MAX1884EUP+ [MAXIM]

Switching Regulator, Current-mode, 2.05A, 575kHz Switching Freq-Max, BICMOS, PDSO20, 4.40 MM, 1.10 MM HEIGHT, TSSOP-20;
MAX1884EUP+
型号: MAX1884EUP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 2.05A, 575kHz Switching Freq-Max, BICMOS, PDSO20, 4.40 MM, 1.10 MM HEIGHT, TSSOP-20

信息通信管理 光电二极管
文件: 总38页 (文件大小:1048K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1979; Rev 0a; 3/01  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
General Description  
Features  
The MAX1778/MAX1880–MAX1885 multiple-output  
DC-DC converters provide the regulated voltages  
required by active matrix thin-film transistor (TFT) liquid  
crystal displays (LCD) in a low-profile TSSOP package.  
One high-power step-up converter and two low-power  
charge pumps convert the 2.7V to 5.5V input voltage  
into three independent output voltages. A built-in linear  
regulator and VCOM buffer complete the power-supply  
requirements.  
o 500kHz/1MHz Current-Mode PWM Step-Up  
Regulator  
Up to +13V Main High-Power Output  
1ꢀ ꢁAAurate  
High EffiAienAy (91ꢀ)  
o Dual Regulated Charge-Pump Outputs  
(MꢁX1778/MꢁX1880/MꢁX1881/MꢁX1882 only)  
Up to +40V Positive Charge-Pump Output  
Up to -40V Negative Charge-Pump Output  
o Low-Dropout 40mꢁ Linear Regulator  
(MꢁX1778/MꢁX1881/MꢁX1883/MꢁX1884 only)  
Up to +15V LDO Input  
The main step-up converter accurately generates an  
externally set output voltage up to 13V that can supply  
the display’s row/column drivers. The converter’s high  
switching frequency and current-mode PWM architec-  
ture provide fast transient response and allow the use  
of small low-profile inductors and ceramic capacitors.  
The low-power BiCMOS control circuitry and internal  
14V switch (0.35N-channel MOSFET) enable efficien-  
cies up to 91%.  
o Optional Higher Current with External Transistor  
o 2.7V to 5.5V Input Supply  
o Internal Supply SequenAing and Soft-Start  
o Power-Ready Output  
The dual low-power charge pumps (MAX1778/  
MAX1880/MAX1881/MAX1882 only) independently reg-  
o ꢁdjustable Fault-DeteAtion LatAh  
o Thermal ProteAtion (+160°C)  
ulate one positive output (V  
) and one negative out-  
POS  
put (V  
). These low-power outputs use external  
NEG  
o 0.1µꢁ Shutdown Current  
diode and capacitor stages (as many stages as  
required) to regulate output voltages up to +40V and  
-40V. A unique control scheme minimizes output ripple  
as well as capacitor sizes for both charge pumps.  
o 0.7mꢁ IN QuiesAent Current  
o Ultra-Small External Components  
o Thin TSSOP PaAkage (1.1mm max height)  
A resistor-programmable, 40mA, low-dropout linear  
regulator (MAX1778/MAX1881/MAX1883/MAX1884  
only) provides preregulation or postregulation for any of  
the supplies. For higher current applications, an exter-  
nal transistor can be added. Additionally, the VCOM  
buffer provides a high current output that is ideal for  
driving the capacitive backplane of TFT LCD panels.  
The VCOM buffer’s output voltage is preset with an  
internal 50% resistive-divider or can be externally  
adjusted for other voltages.  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
24 TSSOP  
24 TSSOP  
24 TSSOP  
24 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
MAX1778EUG  
MAX1880EUG  
MAX1881EUG  
MAX1882EUG  
MAX1883EUP  
MAX1884EUP  
MAX1885EUP  
The MAX1778/MAX1880–MAX1885 are protected  
against output undervoltage and thermal overload con-  
ditions by a latched fault detection circuit that shuts  
down the device. All devices are available in the ultra-  
thin TSSOP package (1.1mm max height).  
Applications  
TFT LCD Notebook Displays  
Typical Operating Circuit appears at end of data sheet.  
TFT LCD Desktop Monitor Panels  
Pin Configurations and Selector Guide appear at end of  
data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ABSOLUTE MAXIMUM RATINGS  
IN, SHDN, TGND, FLTSET to GND...........................-0.3V to +6V  
DRVN to GND.........................................-0.3V to (V  
DRVP to GND..........................................-0.3V to (V  
PGND to GND..................................................................... 0.3V  
RDY, SUPB to GND................................................-0.3V to +14V  
LX, SUPP, SUPN to PGND .....................................-0.3V to +14V  
SUPL to GND..........................................................-0.3V to +18V  
BUFOUT, BUF+, BUF- to GND...............-0.3V to (V  
+ 0.3V)  
SUPB  
Continuous Power Dissipation (T = +70°C)  
+ 0.3V)  
+ 0.3V)  
A
SUPN  
SUPP  
20-Pin TSSOP (derate 10.9mW/°C above +70°C) ......879mW  
24-Pin TSSOP (derate 12.2mW/°C above +70°C) ......975mW  
Operating Temperature Range  
MAX1778EUG, MAX1883EUP........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LDOOUT to GND ....................................-0.3V to (V  
INTG, REF, FB, FBN, FBP to GND...............-0.3V to (V + 0.3V)  
+ 0.3V)  
SUPL  
IN  
FBL to GND .............-0.3V to the lower of (V  
+ 0.3V) or +6V  
SUP  
L
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +3.0V, SHDN = IN, V  
= V  
= V = V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
SUPL  
IN  
SUPP  
SUPN  
SUPB  
PGND = GND, C  
= 0.22µF, C = 1µF, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
BUF A A  
REF  
PARAMETER  
Input Supply Range  
SYMBOL  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
V
V
V
IN  
Input Undervoltage Threshold  
V
V
V
rising, 40mV hysteresis (typ)  
2.2  
2.4  
0.7  
2.6  
UVLO  
IN  
MAX1778/MAX1880/  
MAX1883 (f = 1MHz)  
1
1
OSC  
= V  
FB  
FBP  
IN Quiescent Supply Current  
I
= 1.5V, V  
= -0.2V  
mA  
IN  
FBN  
MAX1881/MAX1882/  
MAX1884/MAX1885  
0.6  
(f  
= 500kHz)  
OSC  
MAX1778/MAX1880  
(f = 1MHz)  
0.4  
0.3  
0.4  
0.7  
0.5  
0.7  
OSC  
SUPP Quiescent Current  
SUPN Quiescent Current  
I
V
V
= 1.5V  
mA  
mA  
SUPP  
FBP  
FBN  
MAX1881/MAX1882  
(f = 500kHz)  
OSC  
MAX1778/MAX1880  
(f = 1MHz)  
OSC  
I
= -0.2V  
SUPN  
MAX1881/MAX1882  
(f = 500kHz)  
0.3  
0.1  
0.1  
0.5  
10  
10  
OSC  
IN Shutdown Current  
V
V
= 0, V = 5V  
µA  
µA  
SHDN  
SHDN  
IN  
= 0, V  
= 13V,  
SUPP  
SUPP Shutdown Current  
MAX1778/MAX1880/MAX1881/MAX1882  
V
= 0, V = 13V,  
SHDN  
SUPN  
SUPN Shutdown Current  
0.1  
10  
µA  
MAX1778/MAX1880/MAX1881/MAX1882  
V
= 0, V = 13V  
SHDN  
SUPL  
SUPL Shutdown Current  
SUPB Shutdown Current  
0.1  
6
10  
13  
µA  
µA  
MAX1778/MAX1881/MAX1883/MAX1884  
V
= 0, V = 13V  
SHDN  
SUPB  
2
_______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V, SHDN = IN, V  
= V  
= V = V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
IN  
SUPP  
SUPN  
SUPB  
SUPL  
PGND = GND, C  
= 0.22µF, C  
= 1µF, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
BUF A A  
REF  
PARAMETER  
SYMBOL  
UNITS  
CONDITIONS  
MIN  
TYP  
MAX  
MAIN STEP-UP CONVERTER  
Main Output Voltage Range  
V
V
V
V
13  
MAIN  
IN  
Integrator enabled, C  
= 1000pF  
1.234  
1.220  
-50  
1.247  
1.260  
1.280  
+50  
INTG  
FB Regulation Voltage  
FB Input Bias Current  
V
I
FB  
Integrator disabled (INTG = REF)  
nA  
MHz  
kHz  
V
= 1.25V, INTG = GND  
FB  
FB  
MAX1778/MAX1880/MAX1883  
0.85  
425  
1
1.15  
575  
Operating Frequency  
f
OSC  
MAX1881/MAX1882/MAX1884/MAX1885  
500  
Oscillator Maximum Duty  
Cycle  
80  
85  
0.01  
0.2  
91  
%
Integrator enabled,  
C
= 1000pF  
INTG  
I
V
= 0 to 200mA,  
LX  
Load Regulation  
%
= 10V  
MAIN  
Integrator disabled  
(INTG = REF)  
Line Regulation  
0.1  
317  
0.35  
0.01  
0.38  
0.75  
1.12  
1.5  
%/V  
µs  
Integrator Transconductance  
LX Switch On-Resistance  
LX Leakage Current  
R
I
= 100mA  
0.7  
20  
LX(ON)  
LX  
I
V
= 13V  
LX  
µA  
LX  
Phase I = soft-start (1024/f  
)
0.275  
1.15  
0.5  
OSC  
Phase II = soft-start (1024/f  
)
OSC  
LX Current Limit  
I
A
LIM  
Phase III = soft-start (1024/f  
)
OSC  
Phase IV = fully-on (after 3072/f  
)
1.85  
OSC  
Maximum RMS LX Current  
Soft-Start Period  
1
A
s
t
Power-up to the end of Phase III  
Falling edge, FLTSET = GND  
Falling edge, FLTSET = 1V  
3072 / f  
1.1  
SS  
OSC  
1.07  
1.14  
FB Fault Trip Level  
V
0.955  
0.99  
1.025  
POSITIVE CHARGE PUMP (MAX1778/MAX1880/MAX1881/MAX1882 ONLY)  
V
2.7  
13  
V
Hz  
V
SUPP Input Supply Range  
Operating Frequency  
SUPP  
f
0.5 x f  
OSC  
CHP  
FBP Regulation Voltage  
FBP Input Bias Current  
DRVP PCH On-Resistance  
V
1.2  
-50  
1.25  
1.3  
+50  
10  
FBP  
FBP  
nA  
I
V
= 1.5V  
FBP  
R
5
2
PCH(ON)  
V
V
= 1.2V  
= 1.3V  
4
FBP  
FBP  
DRVP NCH On-Resistance  
R
NCH(ON)  
k  
A
20  
Maximum RMS DRVP Current  
FBP Power-Ready Trip Level  
0.1  
1.125  
1.11  
0.99  
V
Rising edge  
1.09  
1.08  
1.16  
1.16  
Falling edge, FLTSET = GND  
Falling edge, FLTSET = 1V  
FBP Fault Trip Level  
V
0.955  
1.025  
_______________________________________________________________________________________  
3
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V, SHDN = IN, V  
= V  
= V = V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
IN  
SUPP  
SUPN  
SUPB  
SUPL  
PGND = GND, C  
= 0.22µF, C  
= 1µF, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
BUF A A  
REF  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PARAMETER  
NEGATIVE CHARGE PUMP (MAX1778/MAX1880/MAX1881/MAX1882 ONLY)  
V
2.7  
13  
V
Hz  
mV  
nA  
SUPN Input Supply Range  
Operating Frequency  
SUPN  
f
0.5 x f  
OSC  
CHP  
V
-50  
-50  
0
+50  
+50  
10  
FBN Regulation Voltage  
FBN Input Bias Current  
DRVN PCH On-Resistance  
FBN  
I
V
= 0  
FBN  
FBN  
R
5
2
PCH(ON)  
R
NCH(ON)  
4
V
V
= +50mV  
= -50mV  
FBN  
FBN  
DRVN NCH On-Resistance  
20  
kΩ  
A
0.1  
125  
140  
Maximum RMS DRVN Current  
FBN Power-Ready Trip Level  
FBN Fault Trip Level  
Falling edge  
Rising edge  
80  
80  
165  
190  
mV  
mV  
LOW-DROPOUT LINEAR REGULATOR (MAX1778/MAX1881/MAX1883/MAX1884 ONLY)  
SUPL Input Supply Range  
SUPL Undervoltage Lockout  
SUPL Quiescent Current  
V
4.5  
3.8  
15  
4.3  
V
V
SUPL  
Rising edge, 50mV hysteresis (typ)  
= 100µA  
4
I
I
120  
130  
70  
220  
300  
µA  
SUPL  
LDO  
I
= 40mA  
= 5mA  
LDO  
LDO  
LDO is set to  
regulate at 9V  
Dropout Voltage (Note 1)  
FBL Regulation Voltage  
LDO Load Regulation  
LDO Line Regulation  
V
mV  
V
DROP  
I
V
= 10V, LDO regulating at 9V,  
SUPL  
V
1.235  
1.25  
1.265  
1.2  
FBL  
I
= 15mA  
LDO  
V
= 10V, LDO regulating at 9V,  
SUPL  
%
I
= 100µA to 40mA  
LDO  
V
= 4.5V to 15V, FBL = LDOOUT,  
SUPL  
0.02  
%/V  
I
= 15mA  
LDO  
µA  
FBL Input Bias Current  
LDO Current Limit  
I
V
V
= 1.25V  
-0.8  
40  
+0.8  
220  
FBL  
FBL  
mA  
I
= 10V, V  
= 13V  
= 9V, V = 1.2V  
FBL  
130  
LDOLIM  
SUPL  
LDOOUT  
VCOM BUFFER  
V
SUPB Input Supply Range  
SUPB Quiescent Current  
BUFOUT Leakage Current  
Power-Supply Rejection Ratio  
V
4.5  
13  
SUPB  
µA  
µA  
dB  
V
I
V
V
420  
98  
850  
+10  
SUPB  
SUPB  
SUPB  
-10  
85  
PSRR  
= 4.5V to 13V, V  
= 2.25V  
CM  
Input Common-Mode Voltage  
Range  
V
|V | < 10mV  
1.2  
8.8  
CM  
OS  
dB  
nA  
Common-Mode Rejection Ratio  
Input Bias Current  
CMRR  
V
V
V
= 1.2V to 8.8V  
= 5V  
75  
CM  
CM  
CM  
I
-100  
-100  
-10  
13  
+100  
+100  
BIAS  
nA  
Input Offset Current  
I
= 5V  
OS  
kHz  
Gain Bandwidth Product  
GBW  
C
= 1µF  
BUF  
4
_______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V, SHDN = IN, V  
= V  
= V = V  
SUPB  
A
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
IN  
SUPP  
SUPN  
SUPL  
PGND = GND, C  
= 0.22µF, C  
= 1µF, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
REF  
BUF  
A
UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.99  
4.97  
4.93  
TYP  
MAX  
5.01  
5.03  
5.07  
I
I
I
= 0  
=
BUFOUT  
BUFOUT  
BUFOUT  
V
Output Voltage  
V
BUF+ = GND  
5mA  
BUFOUT  
=
45mA  
V
V
(V  
= 4.5V to 13V,  
= 1.2V to  
CM  
I
=
=
5mA  
-30  
30  
70  
SUPB  
BUFOUT  
BUFOUT  
Input Offset Voltage  
V
mV  
OS  
1.2V)  
I
45mA  
-70  
9
SUPB  
Output Voltage Swing High  
Output Voltage Swing Low  
Peak Buffer Output Current  
V
I
I
= -45mA, V = 1V  
9.6  
0.4  
150  
V
V
OH  
BUFOUT  
OS  
V
= +45mA, V = 1V  
1
OL  
BUFOUT  
OS  
mA  
BUF+ Dual ModeThreshold  
Voltage  
Falling edge, 20mV hysteresis (typ)  
80  
125  
170  
mV  
REFERENCE  
Reference Voltage  
V
-2µA < I  
< 50µA  
REF  
1.231  
0.9  
1.25  
1.05  
1.269  
1.2  
V
V
REF  
Reference Undervoltage  
Threshold  
LOGIC SIGNALS  
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Current  
0.9  
V
V
2.1  
I
0.01  
1
µA  
SHDN  
0.67 x  
0.85 x  
V
REF  
FLTSET Input Voltage Range  
V
V
REF  
FLTSET Threshold Voltage  
FLTSET Input Current  
RDY Output Low Voltage  
RDY Output High Leakage  
Thermal Shutdown  
Rising edge, 25mV hysteresis (typ)  
= 1V  
80  
125  
0.1  
170  
50  
0.5  
1
mV  
nA  
V
V
FLTSET  
I
= 2mA  
= 13V  
0.25  
0.01  
160  
SINK  
V
µA  
°C  
RDY  
Rising temperature  
Dual Mode is a registered trademark of Maxim Integrated Products, Inc.  
_______________________________________________________________________________________  
5
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS  
(V = +3.0V, SHDN = IN, V  
= V  
= V  
= V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
SUPL  
IN  
SUPP  
SUPN  
SUPB  
PGND = GND, C  
= 0.22µF, C = 1µF, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
BUF A  
REF  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
Input Supply Range  
V
2.7  
5.5  
V
IN  
Input Undervoltage  
Threshold  
V
V
Rising, 40mV hysteresis (typ)  
2.2  
2.6  
1
V
UVLO  
IN  
MAX1778/MAX1880/  
MAX1883 (f = 1MHz)  
V
V
V
=
FB  
OSC  
IN Quiescent Supply  
Current  
= 1.5V,  
= -0.2V  
I
mA  
FBP  
FBN  
IN  
MAX1881/MAX1882/MAX1884/  
MAX1885 (f = 500kHz)  
1
OSC  
MAX1778/MAX1880  
(f = 1MHz)  
0.7  
0.5  
0.7  
OSC  
SUPP Quiescent Current  
SUPN Quiescent Current  
I
V
V
= 1.5V  
mA  
mA  
SUPP  
SUPN  
FBP  
FBN  
MAX1881/MAX1882  
(f = 500kHz)  
OSC  
MAX1778/MAX1880  
(f = 1MHz)  
OSC  
I
= -0.2V  
MAX1881/MAX1882  
(f = 500kHz)  
0.5  
10  
10  
OSC  
IN Shutdown Current  
V
V
= 0, V = 5V  
µA  
µA  
SHDN  
SHDN  
IN  
= 0, V  
= 13V,  
SUPP  
SUPP Shutdown Current  
MAX1778/MAX1880/MAX1881/MAX1882  
V
= 0, V = 13V,  
SHDN  
SUPN  
SUPN Shutdown Current  
SUPL Shutdown Current  
10  
µA  
MAX1778/MAX1880/MAX1881/MAX1882  
V
= 0, V = 13V,  
SHDN  
SUPL  
10  
13  
µA  
µA  
MAX1778/MAX1881/MAX1883/MAX1884  
V = 0, V = 13V  
SHDN  
SUPB Shutdown Current  
SUPB  
MAIN STEP-UP CONVERTER  
Main Output Voltage Range  
V
V
13  
1.269  
1.29  
+50  
1.25  
625  
V
V
MAIN  
IN  
Integrator enabled, C  
= 1000pF  
1.223  
1.21  
-50  
INTG  
FB Regulation Voltage  
FB Input Bias Current  
Operating Frequency  
V
FB  
Integrator disabled (INTG = REF)  
= 1.25V, INTG = GND  
I
V
nA  
MHz  
kHz  
FB  
FB  
MAX1778/MAX1880/MAX1883  
0.75  
375  
F
OSC  
MAX1881/MAX1882/MAX1884/MAX1885  
Oscillator Maximum Duty  
Cycle  
79  
91  
%
LX Switch On-Resistance  
LX Leakage Current  
R
I
= 100mA  
0.7  
20  
LX(ON)  
LX  
I
LX  
V
= 13V  
LX  
µA  
Phase I = soft-start (1024/f  
)
0.275  
1.1  
0.525  
2.05  
1.14  
OSC  
LX Current Limit  
I
A
V
LIM  
Phase IV = fully on (after 3072/f  
)
OSC  
FB Fault Trip Level  
Falling edge, FLTSET = GND  
1.07  
6
_______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V, SHDN = IN, V  
= V  
= V  
= V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
IN  
SUPP  
SUPN  
SUPB  
SUPL  
PGND = GND, C  
= 0.22µF, C  
= 1µF, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
BUF A  
REF  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
POSITIVE CHARGE PUMP (MAX1778/MAX1880/MAX1881/MAX1882 ONLY)  
SUPP Input Supply Range  
FBP Regulation Voltage  
FBP Input Bias Current  
DRVP PCH On-Resistance  
V
2.7  
1.2  
-50  
13  
1.3  
+50  
10  
V
V
SUPP  
V
FBP  
I
V
= 1.5V  
nA  
FBP  
FBP  
R
R
PCH(ON)  
V
V
= 1.2V  
= 1.3V  
4
FBP  
FBP  
DRVP NCH On-Resistance  
NCH(ON)  
20  
kΩ  
V
FBP Power-Ready Trip Level  
Rising edge  
1.09  
1.16  
NEGATIVE CHARGE PUMP (MAX1778/MAX1880/MAX1881/MAX1882 ONLY)  
SUPN Input Supply Range  
FBN Regulation Voltage  
FBN Input Bias Current  
DRVN PCH On-Resistance  
V
2.7  
-50  
-50  
13  
+50  
+50  
10  
V
SUPN  
V
mV  
nA  
FBN  
FBN  
I
V
= 0  
FBN  
R
R
PCH(ON)  
V
V
= +50mV  
= -50mV  
4
FBN  
FBN  
DRVN NCH On-Resistance  
NCH(ON)  
20  
80  
kΩ  
mV  
FBN Power-Ready Trip Level  
Falling edge  
165  
LOW DROPOUT LINEAR REGULATOR (MAX1778/MAX1881/MAX1883/MAX1884 ONLY)  
SUPL Input Supply Range  
SUPL Undervoltage Lockout  
SUPL Quiescent Current  
Dropout Voltage (Note 1)  
V
4.5  
3.8  
15  
V
V
SUPL  
Rising edge, 50mV hysteresis (typ)  
= 100µA  
4.3  
240  
330  
I
I
µA  
mV  
SUPL  
LDO  
V
LDO regulating to 9V, I  
= 40mA  
DROP  
LDO  
V
= 10V, LDO regulating to 9V,  
= 15mA  
SUPL  
FBL Regulation Voltage  
LDO Load Regulation  
LDO Line Regulation  
V
1.222  
1.265  
1.2  
V
%
FBL  
I
LDO  
V
= 10V, LDO regulating to 9V,  
= 100µA to 40mA  
SUPL  
I
LDO  
V
= 4.5V to 15V, FBL = LDOOUT,  
= 15mA  
SUPL  
0.02  
%/V  
I
LDO  
FBL Input Bias Current  
LDO Current Limit  
I
V
V
= 1.25V  
-1.2  
40  
+1.2  
260  
µA  
FBL  
FBL  
I
= 10V, V  
= 13V  
= 9V, V = 1.2V  
FBL  
mA  
LDOLIM  
SUPL  
LDOOUT  
VCOM BUFFER  
SUPB Input Supply Range  
SUPB Quiescent Current  
BUFOUT Leakage Current  
Input Common-Mode Voltage  
V
4.5  
13  
850  
+10  
8.8  
V
SUPB  
I
V
µA  
µA  
V
SUPB  
SUPB  
-10  
1.2  
V
|V | < 10mV  
OS  
CM  
_______________________________________________________________________________________  
7
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V, SHDN = IN, V  
= V  
= V  
= V  
= 10V, LDOOUT = FBL, BUF- = BUFOUT, BUF+ = FLTSET = TGND =  
IN  
SUPP  
SUPN  
SUPB  
SUPL  
PGND = GND, C  
= 0.22µF, C  
= 1µF, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
BUF A  
REF  
PARAMETER  
Input Bias Current  
Input Offset Current  
SYMBOL  
CONDITIONS  
MIN  
-500  
-500  
4.988  
4.97  
4.93  
MAX  
+500  
+500  
5.012  
5.03  
UNITS  
nA  
I
V
V
= 5V  
= 5V  
BIAS  
CM  
CM  
I
nA  
OS  
I
I
I
= 0  
=
BUFOUT  
BUFOUT  
BUFOUT  
Output Voltage  
V
BUF+ = GND  
5mA  
V
BUFOUT  
=
45mA  
5.07  
V
V
(V  
= 4.5V to 13V  
= 1.2V to  
I
=
=
5mA  
-30  
30  
70  
SUPB  
BUFOUT  
BUFOUT  
Input Offset Voltage  
V
mV  
CM  
OS  
I
45mA  
-70  
9
- 1.2V)  
SUPB  
Output Voltage Swing High  
Output Voltage Swing Low  
V
I
I
= -45mA, V = 1V  
V
V
OH  
BUFOUT  
OS  
V
= +45mA, V = 1V  
1
OL  
BUFOUT  
OS  
BUF+ Dual Mode  
Threshold Voltage  
Falling edge, 20mV hysteresis (typ)  
80  
170  
mV  
REFERENCE  
Reference Voltage  
V
-2µA < I  
< 50µA  
1.223  
0.9  
1.269  
1.2  
V
V
REF  
REF  
Reference Undervoltage  
Threshold  
LOGIC SIGNALS  
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Current  
0.9  
1
V
V
2.1  
I
µA  
V
SHDN  
FLTSET Input Voltage Range  
FLTSET Threshold Voltage  
FLTSET Input Current  
0.74 x V  
80  
0.85 x V  
REF  
REF  
Rising edge, 25mV hysteresis (typ)  
= 1V  
170  
mV  
nA  
V
V
50  
0.5  
1
FLTSET  
RDY Output Low Voltage  
RDY Output High Leakage  
I
= 2mA  
= 13V  
RDY  
SINK  
V
µA  
 
Note 1: Dropout Voltage is defined as the V  
- V  
, when V  
is 100mV below the set value of V  
.
SUPL  
LDOOUT  
SUPL  
LDOOUT  
Note 2: Specifications to -40°C are guaranteed by design, not production tested.  
8
_______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
MAIN 8V OUTPUT VOLTAGE  
vs. LOAD CURRENT  
MAIN 8V OUTPUT EFFICIENCY  
vs. LOAD CURRENT  
MAIN 12V OUTPUT VOLTAGE  
vs. LOAD CURRENT  
8.12  
8.08  
8.04  
8.00  
7.96  
7.92  
7.88  
100  
90  
80  
70  
60  
50  
40  
12.24  
V
= 5V  
IN  
12.16  
12.08  
12.00  
11.92  
11.84  
11.76  
V
IN  
= 3.3V  
V
= 3.3V  
IN  
V
IN  
3.3V  
=
V
= 5V  
IN  
V
5V  
=
IN  
V
= 8V  
OUT  
COMP  
COMP  
INTG  
C
= 470pF  
= 24k  
= 470pF  
INTG  
R
= 24kΩ  
= 470pF  
= 470pF  
R
COMP  
COMP  
FIGURE 8  
C = 470pF  
INTG  
C
C
C
0
100  
200  
300  
(mA)  
400  
500  
600  
0
200  
400  
600  
800  
0
200  
400  
(mA)  
600  
800  
I
I
(mA)  
I
OUT  
OUT  
OUT  
MAIN 12V OUTPUT EFFICIENCY  
vs. LOAD CURRENT  
STEP UP CONVERTERS  
SWITCHING FREQUENCY vs. INPUT VOLTAGE  
POSITIVE CHARGE-PUMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
1.20  
100  
90  
80  
70  
60  
50  
40  
20.2  
20.0  
19.8  
19.6  
19.4  
19.2  
MAX1778  
V
IN  
5V  
=
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
V
= 10V  
SUPP  
V
IN  
3.3V  
=
V
= 8V  
SUPP  
V
SUPP  
= 7.5V  
FIGURE 8  
= 12V  
V
= 7V  
SUPP  
V
OUT  
C
INTG  
= 470pF  
0
100  
200  
300  
(mA)  
400  
500  
600  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0
5
10  
(mA)  
15  
20  
I
V
I
POS  
OUT  
IN  
NEGATIVE CHARGE-PUMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
-4.90  
POSITIVE CHARGE-PUMP EFFICIENCY  
vs. LOAD CURRENT  
MAXIMUM POSITIVE CHARGE-PUMP  
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE  
100  
90  
40  
35  
30  
25  
20  
15  
10  
5
V
SUPP  
= 7V  
V
SUPP  
= 7.5V  
-4.92  
-4.94  
-4.96  
-4.98  
-5.00  
-5.02  
-5.04  
V
= 7V  
SUPN  
80  
70  
60  
50  
40  
30  
V
SUPN  
= 6V  
V
SUPP  
= 8V  
I
= 1mA  
I
POS  
= 10mA  
POS  
V
SUPP  
= 10V  
V
= 8V  
SUPN  
V
POS  
= 20V  
0
5
10  
(mA)  
15  
20  
0
10  
20  
(mA)  
30  
40  
2
4
6
8
10  
12  
14  
I
I
NEG  
V
SUPP  
(V)  
NEG  
_______________________________________________________________________________________  
9
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V = 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
NEGATIVE CHARGE-PUMP EFFICIENCY  
vs. LOAD CURRENT  
MAXIMUM NEGATIVE CHARGE-PUMP  
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. REFERENCE LOAD CURRENT  
1.27  
100  
90  
80  
70  
60  
50  
40  
30  
-2  
-4  
V
= -5V  
NEG  
V
= 6V  
SUPN  
1.26  
1.25  
1.24  
1.23  
-6  
I
= 10mA  
NEG  
V
SUPN  
= 7V  
= 8V  
-8  
I
= 1mA  
NEG  
V
SUPN  
-10  
-12  
-14  
0
20  
40  
I
60  
(µA)  
80  
100  
2
4
6
8
10  
12  
14  
0
10  
20  
(mA)  
30  
40  
I
V
(V)  
REF  
NEG  
SUPN  
STEP-UP CONVERTER LOAD-TRANSIENT  
STEP-UP CONVERTER LOAD-TRANSIENT  
STEP-UP CONVERTER LOAD-TRANSIENT  
RESPONSE (1µs PULSES)  
RESPONSE  
RESPONSE WITHOUT INTEGRATOR  
MAX1778 toc15  
MAX1778 toc13  
MAX1778 toc14  
0.5A  
200mA  
200mA  
A
B
C
A
B
A
B
C
0
0
0
8.0V  
8.1V  
8.1V  
7.9V  
1A  
8.0V  
7.9V  
1A  
8.0V  
7.9V  
1A  
0.5A  
C
0
0
0
4µs/div  
40µs/div  
40µs/div  
A. I  
= 0 to 500mA, 500mA/div  
= 8V, 100mV/div  
A. I  
= 20mA to 200mA, 200mA/div  
= 8V, 100mV/div  
A. I  
= 20mA to 200mA, 200mA/div  
= 8V, 100mV/div  
MAIN  
MAIN  
MAIN  
B. V  
MAIN  
B. V  
MAIN  
B. V  
MAIN  
C. INDUCTOR CURRENT, 500mA/div  
C. INDUCTOR CURRENT, 1A/div  
= 1000pF  
C. INDUCTOR CURRENT, 1A/div  
INTG = REF  
C
INTG  
10 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
STEP-UP CONVERTER  
SOFT-START (LIGHT LOAD)  
STEP-UP CONVERTER  
SOFT-START (HEAVY LOAD)  
RIPPLE VOLTAGE WAVEFORMS  
MAX1778 toc17  
MAX1778 toc16  
MAX1778 toc18  
2V  
2V  
A
A
A
0
8V  
-5V  
20V  
0
8V  
8V  
B
6V  
4V  
B
B
6V  
4V  
0.5A  
0
1.0A  
0.5A  
0
C
C
C
1ms/div  
= O TO 2V, 2V/div  
1µs/div  
= 200mA, 10mV/div  
= 10mA, 20mV/div  
= 5mA, 20mV/div  
1ms/div  
= O TO 2V, 2V/div  
A. V  
B. V  
A. V  
B. V  
C. V  
= 8V, I  
NEG  
= 20V, I  
SHDN  
MAIN  
A. V  
MAIN  
MAIN  
MAIN  
SHDN  
B. V  
= 8V, 2V/div  
= -5V, I  
= 8V, 2V/div  
NEG  
POS  
C. INDUCTOR CURRENT, 500mA/div  
= 400Ω  
C. INDUCTOR CURRENT, 500mA/div  
POS  
R
LOAD  
R
LOAD  
= 20Ω  
POWER-UP SEQUENCE  
(CIRCUIT OF FIG.10)  
POWER-UP INTO SHORT-CIRCUIT  
(CIRCUIT OF FIG. 10)  
POWER-UP SEQUENCE  
MAX1778 toc21  
MAX1778 toc20  
MAX1778 toc19  
4V  
2V  
A
2V  
4V  
A
B
0
A
2V  
0
0
20V  
5V  
B
10V  
0
0
20V  
10V  
0
5V  
0
C
C
D
B
0
10V  
5V  
0
D
-5V  
C
E
-10V  
1ms/div  
100µs/div  
2ms/div  
A. RDY, 2V/div  
A. V  
= O TO 2V, 2V/div  
SHDN  
B. RDY, 5V/div  
A. RDY, 2V/div  
B. POSITIVE CHARGE PUMP, V  
C. STEP-UP CONVERTER: V  
= 20V, 10V/div  
= 8V, 10V/div  
= -5V, -5V/div  
POS(SYS)  
MAIN(SYS)  
B. GATE OF N-CH MOSFET, 5V/div  
C. POSITIVE CHARGE PUMP = V  
= 20V, R  
= 4k, 10V/div  
LOAD  
POS  
= 8V, R  
NEG  
C. STEP-UP CONVERTER, V  
= 8V, 5V/div  
MAIN(START)  
D. NEGATIVE CHARGE PUMP, V  
D. STEP-UP CONVERTER: V  
= 40, 10V/div  
LOAD  
NEG  
MAIN  
V
= GND  
MAIN(SYS)  
E. NEGATIVE CHARGE PUMP: V  
= -5V, R  
= 500, 10V/div  
LOAD  
______________________________________________________________________________________ 11  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
LDO OUTPUT VOLTAGE  
vs. LDO INPUT VOLTAGE  
(INTERNAL LINEAR REGULATOR)  
LDO OUTPUT VOLTAGE  
vs. LDO OUTPUT CURRENT  
(INTERNAL LINEAR REGULATOR)  
LDO OUTPUT VOLTAGE vs. TEMPERATURE  
(INTERNAL LINEAR REGULATOR)  
5.10  
5.04  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
I
= 0  
5.08  
5.06  
LDOOUT  
5.02  
5.00  
4.98  
4.96  
I
= 0  
LDOOUT  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
I
= 40mA  
LDOOUT  
I
= 40mA  
LDOOUT  
4.94  
4.92  
4.90  
4
6
8
10  
12  
0.01  
0.1  
1
10  
100  
-40  
-15  
10  
35  
60  
85  
V
SUPL  
(V)  
I
(mA)  
TEMPERATURE (°C)  
LDOOUT  
DROPOUT VOLTAGE  
vs. LDO LOAD CURRENT  
(INTERNAL LINEAR REGULATOR)  
LDO SUPPLY CURRENT  
vs. LDO OUTPUT CURRENT  
(INTERNAL LINEAR REGULATOR)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
160  
120  
80  
V
= 5V  
V
= 5V  
LDOOUT  
LDOOUT  
40  
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
I
(mA)  
I
(mA)  
LDOOUT  
LDOOUT  
12 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
LOAD-TRANSIENT RESPONSE  
REGION OF STABLE C  
ESR  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
LDOOUT  
(INTERNAL LINEAR REGULATOR)  
vs. LOAD CURRENT  
MAX1778 toc29  
100  
80  
60  
100  
10  
C
= 1µF  
LDOOUT  
4OmA  
A
B
0
1
40  
20  
5.00V  
4.96V  
STABLE REGION  
0.1  
0.01  
C
I
= 4.7µF  
LDOOUT  
= 40mA  
LDOOUT  
0
0
40  
100µs/div  
A. I = 100µA TO 40mA, 40mA/div  
10  
20  
30  
1
10  
100  
1000  
I
(mA)  
FREQUENCY (kHz)  
LDOOUT  
LDO  
B. V = 5V, 20mV/div  
LDO  
V
= V + 500mV  
SUPL  
LDO  
LOAD-TRANSIENT RESPONSE NEAR  
INTERNAL LINEAR-REGULATOR  
RIPPLE REJECTION  
INTERNAL LINEAR-REGULATOR  
STARTUP  
DROPOUT (INTERNAL LINEAR REGULATOR)  
MAX1778 toc31  
MAX1778 toc32  
MAX1778 toc30  
4OmA  
0
2V  
0
A
B
5.0V  
8.0V  
A
B
A
B
4V  
2V  
0
5.00V  
4.94V  
C
1.0A  
0.5A  
0
C
4V  
2V  
100µs/div  
10µs/div  
400µs/div  
= 0 TO 2V, 2V/div  
A. I = 100µA TO 40mA, 40mA/div  
B. V = 5V, 20mV/div  
A. V  
= 5V, I  
SUPL  
= 40mA, 10mV/div  
A. V  
B. V  
C. V  
LDO  
LDO  
= V + 100mV  
LDOOUT  
MAIN  
LDOOUT  
= 8V, 200mV/div  
S
HDN  
B. V  
C. I  
= V  
= 5V, R  
= 125, 2V/div  
LDOOUT  
LDOOUT  
= 40, 2V/div  
V
IN  
= 0 TO 750mA, 500mA/div  
= 8V, R  
LDO  
MAIN  
MAIN  
MAIN  
______________________________________________________________________________________ 13  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
LINEAR-REGULATOR OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
(EXTERNAL LINEAR REGULATOR)  
LINEAR-REGULATOR OUTPUT VOLTAGE  
vs. LOAD CURRENT  
(EXTERNAL LINEAR REGULATOR)  
EXTERNAL LINEAR-REGULATOR  
LOAD-TRANSIENT RESPONSE  
MAX1778 toc35  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
2.55  
FIGURE 7  
250mA  
2.53  
2.51  
2.49  
2.47  
50mA  
A
B
I
= 0  
LDO  
2.55V  
2.50V  
2.45V  
I
= 750mA  
LDO  
FIGURE 7  
3.0  
2.45  
100µs/div  
A. I = 50mA TO 250mA, 200mA/div  
LDO  
FIGURE 7  
2.5  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0.1  
1
10  
(mA)  
100  
1000  
V
I
IN  
LDO  
LDO  
B. V  
= 2.5V, 50mV/div  
EXTERNAL LINEAR-REGULATOR  
RIPPLE REJECTION  
INPUT OFFSET VOLTAGE DEVIATION  
vs. COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE DEVIATION  
vs. BUFFER SUPPLY VOLTAGE  
MAX1778 toc36  
1.0  
0.6  
2.5  
1.5  
V
CM  
= V  
SUPB  
/ 2  
A
B
2.5V  
V
SUPB  
= 4.5V  
V
SUPB  
= 13V  
8.0V  
7.8V  
1A  
0.2  
0.5  
-0.5  
-1.5  
-2.5  
-0.2  
-0.6  
-1.0  
0.5A  
C
0
10µs/div  
0
2
4
6
8
10  
12  
14  
4
6
8
10  
(V)  
12  
14  
V
CM  
(V)  
V
SUPB  
A. V = 2.5V, I = 200mA, 10mV/div  
LDO  
MAIN  
MAIN  
LDO  
B. V  
= V  
= 8V, 200mV/div  
SUPL  
C. I  
= 0 TO 750mA, 500mA/div  
FIGURE 7  
14 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V  
= 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
INPUT OFFSET VOLTAGE DEVIATION  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE DEVIATION  
vs. TEMPERATURE  
BUFFER INPUT BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
1.0  
0.6  
0.2  
-0.2  
-0.6  
0
1.0  
0.6  
0.2  
-0.2  
-0.6  
0
10  
V
V
= 13V  
SUPB  
V
V
= 13V  
SUPB  
SUPB  
CM  
SUPB  
CM  
V
SUPB  
= 13V  
= V  
/ 2  
= V  
/ 2  
8
6
4
2
0
V
SUPB  
= 4.5V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
(V)  
10  
12  
14  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CM  
BUFFER INPUT BIAS CURRENT  
vs. BUFFER SUPPLY VOLTAGE  
BUFFER INPUT BIAS CURRENT  
vs. TEMPERATURE  
BUFFER SUPPLY CURRENT  
vs. COMMON-MODE VOLTAGE  
0.50  
0.46  
0.42  
0.38  
0.34  
0.30  
12  
11  
10  
9
10  
8
V
CM  
= V  
SUPB  
/ 2  
V
SUPB  
= 13V  
8
V
SUPB  
= 4.5V  
7
6
6
5
V
CM  
= V  
SUPB  
/ 2  
4
4
4
6
8
10  
(V)  
12  
14  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
(V)  
10  
12  
14  
V
TEMPERATURE (°C)  
V
SUPB  
CM  
BUFFER SUPPLY CURRENT  
vs. BUFFER SUPPLY VOLTAGE  
NO-LOAD BUFFER SUPPLY CURRENT  
vs. TEMPERATURE  
VCOM BUFFER  
SMALL-SIGNAL RESPONSE  
MAX1778 toc47  
1.0  
0.9  
0.8  
0.50  
0.46  
0.42  
0.38  
0.34  
0.30  
V
V
= 13V  
SUPB  
SUPB  
CM  
4.05V  
= V  
/ 2  
4.00V  
3.95V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
A
B
4.05V  
4.00V  
3.95V  
V
CM  
= V  
SUPB  
/ 2  
4
6
8
10  
(V)  
12  
14  
-40  
-15  
10  
35  
60  
85  
4µs/div  
V
TEMPERATURE (°C)  
SUPB  
A. V  
= 3.95V TO 4.05V, 50mV/div  
BUF+  
B. BUFOUT = BUF-, 50mV/div  
= 1µF, V = 8V  
C
BUF  
SUPB  
______________________________________________________________________________________ 15  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = +3.3V, SHDN = IN, V  
= V  
= V  
= V  
= V = 8V, BUF- = BUFOUT,  
SUPL  
IN  
MAIN  
SUPP  
SUPN  
SUPB  
BUF+ = FLTSET = TGND = PGND = GND, T = +25°C.)  
A
VCOM BUFFER  
LARGE-SIGNAL RESPONSE  
VCOM BUFFER  
LOAD-TRANSIENT RESPONSE  
VCOM BUFFER  
LOAD-TRANSIENT RESPONSE  
MAX1778 toc48  
MAX1778 toc49  
MAX1778 toc50  
4.50V  
200mA  
0
500mA  
0
A
A
A
B
4.00V  
3.50V  
-200mA  
4.2V  
-500mA  
4.5V  
4.50V  
4.0V  
3.8V  
8.0V  
4.0V  
3.5V  
8.0V  
B
B
4.00V  
3.50V  
C
C
10µs/div  
4µs/div  
4µs/div  
A. V + = 3.50V TO 4.50V, 0.5V/div  
BUF  
A. I  
= 200mA PULSES, 200mA/div  
A. I  
= 400mA PULSES, 500mA/div  
BUFOUT  
BUFOUT  
B. BUFOUT = BUF-, 0.5V/div  
B. BUFOUT = BUF-, 200mV/div  
C. V = 8V, 50mV/div  
B. BUFOUT = BUF-, 0.5V/div  
C. V = 8V, 100mV/div  
C
BUF  
= 1µF, V  
= 8V  
SUPB  
MAIN  
= V  
MAIN  
V
SUPB  
, BUF+ = GND, C = 1µF  
MAIN  
V
SUPB  
= V  
, BUF+ = GND, C = 1µF  
BUF  
MAIN BUF  
VCOM BUFFER STARTUP  
VCOM BUFFER STARTUP  
MAX1778 toc51  
MAX1778 toc51  
4V  
4V  
2V  
2V  
A
A
0
4V  
2V  
0
4V  
2V  
B
B
0
8.1V  
7.8V  
0
8.1V  
7.8V  
C
C
100µs/div  
100µs/div  
A. RDY, 2V/div  
B. BUFOUT = BUF-, C = 1µF, 2V/div  
A. RDY, 2V/div  
B. BUFOUT = BUF-, C = 1µF, 2V/div  
BUF  
C. V  
= V  
= 8V, I  
= 20mA, 200mV/div  
SUPB  
BUF+ = GND  
MAIN  
MAIN  
BUF  
C. V  
= V  
= 8V, I  
= 20mA, 200mV/div  
SUPB  
BUF+ = GND  
MAIN  
MAIN  
16 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Pin Description  
PIN  
MAX1778 MAX1880 MAX1883  
MAX1881 MAX1882 MAX1884  
MAX1885  
NAME  
FUNCTION  
Main Step-Up Regulator Feedback Input. Regulates to 1.25V  
1
2
1
2
1
2
1
FB  
nominal. Connect a resistive divider from the output (V  
to analog ground (GND).  
) to FB  
MAIN  
Main Step-Up Integrator Output. When using the integrator,  
connect 1000pF to analog ground (GND). To disable the  
integrator, connect INTG to REF.  
2
3
INTG  
IN  
Main Supply Voltage. The supply voltage powers the control  
circuitry for all of the regulators and may range from 2.7V to 5.5V.  
Bypass with a 0.1µF capacitor between IN and GND, as close to  
the pins as possible.  
3
3
3
VCOM Buffer (Operational Transconductance Amplifier) Positive  
Feedback Input. Connect to GND to select the internal resistive  
divider that sets the positive input to half the amplifiers supply  
4
5
4
5
4
5
4
5
BUF+  
voltage (V  
= V  
/2).  
SUPB  
BUF+  
VCOM Buffer (Operational Transconductance Amplifier) Negative  
Feedback Input  
BUF-  
VCOM Buffer (Operational Transconductance Amplifier) Supply  
Voltage  
6
7
8
6
7
8
6
7
8
6
7
8
SUPB  
BUFOUT VCOM Buffer (Operational Transconductance Amplifier) Output  
Analog Ground. Connect to power ground (PGND) underneath the  
GND  
IC.  
Internal Reference Bypass Terminal. Connect a 0.22µF ceramic  
9
9
9
9
REF  
FBP  
capacitor from REF to analog ground (GND). External load  
capability up to 50µA.  
Positive Charge-Pump Regulator Feedback Input. Regulates to  
1.25V nominal. Connect a resistive divider from the positive  
10  
11  
12  
10  
11  
12  
charge-pump output (V  
) to FBP to analog ground (GND).  
POS  
Negative Charge-Pump Regulator Feedback Input. Regulates to  
0V nominal. Connect a resistive divider from the negative charge-  
FBN  
pump output (V  
) to FBN to the reference (REF).  
NEG  
Active-Low Shutdown Control Input. Pull SHDN low to force the  
controller into shutdown. If unused, connect SHDN to IN for normal  
operation. A rising edge on SHDN clears the fault latch.  
10  
10  
SHDN  
Low-Dropout Linear Regulator Input Voltage. Can range from 4.5V  
to 15V. Bypass with a 1µF capacitor to GND (see Capacitor  
Selection and Regulator Stability). Connect both input pins  
together externally.  
13  
11  
SUPL  
______________________________________________________________________________________ 17  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1778 MAX1880 MAX1883  
MAX1881 MAX1882 MAX1884  
MAX1885  
Linear Regulator Output. Sources up to 40mA. Bypass to GND with  
a ceramic capacitor determined by:  
14  
12  
LDOOUT  
I
LDOOUT(MAX)  
C
0.5ms X  
LDOOUT  
V
LDOOUT  
Voltage Setting Input. Connect a resistive divider from the linear  
regulator output (V ) to FBL to analog ground (GND).  
15  
16  
13  
14  
FBL  
LDOOUT  
Fault Trip-Level Set Input. Connect to a resistive divider between  
REF and GND to set the main step-up converters and positive  
16  
14  
FLTSET  
charge pumps fault thresholds between 0.67 x V  
and 0.85 x  
REF  
V
. Connect to GND for the preset fault threshold (0.9 x V  
).  
REF  
REF  
Negative Charge-Pump Driver Supply Voltage. Bypass to power  
ground (PGND) with a 0.1µF capacitor.  
17  
18  
17  
18  
SUPN  
DRVN  
Negative Charge-Pump Driver Output. Output high level is V  
and low level is PGND.  
SUPN  
Positive Charge-Pump Driver Supply Voltage. Bypass to power  
ground (PGND) with a 0.1µF capacitor.  
19  
19  
SUPP  
Positive Charge-Pump Driver Output. Output high level is V  
and low level is PGND  
SUPP  
20  
21  
20  
21  
DRVP  
PGND  
Power Ground. Connect to analog ground (GND) underneath the  
IC.  
17  
17  
Main Step-Up Regulator Power MOSFET N-Channel Drain. Place  
output diode and output capacitor as close to PGND as possible.  
22  
23  
24  
22  
23  
24  
18  
19  
20  
18  
19  
20  
LX  
TGND  
RDY  
Must be connected to ground.  
Active-Low, Open-Drain Output. Indicates all outputs are ready.  
On-resistance is 125(typ).  
11, 12, 13,  
15, 16  
13, 14, 15  
15, 16  
N.C.  
No Connection. Not internally connected.  
18 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
L1  
6.8µH  
MAIN  
MAIN  
INPUT  
= 3.3V  
V
= 8V  
V
IN  
C
C
OUT  
(2) 4.7µF  
IN  
4.7µF  
R2  
274kΩ  
R
RDY  
100kΩ  
IN  
LX  
FB  
C1  
0.22µF  
SHDN  
RDY  
R2  
TO LOGIC  
MAIN  
(8V)  
49.9kΩ  
SUPL  
LDOOUT  
SUPB  
SUPN  
SUPP  
LDO  
= 5V  
V
LDOOUT  
C
LDO  
R7  
C4  
4.7µF  
C5  
1.0µF  
150kΩ  
MAX1778  
0.1µF  
R8  
49.9kΩ  
DRVP  
FBL  
C2  
0.1µF  
C4  
C7  
1.0µF  
0.1µF  
DRVN  
FBN  
POSITIVE  
= 20V  
R3  
750kΩ  
V
POS  
FBP  
NEGATIVE  
= -5V  
R5  
V
NEG  
C3  
1.0µF  
R4  
49.9kΩ  
200kΩ  
R6  
49.9kΩ  
BUFFER OUTPUT  
= V /2  
BUFOUT  
BUF-  
REF  
V
BUFOUT  
SUPB  
C
REF  
0.22µF  
C
BUF  
1.0µF  
INTG  
BUF+  
GND  
FLTSET  
PGND  
TGND  
Figure 1. Typical Application Circuit  
control scheme minimizes output ripple as well as  
capacitor sizes for both charge pumps.  
Detailed Description  
The MAX1778/MAX1880MAX1885 are highly efficient  
multiple-output power supplies for thin-film transistor  
(TFT) liquid crystal display (LCD) applications. The  
devices contain one high-power step-up converter, two  
low-power charge pumps, an operational transconduc-  
A resistor-programmable 40mA linear regulator  
(MAX1778/MAX1881/MAX1883/MAX1884 only) can  
provide preregulation or postregulation for any of the  
supplies. For higher current applications, an external  
transistor can be added.  
tance amplifier (V  
buffer), and a low-dropout linear  
COM  
regulator. The primary step-up converter uses an inter-  
nal N-channel MOSFET to provide maximum efficiency  
and to minimize the number of external components.  
The output voltage of the main step-up converter  
MAIN  
tors.  
Additionally, the V  
buffer provides a high current  
COM  
output that is ideal for driving capacitive loads, such as  
the backplane of a TFT LCD panel. The positive feed-  
back input features dual mode operation, allowing this  
input to be connected to an internal 50% resistive-  
divider between the buffers supply voltage and  
ground, or externally adjusted for other voltages.  
(V  
) can be set from V to 13V with external resis-  
IN  
The dual charge pumps (MAX1778/MAX1880/  
MAX1881/MAX1882 only) independently regulate a  
Also included in the MAX1778/MAX1880MAX1885 is a  
precision 1.25V reference that sources up to 50µA,  
logic shutdown, soft-start, power-up sequencing,  
adjustable fault detection, thermal shutdown, and an  
active-low, open-drain ready output.  
positive output (V  
) and a negative output (V  
).  
NEG  
POS  
These low-power outputs use external diode and  
capacitor stages (as many stages as required) to regu-  
late output voltages from -40V to +40V. A unique  
______________________________________________________________________________________ 19  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
in the feedback voltage-error signal shift the switch-cur-  
rent trip level, consequently modulating the MOSFET  
duty cycle.  
Main Step-up Controller  
During normal pulse-width modulation (PWM) opera-  
tion, the MAX1778/MAX1880MAX1885 main step-up  
controllers switch at a constant frequency of 500kHz or  
1MHz (see Selector Guide), allowing the use of low-  
profile inductors and output capacitors. Depending on  
the input-to-output voltage ratio, the controller regulates  
the output voltage and controls the power transfer by  
modulating the duty cycle (D) of each switching cycle:  
Under very light loads, an inherent switchover to pulse-  
skipping takes place (Figure 3). When this occurs, the  
controller skips most of the oscillator pulses in order to  
reduce the switching frequency and gate charge loss-  
es. When pulse-skipping, the step-up controller initiates  
a new switching cycle only when the output voltage  
drops too low. The N-channel MOSFET turns on, allow-  
ing the inductor current to ramp up until the multi-input  
comparator trips. Then, the MOSFET turns off and the  
diode turns on, forcing the inductor current to ramp  
down. When the inductor current reaches zero, the  
diode turns off, so the inductor stops conducting cur-  
rent. This forces the threshold between pulse-skipping  
and PWM operation to coincide with the boundary  
between continuous and discontinuous inductor-cur-  
rent operation:  
V
- V  
IN  
MAIN  
V
D ≈  
MAIN  
On the rising edge of the internal clock, the controller  
sets a flip-flop when the output voltage is too low, which  
turns on the N-channel MOSFET (Figure 2). The induc-  
tor current ramps up linearly, storing energy in a mag-  
netic field. Once the sum of the feedback voltage error  
amplifier, slope-compensation, and current-feedback  
signals trip the multi-input comparator, the MOSFET  
turns off, the flip-flop resets, and the diode (D1) turns  
on. This forces the current through the inductor to ramp  
back down, transferring the energy stored in the mag-  
netic field to the output capacitor and load. The MOS-  
FET remains off for the rest of the clock cycle. Changes  
2
1
2
V
V
- V  
IN  
MAIN IN  
f
I
LOAD(CROSSOVER)  
V
L
MAIN  
OSC  
L1  
V
IN  
(2.7V TO 5.5V)  
OSC  
MAX1778  
MAX1880  
MAX1881  
MAX1882  
MAX1883  
MAX1884  
MAX1885  
(80% DUTY)  
C
IN  
D1  
V
MAIN  
(UP TO 13V)  
LX  
S
C
OUT  
R
Q
I
LIM  
PWM  
R1  
COMPARATOR  
PGND  
FB  
ILIM  
COMPARATOR  
R
COMP  
(OPTIONAL)  
C
COMP  
(OPTIONAL)  
g
m
ERROR  
AMPLIFIER  
REF  
R2  
V
REF  
1.25V  
C
REF  
INTG  
GND  
R1  
V
V
=
1 +  
V
REF  
MAIN  
( )  
R2  
= 1.25V  
REF  
C
INTG  
Figure 2. Main Step-Up Converter block Diagram  
20 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
The switching waveforms will appear noisy and asyn-  
Dual Charge-Pump Regulator (MAX1778/  
MAX1880/MAX1881/MAX1882 Only)  
chronous when light loading causes pulse-skipping  
operation; this is a normal operating condition that  
improves light-load efficiency.  
The MAX1778/MAX1880/MAX1881/MAX1882 con-  
trollers contain two independent low-power charge  
pumps (Figure 4). One charge pump inverts the input  
voltage and provides a regulated negative output volt-  
age. The second charge pump doubles the input volt-  
age and provides a regulated positive output voltage.  
The controllers contain internal P-channel and N-chan-  
nel MOSFETs to control the power transfer. The  
internal MOSFETs switch at a constant frequency  
(fCHP = fOSC/2).  
I
I
PEAK  
Positive Charge Pump  
During the first half-cycle, the N-channel MOSFET turns  
LOAD  
on and charges flying capacitor C  
(Figure 4).  
X(POS)  
This initial charge is controlled by the variable N-chan-  
nel on-resistance. During the second half-cycle, the N-  
channel MOSFET turns off and the P-channel MOSFET  
TIME  
t
t
OFF  
ON  
turns on, level shifting C  
by V  
volts. This  
SUPP  
X(POS)  
connects C  
OUT(POS)  
diode drop (V  
in parallel with the reservoir capaci-  
X(POS)  
tor C  
. If the voltage across C  
plus a  
OUT(POS)  
+ V  
) is smaller than the level-  
POS  
DIODE  
Figure 3. Discontinuous-to-Continuous Conduction Crossover  
Point  
shifted flying capacitor voltage (V  
+ V  
),  
SUPP  
until the diode  
CX(POS)  
charge flows from C  
(D3) turns off.  
to C  
X(POS)  
OUT(POS)  
MAX1778  
MAX1880  
MAX1881  
MAX1882  
SUPP  
DRVP  
SUPN  
V
V
SUPP  
2.7V TO 13V  
SUPN  
2.7V TO 13V  
OSC  
D4  
D5  
C
D2  
D3  
X(NEG)  
C
X(POS)  
V
SUPD  
DRVN  
R5  
R3  
FBP  
FBN  
V
POS  
V
NEG  
C
C
OUT(NEG)  
OUT(POS)  
R6  
V
REF  
1.25V  
R4  
REF  
C
REF  
0.22µF  
R3  
R5  
V
REF  
V
V
=
1 +  
V
REF  
V
V
=
-
GND  
PGND  
POS  
REF  
NEG  
REF  
( )  
(R6)  
R4  
= 1.25V  
= 1.25V  
Figure 4. Low-Power Charge Pump Block Diagram  
______________________________________________________________________________________ 21  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Negative Charge Pump  
increases the pass transistor base current, which  
During the first half-cycle, the P-channel MOSFET turns  
allows more current to pass to the output and increases  
the output voltage. However, the linear regulator also  
includes an output current limit to protect the internal  
pass transistor against short circuits.  
on, and flying capacitor C  
charges to V  
SUPN  
X(NEG)  
minus a diode drop (Figure 4). During the second half-  
cycle, the P-channel MOSFET turns off, and the N-  
channel MOSFET turns on, level shifting C  
. This  
X(NEG)  
The low-dropout linear regulator monitors and controls  
the pass transistors base current, limiting the output  
current to 130mA (typ). In conjunction with the thermal  
overload protection, this current limit protects the out-  
put, allowing it to be shorted to ground for an indefinite  
period of time without damaging the part.  
connects C  
OUT(NEG)  
in parallel with reservoir capacitor  
X(NEG)  
C
. If the voltage across C  
minus a  
OUT(NEG)  
diode drop is greater than the voltage across C  
,
X(NEG)  
charge flows from C  
to C  
until the diode  
OUT(NEG)  
X(NEG)  
(D5) turns off. The amount of charge transferred to the  
output is controlled by the variable N-channel on-resis-  
tance.  
VCOM Buffer  
The MAX1778/MAX1880MAX1885 include a VCOM  
buffer, which uses an operational transconductance  
amplifier (OTA) to provide a current output that is ideal  
for driving capacitive loads, such as the backplane of a  
TFT LCD panel. The unity-gain bandwidth of this cur-  
rent-output buffer is:  
Low-Dropout Linear Regulator (MAX1778/  
MAX1881/MAX1883/MAX1884 Only)  
The MAX1778/MAX1881/MAX1883/MAX1884 contain a  
low-dropout linear regulator (Figure 5) that uses an  
internal PNP pass transistor (Q ) to supply loads up to  
P
40mA. As illustrated in Figure 5, the 1.25V reference is  
connected to the error amplifier, which compares this  
reference with the feedback voltage and amplifies the  
difference. If the feedback voltage is higher than the  
reference voltage, the controller lowers the base cur-  
GBW = gm/C  
OUT  
where gm is the amplifiers transconductance. The  
bandwidth is inversely proportional to the output  
capacitor, so large capacitive loads improve stability;  
however, lower bandwidth decreases the buffers tran-  
sient response time. To improve the transient response  
rent of Q , which reduces the amount of current to the  
P
output. If the feedback voltage is too low, the device  
MAX1778  
MAX1881  
MAX1883  
MAX1884  
SUPL  
V
SUPL  
4.5V TO 15V  
C
SUPL  
THERMAL  
SENSOR  
Q
P
CURRENT  
LIMIT  
V
LDOOUT  
1.25V TO (V  
- 0.3V)  
SUPL  
LDOOUT  
FBL  
C
LDOOUT  
R7  
R8  
ERROR  
AMPLIFIER  
V
REF  
1.25V  
R7  
R8  
V
=
1 +  
V
REF  
LDOOUT  
( )  
GND  
V
= 1.25V  
REF  
Figure 5. Low-Dropout Linear Regulator Block Diagram  
22 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
SUPB  
V
SUPB  
MAX1778  
MAX1880  
MAX1881  
MAX1882  
MAX1883  
MAX1884  
MAX1885  
4.5V TO 13V  
BUFOUT  
BUF-  
V
BUFOUT  
gm  
1.2V TO (V  
- 1.2V)  
SUPB  
C
BUF  
R
R11  
R12  
BUF+  
GND  
R
125mV  
R12  
R11 + R12  
V
=
V
SUPB  
BUFOUT  
(
)
Figure 6. VCOM Buffer Block Diagram  
ready output signal are not affected by the regulation of  
the linear regulator. While the main step-up converter  
powers up, the output of the PWM comparator remains  
low (Figure 2), and the step-up converter charges the  
output capacitors, limited only by the maximum duty  
cycle and current-limit comparator. When the step-up  
converter approaches its nominal regulation value and  
the PWM comparators output changes states for the  
first time, the negative charge pump turns on. When the  
negative output voltage reaches approximately 90% of  
times, the amplifiers transconductance increases as  
the output current increases (see Typical Operating  
Characteristics).  
The VCOM buffers positive feedback input features  
dual mode operation. The buffers output voltage can  
be internally set by a 50% resistive divider connected  
to the buffers supply voltage (SUPB), or the output volt-  
age can be externally adjusted for other voltages.  
its nominal value (V  
< 110mV), the positive charge  
Shutdown (SHDN)  
A logic-low level on SHDN shuts down all of the con-  
verters and the reference. When shut down, the supply  
current drops to 0.1µA to maximize battery life, and the  
reference is pulled to ground. The output capacitance,  
feedback resistors, and load current determine the rate  
at which each output voltage will decay. A logic-level  
high on SHDN power activates the MAX1778/  
MAX1880MAX1885 (see Power-Up Sequencing). Do  
not leave SHDN floating. If unused, connect SHDN to  
IN. A logic-level transition on SHDN clears the fault  
latch.  
FBN  
pump starts up. Finally, when the positive output volt-  
age reaches 90% of its nominal value (V > 1.125V),  
FBP  
the active-low ready signal (RDY) goes low (see Power  
Ready), and the VCOM buffer powers up. The  
MAX1883/MAX1884/MAX1885 do not contain the  
charge pumps, but the power-up sequence still con-  
tains the charge pumpsstartup logic, which appears  
as a delay (2 4096/fOSC) between the step-up con-  
verter reaching regulation and when the ready signal  
and VCOM buffer are activated.  
Soft-Start  
For the main step-up regulator, soft-start allows a grad-  
ual increase of the current-limit level during startup to  
reduce input surge currents. The MAX1778/MAX1880–  
MAX1885 divide the soft-start period into four phases.  
During the first phase, the controller limits the current  
limit to only 0.38A (see Electrical Characteristics),  
approximately a quarter of the maximum current limit  
Power-Up Sequencing  
Upon power-up or exiting shutdown, the MAX1778/  
MAX1880MAX1885 start a power-up sequence. First,  
the reference powers up. Then, the main DC-DC step-  
up converter powers up with soft-start enabled. The lin-  
ear regulator powers up at the same time as the main  
step-up converter; however, the power sequence and  
______________________________________________________________________________________ 23  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
(I  
). If the output does not reach regulation within  
The reference fault threshold is 1.05V. For the step-up  
converter and positive charge-pump, the fault trip level is  
set by FLTSET (see Fault Trip Level). For the negative  
charge pump, the fault threshold measured at the  
charge-pumps feedback input (FBN) is 140mV (typ).  
LX(MAX)  
1ms, soft-start enters phase II, and the current limit is  
increased by another 25%. This process is repeated for  
phase III. The maximum 1.5A (typ) current limit is  
reached within 3072 clock cycles or when the output  
reaches regulation, whichever occurs first (see the  
startup waveforms in the Typical Operating  
Characteristics).  
Power Ready (RDY)  
Power ready is an open-drain output. When the power-  
up sequence for the main step-up converter and low-  
power charge pumps has properly completed, the 14V  
MOSFET turns on and pulls RDY low with a 125(typ)  
on-resistance. If a fault is detected on any of these  
three outputs, the internal open-drain MOSFET appears  
as a high impedance. Connect a 100kpullup resistor  
between RDY and IN for a logic-level output.  
For the charge pumps (MAX1778/MAX1880/  
MAX1881/MAX1882 only), soft-start is achieved by con-  
trolling the rate of rise of the output voltage. Both  
charge-pump output voltages are controlled to be in  
regulation within 4096 clock cycles, irregardless of out-  
put capacitance and load, limited only by the charge  
pumps output impedance. Although the MAX1883/  
MAX1884/MAX1885 controllers do not include the  
charge pumps, the soft-start logic still contains the  
4096 clock cycle startup periods for both charge  
pumps.  
Voltage Reference (REF)  
The voltage at REF is nominally 1.25V. The reference  
can source up to 50µA with good load regulation (see  
Typical Operating Characteristics). Connect a 0.22µF  
ceramic bypass capacitor between REF and GND.  
Fault Trip Level (FLTSET)  
The MAX1778/MAX1880MAX1885 feature dual mode  
operation to allow operation with either a preset fault  
trip level or an adjustable trip level for the step-up con-  
verter and positive charge-pump outputs. Connect FLT-  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX1778/MAX1880MAX1885. When the  
junction temperature exceeds T = +160°C, a thermal  
J
SET to GND to select the preset 0.9  
V
fault  
REF  
sensor activates the fault protection, which shuts down  
the controller, allowing the IC to cool. Once the device  
cools down by 15°C, toggle shutdown (below 0.8V) or  
cycle the input voltage (below 0.2V) to clear the fault  
latch and reactivate the controller. Thermal-overload  
protection protects the controller in the event of fault  
conditions. For continuous operation, do not exceed  
the absolute maximum junction-temperature rating of  
threshold. The fault trip level may also be adjusted by  
connecting a voltage divider from REF to FLTSET  
(Figure 8). For greatest accuracy, the total load on the  
reference (including current through the negative  
charge-pump feedback resistors) should not exceed  
50µA so that VREF is guaranteed to be in regulation  
(see Electrical Characteristics Table). Therefore, select  
R10 in the 100kto 1Mrange, and calculate R9 with  
the following equation:  
T = +150°C.  
J
Operating Region and Power Dissipation  
R9 = R10 [(V  
/ V ) - 1]  
FLTSET  
REF  
The MAX1778/MAX1880MAX1885smaximum power  
dissipation depends on the thermal resistance of the IC  
package and circuit board, the temperature difference  
between the die junction and ambient air, and the rate  
of any airflow. The power dissipated in the device  
depends on the operating conditions of each regulator  
and the buffer.  
where V  
x V  
= 1.25V, and V  
may range from 0.67  
REF  
to 0.85 x V  
FLTSET  
. FLTSETs input bias current has  
REF  
REF  
a maximum value of 50nA. For 1% error, the current  
through R10 should be at least 100 times the FLTSET  
input bias current (I  
).  
FLTSET  
Fault Condition  
The step-up controller dissipates power across the  
internal N-channel MOSFET as the controller ramps up  
the inductor current. In continuous conduction, the  
power dissipated internally can be approximated by:  
Once RDY is low, if the output of the main regulator or  
either low-power charge pump falls below its fault  
detection threshold, or if the input drops below its  
undervoltage threshold, then RDY goes high imped-  
ance and all outputs shut down; however, the reference  
remains active. After removing the fault condition, tog-  
gle shutdown (below 0.8V) or cycle the input voltage  
(below 0.2V) to clear the fault latch and reactivate the  
device.  
2
2
I
V
V D  
IN  
1
12 f  
MAIN MAIN  
P
+
STEPUP  
V
L
IN  
OSC  
× R  
D
DS(ON)  
24 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
where I  
includes the primary load current and the  
P
= (T  
) - T ) / ( θ + θ  
)
BA  
MAIN  
MAX  
J(MAX  
A
JB  
input supply currents for the charge pumps (see  
Charge-Pump Input Power and Efficiency  
Considerations), linear regulator, and VCOM buffer.  
where T - T is the temperature difference between  
J
A
the controllers junction and the surrounding air, θ (or  
JB  
The linear regulator generates an output voltage by dis-  
sipating power across an internal pass transistor, so  
the power dissipation is simply the load current times  
the input-to-output voltage differential:  
θ
) is the thermal resistance of the package to the  
JC  
board, and θ is the thermal resistance from the print-  
BA  
ed circuit board to the surrounding air.  
Design Procedure  
Main Step-Up Converter  
P
= I  
(V  
- V  
)
LDO(INT)  
LDO SUPL  
LDO  
Output Voltage Selection  
Adjust the output voltage by connecting a voltage-  
divider from the output (VMAIN) to FB to GND (see  
Typical Operating Circuit). Select R2 in the 10kto  
50krange. Calculate R1 with the following equations:  
When driving an external transistor, the internal linear  
regulator provides the base drive current. Depending  
on the external transistors current gain (β) and the  
maximum load current, the power dissipated by the  
internal linear regulator may still be significant:  
I
LDO  
β
R1 = R2 [(V  
/ V  
) - 1]  
P
=
V
- V  
+ 0.7V  
MAIN  
REF  
(
)
]
[
LDO(INT)  
SUPL  
LDO  
= I  
(V  
- V  
)
LDOOUT SUPL  
LDOOUT  
where V  
= 1.25V. V  
may range from V to 13V.  
MAIN IN  
REF  
The charge pumps provide regulated output voltages  
by dissipating power in the low-side N-channel MOS-  
FET, so they could be modeled as linear regulators fol-  
lowed by unregulated charge pumps. Therefore, their  
power dissipation is similar to a linear regulator:  
Inductor Selection  
Inductor selection depends upon the minimum required  
inductance value, saturation rating, series resistance, and  
size. These factors influence the converters efficiency,  
maximum output load capability, transient response time,  
and output voltage ripple. For most applications, values  
between 4.7µH and 22µH work best with the controllers  
switching frequency (Tables 1 and 2).  
P
= I  
V
- 2V  
N - V  
(
[
)
[
]
NEG  
NEG SUPN  
DIODE NEG  
P
= I  
V
- 2V  
N + V  
)
- V  
POS  
(
]
POS  
POS  
SUPP  
DIODE  
SUPD  
The inductor value depends on the maximum output  
load the application must support, input voltage, output  
voltage, and switching frequency. With high inductor  
values, the MAX1778/MAX1880MAX1885 source high-  
er output currents, have less output ripple, and enter  
continuous conduction operation with lighter loads;  
however, the circuits transient response time is slower.  
On the other hand, low-value inductors respond faster  
to transients, remain in discontinuous conduction oper-  
ation, and typically offer smaller physical size for a  
given series resistance and current rating. The equa-  
tions provided here include a constant LIR, which is the  
ratio of the peak-to-peak AC inductor current to the  
average DC inductor current. For a good compromise  
between the size of the inductor, power loss, and out-  
put voltage ripple, select an LIR of 0.3 to 0.5. The  
inductance value is then given by:  
where N is the number of charge-pump stages, V  
DIODE  
is the posi-  
is the diodesforward voltage, and V  
SUPD  
tive charge-pump diode supply (Figure 4).  
The VCOM buffers power dissipation depends on the  
capacitive load (C  
) being driven, the peak-to-  
P-P  
LOAD  
peak voltage change (V ) across the load, and the  
loads switching rate:  
P
= V  
C f V  
BUF  
P - P LOAD LOAD SUPB  
To find the total power dissipated in the device, the  
power dissipated by each regulator and the buffer must  
be added together:  
P
= P  
+ P  
TOTAL  
STEP - UP LDO(INT)  
2
+ P  
+ P  
+ P  
NEG  
POS BUF  
V
V
- V  
1
LIR  
IN(MIN)  
MAIN IN(MIN)  
L
=
η
MIN  
V
I
f
MAIN  
MAIN(MAX) OSC   
The maximum allowed power dissipation is 975mW (24-  
pin TSSOP) / 879mW (20-pin TSSOP) or:  
______________________________________________________________________________________ 25  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
where η is the efficiency, f  
is the oscillator frequen-  
Output voltage ripple has two components: variations in  
the charge stored in the output capacitor with each LX  
pulse, and the voltage drop across the capacitors  
equivalent series resistance (ESR) caused by the cur-  
rent into and out of the capacitor:  
OSC  
cy (see Electrical Characteristics), and I  
includes  
MAIN  
the primary load current and the input supply currents  
for the charge pumps (see Charge-Pump Input Power  
and Efficiency Considerations), linear regulator, and  
VCOM buffer. Considering the typical application cir-  
cuit, the maximum average DC load current  
V
= V  
+ V  
RIPPLE  
RIPPLE(C) RIPPLE(ESR)  
(I  
) is 300mA with an 8V output. Based on the  
MAIN(MAX)  
V
I  
R , AND  
RIPPLE(ESR)  
PEAK ESR(COUT)  
above equations and assuming 85% efficiency, the  
  
V
V  
I
inductance value is then chosen to be 4.7µH.  
MAIN  
V
IN  
MAIN  
V
RIPPLE(C)  
  
C
f
  
The inductors saturation current rating should exceed  
the peak inductor current throughout the normal operat-  
ing range. The peak inductor current is then given by:  
MAIN  
OUT OSC  
where I  
is the peak inductor current (see Inductor  
PEAK  
Selection). For ceramic capacitors, the output voltage  
ripple is typically dominated by V  
. The voltage  
RIPPLE(C)  
I
V
LIR  
2
1
η
MAIN(MAX) MAIN   
rating and temperature characteristics of the output  
capacitor must also be considered.  
I
=
1 +  
PEAK  
V
IN(MIN)  
Feedback Compensation  
Under fault conditions, the inductor current may reach  
up to 1.85A (I ), see Electrical Characteristics).  
However, the controllers fast current-limit circuitry  
allows the use of soft-saturation inductors while still pro-  
tecting the IC.  
For stability, add a pole-zero pair from FB to GND in the  
LIM(MAX)  
form of a compensation resistor (R  
) in series with  
COMP  
) as shown in Figure  
a compensation capacitor (C  
COMP  
2. Select R  
to be half the value of R2, the low-side  
COMP  
feedback resistor.  
The inductors DC resistance may significantly affect  
Integrator Capacitor  
efficiency due to the power loss in the inductor. The  
The MAX1778/MAX1880MAX1885 contain an internal  
current integrator that improves the DC load regulation  
but increases the peak-to-peak transient voltage (see  
the load-transient waveforms in the Typical Operating  
Characteristics). For highly accurate DC load regula-  
tion, enable the current integrator by connecting a  
power loss due to the inductors series resistance (P  
)
LR  
may be approximated by the following equation:  
2
I
X V  
MAIN  
MAIN  
P
R  
L
LR  
V
IN  
470pF (ƒ  
= 1MHz)/1000pF (ƒ  
= 500kHz)  
OSC  
OSC  
where R is the inductors series resistance. For best per-  
L
capacitor to INTG. To minimize the peak-to-peak tran-  
sient voltage at the expense of DC regulation, disable  
the integrator by connecting INTG to REF. When using  
the MAX1883/MAX1884/MAX1885, connect a 100kΩ  
resistor to GND when disabling the integrator.  
formance, select inductors with resistance less than the  
internal N-channel MOSFET on-resistance (0.35typ).  
Use inductors with a ferrite core or equivalent. To mini-  
mize radiated noise in sensitive applications, use a  
shielded inductor.  
Input Capacitor  
Output Capacitor  
Output capacitor selection depends on circuit stability  
and output voltage ripple. A 10µF ceramic capacitor  
works well in most applications (Tables 1 and 2).  
Additional feedback compensation is required (see  
Feedback Compensation) to increase the margin for  
stability by reducing the bandwidth further. In cases  
where the output capacitance is sufficiently large, addi-  
tional feedback compensation will not be necessary.  
The input capacitor (C ) in step-up designs reduces  
IN  
the current peaks drawn from the input supply and  
reduces noise injection. The value of C is largely  
IN  
determined by the source impedance of the input sup-  
ply. High source impedance requires high input capac-  
itance, particularly as the input voltage falls. Since  
step-up DC-DC converters act as constant-power  
loads to their input supply, input current rises as input  
voltage falls. A good starting point is to use the same  
capacitance value for C as for C  
.
IN  
OUT  
26 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Rectifier Diode  
charge pumps output impedance may be approximat-  
Use a Schottky diode with an average current rating  
equal to or greater than the peak inductor current, and  
a voltage rating at least 1.5 times the main output volt-  
ed using the following equation:  
1
R
= 2(R  
+ R  
)+  
TX  
PCH(ON)  
NCH(ON)  
age (V  
).  
MAIN  
C f  
X CHP  
Charge Pumps (MAX1778/ MAX1880/  
MAX1881/MAX1882 Only)  
Selecting the Number of Charge-Pump Stages  
1
+
C
f
OUT CHP  
The number of charge-pump stages required to regu-  
late the output voltage depends on the supply voltage,  
output voltage, load current, switching frequency, the  
diodes forward voltage drop, and ceramic capacitor  
values.  
where the charge pumps switching frequency (f  
) is  
CHP  
equal to 0.5 x f  
, the P-channel MOSFETs on-resis-  
OSC  
tance (R  
) is 10, and the N-channel MOSFETs  
PCH(ON)  
on-resistance (R  
)) is 4(see Electrical  
NCH(ON  
Characteristics).  
For positive charge-pump outputs, the number of  
required stages may be determined by:  
For negative charge pump outputs, the number of  
required stages may be determined by:  
V
- V  
SUPD  
POS  
N
V
POS  
NEG  
V
- 1.1(2V  
+ R  
I
)
N
SUPP  
DIODE  
TX LOAD  
NEG  
V
- 1.1(2V  
+ R  
I
)
SUPN  
DROP  
TX LOAD  
where V  
(Figure 4), V  
is the positive charge-pump diode supply  
DIODE  
and R is the charge pumps output impedance. The  
SUPD  
is the diodes forward voltage drop,  
where N  
is rounded up to the nearest integer.  
NEG  
TX  
Table 1. MAX1778/MAX1880/MAX1883 Component Values (f  
= 1MHz)  
OSC  
CIRCUIT #1  
3.3V  
CIRCUIT #2  
3.3V  
CIRCUIT #3  
3.3V  
CIRCUIT #4  
5V  
CIRCUIT #5  
5V  
V
IN  
V
9V  
9V  
9V  
12V  
12V  
MAIN  
MAIN(MAX)  
I
100mA  
-5V  
200mA  
-5V  
200mA  
-5V  
220mA  
-5V  
220mA  
-5V  
V
NEG  
NEG  
I
2mA  
5mA  
5mA  
5mA  
5mA  
V
24V  
24V  
24V  
24V  
24V  
POS  
I
2mA  
5mA  
5mA  
5mA  
5mA  
POS  
L
2.2µH  
>1A  
4.7µH  
>1A  
4.7µH  
>1A  
6.8µH  
>1A  
6.8µH  
>1A  
I
PEAK  
C
4.7µF  
309kΩ  
49.9kΩ  
None  
None  
10µF  
309kΩ  
49.9kΩ  
None  
None  
20µF  
10µF  
429kΩ  
49.9kΩ  
None  
None  
20µF  
OUT  
R1  
309kΩ  
49.9kΩ  
39k*  
100pF*  
429kΩ  
49.9kΩ  
20k*  
200pF*  
R2  
R
C
COMP  
COMP  
*R  
COMP  
and C  
are connected between the step-up converters output (V  
) and FB.  
MAIN  
COMP  
______________________________________________________________________________________ 27  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Table 2. MAX1881/MAX1882/MAX1884/MAX1885 Component Values (f  
= 500kHz)  
OSC  
CIRCUIT #6  
3.3V  
CIRCUIT #7  
3.3V  
CIRCUIT #8  
3.3V  
CIRCUIT #9  
3.3V  
V
IN  
V
9V  
9V  
9V  
9V  
MAIN  
MAIN(MAX)  
I
100mA  
-5V  
100mA  
-5V  
200mA  
-5V  
200mA  
-5V  
V
NEG  
NEG  
I
2mA  
2mA  
5mA  
5mA  
V
24V  
24V  
24V  
24V  
POS  
I
2mA  
2mA  
5mA  
5mA  
POS  
L
4.7µH  
>1A  
10µH  
>1A  
10µH  
>1A  
10µH  
>1A  
I
PEAK  
C
4.7µF  
309kΩ  
49.9kΩ  
None  
10µF  
309kΩ  
49.9kΩ  
None  
10µF  
309kΩ  
49.9kΩ  
None  
20µF  
OUT  
R1  
309kΩ  
49.9kΩ  
20k*  
R2  
R
C
COMP  
None  
None  
None  
200pF*  
COMP  
*R  
COMP  
and C  
are connected between the step-up converters output (V  
) and FB.  
MAIN  
COMP  
Charge-Pump Input Power and  
Efficiency Considerations  
Table 3. Component Suppliers  
The charge pumps in the MAX1778/MAX1880/  
MAX1881/MAX1882 provide regulated output voltages  
by controlling the voltage drop across the low-side N-  
channel MOSFET, so they can be modeled as linear  
regulators followed by an unregulated charge pump  
when determining the input power requirements and  
efficiency.  
SUPPLIER  
INDUCTORS  
Coilcraft  
PHONE  
FAX  
847-639-6400  
561-241-7876  
847-956-0666  
847-297-0070  
847-639-1469  
561-241-9339  
847-956-0702  
847-699-1194  
Coiltronics  
Sumida USA  
Toko  
The charge pump only provides charge to the output  
capacitor during half the period (50% duty cycle), so  
the input current is a function of the number of stages  
and the load current:  
CAPACITORS  
AVX  
803-946-0690  
408-986-0424  
619-661-6835  
408-573-4150  
803-626-3123  
408-986-1442  
619-661-1055  
408-573-4159  
Kemet  
Sanyo  
I
= I  
(N+1)  
SUPP  
POS  
Taiyo Yuden  
DIODES  
for the positive charge pump, and:  
= I (N+1)  
Central  
Semiconductor  
516-435-1110  
310-322-3331  
516-435-1824  
310-322-3332  
I
SUPP  
POS  
International  
Rectifier  
for the negative charge pump, where N is the number  
of charge pump stages.  
Motorola  
Nihon  
602-303-5454  
847-843-7500  
516-543-7100  
602-994-6430  
847-843-2798  
516-864-7630  
The efficiency characteristics of the MAX1778/  
MAX1880/MAX1881/MAX1882 regulated charge  
pumps are similar to a linear regulator. It is dominated  
by quiescent current at low output currents and by the  
Zetex  
28 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
input voltage at higher output currents (see Typical  
Operating Characteristics). So the maximum efficiency  
may be approximated by:  
V
> 1.5(V  
N)  
CXN(NEG)  
SUPN  
for the negative charge pump, where N is the stage  
number in which the flying capacitor appears, and  
SUPD  
VPOS  
VSUPD + VSUPP  
ηPOS  
N
V
is the positive charge pumps diode supply  
(Figure 4). For example, the two-stage positive charge  
pump in the typical application circuit (Figure 1) where  
for the positive charge pump, and:  
VNEG  
V
= V  
= 8V contains two flying capacitors.  
SUPD  
SUPP  
The flying capacitor in the first stage (C4) requires a  
voltage rating over 12V. The flying capacitor in the sec-  
ond stage (C6) requires a voltage rating over 24V.  
ηNEG  
VSUPNN  
Charge-Pump Output Capacitor  
Increasing the output capacitance or decreasing the  
ESR reduces the output ripple voltage and the peak-to-  
peak transient voltage. With ceramic capacitors, the  
output voltage ripple is dominated by the capacitance  
value. Use the following equation to approximate the  
required capacitor value:  
for the negative charge pump, where V  
is the pos-  
SUPD  
itive charge pumps diode supply (Figure 4).  
Output Voltage Selection  
Adjust the positive output voltage by connecting a volt-  
age divider from the output (V  
) to FBP to GND (see  
POS  
Typical Operating Circuit). Adjust the negative output  
voltage by connecting a voltage-divider from the output  
I
(V  
) to FBN to REF. Select R4 and R6 in the 50kto  
LOAD  
V
NEG  
C
OUT  
100krange. Higher resistor values improve efficiency  
at low output current but increase output voltage error  
due to the feedback input bias current. For the negative  
charge pump, higher resistor values also reduce the  
load on the reference, which should not exceed 50µA  
for greatest accuracy (including current through the  
f
CHP RIPPLE  
where f  
is typically f  
/2 (see Electrical  
OSC  
CHP  
Characteristics).  
Charge-Pump Input Capacitor  
Use a bypass capacitor with a value equal to or greater  
than the flying capacitor. Place the capacitor as close  
to the IC as possible. Connect directly to power ground  
(PGND).  
FLTSET resistors) to guarantee that V  
remains in  
REF  
regulation (see Electrical Characteristics Table).  
Calculate the remaining resistors with the following  
equations:  
Charge-Pump Rectifier Diodes  
Use Schottky diodes with a current rating equal to or  
greater than two times the average charge-pump input  
R3 = R4 [(V  
/ V  
) - 1]  
POS  
REF  
R5 = R6 |V  
/ V  
|
NEG  
REF  
current, and a voltage rating at least 1.5 times V  
SUPP  
for the positive charge pump and V  
tive charge pump.  
for the nega-  
SUPN  
where V  
= 1.25V. V  
may range from V  
to  
SUPP  
REF  
POS  
40V, and V  
may range from 0V to -40V.  
NEG  
Low-Dropout Linear Regulator (MAX1778/  
MAX1881/MAX1883/MAX1884 Only)  
Flying Capacitor  
Increasing the flying capacitor (CX) value increases the  
output current capability. Above a certain point,  
increasing the capacitance has a negligible effect  
because the output current capability becomes domi-  
nated by the internal switch resistance and the diode  
impedance. The flying capacitors voltage rating must  
exceed the following:  
Output Voltage Selection  
Adjust the linear-regulator output voltage by connecting  
a voltage-divider from LDOOUT to FBL to GND (Figure  
5). Select R8 in the 5kto 50krange. Calculate R7  
with the following equation:  
R7 = R8 [(V  
/ V  
) - 1]  
LDOOUT  
FBL  
V
> 1.5 V  
+ V  
(N -1)  
[
]
CXN(POS)  
SUPD  
SUPP  
where V  
= 1.25V, and V  
SUPL  
may range from  
LDOOUT  
FBL  
1.25V to (V  
for the positive charge pump, and:  
- 300mV). FBLs input bias current is  
______________________________________________________________________________________ 29  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
0.8µA (max). For less than 0.5% error due to FBL input  
I
- 40mA  
LOAD(MAX)  
bias current (I  
), R8 must be less than 8k.  
FBL  
β
MIN  
40mA  
Capacitor Selection and Regulator Stability  
Capacitors are required at the input and output of the  
MAX1778/MAX1881/MAX1883/MAX1884 for stable  
operation over the full temperature range and with load  
currents up to 40mA. Connect a 1µF input bypass  
For stable operation, place a capacitor (C  
) and  
LDOOUT  
a minimum load resistor (R5) at the output of the inter-  
nal linear regulator (the base of the external transistor)  
to set the dominant pole:  
capacitor (C ) between SUPL and ground to lower  
SUPL  
the source impedance of the input supply. Connect a  
ceramic capacitor between LDOOUT and ground,  
using the following equation to determine the lowest  
value required for stable operation:  
1
C
0.5ms  
LDOOUT  
V
LDO  
I
V
+ 0.7V  
R5  
LOAD(MAX)  
LDO  
x
+
β
MIN  
I
LDOOUT(MAX)  
C
0.5ms X  
LDOOUT  
V
Since the LDO cannot sink current, a minimum pull-  
down resistor (R5) is required at the base of the NPN  
transistor to sink leakage currents and improve the  
high-to-low load-transient response. Under no-load  
conditions, leakage currents from the internal pass  
LDOOUT  
For example, with a 5V linear regulator output voltage  
and a maximum 40mA load, use at least 4µF of output  
capacitance. Applications that experience high-current  
load pulses may require more output capacitance.  
transistor supply the output capacitor (C  
), even  
LDOOUT  
when the transistor is off. As the leakage currents  
The ESR of the linear regulators output capacitor  
increase over temperature, charge may build up on  
(C ) affects stability and output noise. Use out-  
LDOOUT  
C
, making the linear regulators output rise  
LDOOUT  
put capacitors with an ESR of 0.1or less to ensure  
stability and optimum transient response. Surface-  
mount ceramic capacitors are good for this purpose.  
above its set point. Therefore, R5 must sink at least  
100µA to guarantee proper regulation. Additionally, the  
minimum load current provided by R5 improves the  
high-to-low load transients by lowering the impedance  
Place C  
and C  
as close to the linear regu-  
SUPL  
LDOOUT  
lator as possible to minimize the impact of PC board  
trace inductance.  
seen by C  
after the transient occurs. Therefore,  
LDOOUT  
if large load transients are expected, select R5 so that  
the minimum load current is 10% of the transistors  
maximum base current:  
External Pass Transistor  
For applications where the linear regulator currents  
exceed 40mA or where the power dissipation in the IC  
needs to be reduced, an external NPN transistor can  
be used. In this case, the internal LDO only provides  
the necessary base drive while the external NPN tran-  
sistor supports the load, so most of the power dissipa-  
tion occurs across the external transistors collector  
and emitter.  
V
I
+ 0.7V  
(V  
+ 0.7V)β  
I
LOAD(MAX)  
LDO  
LDO MIN  
R5 =  
= 0.1  
LDOOUT(MIN)  
Alternatively, output capacitance placed on the external  
linear regulators output (the emitter) adds a second pole  
that could destabilize the regulator. A capacitive-divider  
from the transistors base to the feedback input (C2 and  
C3, Figure 7) circumvents this second pole by adding a  
pole-zero pair. Furthermore, to minimize excessive over-  
shoot, the capacitive-dividers ratio must be the same as  
the resistive-dividers ratio. Once the output capacitor is  
selected, using the following equations to determine the  
required capacitive-divider values:  
Selection of the external NPN transistor is based on  
three factors: the packages power dissipation, the cur-  
rent gain (β), and the collector-to-emitter saturation volt-  
age (V  
). First, the maximum power dissipation  
CE(SAT)  
should not exceed the transistors package rating:  
P = (V V ) x I  
LOAD(MAX)  
COLLECTOR  
LDO  
Once the appropriate package type is selected, con-  
sider the NPN transistors current gain. Since the inter-  
nal LDO cannot source more than 40mA (min), the  
transistors current gain must be high enough at the  
lowest collector-to-emitter voltage to support the maxi-  
mum output load:  
C
100  
R4  
R3  
LDO  
C2 + C3 ≥  
1 +  
C2  
R4  
R3 + R4  
V
REF  
V
=
=
C2 + C3  
LDO  
30 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Input-Output (Dropout) Voltage and Startup  
voltage-divider from SUPB to BUF+ to GND (Figure 6).  
Select R12 in the 10kto 100krange. Calculate R11  
with the following equation:  
A linear regulators minimum input-to-output voltage dif-  
ferential (dropout voltage) determines the lowest use-  
able supply voltage. Because the MAX1778/  
MAX1881/MAX1883/MAX1884 use an internal PNP  
transistor (or external NPN transistor), their dropout  
voltage is a function of the transistors collector-to-emit-  
ter saturation voltage (see Typical Operating  
Characteristics). The linear regulators quiescent cur-  
rent increases when in dropout.  
V
V
SUPB  
R11 = R12  
- 1  
BUF+  
where V  
may range from 4.5V to 13V, and V  
BUF+  
SUPB  
may range from 1.2V to (V  
- 1.2V). Connect a mini-  
SUPB  
mum 1µF ceramic capacitor from BUFOUT to ground.  
The internal linear regulator will try to start up once its  
supply voltage (V  
) exceeds 4V. When the linear  
PC Board Layout and Grounding  
Careful PC board layout is extremely important for  
proper operation. Follow the following guidelines for  
good PC board layout:  
SUPL  
regulator powers up, the linear regulator may be in  
dropout if the linear regulators output set voltage is  
higher than its input supply voltage. Therefore, during  
this brief period, the linear regulator draws additional  
supply current until the input supply voltage exceeds  
the output set voltage plus the pass transistors satura-  
1) Place the main step-up converter output diode and  
output capacitor less than 0.2in (5mm) from the LX  
and PGND pins with wide traces and no vias.  
tion voltage (V  
) + V  
).  
LDO(SET  
CE(SAT)  
2) Separate analog ground and power ground. The  
ground connections for the step-up converters and  
charge pumps input and output capacitors should  
be connected to the power ground plane. The lin-  
ear regulators and VCOM buffers input and output  
capacitors should be connected to a separate  
power-ground path, star-connected to the PGND  
pin to minimize voltage drops. When using multi-  
layer boards, the top layer should contain the boost  
VCOM Buffer (Operational  
Transconductance Amplifier)  
Buffer Output Voltage and Capacitor Selection  
The positive input (BUF+) features dual mode opera-  
tion. Connect BUF+ to GND for the preset VSUPB/2  
output voltage, set by an internal 50% resistive-divider.  
Adjust the amplifiers output voltage by connecting a  
L1  
6.8µH  
INPUT  
= 3.3V  
MAIN  
MAIN  
V
V
= 8V  
IN  
C
C
OUT  
IN  
4.7µF  
(2) 4.7µF  
R1  
LX  
FB  
IN  
274kΩ  
SHDN  
C1  
0.22µF  
R2  
49.9kΩ  
C
LDOIN  
MAX1778  
MAX1883  
1µF  
(MAX1881)*  
(MAX1884)*  
SUPL  
LDOOUT  
Q1  
INTG  
REF  
C
LDOOUT  
4.7µF  
R5  
1.5kΩ  
LDO  
LDO  
C
V
= 2.5V  
REF  
0.22µF  
C2  
C
LDO  
1µF  
0.01µF  
R3  
49.9kΩ  
FBL  
C3  
0.01µF  
R4  
49.9kΩ  
PGND  
GND  
Figure 7. External Linear Regulator  
______________________________________________________________________________________ 31  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
regulator and charge-pump power ground plane,  
and the inner layer should contain the analog  
ground plane and power-ground plane/path for the  
high-impedance nodes on the bottom layer. The  
fast-charging nodes, such as the LX and charge-  
pump driver nodes, should not have any other  
traces or ground planes near by.  
V
buffer and LDO. Connect all three ground  
COM  
planes together at one place near the PGND pin.  
5) Keep the charge-pump circuitry as close to the IC  
as possible, using wide traces and avoiding vias  
when possible. Place 0.1µF ceramic bypass  
capacitors near the charge-pump input pins (SUPP  
and SUPN) to the PGND pin.  
3) Locate all feedback resistive-dividers as close to  
their respective feedback pins as possible. The  
voltage-dividers center trace should be kept short.  
Avoid running any feedback trace near the LX  
switching node or the charge-pump drivers. The  
resistive-dividersground connections should be to  
analog ground (GND).  
6) To maximize output power and efficiency and mini-  
mize output ripple voltage, use extra wide, power  
ground traces, and solder the ICs power ground  
pin directly to it.  
4) When using multilayer boards, separate the top sig-  
nal layer and bottom signal layer with a ground  
plane between to eliminate capacitive coupling  
between fast-charging nodes on the top layer and  
Refer to the MAX1778/MAX1880-MAX1885 evaluation  
kit for an example of proper board layout.  
L1  
10µH  
MAIN  
MAIN  
INPUT  
IN  
V
= 12V  
V
= 5V  
C
C
IN  
OUT  
(2) 10µF  
C1  
0.22µF  
R
RDY  
100kΩ  
R1  
86.6kΩ  
(2) 4.7µF  
R
IN  
LX  
FB  
COMP  
4.7kΩ  
SHDN  
TO LOGIC  
RDY  
C
R2  
10kΩ  
COMP  
470pF  
SUPL  
SUPB  
SUPN  
SUPP  
Q1  
LDOOUT  
LDO  
= 3.3V  
C
LDOOUT  
4.7µF  
V
LDO  
R8  
1.5kΩ  
C4  
0.1µF  
C6  
1µF  
MAX1778  
R7  
16.4kΩ  
DRVP  
FBP  
C6  
0.01µF  
R8  
10kΩ  
FBL  
POSITIVE  
= 20V  
V
POS  
C5  
1.0µF  
R3  
750kΩ  
R4  
49.9kΩ  
DRVN  
C7  
C2  
0.1µF  
0.01µF  
NEGATIVE  
= -8V  
FBN  
BUFFER OUTPUT  
= V /2  
BUFOUT  
BUF-  
V
NEG  
C3  
1.0µF  
V
R5  
BUFOUT  
SUPB  
C
1.0µF  
BUF  
316kΩ  
R9  
R6  
49.9kΩ  
30kΩ  
FLTSET  
REF  
REF  
BUF+  
GND  
R10  
100kΩ  
INTG  
C
REF  
PGND  
TGND  
0.22µF  
Figure 8. 5V Input Monitor Application  
32 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Larger output capacitors with higher voltage ratings  
Applications Information  
allow configurations with output voltages above 10V.  
Additionally, physically larger inductors with less series  
resistance and higher saturation ratings provide more  
output current and higher efficiency.  
Low-Profile Components  
Notebook applications generally require low-profile  
components, potentially limiting the circuits perfor-  
mance. For example, low-profile inductors typically  
have lower saturation ratings and more series resis-  
tance, limiting output current and efficiency. Low-profile  
capacitors have lower voltage ratings for a given  
capacitance value, so 3.3µF low-profile capacitors with  
voltage ratings greater than 10V were not available at  
the time of publication.  
Input Voltage Above and  
Below the Output Voltage  
Combining the step-up converter and linear regulator  
as shown in Figure 9 provides output voltage regulation  
above and below the input voltage. Supplied by the  
step-up converter, the linear regulator output provides  
a constant output voltage (V ). When the input volt-  
LDO  
age exceeds the main step-up converters nominal out-  
put voltage, the controller stops switching but the linear  
regulator maintains the output voltage. When the input  
voltage drops below the output voltage, the step-up  
Desktop Monitors  
Monitor applications do not have the same component  
height restrictions associated with laptops, allowing  
more flexibility in component selection (Figure 8).  
L1  
6.8µH  
POWER INPUT  
BATT  
V
= 10V TO 15V  
C
C
OUT  
IN  
4.7µF  
(3) 3.3µF  
R1  
511kΩ  
INPUT  
= 3.3V TO 5V  
LX  
FB  
IN  
V
IN  
C1  
0.1µF  
R2  
49.9kΩ  
SHDN  
R
RDY  
100kΩ  
TO LOGIC  
RDY  
SUPL  
BUFFER OUTPUT  
BUFOUT  
BUF-  
V
= V /2  
BUFOUT  
SUPB  
Q1  
LDOOUT  
C
BUF  
1.0µF  
C
LDOOUT  
3.3µF  
C6  
0.1µF  
C2  
0.1µF  
MAX1778  
LDO  
LDO  
SUPB  
SUPN  
SUPP  
DRVN  
FBN  
V
= 13V  
C7  
0.1µF  
C
R9  
6.8kΩ  
LDO  
R7  
470kΩ  
(2) 3.3µF  
NEGATIVE  
= -12V  
V
NEG  
C3  
1.0µF  
R5  
FBL  
475kΩ  
R8  
R6  
49.9kΩ  
49.9kΩ  
C4  
0.1µF  
REF  
C
REF  
0.22µF  
DRVP  
FBP  
R9  
30kΩ  
R10  
100kΩ  
POSITIVE  
POS  
V
= 24V  
C5  
1.0µF  
FLTSET  
INTG  
R3  
909kΩ  
BUF+  
GND  
R4  
49.9kΩ  
C
INTG  
PGND  
TGND  
470pF  
Figure 9. Input Voltage Above and Below the Output Voltage  
______________________________________________________________________________________ 33  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
L1  
6.8µH  
STARTUP MAIN  
= 8V  
SYSTEM MAIN  
MAIN(SYS)  
V
V
= 8V  
MAIN(START)  
INPUT  
= 3.3V  
V
IN  
C
C
C8  
3.3µF  
IN  
4.7µF  
OUT  
(2) 3.3µF  
R1  
LX  
FB  
IN  
274kΩ  
SHDN  
C1  
0.22µF  
R2  
49.9kΩ  
C10  
0.1µF  
SUPP  
DRVP  
C4  
0.1µF  
C5  
1.0µF  
R7  
10kΩ  
MAX1778  
C6  
0.1µF  
C7  
1.0µF  
INTG  
REF  
C
REF  
R3  
750kΩ  
0.22µF  
R9  
30kΩ  
FBP  
STARTUP  
POSITIVE  
POS(START)  
SYSTEM  
POSITIVE  
V = 20V  
POS(SYS)  
FLTSET  
R4  
49.9kΩ  
Q3  
Q2  
V
= 20V  
R10  
100kΩ  
INPUT  
= 3.3V  
V
IN  
RDY  
TGND  
GND  
R
R8  
100kΩ  
RDY  
5.1kΩ  
PGND  
Figure 10. Power-Up Sequencing and Fault Protection;  
converter steps up the input voltage so that the linear  
regulator will not drop out. Therefore, to guarantee that  
the external pass transistor does not saturate, the step-  
up converters output voltage must be set above the lin-  
ear regulators output voltage plus the transistors  
the PNP transistor. Any fault on the positive charge-  
pump output will pull down the charge pumps output  
voltage and trigger the fault protection; otherwise, the  
MOSFETs gate slow charges. Once the MOSFET turns  
on, any faults on the main step-up converters output  
will pull down the main output voltage and trigger the  
fault protection.  
saturation rating (V  
V  
+ V  
).  
MAIN  
LDO  
SAT  
Power-Up Sequencing and Fault Protection  
The MAX1778/MAX1880MAX1885s fault protection  
cannot be activated until the power-up sequence is  
successfully completed and the power ready output  
goes low. Therefore, faults on the main output or posi-  
tive charge-pump output could damage the controller  
or external components. Additional fault protection may  
be added as shown in Figure 10. The external MOSFET  
and PNP transistor isolate the positive outputs during  
startup. When the controller finishes the power-up  
sequence, the power-ready output goes low, turning on  
VCOM Buffer Startup  
The VCOM buffer does not include soft-start. Therefore,  
once the VCOM buffer turns on, it draws high surge  
currents while charging the output capacitance. In  
some applications, the buffers high startup surge  
current could potentially trip the fault detection circuit,  
forcing the controller to shut down. In these cases,  
adding a soft-start resistive divider between SUPB and  
BUFOUT reduces the startup surge current and voltage  
drops associated with this load (Figure 11), as shown in  
34 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
L1  
6.8µH  
INPUT  
= 3.3V  
MAIN  
MAIN  
V
V
= 8V  
IN  
C
C
OUT  
(2) 4.7µF  
IN  
4.7µF  
R1  
LX  
FB  
IN  
274kΩ  
SHDN  
C1  
0.22µF  
R2  
49.9kΩ  
MAX1778  
INTG  
REF  
SUPB  
BUF-  
C
SUPB  
1.0µF  
R3  
C
REF  
0.22µF  
10kΩ  
BUFFER OUTPUT  
= V /2  
BUFOUT  
BUF+  
V
BUFOUT  
SUPB  
C
BUF  
R4  
10kΩ  
1.0µF  
PGND  
GND  
V
SUPB  
R3 = R4  
-1  
[( V ) ]  
BUFOUT  
Figure 11. VCOM Buffer Soft-Start;  
the Typical Operating Characteristics. Set the resistive  
divider to precharge BUFOUT, matching the buffers  
output set voltage:  
Selector Guide  
STEP-UP  
SWITCHING  
FREQUENCY  
(Hz)  
DUAL  
CHARGE  
PUMPS  
LINEAR  
REGULATOR  
V
SUPB  
R3 = R4  
1  
PART  
V
BUFOUT  
MAX1778  
MAX1880  
MAX1881  
MAX1882  
MAX1883  
MAX1884  
MAX1885  
1M  
1M  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
These resistor values are selected to charge the output  
capacitor close to the output set voltage before the  
buffer starts up:  
500k  
500k  
1M  
Yes  
No  
Yes  
Yes  
No  
5000  
500k  
500k  
No  
C
(R3||R4) ≈  
BUFOUT  
f
No  
OSC  
______________________________________________________________________________________ 35  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Typical Operating Circuit  
MAIN  
INPUT  
IN  
LX  
FB  
SHDN  
TO LOGIC  
RDY  
SUPL  
LDOOUT  
SUPB  
SUPN  
SUPP  
LDO OUTPUT  
MAX1778  
FBL  
DRVP  
FBP  
DRVN  
FBN  
POSITIVE  
NEGATIVE  
BUFOUT  
BUF-  
BUFFER OUTPUT  
REF  
BUF+  
FLTSET  
GND  
INTG  
PGND  
TGND  
36 ______________________________________________________________________________________  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Pin Configurations  
TOP VIEW  
FB  
INTG  
IN  
1
2
3
4
5
6
7
8
9
24 RDY  
FB  
INTG  
IN  
1
2
3
4
5
6
7
8
9
24 RDY  
23 TGND  
22 LX  
23 TGND  
22 LX  
BUF+  
BUF-  
SUPB  
BUFOUT  
GND  
21 PGND  
20 DRVP  
19 SUPP  
18 DRVN  
17 SUPN  
16 FLTSET  
15 FBL  
BUF+  
BUF-  
SUPB  
BUFOUT  
GND  
21 PGND  
20 DRVP  
19 SUPP  
18 DRVN  
17 SUPN  
16 FLTSET  
15 N.C.  
14 N.C.  
13 N.C.  
MAX1778  
MAX1881  
MAX1880  
MAX1882  
REF  
REF  
FBP 10  
FBN 11  
FBP 10  
FBN 11  
14 LDOOUT  
13 SUPL  
SHDN 12  
SHDN 12  
24 TSSOP  
24 TSSOP  
TOP VIEW  
FB  
INTG  
IN  
1
20 RDY  
19 TGND  
18 LX  
FB  
INTG  
IN  
1
2
3
4
5
6
7
8
9
20 RDY  
19 TGND  
18 LX  
2
3
4
5
6
7
8
9
BUF+  
BUF-  
SUPB  
BUFOUT  
GND  
17 PGND  
16 N.C.  
15 N.C.  
BUF+  
BUF-  
SUPB  
BUFOUT  
GND  
17 PGND  
16 N.C.  
15 N.C.  
MAX1883  
MAX1884  
MAX1885  
14  
14  
FLTSET  
FLTSET  
13 FBL  
13 N.C.  
12 N.C.  
11 N.C.  
REF  
12 LDOOUT  
11 SUPL  
REF  
SHDN 10  
SHDN 10  
20 TSSOP  
20 TSSOP  
______________________________________________________________________________________ 37  
Quad-Output TFT LCD DC-DC  
Converters with Buffer  
Chip Information  
TRANSISTOR COUNT: 3739  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
38 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1884_12

Quad-Output TFT LCD DC-DC Converters with Buffer
MAXIM

MAX1885

Quad-Output TFT LCD DC-DC Converters with Buffer
MAXIM

MAX1885EUP

Quad-Output TFT LCD DC-DC Converters with Buffer
MAXIM

MAX1885_12

Quad-Output TFT LCD DC-DC Converters with Buffer
MAXIM

MAX1886

Ultra-High-Speed.Low-Distortion.Differential-to-Single-Ended Line Receivers with Enable[MAX4444/MAX4445/MAX4444ESE/MAX4444ESE-T/MAX4444EVKIT/MAX4445ESE/MAX4445ESE-T ]
MAXIM

MAX1886EZK

Operational Amplifier
MAXIM

MAX1886EZK+T

Liquid Crystal Driver, 1-Segment, BICMOS, PDSO5, 1.10 MM HEIGHT, SOT-23, 5 PIN
MAXIM

MAX1887

Quick-PWM Slave Controllers for Multiphase, Step-Down
MAXIM

MAX1887EEE

SMPS Controller
MAXIM

MAX1887EEE+

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM

MAX1887EEE+T

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM

MAX1887EEE-T

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM