.8V TO V  
DD  
DD  
IAP  
IAN  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
10-BIT  
ADC  
DATA MUX  
QAP  
QAN  
10-BIT  
ADC  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
IDP  
IDN  
10-BIT  
DAC  
DATA MUX  
QDP  
QDN  
10-BIT  
DAC  
SYSTEM  
CLOCK  
CLK  
PROGRAMMABLE  
OFFSET/GAIN/CM  
CS/WAKE  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND SYSTEM  
CONTROL  
12-BIT  
AUX-DAC  
DAC1  
DAC2  
DAC3  
12-BIT  
AUX-DAC  
DOUT  
REFIN  
REFP  
REFN  
COM  
1.024V  
REFERENCE  
BUFFER  
12-BIT  
AUX-DAC  
ADC1  
ADC2  
10-BIT  
AUX-ADC  
MAX19710  
V
DD  
/ 2  
OV / 2  
DD  
GND  
OGND  
______________________________________________________________________________________ 35  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
E
DETAIL A  
(NE-1) X  
e
E/2  
MAX9710  
k
e
D/2  
C
(ND-1) X  
e
D2  
D
L
D2/2  
b
L
E2/2  
C
L
k
DETAIL B  
E2  
e
C
C
L
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
21-0144  
E
2
36 ______________________________________________________________________________________  
10-Bit, 7.5Msps, Full-Duplex  
Analog Front-End  
MAX9710  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
21-0144  
E
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 37  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Jackson  

相关型号:

MAX19710ETN

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
MAXIM

MAX19710ETN+

暂无描述
MAXIM

MAX19710ETN+T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710ETN-T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710EVCMODU+

Low-Voltage and Low-Power Operation
MAXIM

MAX19710EVKIT

Low-Voltage and Low-Power Operation
MAXIM

MAX19710EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX19711

10-Bit, 11Msps, Full-Duplex Analog Front-End
MAXIM

MAX19711ETN

10-Bit, 11Msps, Full-Duplex Analog Front-End
MAXIM

MAX19711ETN+

暂无描述
MAXIM

MAX19711EVCMODU+

Low-Voltage and Low-Power Operation
MAXIM

MAX19711EVKIT+

Low-Voltage and Low-Power Operation
MAXIM