MAX1886EZK [MAXIM]

Operational Amplifier ; 运算放大器\n
MAX1886EZK
型号: MAX1886EZK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier
运算放大器\n

运算放大器
文件: 总7页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2095; Rev 0; 8/01  
High-Current VCOM Drive Buffer  
General Description  
Features  
The MAX1886 is a high-current operational transcon-  
ductance amplifier. The MAX1886 is ideal for driving  
the backplane of an active matrix, dot inversion thin film  
transistor (TFT) liquid crystal display (LCD). The  
MAX1886’s high >500mA peak-current drive capability  
provides fast response to pulsed load conditions. The  
MAX1886 is stable from 0.47µF to an unlimited amount  
of output capacitance.  
Stable with 0.47µF to Unlimited Amount of Output  
Capacitance  
Over 500mA Peak Drive Current  
Excellent Settling Characteristics with Capacitive  
Load  
+4.5V to +13V Input Supply  
0.45mA Quiescent Current  
Thermal Fault Protection  
The MAX1886 is available in the low-profile (1.1mm  
max) 5-pin Thin SOT23 package and fully specified  
over the -40°C to +85°C extended temperature range.  
Thin SOT23-5 Package (1.1mm max)  
Applications  
Ordering Information  
Notebook LCD Panels  
Monitor LCD Panels  
TOP  
MARK  
PART  
TEMP. RANGE PIN-PACKAGE  
5 Thin SOT23-5*  
MAX1886EZK -40°C to +85°C  
ADQL  
*Requires a special solder temperature profile described in the  
Absolute Maximum Ratings section.  
Typical Operating Circuit  
Pin Configuration  
V
CC  
TOP VIEW  
OUT  
GND  
1
2
3
5
4
FB-  
FB+  
V
REF  
FB+  
FB-  
MAX1886  
OUT  
GND  
V
O
V
CC  
MAX1886  
THIN SOT23-5  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Current VCOM Drive Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
FB-, FB+, OUT to GND...............................-0.3V to (V  
V
to GND............................................................-0.3V to +14V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin Thin SOT23 (derate 7.1mW°C above +70°C).....727mW  
This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during  
board level solder attach and rework. Maxim recommends the use of the solder profiles recommended in the industry-standard specification, JEDEC  
020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow processes. Preheating, per this standard, is required. Hand or wave soldering is not  
recommended.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 10V, FB- = OUT, V  
= 5V, C  
= 0.47µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
OUT A A  
CC  
FB+  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
13  
UNITS  
V
V
V
Input Supply Range  
Supply Current  
V
4.5  
CC  
CC  
CC  
CC  
I
450  
900  
5
µA  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
V
V
= +5V, no load  
FB+  
-5  
mV  
nA  
OS  
I
-100  
-100  
100  
100  
BIAS  
+1.2V < V  
< +8.8V  
CM  
I
nA  
OS  
V
1.2V  
-
CC  
Common-Mode Input Range  
V
V < 10mV over CMR  
| OS|  
1.2  
V
CM  
Power-Supply Rejection Ratio  
Common-Mode Rejection Ratio  
Gain-Bandwidth Product  
PSRR  
CMRR  
GBW  
+4.5V < V  
+1.2V < V  
< +13V, V  
= +2.25V  
FB+  
70  
70  
CC  
CM  
dB  
Hz  
S
< +8.8V  
Small signal  
1/6 C  
0.3  
L
Small signal ( 1mV overdrive)  
Large signal ( 30mV overdrive)  
Transconductance  
g
m
10  
T
A
T
A
= -40°C to +85°C  
= 0°C to +85°C  
175  
250  
550  
100mV overdrive,  
= 3V or 7V  
Output Current Drive  
I
mA  
OUT  
V
OUT  
Thermal Shutdown  
170  
15  
°C  
°C  
Thermal Shutdown Hysteresis  
Note 1: The MAX1886 is 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
SUPPLY  
VOLTAGE  
3
REFERENCE  
4
VOLTAGE  
0.47  
0.47  
2
1
5
V
X
R
L
C
L
MAX1886  
Figure 1. Load Transient Test Circuit  
_______________________________________________________________________________________  
2
High-Current VCOM Drive Buffer  
Typical Operating Characteristics  
(V  
= 10V, C  
= 1µF, V  
= 5V, T = +25°C, unless otherwise noted.)  
CM A  
CC  
OUT  
INPUT OFFSET VOLTAGE DEVIATION  
vs. TEMPERATURE  
TRANSCONDUCTANCE  
vs. OUTPUT CURRENT  
INPUT OFFSET VOLTAGE DEVIATION  
vs. SUPPLY VOLTAGE  
0.10  
0.4  
0.3  
6
5
4
3
2
1
0
V
V
= 10V  
CC  
CC  
CM  
V
= V /2  
CC  
0.08  
0.06  
0.04  
0.02  
0
CM  
= V /2  
0.2  
T = -40 C  
A
0.1  
T = +25 C  
A
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.1  
-0.2  
-0.3  
-0.4  
T = +85 C  
A
4
5
6
7
8
9
10 11 12 13 14  
-40  
-15  
10  
35  
60  
85  
-40 -30 -20 -10  
0
10 20 30 40  
V
CC  
(V)  
TEMPERATURE ( C)  
OUTPUT CURRENT (mA)  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
LOAD TRANSIENT 10V  
0.6  
0.5  
0.4  
0.3  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
OUT  
500mA/div  
+85 C  
+25 C  
V
OUT  
-40 C  
200mV/div  
AC-COUPLED  
0.2  
0.1  
V
X
10V/div  
R = 2.5 C = 100nF, FIGURE 1  
L
L
0
-40  
-15  
10  
35  
60  
85  
4.5  
6.5  
8.5  
10.5  
12.5  
4 s/div  
TEMPERATURE ( C)  
SUPPLY VOLTAGE (V)  
SHORT-CIRCUIT WAVEFORMS  
I
CC  
500mA/div  
I
OUT  
500mA/div  
V
OUT  
5V/div  
V
CC  
5V/div  
20ms/div  
_______________________________________________________________________________________  
3
High-Current VCOM Drive Buffer  
Typical Operating Characteristics (continued)  
(V  
= 10V, C  
= 1µF, V  
= 5V, T = +25°C, unless otherwise noted.)  
CC  
OUT  
CM  
A
STARTUP WAVEFORMS  
WITH SOFT-START  
STARTUP WAVEFORM  
WITHOUT SOFT-START  
SUPPLY CAPACITOR  
CHARGING CURRENT  
I
CC  
500mA/div  
I
CC  
500mA/div  
V
V
CC  
10V/div  
CC  
10V/div  
V
V
FB+  
5V/div  
FB+  
5V/div  
V
V
OUT  
5V/div  
OUT  
5V/div  
C
OUT  
= 0.47 F  
C
OUT  
= 0.47 F  
500 s/div  
5 s/div  
Pin Description  
PIN  
NAME  
DESCRIPTION  
Output of Buffer Amplifier. Requires a minimum 0.47µF ceramic filter capacitor to GND. Place the  
capacitor close to OUT.  
1
2
3
OUT  
GND  
Ground  
Voltage-Supply Input. Bypass to GND with a 0.47µF capacitor close to the pin. Use the output  
capacitor of the preceding voltage regulator as the additional filter capacitor.  
V
CC  
4
5
FB+  
FB-  
Noninverting Input to Buffer Amplifier  
Inverting Input to Buffer Amplifier. Feedback must be taken from the output filter capacitor terminal.  
times, the MAX1886s transconductance increases as  
the output current increases (see Typical Operating  
Characteristics).  
Detailed Description  
The MAX1886 operational transconductance amplifier  
(OTA) provides high-current output that is ideal for dri-  
ving capacitive loads such as the backplane of a TFT  
LCD panel. The positive feedback input, FB+, allows  
common-mode biasing to mid-supply, or other VCOM  
voltage.  
Applications Information  
Output Filter Capacitor  
The MAX1886 requires a minimum of 0.47µF output  
capacitance placed close to OUT. To ensure buffer sta-  
bility, the output capacitor ESR must be 50m or lower.  
Ceramic capacitors are an excellent choice.  
The MAX1886 unity-gain bandwidth is GBW = g /C  
m
OUT  
where g is the amplifiers transconductance.  
m
Transconductance is the ratio of the output current to  
the input voltage. The gain of the amplifier is dependent  
upon the load. The MAX1886 requires only a small  
0.47µF ceramic output capacitor for stability. The band-  
width is inversely proportional to the output capacitor,  
so large capacitive loads improve stability; however,  
lower bandwidth decreases the buffers transient  
response time. To improve the transient response  
Input Bypass Capacitor  
The MAX1886 requires a 0.47µF input bypass capacitor  
(C2) close to the V  
supply input (see Figure 2). Place  
CC  
the MAX1886 close to the preceding voltage regulator  
output capacitor so that the MAX1886 shares the same  
capacitor (C1). Minimize trace length and use wide  
4
_______________________________________________________________________________________  
High-Current VCOM Drive Buffer  
SWITCHING  
REGULATOR  
SOURCE DRIVER VOLTAGE  
PC BOARD PARASITICS  
V
IN  
C1  
3
LINEAR  
C2  
0.47 F  
4
5
REGULATOR  
2
1
0.47 F  
OPTIONAL REFERENCE  
VOLTAGE CIRCUIT  
TO LCD  
BACKPLANE  
GAMMA CORRECTION  
REFERENCE VOLTAGE  
MAX1886  
Figure 2. Typical TFT LCD Backplane Drive Circuit  
traces between the voltage regulator output and the  
MAX1886 V input to reduce PC board parasitics  
CC  
(inductance, resistance, and capacitance), which can  
cause undesired ringing.  
Voltage Reference  
The reference voltage for the MAX1886 input can be  
produced using the output of a linear regulator. The lin-  
ear regulator will reject the ripple voltage produced by  
the source drivers (see Figure 2). The output of this lin-  
ear regulator can also be used for the gamma correc-  
tion reference voltage.  
Chip Information  
TRANSISTOR COUNT: 121  
PROCESS: BiCMOS  
_______________________________________________________________________________________  
5
High-Current VCOM Drive Buffer  
Package Information  
6
_______________________________________________________________________________________  
High-Current VCOM Drive Buffer  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 7  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1886EZK+T

Liquid Crystal Driver, 1-Segment, BICMOS, PDSO5, 1.10 MM HEIGHT, SOT-23, 5 PIN
MAXIM

MAX1887

Quick-PWM Slave Controllers for Multiphase, Step-Down
MAXIM

MAX1887EEE

SMPS Controller
MAXIM

MAX1887EEE+

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM

MAX1887EEE+T

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM

MAX1887EEE-T

Switching Controller, 40A, 300kHz Switching Freq-Max, BICMOS, PDSO16, QSOP-16
MAXIM

MAX1888

Low-Cost Integrated Offset Logic for Notebook CPU Power Supplies
MAXIM

MAX1888EUA

Low-Cost Integrated Offset Logic for Notebook CPU Power Supplies
MAXIM

MAX1888EUA+

Analog Circuit, 1 Func, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1888EUA-T

Analog Circuit, 1 Func, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1889

Triple-Output TFT LCD Power Supply with Fault Protection
MAXIM

MAX1889EGE

Triple-Output TFT LCD Power Supply with Fault Protection
MAXIM