MAX1971 [MAXIM]

Dual, 180∑ Out-of-Phase, 1.4MHz, 750mA Step- Down Regulator with POR and RSI/PFO; 双路, 180 °异相, 1.4MHz的, 750毫安降压稳压器,带有POR和RSI / PFO
MAX1971
型号: MAX1971
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, 180∑ Out-of-Phase, 1.4MHz, 750mA Step- Down Regulator with POR and RSI/PFO
双路, 180 °异相, 1.4MHz的, 750毫安降压稳压器,带有POR和RSI / PFO

稳压器
文件: 总20页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2297; Rev 0; 1/02  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
General Description  
Features  
The MAX1970/MAX1971/MAX1972 dual-output current-  
mode PWM buck regulators operate from 2.6V to 5.5V  
input and deliver a minimum of 750mA on each output.  
The MAX1970 and MAX1972 operate at a fixed 1.4MHz  
(MAX1971 operates at 700kHz) to reduce output induc-  
tor and capacitor size and cost. Switching the regula-  
tors 180° out-of-phase also reduces the input capacitor  
size and cost. Ceramic capacitors can be used for  
input and output.  
o Current-Mode, 1.4MHz Fixed-Frequency PWM  
Operation  
o 180° Out-of-Phase Operation Reduces Input  
Capacitor  
o
1ꢀ Output ꢁccuracy Oꢂer ꢃoad, ꢃine, and  
Temperature Ranges  
o 750mꢁ Guaranteed Output Current  
o 2.6V to 5.5V Input  
The output voltages are programmable from 1.2V to V  
IN  
o Power-On Reset Delay of 16.6ms (MꢁX1970) or  
175ms (MꢁX1971 and MꢁX1972)  
o Power-Fail Output (MꢁX1970 and MꢁX1972 Only)  
using external feedback resistors, or can be preset to  
1.8V or 3.3V for output 1 and 1.5V or 2.5V for output 2.  
When one output is higher than 1.2V, the second can  
be configured down to sub-1V levels. Output accuracy  
is better than 1ꢀ over variations in load, line, and tem-  
perature. Internal soft-start reduces inrush current dur-  
ing startup.  
o Power-On Reset Input (MꢁX1971 Only)  
o Operation Outside xDSꢃ Band  
o Ultra-Compact Design with Smallest External  
All devices feature power-on reset (POR). The  
MAX1971 includes a reset input (RSI), which forces  
POR low for 175ms after RSI goes low. The MAX1970  
and MAX1972 include an open-drain power-fail output  
(PFO) that monitors input voltage and goes high when  
the input falls below 3.94V. For USB-powered xDSL  
modems, this output can be used to detect USB power  
failure. A minimum switching frequency of 1.2MHz  
ensures operation outside the xDSL band.  
Components  
o Outputs ꢁdjustable from 0.8V to V or 1.8V/3.3V  
and 1.5V/2.5V Preset  
o ꢁll-Ceramic Capacitor ꢁpplication  
o Soft-Start Reduces Inrush Current  
IN  
Ordering Information  
Applications  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 QSOP  
xDSL Modems  
xDSL Routers  
USB-Powered Devices  
MAX1970EEE  
MAX1971EEE  
MAX1972EEE  
Dual LDO Replacement  
16 QSOP  
Copper Gigabit SFP  
and GBIC Modules  
16 QSOP  
Pin Configuration  
Typical Operating Circuit  
V
2.6V TO 5.5V  
IN  
TOP VIEW  
POR  
LX1  
1
2
3
4
5
6
7
8
16 PGND  
15 LX2  
14 IN  
V
IN  
CC  
RSI  
EN  
RSI  
EN  
POR  
LX1  
OUT1  
1.8V  
750mA  
V
CC  
MAX1971  
COMP1  
FB1  
COMP1  
FB1  
MAX1970  
MAX1971  
MAX1972  
13 FBSEL1  
12 FBSEL2  
OUT2  
2.5V  
750mA  
COMP2  
FBSEL1  
LX2  
FB2  
FB2  
PF0 (MAX1970/MAX1972)  
RSI (MAX1971)  
COMP2  
REF  
11  
V
CC  
10 EN  
FBSEL2  
REF  
GND  
9
POR  
PGND  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
ABSOLUTE MAXIMUM RATINGS  
IN, EN, FBSEL1, FBSEL2, PFO, POR,  
Continuous Power Dissipation (T = +70°C)  
A
16-pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
RSI, V to GND ...................................................-0.3V to +6V  
CC  
COMP1, COMP2, FB1, FB2,  
REF to GND.............................................-0.3V to (V  
+ 0.3V)  
CC  
LX1, LX2 to PGND .......................................-0.3V to (V + 0.3V)  
IN  
PGND to GND .......................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= 5V, R  
= 100kto IN, R  
= 100kto IN, V  
= 0, C  
= 0.1µF, FBSEL1 = unconnected, FBSEL2 =  
REF  
IN  
CC  
EN  
POR  
PFO  
RSI  
unconnected, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN AND V  
CC  
IN Voltage Range  
2.6  
5.5  
10  
V
MAX1971  
5
10  
Switching with no load  
IN Supply Current  
mA  
V
= 3.3V  
IN  
MAX1970/MAX1972  
20  
MAX1970/MAX1972  
MAX1971  
1
100  
60  
IN Shutdown Current  
V
= 5.5V, V = 0  
µA  
V
IN  
EN  
1
V
V
rising  
falling  
2.40  
2.35  
2.55  
CC  
CC  
V
Undervoltage  
CC  
Lockout Threshold  
2.20  
1.188  
20  
REF  
REF Voltage  
I
= 0, V = 2.6V to 5.5V  
1.200  
10  
1.212  
25  
V
REF  
IN  
REF Shutdown Resistance  
REF Soft-Start Current  
FB1 AND FB2  
REF to GND, V = 0  
EN  
V
= 1V  
25  
30  
µA  
REF  
FBSEL_ = unconnected, OUT1 = FB1, OUT2 = FB2,  
= 1.20V to 1.80V, V = 2.6V to 5.5V  
FB_ Regulation Voltage  
OUT_ Voltage Range  
1.188  
1.200  
1.212  
V
V
V
V
COMP_  
IN  
FBSEL_ = unconnected  
1.2  
1.782  
3.2670  
1.485  
2.475  
750  
V
IN  
V
V
= 2.6V to 5.5V  
= 4.5V to 5.5V  
V
V
V
V
= 1.2V, FBSEL1= GND  
1.800  
3.3  
1.818  
3.330  
1.150  
2.525  
IN  
IN  
COMP1  
COMP1  
COMP2  
COMP2  
OUT1 Regulation Voltage  
= 1.2V, FBSEL1 = V  
CC  
= 1.2V, FBSEL2 = GND  
1.5  
OUT2 Regulation Voltage  
Maximum Output Current  
FB1 Input Resistance  
V
= 2.6V to 5.5V  
V
IN  
= 1.2V, FBSEL2 = V  
2.5  
CC  
Guaranteed by design (Note 1)  
mA  
kΩ  
FBSEL1 = GND  
30  
60  
60  
120  
120  
90  
Measured from FB1 to  
GND  
FBSEL1 = V  
30  
CC  
FBSEL2 = GND  
22.5  
22.5  
45  
Measured from FB2 to  
GND  
FB2 Input Resistance  
FB_ Input Bias Current  
kΩ  
FBSEL2 = V  
45  
90  
CC  
FB1 or FB2, FBSEL_ = unconnected, V  
= V  
= 1.15V  
0.01  
0.1  
µA  
FB1  
FB2  
2
_______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, R  
= 100kto IN, R  
= 100kto IN, V  
= 0, C  
= 0.1µF, FBSEL1 = unconnected, FBSEL2 =  
REF  
IN  
CC  
EN  
POR  
PFO  
RSI  
unconnected, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
COMP1 AND COMP2  
COMP1  
Transconductance  
FB1 = COMP1,  
V = 1.2V  
COMP1  
FBSEL1 = unconnected  
FBSEL2 = unconnected  
35  
35  
55  
55  
85  
85  
µS  
µS  
COMP2  
Transconductance  
FB2 = COMP2,  
V = 1.2V  
COMP2  
LX1 AND LX2  
V
V
V
V
V
V
= 5.0V  
= 3.3V  
=2.6V  
= 5.0V  
= 3.3V  
= 2.6V  
0.20  
0.24  
0.28  
0.12  
0.14  
0.16  
0.32  
0.37  
IN  
IN  
IN  
IN  
IN  
IN  
Internal High-Side  
MOSFET On-Resistance  
I
I
= -180mA  
LX  
LX  
0.23  
0.25  
Internal Low-Side  
MOSFET On-Resistance  
= 180mA  
LX_ Current-Sense  
Transresistance  
0.4  
0.5  
0.6  
V/A  
A
High side  
Low side  
0.80  
-1.6  
1.2  
1.60  
-0.40  
20  
LX_ Current-Limit  
Threshold  
Duty Cycle = 100%,  
V
= 2.6V to 5.5V  
IN  
-0.85  
V
V
= V  
= V  
= 5.5V  
= 0  
LX1  
LX1  
LX2  
LX2  
LX_ Leakage Current  
V
= 5.5V  
µA  
IN  
-20  
1.2  
MAX1970/MAX1972  
MAX1971  
1.4  
0.70  
100  
15  
1.6  
LX_ Switching Frequency  
LX_ Maximum Duty Cycle  
LX_ Minimum Duty Cycle  
POR  
V
V
= 2.6V to 5.5V  
= 2.6V to 5.5V  
MHz  
%
IN  
IN  
0.60  
0.80  
MAX1970/MAX1972  
MAX1971  
20  
15  
%
10  
V
V
rising  
falling  
92  
90  
94  
OUT  
OUT  
Percentage of V  
,
OUT  
POR Thresholds  
%
V
= 2.6V to 5.5V  
IN  
87  
13.3  
140  
-1  
MAX1970  
MAX1971/MAX1972  
16.6  
175  
20  
210  
1
POR Delay Time (T )  
ms  
µA  
V
D
POR Output Current, High  
POR Output Voltage, Low  
POR Startup Voltage  
V
= V = 5.5V, V  
= V = 1.15V  
FB2  
POR  
IN  
FB1  
V
= 1.05V or V  
= 1.05V or RSI = IN (MAX1971 only),  
FB2  
FB1  
0.01  
0.01  
0.05  
0.05  
I
= 1mA  
POR  
FB1 = FB2 = GND, I  
= 100µA, V = 1.2V  
V
POR  
IN  
_______________________________________________________________________________________  
3
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, R  
= 100kto IN, R  
= 100kto IN, V  
= 0, C  
= 0.1µF, FBSEL1 = unconnected, FBSEL2 =  
REF  
IN  
CC  
EN  
POR  
PFO  
RSI  
unconnected, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PFO (MAX1970 and MAX1972 Only)  
V
V
rising  
falling  
4.04  
3.94  
4.12  
CC  
CC  
PFO Trip Threshold  
IN = V  
V
CC  
3.86  
-1  
PFO Output Current, High  
PFO Output Voltage, Low  
EN AND RSI (MAX1971 Only)  
PFO = IN  
= 1mA, V = 4.3V  
1
µA  
V
I
0.01  
0.05  
PFO  
IN  
V
V
0.4  
0.95  
1.0  
10  
IL  
Logic Input Thresholds  
RSI Input Resistance  
EN Logic Input Current  
IN = 2.6V to 5.5V  
V
1.6  
20  
1
IH  
Internal pullup resistor to IN  
5
kΩ  
µA  
V
-1  
-1  
IL  
Logic input at 0 or  
5.5V, V = 5.5V  
IN  
V
1
IH  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= 5V, V  
= V  
= 1.15V, R  
= 100kto IN, R  
= 100kto IN, RSI = 0, C  
= 0.1µF, C = 0.1µF,  
REF  
IN  
CC  
EN  
FB1  
FB2  
POR  
PFO  
VCC  
FBSEL1 = unconnected, FBSEL2 = unconnected, T = -40°C to +85°C.) (Note 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN AND V  
CC  
IN Voltage Range  
2.6  
5.5  
10  
V
MAX1971  
Switching with no load  
IN Supply Current  
mA  
V
= 3.3V  
IN  
MAX1970/MAX1972  
20  
MAX1970/MAX1972  
MAX1971  
20  
IN Shutdown Current  
V
= 5.5V, V = 0  
µA  
V
IN  
EN  
100  
2.55  
V
V
rising  
falling  
CC  
CC  
V
Undervoltage  
CC  
Lockout Threshold  
2.20  
1.185  
20  
REF  
REF Voltage  
I
= 0, V = 2.6V to 5.5V  
1.212  
25  
V
REF  
IN  
REF Shutdown Resistance  
REF Soft-Start Current  
FB1 AND FB2  
REF to GND, V =0  
EN  
V
= 1V  
30  
µA  
REF  
FBSEL_ = unconnected, OUT1 = FB1, OUT2 = FB2,  
= 1.20V to 1.80V, V = 2.6V to 5.5V  
FB_ Regulation Voltage  
OUT_ Voltage Range  
1.185  
1.212  
V
V
V
V
COMP_  
IN  
FBSEL_ = unconnected  
1.2  
V
IN  
V
V
= 2.6V to 5.5V  
= 4.5V to 5.5V  
V
V
V
V
= 1.2V, FBSEL1= GND  
1.778  
3.259  
1.481  
2.469  
750  
1.818  
3.333  
1.515  
2.525  
IN  
IN  
COMP1  
COMP1  
COMP2  
COMP2  
OUT1 Regulation Voltage  
= 1.2V, FBSEL1 = V  
CC  
= 1.2V, FBSEL2 = GND  
= 1.2V, FBSEL2 = V  
OUT2 Regulation Voltage  
Maximum Output Current  
V
= 2.6V to 5.5V  
V
IN  
CC  
Guaranteed by design (Note 1)  
mA  
4
_______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V  
= V  
= 1.15V, R  
= 100kto IN, R  
= 100kto IN, RSI = 0, C  
= 0.1µF, C = 0.1µF,  
REF  
IN  
CC  
EN  
FB1  
FB2  
POR  
PFO  
VCC  
FBSEL1 = unconnected, FBSEL2 = unconnected, T = -40°C to +85°C.) (Note 2)  
A
PARAMETER  
CONDITIONS  
FBSEL1 = GND  
FBSEL1 = V  
MIN  
30  
TYP  
MAX  
120  
120  
90  
UNITS  
Measured from FB1 to  
GND  
FB1 Input Resistance  
kΩ  
30  
CC  
FBSEL2 = GND  
22.5  
22.5  
Measured from FB2 to  
GND  
FB2 Input Resistance  
kΩ  
FBSEL2 = V  
90  
CC  
FB_ Input Bias Current  
FB1 or FB2, FBSEL_ = unconnected, V  
= V  
= 1.15V  
0.1  
µA  
FB1  
FB2  
COMP1 AND COMP2  
COMP1  
Transconductance  
FB1 = COMP1,  
FBSEL1 = unconnected  
FBSEL2 = unconnected  
35  
35  
85  
85  
µS  
µS  
V
= 1.2V  
COMP1  
COMP2  
Transconductance  
FB2 = COMP2,  
V = 1.2V  
COMP2  
LX1 AND LX2  
V
V
V
V
= 5.0V  
= 3.3V  
= 5.0V  
= 3.3V  
0.32  
0.37  
0.23  
0.25  
IN  
IN  
IN  
IN  
Internal High-Side  
MOSFET On-Resistance  
I
I
= -180mA  
LX  
LX  
Internal Low-Side  
MOSFET On-Resistance  
= 180mA  
LX_ Current-Sense  
Transresistance  
0.4  
0.6  
V/A  
A
High side  
Low side  
0.76  
-1.6  
1.60  
-0.40  
20  
LX_ Current-Limit  
Threshold  
Duty cycle = 100%,  
V
= 2.6V to 5.5V  
IN  
V
V
= V  
= V  
= 5.5V  
= 0  
LX1  
LX1  
LX2  
LX2  
LX_ Leakage Current  
V
= 5.5V  
µA  
MHz  
%
IN  
-20  
1.2  
MAX1970/MAX1972  
MAX1971  
1.6  
0.80  
20  
LX_ Switching Frequency  
V
V
= 2.6V to 5.5V  
= 2.6V to 5.5V  
IN  
IN  
0.60  
MAX1970/MAX1972  
MAX1971  
LX_ Minimum Duty Cycle  
POR  
15  
V
V
rising  
falling  
94  
OUT  
OUT  
Percentage of V  
,
OUT  
POR Thresholds  
%
V
= 2.6V to 5.5V  
IN  
87  
13.3  
140  
-1  
MAX1970  
MAX1971/MAX1972  
20  
210  
1
POR Delay Time (T )  
ms  
µA  
V
D
POR Output Current, High  
POR Output Voltage, Low  
POR Start-Up Voltage  
V
= V = 5.5V, V  
= V = 1.15V  
FB2  
POR  
IN  
FB1  
V
= 1.05V or V  
= 1.05V or RSI = IN (MAX1971 only),  
FB2  
FB1  
0.05  
0.05  
I
= 1mA  
POR  
FB1 = FB2 = GND, I  
= 100µA, V = 1.2V  
V
POR  
IN  
_______________________________________________________________________________________  
5
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V  
= V  
= 1.15V, R  
= 100kto IN, R  
= 100kto IN, RSI = 0, C  
= 0.1µF, C = 0.1µF,  
REF  
IN  
CC  
EN  
FB1  
FB2  
POR  
PFO  
VCC  
FBSEL1 = unconnected, FBSEL2 = unconnected, T = -40°C to +85°C.) (Note 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PFO (MAX1970 and MAX1972 Only)  
V
V
rising  
falling  
4.12  
CC  
CC  
PFO Trip Threshold  
IN = V  
V
CC  
3.86  
-1  
PFO Output Current, High  
PFO Output Voltage, Low  
EN AND RSI (MAX1971 Only)  
PFO = IN  
= 1mA, V = 4.3V  
1
µA  
V
I
0.05  
PFO  
IN  
V
V
0.4  
IL  
Logic Input Thresholds  
RSI Input Resistance  
EN Logic Input Current  
IN = 2.6V to 5.5V  
V
1.6  
20  
1
IH  
Internal pullup resistor to IN  
5
kΩ  
µA  
V
-1  
-1  
IL  
Logic Input at 0 or  
5.5V, V = 5.5V  
IN  
V
1
IH  
Note 1: Refer to the Output Voltage Selection section.  
Note 2: Specifications to -40°C are guaranteed by design and not production tested.  
6
_______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
100  
V
= 2.5V  
OUT2  
V
= 2.5V  
V
= 3.3V  
OUT2  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUT1  
V
= 3.3V  
OUT1  
V
= 1.8V  
OUT1  
V
= 1.5V  
OUT2  
V
= 1.8V  
OUT1  
V
= 1.5V  
OUT2  
V
= 1.8V  
OUT1  
V
= 2.5V  
OUT2  
V
= 1.5V  
MAX1970/  
MAX1972  
IN  
MAX1970/  
MAX1972  
V = 3.3V  
IN  
OUT2  
MAX1971  
V
IN  
= 5.0V  
V
= 5.0V  
0.01  
0.1  
LOAD CURRENT (A)  
1
0.01  
0.1  
LOAD CURRENT (A)  
1
0.01  
0.1  
LOAD CURRENT (A)  
1
REFERENCE VOLTAGE vs.  
REFERENCE LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
INPUT CURRENT vs. OUTPUT CURRENT  
1.22  
100  
500  
V
= 2.5V  
V = 5.0V  
IN  
OUT2  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 3.3V  
OUT1  
1.21  
1.20  
1.19  
1.18  
V = 1.5V  
OUT2  
V
= 1.8V  
V
= 2.5V  
OUT1  
OUT2  
V
= 1.8V  
OUT1  
V
= 1.5V  
MAX1971  
= 3.3V  
OUT2  
V
IN  
MAX1970/MAX1972  
1.17  
0
0
5
10  
15  
20  
0.01  
0.1  
LOAD CURRENT (A)  
1
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
REFERENCE LOAD CURRENT (µA)  
OSCILLATOR FREQUENCY  
vs. INPUT VOLTAGE  
CHANGE IN OUTPUT VOLTAGE  
vs. LOAD CURRENT  
1.60  
3
MAX1970/MAX1972  
T
T
= +85°C  
= -40°C  
A
1.40  
1.20  
1.00  
0.80  
0.60  
2
1
A
T
= +25°C  
A
V
= 1.8V  
V
= 3.3V  
OUT1  
OUT1  
0
MAX1971  
T
= +85°C  
= -40°C  
-1  
-2  
-3  
A
V
= 2.5V  
OUT2  
T
A
V
= 1.5V  
OUT2  
V
= 5.0V  
IN  
T
= +25°C  
A
MAX1970/MAX1972  
0.40  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
200  
400  
600  
800  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
7
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
LOAD TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
V
OUT2  
V
OUT1  
I
I
OUT2  
OUT1  
MAX1970/MAX1972  
40µs/div  
MAX1970/MAX1972  
40µs/div  
V
V
I
= 5V  
V
V
I
= 5V  
IN  
OUT1  
IN  
OUT2  
= 3.3V, 100mV/div  
= 300mA TO 600mA  
= 1.5V, 100mV/div  
= 300mA TO 600mA  
OUT1  
OUT2  
R
= 82k, C = 680pF  
R
= 39k, C = 680pF  
C1  
C1  
C2  
C2  
MAXIMUM OUTPUT TRANSIENT DURATION  
vs. POR COMPARATOR OVERDRIVE  
SWITCHING WAVEFORMS  
MAX1970TOC11  
14  
12  
10  
8
200mA/div  
5V/div  
I
L1  
V
V
LX1  
6
200mA/div  
5V/div  
I
L2  
4
LX2  
2
MAX1970/MAX1972  
200ns/div  
0
0.01  
0.1  
1
10  
MAXIMUM OUTPUT TRANSIENT DURATION (µs)  
V
V
= 5V  
IN  
= 1.8V, V  
= 2.5V  
OUT2  
OUT2  
OUT1  
OUT1  
I
= 500mA, I  
= 500mA  
8
_______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
PFO AND RISING INPUT VOLTAGE  
RSI AND POR TIMING  
MAX1970TOC13  
4V  
V
IN  
V
RSI  
0
2V/div  
2V/div  
4V  
V
PF0  
POR  
0
4ms/div  
40ms/div  
= 2.5V  
V
= 1.8V, V  
= 2.5V  
OUT2  
OUT1  
V
V
= 5V  
IN  
= 1.8V, V  
OUT1  
OUT1  
OUT2  
I
= 500mA, I  
= 500mA  
OUT2  
PFO AND FALLING INPUT VOLTAGE  
ENABLE RESPONSE  
POR  
V
IN  
4V  
EN  
0
5V/div  
2V/div  
4V  
V
OUT1  
PF0  
V
OUT2  
0
4ms/div  
5ms/div  
= 2.5V  
V
= 1.8V, V  
= 2.5V  
OUT2  
MAX1970  
OUT1  
V
IN  
V
= 5V  
= 3.3V, V  
= 375mA, I  
OUT1  
OUT1  
OUT2  
I
= 375mA  
OUT2  
_______________________________________________________________________________________  
9
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
SHUTDOWN RESPONSE  
POR  
EN  
5V/div  
V
OUT1  
V
OUT2  
5ms/div  
MAX1970  
V
IN  
V
= 5V  
= 3.3V, V  
= 375mA, I  
= 2.5V  
OUT2  
OUT1  
OUT1  
I
= 375mA  
OUT2  
Pin Description  
NAME  
PIN  
FUNCTION  
MAX1970/MAX1972  
MAX1971  
LX1  
1
2
LX1  
Inductor Connection 1. Connect an inductor between LX1 and OUT1.  
Analog Supply Voltage. Bypass with 0.1µF to ground.  
V
V
CC  
CC  
OUT1 Regulator Compensation. Connect series RC network from COMP1 to GND.  
COMP1 is pulled to GND when the outputs are shut down. See the Compensation  
Design section for component values.  
3
COMP1  
FB1  
COMP1  
FB1  
OUT1 Feedback. Connected to OUT1 for internal mode (FBSEL1 = GND or V ).  
CC  
Use an external resistor-divider from OUT1 to GND to set the output voltage from  
4
1.2V to V for external mode (FBSEL1 = unconnected). See the Output Voltage  
IN  
Selection section for <1.2V output.  
OUT2 Feedback. Connected to OUT2 for internal mode (FBSEL2 = GND or V ).  
CC  
Use an external resistor-divider from OUT2 to GND to set the output voltage from  
5
6
FB2  
FB2  
1.2V to V for external mode (FBSEL2 = unconnected). See the Output Voltage  
IN  
Selection section for <1.2V output.  
OUT2 Regulator Compensation. Connect series RC network from COMP2 to GND.  
COMP2 is pulled to GND when the outputs are shut down. See the Compensation  
Design section for component values.  
COMP2  
COMP2  
Reference. Bypass with 0.01µF to 1.0µF capacitor. REF controls the soft-start  
ramp and is pulled to GND when the outputs are shut down.  
7
8
REF  
REF  
GND  
GND  
Ground  
10 ______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Pin Description (continued)  
NAME  
PIN  
FUNCTION  
MAX1970/MAX1972  
MAX1971  
Active-Low Power-On Reset Output. Open-drain output goes high 16.6ms  
(MAX1970) or 175ms (MAX1971 or MAX1972) after both outputs reach 92% of  
nominal value, and RSI (MAX1971 only) is low.  
9
POR  
POR  
Enable Input. Drive high to turn on both OUT1 and OUT2. Drive low to place the  
device in shutdown.  
10  
EN  
PFO  
EN  
Power-Fail Output. Open-drain output goes high when V  
Useful for detecting a valid USB input voltage.  
drops below 3.94V.  
CC  
11  
Noninverting Reset Input. Causes POR to go low when RSI is high. Allows POR to  
go high 175ms after RSI falls, if outputs are in regulation.  
RSI  
Regulator 2 Feedback Select. Connect to V  
to set V  
to 2.5V. Connect to  
OUT2  
CC  
12  
13  
14  
FBSEL2  
FBSEL1  
IN  
FBSEL2  
FBSEL1  
IN  
GND to set V  
to 1.5V. Leave unconnected to use external feedback resistors.  
OUT2  
Regulator 1 Feedback Select. Connect to V  
to set V  
to 3.3V. Connect to  
OUT1  
CC  
GND to set V  
to 1.8V. Leave unconnected to use external feedback resistors.  
OUT1  
Power-Supply Voltage. Input range from 2.6V to 5.5V. Bypass with 10µF capacitor  
to PGND.  
15  
16  
LX2  
LX2  
Inductor Connection 2. Connect an inductor between LX2 and OUT2.  
Power Ground  
PGND  
PGND  
DC-DC Controller  
Detailed Description  
The MAX1970/MAX1971/MAX1972 family of step-down  
converters uses a pulse-width-modulating (PWM) current-  
mode control scheme. The heart of the current-mode  
PWM controller is an open-loop comparator that com-  
pares the integrated voltage-feedback signal against  
the sum of the amplified current-sense signal and the  
slope compensation ramp. At each rising edge of the  
internal clock, the internal high-side MOSFET turns on  
until the PWM comparator trips. During this on time,  
current ramps up through the inductor, sourcing cur-  
rent to the output and storing energy in a magnetic  
field. The current-mode feedback system regulates the  
peak inductor current as a function of the output volt-  
age error signal. Since the average inductor current is  
nearly the same as the peak inductor current (assum-  
ing that the inductor value is relatively high to minimize  
ripple current), the circuit acts as a switch-mode  
transconductance amplifier. It pushes the output LC filter  
pole, normally found in a voltage-mode PWM, to a higher  
frequency. To preserve inner loop stability and eliminate  
inductor stair casing, a slope-compensation ramp is  
summed into the main PWM comparator. During the  
second half of the cycle, the internal high-side MOSFET  
The MAX1970/MAX1971/MAX1972 are dual-output,  
fixed-frequency, current-mode, PWM, step-down  
DC/DC converters. The MAX1970 and MAX1972 switch  
at 1.4 MHz while the MAX1971 switches at 700kHz. The  
two converters on each IC switch 180° out of phase  
with each other to reduce input ripple current. The  
high-switching frequency allows use of smaller capaci-  
tors for filtering and decoupling. Internal synchronous  
rectifiers improve efficiency and eliminate the typical  
Schottky freewheeling diode. The on-resistances of the  
internal MOSFETs are used to sense the switch cur-  
rents for controlling and protecting the MOSFETs, elimi-  
nating current-sensing resistors to further improve  
efficiency and cost.  
The input voltage range is 2.6V to 5.5V. Each converter  
has a three-mode feedback input. Internally, OUT1 is  
set to either 3.3V or 1.8V, and OUT2 to 2.5V or 1.5V by  
connecting FBSEL1 and FBSEL2 to V  
or GND,  
CC  
respectively. When FBSEL1 or FBSEL2 are floating,  
each output can be set to any voltage between 1.2V  
and V through an external resistive divider. Having an  
IN  
output below 1.2V is also possible (see the Output  
Voltage Selection section).  
______________________________________________________________________________________ 11  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
V
CC  
REGULATOR 1  
IN  
FB1  
FB  
SELECT  
FBSEL1  
ERROR SIGNAL  
SLOPE COMP  
PWM CONTROL  
LX1  
CURRENT SENSE  
COMP1  
REF  
CLAMP  
PGND  
÷2(MAX1970/  
MAX1972)/  
÷4(MAX1971)  
REFERENCE  
VOLTAGE  
1.2V  
2.8MHz  
OSCILLATOR  
SOFT-START  
MAX1971 ONLY  
RSI  
POR  
POR  
PFO  
THERMAL SHUTDOWN  
VOK  
MAX1970/MAX1972 ONLY  
PFO  
EN  
COMP2  
REGULATOR 2  
FB2  
MAX1970  
MAX1971  
MAX1972  
FBSEL2  
GND  
Figure 1. Functional Diagram  
turns off and the internal low-side N-channel MOSFET  
turns on. Now the inductor releases the stored energy  
as its current ramps down while still providing current to  
the output. The output capacitor stores charge when  
the inductor current exceeds the load current and dis-  
charges when the inductor current is lower, smoothing  
the voltage across the load. Under overload conditions,  
when the inductor current exceeds the current limit (see  
the Current Limit section), the high-side MOSFET is not  
turned on at the rising edge of the clock and the low-  
side MOSFET remains on to let the inductor current  
ramp down.  
Current Sense  
The current-sense circuit amplifies the current-sense  
voltage generated by the high-side MOSFETs on-resis-  
tance and the inductor current (R  
I  
).  
DS(ON)  
INDUCTOR  
This amplified current-sense signal and the internal  
slope compensation signal are summed together into  
12 ______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
the PWM comparators inverting input. The PWM com-  
parator turns off the internal high-side MOSFET when  
this sum exceeds the integrated feedback voltage.  
Power-Fail Output  
The input voltage is sensed for 5V (typical USB applica-  
tions), and if V  
drops below 3.94V, the power-fail out-  
CC  
put (PFO) goes high. The time from PFO going high to  
the outputs going out of regulation depends on the oper-  
ating output voltage and currents, and the upstream 5V  
bus storage capacitor value, which is 120µF minimum  
(per USB specification, version 2.0). The lower the oper-  
ating voltages and currents, and the higher the storage  
capacitor, the longer the elapsed time. PFO is an open-  
Current Limit  
The internal MOSFET has a current limit of 1.2A (typ). If  
the current flowing out of LX_ exceeds this maximum,  
the high-side MOSFET turns off and the synchronous  
rectifier MOSFET turns on. This lowers the duty cycle  
and causes the output voltage to droop until the current  
limit is no longer exceeded. There is also a synchro-  
nous rectifier current limit of -0.85A. This is to protect  
the device from current flowing into LX_. If the negative  
current limit is exceeded, the synchronous rectifier is  
turned off, and the inductor current continues to flow  
through the high-side MOSFET body diode back to the  
input until the beginning of the next cycle or until the  
inductor current drops to zero.  
drain output, and a 10k to 100k pullup resistor to V , or  
CC  
either output, is recommended.  
Power-On Reset  
Power-on reset (POR) provides a system reset signal.  
During power-up, POR is held low until both outputs  
reach 92% of their regulated voltages, POR continues  
to be held low for a delayed period, and then goes  
high. This delay time (T ) for MAX1970 is 16.6ms. The  
D
MAX1971 and MAX1972 have a delay of 175ms. Figure  
2 is an example of a timing diagram.  
V
Decoupling  
CC  
Due to the high-switching frequency and tight output  
tolerance ( 1%), decoupling between IN and V is  
CC  
The POR comparator is designed to be relatively  
immune to short-duration negative-going output glitch-  
es.The Typical Operating Characteristics gives a plot of  
maximum transient duration vs. POR comparator over-  
drive. The graph was generated using a negative-going  
pulse applied to an output, starting at 100mV above the  
actual POR threshold, dropping below the POR thresh-  
old by the percentage indicated as comparator over-  
drive, and then returning to 100mV above the  
threshold. The graph indicates the maximum pulse  
width the output transient can have without causing  
POR to trip low.  
recommended. Connect a 10resistor between IN and  
V
CC  
and a 0.1µF ceramic capacitor from V to GND.  
CC  
Place the resistor and capacitor as close to V  
possible.  
as  
CC  
Startup  
To reduce the supply inrush current, soft-start circuitry  
ramps up the output voltage during startup. This is  
done by charging the REF capacitor with a current  
source of 25µA. Once REF reaches 1.2V, the output is  
in full regulation. The soft-start time is determined from:  
V
4
REF  
Reset Input  
Reset input (RSI) is an input on the MAX1971 that,  
when driven high, forces the POR to go low. When RSI  
goes low, POR goes through a delay time identical to a  
power-up event. See Figure 2 for timing diagram. RSI  
allows software to command a system reset. RSI must  
be high for a minimum period of 1µs in order to initiate  
the POR.  
t
=
C
= 4.8 × 10 × C  
SS  
REF REF  
I
REF  
Soft-start occurs when power is first applied, and when  
EN is pulled high with power already present. The part  
also goes through soft-start when coming out of under-  
voltage lockout (UVLO) or thermal shutdown. The range  
of capacitor values for C  
is from 0.01µF to 1.0µF.  
REF  
Undervoltage Lockout  
drops below 2.35V, the MAX1970/MAX1971/  
MAX1972 assume that the supply voltage is too low to  
provide a valid output voltage, and the UVLO circuit  
Thermal-Overload Protection  
If V  
CC  
Thermal-overload protection limits total power dissipa-  
tion. When the ICs junction temperature exceeds T =  
J
+170°C, a thermal sensor shuts down the device,  
allowing the IC to cool. The thermal sensor turns the  
part on again after the junction temperature cools by  
20°C. This results in a pulsed output during continuous  
overload conditions.  
inhibits switching. Once V  
rises above 2.4V, the  
CC  
UVLO is disabled and the soft-start sequence initiates.  
Enable  
A logic-enable input (EN) is provided. For normal oper-  
ation, drive EN logic high. Driving EN low turns off both  
outputs, and reduces the input supply current to  
approximately 1µA.  
During a thermal event, POR goes low, PFO goes high,  
and soft-start is reset.  
______________________________________________________________________________________ 13  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
V
OUT  
T
D
~1V PKMAX  
POR  
T
D
T
= 1µs MIN  
RESET  
RSI  
4.04V  
3.94V  
V
IN  
PFO  
Figure 2. Timing Diagram  
Each output is capable of continuously sourcing up to  
750mA of current as long as the following condition is  
met:  
Design Procedure  
Output Voltage Selection  
Both output voltages can be selected in three different  
ways as indicated by Table 1. Each output has two pre-  
set voltages that can be set using FBSEL_ and it can  
V
× I  
+ V  
× I  
OUT1  
OUT1  
OUT2 OUT2  
1.05A  
V
IN  
also be set to any voltage from 0.8V to V by using an  
IN  
external resistor voltage-divider.  
Inductor Value  
To use a resistor-divider to set the output voltage to  
1.2V or higher (Figure 5), connect a resistor from FB_ to  
A 3.3µH to 6.8µH inductor with a saturation current of  
800mA (min) is recommended for most applications.  
For best efficiency, the inductors DC resistance should  
be less than 100m, and saturation current should be  
greater than 1A. See Table 2 for recommended induc-  
tors and manufacturers.  
OUT_ (R_ ), and connect a resistor from FB_ to GND  
a
(R_ ). Select the value of R_ , between 10kand  
b
b
30k. Then R_ is calculated by:  
a
V
1.2  
OUT  
R
=R  
×
_b  
1  
_a  
A resistor-divider can also be used to set the voltage of  
one output from 0.8V to 1.2V. To do this, the other out-  
put must be above 1.2V. Figure 6 shows an example of  
this where OUT1 is set to 1V. To set the output voltage to  
less than 1.2V, connect a resistor from FB1 to OUT1 (R1),  
and from FB1 to OUT2 (R2). Select values of R1 and R2  
such that current flowing through R1 and R2 is about  
100µA and following equation is satisfied:  
1.2V  
OUT2  
1.2  
R1 = R2  
V
OUT1  
14 ______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
V
IN  
10Ω  
3.3V TO 5.5V  
V
CC  
10µF  
0.1µF  
100kΩ  
100kΩ  
2
14  
PFO  
EN  
POR  
V
9
11  
10  
IN  
CC  
PFO  
EN  
POR  
V
OUT1  
3.3V  
4.7µH  
1
4
LX1  
FB1  
680pF  
680pF  
82kΩ  
39kΩ  
MAX1972  
3
COMP1  
10µF  
6
COMP2  
FBSEL2  
V
OUT2  
1.5V  
4.7µH  
15  
5
12  
LX2  
FB2  
V
CC  
13  
7
FBSEL1  
10µF  
REF  
GND  
PGND  
16  
0.1µF  
8
Figure 3. Typical Application Circuit 1  
V
IN  
10Ω  
3.3V TO 5.5V  
V
CC  
10µF  
0.1µF  
100kΩ  
100kΩ  
2
14  
POR  
V
9
11  
10  
IN  
CC  
PFO  
EN  
PFO  
POR  
V
OUT1  
3.3V  
4.7µH  
EN  
1
4
MAX1970  
MAX1972  
LX1  
FB1  
680pF  
680pF  
82kΩ  
62kΩ  
3
COMP1  
10µF  
6
COMP2  
FBSEL1  
V
OUT2  
2.5V  
4.7µH  
15  
5
13  
LX2  
FB2  
V
CC  
12  
7
FBSEL2  
REF  
10µF  
GND  
8
PGND  
16  
0.1µF  
Figure 4. Typical Application Circuit 2  
______________________________________________________________________________________ 15  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
V
IN  
10  
2.6V TO 5.5V  
10µF  
0.1µF  
100kΩ  
14  
IN  
2
POR  
V
11  
10  
9
1
CC  
RSI  
RSI  
EN  
POR  
LX1  
4.7µH  
V
OUT1  
EN  
680pF  
R
MAX1971  
C1  
R
3
1a  
10µF  
COMP1  
4
FB1  
680pF  
R
C2  
6
COMP2  
FBSEL1  
R
1b  
13  
4.7µH  
V
OUT2  
15  
5
LX2  
FB2  
12  
7
R
2a  
FBSEL2  
REF  
10µF  
PGND  
16  
GND  
0.1µF  
8
R
2b  
Figure 5. Setting the Output Voltage with External Resistors  
V
IN  
10Ω  
3V TO 3.6V  
V
CC  
0.1µF  
100kΩ  
100kΩ  
14  
2
POR  
V
11  
10  
IN  
9
1
CC  
RSI  
PFO  
EN  
POR  
LX1  
4.7µH  
V
OUT1  
1.0V  
EN  
680pF  
27kΩ  
MAX1970  
R1  
2kΩ  
3
10µF  
COMP1  
4
680pF  
68kΩ  
FB1  
6
COMP2  
FBSEL1  
R2  
13kΩ  
13  
4.7µH  
V
OUT2  
2.5V  
15  
V
CC  
LX2  
FB2  
12  
7
10µF  
5
FBSEL2  
REF  
GND  
PGND  
16  
0.1µF  
8
Figure 6. Setting an Output Below 1.2V  
16 ______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Output Capacitor  
Table 1. Output Voltage Settings  
The key selection parameters for the output capacitor  
FBSEL1  
OUTPUT 1  
3.3V  
FBSEL2  
OUTPUT 2  
2.5V  
are its capacitance, ESR, ESL, and the voltage rating  
requirements. These affect the overall stability, output  
ripple voltage, and transient response of the DC-DC  
converter.  
V
V
CC  
CC  
GND  
1.8V  
GND  
1.5V  
Open  
Ext Divider  
Open  
Ext Divider  
The output ripple is due to variations in the charge  
stored in the output capacitor, the voltage drop due to  
the capacitors ESR, and the voltage drop due to the  
capacitors ESL.  
For most designs, a reasonable inductor value (L  
derived from the following equation:  
) is  
INIT  
V
V V  
V
= V  
+ V  
+ V  
(
)
OUT IN OUT  
RIPPLE  
RIPPLE(C)  
RIPPLE(ESR) RIPPLE(ESL)  
L
=
INIT  
V
× LIR × I  
× f  
IN  
OUT(MAX) OSC  
The output voltage ripple due to the output capaci-  
tance, ESR, and ESL is:  
Keep the inductor current ripple percentage LIR  
between 20% and 40% of the maximum load current for  
best compromise of cost, size, and performance. The  
maximum inductor current is:  
I
PP  
V
=
RIPPLE(C)  
8 × C  
× f  
SW  
OUT  
LIR  
2
V
=I  
× ESR  
RIPPLE(ESR) PP  
I
= 1+  
I
OUT(MAX)  
L(MAX)  
V
= (I  
/ T ) ESL or (I  
ON  
/ T  
) ✕  
OFF  
RIPPLE (ESL)  
ESL, whichever is greater.  
P-P  
P-P  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuits switching.  
The input capacitor must meet the ripple current  
I
is the peak-to-peak inductor current:  
P-P  
V
V  
V
OUT  
IN  
OUT  
I
=
×
PP  
requirement (I  
) imposed by the switching currents  
RMS  
f
× L  
V
SW  
IN  
defined by the following equation:  
These equations are suitable for initial capacitor selec-  
tion, but final values should be set by testing a proto-  
type or evaluation circuit. As a rule, a smaller ripple  
current results in less output voltage ripple. Since the  
inductor ripple current is a factor of the inductor value,  
the output voltage ripple decreases with larger induc-  
tance. Ceramic capacitors are recommended due to  
their low ESR and ESL at the switching frequency of the  
converter. For ceramic capacitors, the ripple voltage  
due to ESL is negligible.  
2
I
× V  
V
V  
OUT1  
+
)
(
)
1
OUT1  
OUT1 IN  
I
=
RMS  
2
V
I
× V  
V
V  
(
IN  
OUT2  
OUT2 IN  
OUT2  
A ceramic capacitor is recommended due to its low  
equivalent series resistance (ESR), equivalent series  
inductance (ESL), and lower cost. Choose a capacitor  
that exhibits less than a 10°C temperature rise at the  
maximum operating RMS current for optimum long-term  
reliability.  
Load transient response depends on the selected out-  
put capacitor. During a load transient, the output  
instantly changes by ESR I  
. Before the con-  
LOAD  
Table 2. Suggested Inductors  
INDUCTANCE  
ESR  
(m)  
SATURATION  
CURRENT (A)  
MANUFACTURER  
PART  
DIMENSIONS (mm)  
(µH)  
Coilcraft  
Sumida  
Sumida  
DO1606  
CR43-4R7  
4.7  
4.7  
4.7  
120  
108.7  
80  
1.2  
1.15  
0.9  
5.3 5.3  
2
4.5  
4
3.5  
CDRH3D16-4R7  
3.8 3.8 0.8  
______________________________________________________________________________________ 17  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
troller can respond, the output deviates further,  
depending on the inductor and output capacitor  
values. After a short time (see the Typical Operating  
Characteristics), the controller responds by regulating  
the output voltage back to its nominal state. The con-  
troller response time depends on the closed-loop  
bandwidth. With a higher bandwidth, the response time  
is faster, thus preventing the output from deviating fur-  
ther from its regulating value.  
The zero frequency for the output capacitor ESR is:  
1
fz  
=
ESR  
2π × C  
× ESR  
OUT  
where, R  
= V  
/I  
, and GMC = 2µS. The  
LOAD  
OUT OUT(MAX)  
feedback divider has a gain of G = V /V  
, where  
FB  
FB OUT  
V
is equal to 1.2V. The transconductance error ampli-  
FB  
fier has a DC gain, G  
, of 60dB. A dominant pole  
EA(DC)  
Compensation Design  
An internal transconductance error amplifier is used to  
compensate the control loop. Connect a series resistor  
and capacitor between COMP and GND to form a pole-  
zero pair. The external inductor, internal high-side  
MOSFET, output capacitor, compensation resistor, and  
compensation capacitor determine the loop stability.  
The inductor and output capacitor are chosen based  
on performance, size, and cost. Additionally, the com-  
pensation resistor and capacitor are selected to opti-  
mize control-loop stability. The component values  
shown in the typical application circuits (Figures 3, 4,  
and 5) yield stable operation over a broad range of  
input-to-output voltages.  
is set by the compensation capacitor, C , the output  
resistance of the error amplifier (R  
C
), 20M, and the  
OEA  
compensation resistor, R . A zero is set by R and C .  
C
C
C
The pole frequency set by the transconductance ampli-  
fier output resistance, and compensation resistor and  
capacitor is:  
1
fp  
=
EA  
2π × C × R  
C
OEA  
The zero frequency set by the compensation capacitor  
and resistor is:  
1
The controller uses a current-mode control scheme that  
regulates the output voltage by forcing the required  
current through the external inductor. The voltage  
across the internal high-side MOSFETs on-resistance  
fz  
=
EA  
2π × C × R  
C
C
For best stability and response performance, the  
closed-loop unity-gain frequency must be much higher  
than the modulator pole frequency. In addition, the  
closed-loop unity-gain frequency should be approxi-  
mately 50kHz. The loop gain equation at unity gain fre-  
quency then is:  
(R  
) is used to sense the inductor current. Current  
DS(ON)  
mode control eliminates the double pole caused by the  
inductor and output capacitor, which has large phase  
shift that requires more elaborate error-amplifier com-  
pensation. A simple Type 1 compensation with single  
compensation resistor (R ) and compensation capaci-  
C
tor (C ) is all that is needed to have a stable and high-  
C
V
V
bandwidth loop.  
FB  
G
× G  
×
=1  
EA(fc)  
MOD(fc)  
The basic regulator loop consists of a power modulator,  
an output feedback divider, and an error amplifier. The  
O
power modulator has DC gain set by gmc x R  
,
LOAD  
, the output  
Where G  
LOAD  
= gm  
MOD fc  
R , and G  
= gmc ✕  
MOD(fc)  
EA(fc)  
fp  
calculated as:  
EA  
C
with a pole and zero pair set by R  
LOAD  
R
/ , where gm = 50µS, R can be  
EA C  
capacitor (C  
), and its ESR. Below are equations  
OUT  
that define the power modulator:  
V
O
R
=
C
G
= gmc × R  
MOD  
LOAD  
gm × V × G  
EA  
FB  
MOD(fc)  
The pole frequency for the modulator is:  
1
The error-amplifier compensation zero formed by R  
C
and C is set at the modulator pole frequency at maxi-  
C
fp  
=
MOD  
mum load. C is calculated as follows:  
C
2π × C  
× R  
(
+ESR  
)
OUT  
LOAD  
C
OUT  
C
= V  
×
C
OUT  
R
× I  
OUT(MAX)  
C
18 ______________________________________________________________________________________  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
As the load current decreases, the modulator pole also  
decreases; however, the modulator gain increases  
Applications Information  
PC Board Layout  
Careful PC board layout is critical to achieve clean and  
stable operation. The switching power stage requires  
particular attention. Follow these guidelines for good  
PC board layout:  
accordingly, and the closed-loop unity-gain frequency  
remains the same. Below is a numerical example to cal-  
culate R and C values of the typical application cir-  
C
C
cuit of Figure 4, where:  
V
OUT  
= 2.5V  
1) Place decoupling capacitors as close to IC pins as  
possible. Keep power ground plane (connected to  
PGND) and signal ground plane (connected to  
GND) separate. Connect the two ground planes  
together with a single connection from PGND to  
GND.  
I
= 0.6A  
OUT(MAX)  
C
= 10µF  
OUT  
R
= 0.010Ω  
ESR  
gm = 50µS  
EA  
gm = 2S  
C
2) Input and output capacitors are connected to the  
power ground plane; all other capacitors are con-  
nected to signal ground plane.  
f
= 1.4 MHz  
SWITCH  
R
= V  
/ I  
= 2.5V / 0.6 A = 4.167Ω  
LOAD  
OUT OUT(MAX)  
3) Keep the high-current paths as short and wide as  
possible.  
fp  
= 1 / [2π C  
(R  
+ R  
)] = 1 / [2π ✕  
MOD  
OUT  
LOAD  
ESR  
10 10-6 (4.167 + 0.01)] = 3.80 kHz.  
fz = 1 / [2π C  
] = 1 / [2π 10 10-6  
4) If possible, connect IN, LX1, LX2, and PGND sepa-  
rately to a large land area to help cool the IC to fur-  
ther improve efficiency and long-term reliability.  
R
OUT ESR  
ESR  
0.01] = 1.59 MHz.  
Pick a closed-loop unity-gain frequency (fc) of 50kHz.  
The power modulator gain at fc is:  
5) Ensure all feedback connections are short and  
direct. Place the feedback resistors as close to the  
IC as possible.  
G
MOD  
(fc) = gmc R  
fp  
/ f = 2 4.167  
MOD c  
LOAD  
3.80k / 50k = 0.635  
6) Route high-speed switching nodes away from sen-  
sitive analog areas (FB1, FB2, COMP1, COMP2).  
then:  
R
C
= V / (gm  
V
G
(fc)) = 2.5 / (50 10-6  
O
EA FB MOD  
1.2 0.635) 62kΩ  
Chip Information  
TRANSISTOR COUNT: 5428  
C
C
= V  
( C  
/ R ) I (MAX) = 2.5 4.7  
OUT  
OUT  
OUT  
C
10-6 / 62k 0.6 680pF  
PROCESS: BiCMOS  
______________________________________________________________________________________ 19  
Dual, 180° Out-of-Phase, 1.4MHz, 750mA Step-  
Down Regulator with POR and RSI/PFO  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX19710

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
MAXIM

MAX19710ETN

10-Bit, 7.5Msps, Full-Duplex Analog Front-End
MAXIM

MAX19710ETN+

暂无描述
MAXIM

MAX19710ETN+T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710ETN-T

Telecom Circuit, 1-Func, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, EXPOSED PAD, MO-220, TQFN-48
MAXIM

MAX19710EVCMODU+

Low-Voltage and Low-Power Operation
MAXIM

MAX19710EVKIT

Low-Voltage and Low-Power Operation
MAXIM

MAX19710EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX19711

10-Bit, 11Msps, Full-Duplex Analog Front-End
MAXIM

MAX19711ETN

10-Bit, 11Msps, Full-Duplex Analog Front-End
MAXIM

MAX19711ETN+

暂无描述
MAXIM

MAX19711EVCMODU+

Low-Voltage and Low-Power Operation
MAXIM