MAX17613CATPT [MAXIM]

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection;
MAX17613CATPT
型号: MAX17613CATPT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection

文件: 总28页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
General Description  
Benefits and Features  
Robust Protection Reduces System Downtime  
The Olympus series of ICs is the industry's smallest and  
most robust integrated system protection solution. The  
MAX17613A/MAX17613B/MAX17613C adjustable over-  
voltage and overcurrent protection devices are ideal to  
protect systems against positive and negative input volt-  
age faults up to +60V and -65V, and feature low 130mΩ  
• Wide Input-Supply Range of +4.5V to +60V  
• Hot Plug-in Tolerant without TVS up to 35V Input  
Supply  
• Negative Input Tolerance up to -65V  
• Low R  
130mΩ (typ)  
ON  
(typ) R  
FETs.  
ON  
• Reverse Current-Blocking Protection  
• Thermal Overload Protection  
The adjustable input overvoltage protection range is 5.5V  
to 60V and the adjustable input undervoltage protec-  
tion range is 4.5V to 59V. The input overvoltage-lockout  
(OVLO) and undervoltage-lockout (UVLO) thresholds are  
set using external resistors. Additionally, the devices offer  
an internal input undervoltage threshold at 4.2V (typ).  
• Programmable Startup Blanking Time  
• Extended -40°C to +125°C Temperature Range  
• MAX17613A Enables OV, UV, and Reverse Volt-  
age Protection  
• MAX17613B Enables OV and UV Protection  
• MAX17613C Enables Reverse Voltage Protection  
Flexible Design Options Enable Reuse and Less  
Requalification  
The devices feature programmable current-limit protection  
up to 3A; hence, controlling the inrush current at startup  
while charging high capacitance at the output. The current-  
limit threshold is programmed by connecting a resistor from  
the SETI pin to GND. When the device current reaches  
the programmed threshold, the device prevents further  
increases in current by modulating the FET resistance. The  
devices can be programmed to behave in three different  
ways under current-limit condition: autoretry, continuous,  
or latchoff modes. The voltage appearing on the SETI pin  
is proportional to the instantaneous current flowing through  
the device and can be read by an ADC.  
• Adjustable OVLO and UVLO Thresholds  
• Programmable Forward Current Limit:  
0.15A to 3A with ±3.5% Accuracy  
• Accuracy Over Full Temperature Range  
• Programmable Overcurrent Fault Response:  
Autoretry, Continuous, and Latchoff Modes  
• Smooth Current Transitions  
Saves Board Space and Reduces External BOM  
Count  
• 20-Pin, 4mm x 4mm, TQFN-EP Package Integrat-  
ed FETs  
MAX17613A and MAX17613C block current flowing  
in the reverse direction (i.e., from OUT to IN) whereas  
MAX17613B allows current flow in the reverse direction.  
The devices feature thermal shutdown protection against  
excessive power dissipation.  
Applications  
Sensor Systems  
Condition Monitoring  
Factory Sensors  
The devices are available in a small, 20-pin (4mm x 4mm)  
TQFN-EP package and operate over the -40°C to +125°C  
extended temperature range.  
Process Instrumentation  
Weighing and Batching Systems  
Industrial Applications such as PLC, Control Network  
Modules, Battery-Operated Modules  
Ordering Information appears at end of data sheet.  
19-100414; Rev 0; 2/19  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Typical Operating Circuit  
MAX17613A and MAX17613B  
IN  
OUT  
V
PULLUP  
C
IN  
C
OUT  
0.47µF  
4.7µF  
MAX17613A  
MAX17613B  
SYSTEM  
R5  
R6  
10kΩ  
10kΩ  
SYSTEM POWER  
R1  
R3  
SUPPLY  
OPTIONAL FOR  
HIGT INPUT  
SURGE  
CLMODE  
OVLO  
FLAG  
FAULT  
APPLICATIONS  
UV/OV/FAULT  
EN  
UVOV  
EN  
GND  
UVLO  
SETI  
ADC  
TSTART  
GND  
R
SETI  
R2  
R4  
MAX17613C  
IN  
OUT  
V
PULLUP  
C
IN  
C
OUT  
0.47µF  
4.7µF  
SYSTEM  
MAX17613C  
R5  
10kΩ  
R6  
10kΩ  
SYSTEM POWER  
SUPPLY  
OPTIONAL FOR  
HIGT INPUT  
SURGE  
FORWARD  
FAULT  
FWD  
APPLICATIONS  
REVERSE FAULT  
REV  
CLMODE  
EN  
EN  
TSTART  
GND  
SETI  
ADC  
GND  
R
SETI  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Absolute Maximum Ratings  
IN to GND...............................................................-70V to +65V  
IN to OUT...............................................................-65V to +65V  
OUT to GND .........................................................-0.3V to +65V  
UVLO, OVLO to GND  
IN Current (DC) ....................................................................3.3A  
SETI to GND (Note1) ...........................................-0.3V to +1.6V  
Continuous Power Dissipation  
(T = +70°C, derate 30.3mW/°C above +70°C).....2424.2mW  
A
(MAX17613A and MAX17613B)....................................-0.3V to  
Extended Operating Temperature Range  
(max (V ,V  
)+0.3V)  
(Note 2)............................................................... -40°C to +125°C  
Junction Temperature Range ........................... -40°C to +150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (Soldering, 10s).................................+300°C  
IN OUT  
EN, CLMODE, TSTART to GND .............................-0.3V to +6V  
UVOV, FLAG to GND  
(MAX17613A and MAX17613B).......................-0.3V to +6.0V  
FWD, REV to GND (MAX17613C)..........................-0.3V to +6V  
Note 1: The SETI pin is internally clamped. Forcing more than 5mA current into the pin can damage the device.  
Note 2: Junction temperature greater than +125ºC degrades operating life times.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 20 TQFN  
Package Code  
T2044+4C  
21-100172  
90-0409  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD:  
Junction to Ambient (θ  
)
33ºC/W  
2ºC/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = +4.5 to +60V, T = -40°C to +125°C unless otherwise noted. Typical values are at V = +24V, T = +25°C, R  
= 1.5kΩ.) (Note 3)  
IN  
A
IN  
A
SETI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
IN Voltage Range  
V
4.5  
60  
66  
V
IN  
Shutdown Input Current  
Shutdown Output Current  
Reverse Input Current  
Supply Current  
I
V
V
V
V
V
V
= 0V  
28  
μA  
µA  
µA  
mA  
SHDN  
EN  
I
= 0V, V  
= 0V (V = 60V)  
-2  
OFF  
EN  
OUT  
IN  
I
= -60V, V  
= 0V  
OUT  
-85  
-50  
0.88  
4.2  
IN_RVS  
IN  
IN  
IN  
IN  
I
= 24V  
1.2  
4.5  
IN  
rising  
3.46  
1.45  
Internal Undervoltage Trip Level  
V
falling  
3.5  
UVLO, OVLO Reference  
V
MAX17613A and MAX17613B  
MAX17613A and MAX17613B  
1.5  
1.55  
V
REF  
UVLO, OVLO Threshold Hysteresis  
3.3  
%
V
= V  
MAX17613A and  
MAX17613B  
UVLO  
OVLO  
UVLO, OVLO Leakage Current  
OVLO Adjustment Range  
I
-100  
5.5  
+100  
60  
nA  
V
LEAK  
= 0V to 2V.  
MAX17613A and MAX17613B (Note 4)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Electrical Characteristics (continued)  
(V = +4.5 to +60V, T = -40°C to +125°C unless otherwise noted. Typical values are at V = +24V, T = +25°C, R  
= 1.5kΩ.) (Note 3)  
IN  
A
IN  
A
SETI  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX17613A and MAX17613B (Note 4)  
MIN  
4.5  
3
TYP  
MAX UNITS  
UVLO Adjustment Range  
Internal POR  
59  
V
V
4.3  
INTERNAL FETs  
I
I
I
= 100mA,V > 8V, T = 25°C  
130  
155  
200  
LOAD  
LOAD  
LOAD  
IN  
J
= 100mA,V > 8V, T = 85°C  
IN  
J
Internal FETs On-Resistance  
R
mΩ  
ON  
= 100mA,V > 8V, -40°C ≤ T ≤  
IN  
J
230  
125°C  
Current-Limit Adjustment Range  
Current-Limit Accuracy  
I
(Note 5)  
0.15A ≤ I  
0.15  
-3.5  
3
A
LIM  
≤ 3A  
+3.5  
%
LIM  
Increase (V - V  
) drop until FLAG  
IN  
OUT  
FLAG Assertion Drop Voltage  
Threshold  
V
400  
500  
600  
mV  
asserts, V = 24V (MAX17613A and  
FA  
IN  
MAX17613B)  
FWD Assertion Drop Voltage  
Threshold  
Increase (V - V  
asserts, V = 24V (MAX17613C)  
IN  
) drop until FWD  
IN  
OUT  
400  
2
500  
11  
600  
20  
mV  
mV  
μs  
Reverse Current Blocking Slow-  
Threshold  
V
V
- V (MAX17613A and MAX17613C)  
RIBS  
OUT IN  
Reverse Current Blocking  
Debounce Blanking Time  
t
MAX17613A and MAX17613C  
MAX17613A and MAX17613C  
100  
14.4  
70  
140  
16  
180  
17.6  
140  
DEBRIB  
Reverse Current Blocking Powerup  
Blanking Time  
t
ms  
mV  
BLKRIB  
Reverse Current Blocking Fast-  
Threshold  
V
V
-V (MAX17613A and MAX17613C).  
105  
RIBF  
OUT IN  
Time from when I  
crosses 55A and  
REVERSE  
Reverse Current Blocking Fast  
Response Time  
t
I
reaches its peak.  
150  
250  
ns  
RIB  
REVERSE  
(MAX17613A and MAX17613C) (Note 6)  
Current into OUT when (V - V  
130mV (MAX17613A and MAX17613C)  
>
IN)  
OUT  
Reverse Blocking Supply Current  
I
0.92  
1.25  
mA  
RBL  
SETI  
R
x I  
V
1.5  
V
SETI  
LIM  
RI  
0.15A ≤ I ≤ 0.3A  
2910  
2940  
1.6  
3000  
3000  
3090  
3060  
2.2  
IN  
Current Mirror Output Ratio  
C
A/A  
IRATIO  
0.3A ≤ I ≤ 3A  
IN  
Internal SETI Clamp  
SETI Leakage Current  
LOGIC INPUT  
5mA into SETI  
V
V
= 1.6V  
-0.1  
+0.1  
μA  
SETI  
EN Input Logic High  
EN Input Logic Low  
EN Pullup Voltage  
EN Input Current  
V
1.4  
V
V
IH  
V
0.4  
2
IL  
EN pin unconnected. V = 60V  
1.4  
60  
V
IN  
V
V
= 5.5V  
= 0.4V  
95  
12  
4.9  
μA  
μA  
V
EN  
EN Pullup Current  
CLMODE Input Logic High  
2.2  
2
5.8  
3.8  
EN  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Electrical Characteristics (continued)  
(V = +4.5 to +60V, T = -40°C to +125°C unless otherwise noted. Typical values are at V = +24V, T = +25°C, R  
= 1.5kΩ.) (Note 3)  
IN  
A
IN  
A
SETI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0.25  
8
TYP  
MAX UNITS  
CLMODE Input Logic Low  
0.60  
10  
0.95  
12  
V
CLMODE Pullup Input Current  
µA  
FLAG, UVOV OUTPUTs  
FLAG, UVOV Output Logic Low  
I
= 1mA (MAX17613A and  
SINK  
0.4  
1
V
MAX17613B)  
= V = V = 5V, FLAG, and  
UVOV  
Voltage  
V
IN  
FLAG  
FLAG, UVOV Output Leakage  
Current  
μA  
UVOV deasserted (MAX17613A and  
MAX17613B)  
FWD, REV OUTPUTs  
FWD, REV Output Logic Low  
Voltage  
I
= 1mA (MAX17613C)  
0.4  
1
V
SINK  
V
= V  
= V  
= 5V,  
IN  
FWD  
REV  
μA  
FWD, REV Output Leakage Current  
TSTART STARTUP  
FWD, and REV deasserted (MAX17613C)  
V
TSTART-  
REF  
TSTART Reference Voltage  
TSTART Output Current  
1.425  
4.5  
1.5  
5
1.575  
5.5  
V
µA  
Ω
I
TSTART  
TSTART Internal Shunt Discharge  
Resistance  
R
Discharging Resistance  
260  
TSTART  
t
TSTART-  
TSTART Unconnecting Check Time  
Interval  
100  
100  
μs  
UNCON-  
NECTED  
t
TSTART-  
DEFAULT  
TSTART default interval  
TIMING CHARACTERISTICS  
Switch Turn-On Time  
90  
110  
ms  
t
V
R
= 24V, R  
= 1kΩ, C  
= 0µF,  
ON_  
IN  
LOAD  
LOAD  
2
3.3  
1.3  
ms  
µs  
= 1.5kΩ  
SWITCH  
SETI  
From (V going from V  
- 1V to  
IN_OVLO  
IN  
V
V
+ 1V in 10ns) to (V  
); R  
= 80% of  
IN_OVLO  
OUT  
Overvoltage Switch Turn-Off Time  
t
0.8  
OFF_OVP  
= 1kΩ (MAX17613A and  
IN_OVLO  
LOAD  
MAX17613B)  
Overvoltage Falling Edge  
Debounce Time  
t
10  
μs  
μs  
DEB_OVP  
I
= 3A, C  
= 0µF, I  
step from  
OUT  
LIM  
LOAD  
Overcurrent Protection Response  
Time  
t
1.5A to 3A. Time to regulate I  
limit.  
to current  
100  
OCP_RES  
OUT  
From (V  
< V < V  
)
IN_UVLO  
IN  
IN_OVLO  
and (EN = High) to V  
Elapses only at power-up. (MAX17613A and  
MAX17613B)  
= 10% of V .  
OUT  
IN  
IN Debounce Time  
t
14.4  
16  
60  
17.6  
ms  
DEB  
Current-Limit Smooth-Transition  
Time  
t
μs  
REF_RAMP  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Electrical Characteristics (continued)  
(V = +4.5 to +60V, T = -40°C to +125°C unless otherwise noted. Typical values are at V = +24V, T = +25°C, R  
= 1.5kΩ.) (Note 3)  
IN  
A
IN  
A
SETI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Current-Limit Blanking Time  
Current-Limit Autoretry Time  
t
18  
20  
22  
ms  
BLANK  
After blanking time from I  
FLAG deasserted ( MAX17613A and  
MAX17613B) (Note 7)  
> I  
to  
OUT  
LIM  
t
900  
900  
1000  
1100  
RETRY  
ms  
After blanking time from I  
deasserted (MAX17613C) (Note 7)  
> I  
to FWD  
OUT  
LIM  
1000  
1100  
THERMAL PROTECTION  
Thermal Shutdown  
T
155  
15  
C
JC_MAX  
Thermal Shutdown Hysteresis  
T
°C  
JC_HYS  
Note 3: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
design; not production tested.  
Note 4: User settable. See overvoltage/undervoltage lockout instructions.  
Note 5: The current limit can be set below 150mA with a decreased accuracy.  
Note 6: Guaranteed by design, not production tested.  
Note 7: The ratio between autoretry time and blanking time is fixed and equal to 50.  
Typical Operating Characteristics  
(C = 0.47μF, C  
= 4.7μF, V = 24V, T = +25°C, unless otherwise noted.)  
IN A  
IN  
OUT  
NORMALIZED ON-RESISTANCE  
vs. SUPPLY VOLTAGE  
IN SUPPLY CURRENT vs. SUPPLY VOLTAGE  
IN SUPPLY CURRENT vs. TEMPERATURE  
toc01  
toc02  
toc03  
1.00  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.10  
1.05  
1.00  
0.95  
0.90  
NORMALIZED TO  
VIN = 24V  
IOUT = 100mA  
SETI UNCONNECTED  
SETI UNCONNECTED  
T
= +25°C  
A
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
T
= -40°C  
A
T
= +125°C  
A
4
12  
20  
28  
36  
44  
52  
60  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
4
12  
20  
28  
36  
44  
52  
60  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Typical Operating Characteristics (continued)  
(C = 0.47μF, C  
= 4.7μF, V = 24V, T = +25°C, unless otherwise noted.)  
IN  
OUT  
IN A  
NORMALIZED ON-RESISTANCE  
vs. TEMPERATURE  
NORMALIZED CURRENT LIMIT  
vs. TEMPERATURE  
NORMALIZED CURRENT LIMIT  
vs. SUPPLY VOLTAGE  
toc04  
toc06  
toc05  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
NORMALIZED TO  
NORMALIZED TO  
= +25°C  
V
= +24V  
NORMALIZED TO T = +25oC  
A
IN  
T
R
A
R
= 1.5kΩ  
SETI  
= 1.5kΩ  
SETI  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
4
12  
20  
28  
36  
44  
52  
60  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
NORMALIZED UVLO THRESHOLD  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
NORMALIZED OVLO THRESHOLD  
vs. TEMPERATURE  
toc09  
toc07  
toc08  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
NORMALIZED TO  
NORMALIZED TO  
TA = +25oC  
V
= +24V  
IN  
T
= +25°C  
EN = LOW  
OUT = GND  
A
0
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SHUTDOWN REVERSE CURRENT  
vs. TEMPERATURE  
SWITCH TURN-OFF TIME vs. TEMPERATURE  
SWITCH DEBOUNCE TIME vs. TEMPERATURE  
toc12  
toc10  
toc11  
120  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
V
= -24V  
17.8  
EN TRANSITION TO IOUT FALLING  
TO 10% OF INITIAL VALUE  
RL = 240Ω  
IN  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
EN = LOW  
OUT = GND  
17.4  
17.0  
16.6  
16.2  
15.8  
15.4  
15.0  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Typical Operating Characteristics (continued)  
(C = 0.47μF, C  
= 4.7μF, V = 24V, T = +25°C, unless otherwise noted.)  
IN  
OUT  
IN A  
CURRENT LIMIT vs. RSETI  
MAX17613A, POWER-UP RESPONSE  
REVERSE-BLOCKING RESPONSE  
toc15  
toc13  
toc14  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
35V  
V
V
24V  
20V/div  
20V/div  
IN  
IN  
20V/div  
20V/div  
V
OUT  
V
OUT  
V
FLAG  
5V/div  
1A/div  
V
I
UVOV  
5V/div  
IC  
I
IC  
100mA/div  
4µs/div  
0
5
10  
15  
4ms/div  
= 4.7µF, I  
RSETI (k)  
CONDITIONS: C  
= 0.3A, MODE = AUTORETRY  
LIMIT  
OUT  
THERMAL SHUTDOWN DUE TO  
OUTPUT SHORT CIRCUIT  
OUTPUT SHORT-CIRCUIT RESPONSE  
CURRENT-LIMIT RESPONSE  
toc18  
toc16  
toc17  
V
20V/div  
20V/div  
V
VIN  
20V/div  
IN  
20V/div  
20V/div  
5V/div  
IN  
V
OUT  
VOUT  
V
OUT  
20V/div  
5V/div  
1A/div  
V
5V/div  
FLAG  
V
VFLAG  
FLAG  
I
200mA/div  
OUT  
I
IN  
2A/div  
IIN  
100ms/div  
1ms/div  
10ms/div  
CONDITIONS: I  
= 1.5A, I = 100mA TO 1.5A  
L
CONDITIONS: I  
= 3A, MODE = AUTORETRY  
CONDITIONS: ILIMIT = 1.5A, MODE = AUTORETRY  
LIMIT  
LIMIT  
SHORT ON OUTPUT  
CURRENT SENSE RATIO vs. OUTPUT CURRENT  
STARTUP TIME vs. CTSTART CAPACITOR  
AUTORETRY TIME (tRETRY  
)
toc19  
toc20  
toc21  
3000  
100.0  
10.0  
1.0  
2980  
2960  
2940  
2920  
2900  
2880  
2860  
2840  
2820  
2800  
V
20V/div  
IN  
V
20V/div  
5V/div  
OUT  
V
FLAG  
I
200mA/div  
OUT  
0.1  
400ms/div  
1
10  
CTSTART (nF)  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
CONDITIONS: I  
= 0.3A, MODE = AUTORETRY  
OUTPUT CURRENT (A)  
LIMIT  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Typical Operating Characteristics (continued)  
(C = 0.47μF, C  
= 4.7μF, V = 24V, T = +25°C, unless otherwise noted.)  
IN  
OUT  
IN A  
OVP OVERVOLTAGE CUTOFF RESPONSE  
TURN ON CONTROL THROUGH EN  
toc22  
toc23  
V
20V/div  
5V/div  
5V/div  
IN  
OVLO  
V
UVOV  
5V/div  
EN  
V
V
OUT  
20V/div  
OUT  
20V/div  
I
200mA/div  
I
IC  
500mA/div  
IC  
4ms/div  
= 0.3A, MODE: AUTORETRY  
4ms/div  
CONDITIONS: I  
= 3A, MODE = AUTORETRY  
CONDITIONS: I  
LIMIT  
LIMIT  
TURN-OFF CONTROL THROUGH EN  
OUTPUT HOT SHORT FAST TRIP RESPONSE  
toc25  
toc24  
VIN  
VIN  
20V/div  
5V/div  
20V/div  
VOUT  
EN  
20V/div  
200mA/div  
5V/div  
IIC  
VOUT  
IIC  
20V/div  
500mA/div  
VFLAG  
2ms/div  
4ms/div  
60V REVERSE INPUT SUPPLY PROTECTION  
OUTPUT HOT SHORT FAST TRIP RESPONSE  
RESPONSE  
( ZOOMED )  
toc26  
toc27  
V
50V/div  
IN  
V
20V/div  
OUT  
V
V
20V/div  
5V/div  
FLAG  
5V/div  
20V/div  
5A/div  
IN  
V
OUT  
V
FLAG  
I
IC  
I
IC  
10A/div  
4µs/div  
2µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Pin Configuration  
MAX17613A and MAX17613B  
TOP VIEW  
15  
14  
13  
12  
11  
NC 16  
10  
9
UVOV  
EN  
17  
18  
19  
20  
NC  
NC  
NC  
MAX17613A  
MAX17613B  
8
GND  
7
SETI  
+
6
CLMODE  
NC  
1
2
3
4
5
MAX17613C  
TOP VIEW  
NC 16  
15  
14  
13  
12  
11  
10  
9
REV  
17  
18  
19  
20  
EN  
NC  
NC  
NC  
8
GND  
SETI  
CLMODE  
MAX17613C  
7
+
6
NC  
1
2
3
4
5
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX17613A,  
MAX17613B  
MAX17613C  
Input Pins. Use a low-ESR ceramic capacitor to enhance ESD protection. For Hot Plug-  
in applications, see the Applications Information section.  
1-3  
1-3  
IN  
UVLO Adjustment. Connect resistive potential divider from IN to GND to set the UVLO  
threshold.  
4
5
UVLO  
OVLO  
OVLO Adjustment. Connect resistive potential divider from IN to GND to set the OVLO  
threshold.  
Current-Limit Mode Selector. Connect CLMODE to GND for Continuous mode. Con-  
6
7
6
7
CLMODE nect a 150kΩ resistor between CLMODE and GND for latchoff mode. Leave CLMODE  
unconnected for autoretry mode.  
Overcurrent-Limit Adjustment Pin and Current Monitoring Output. Connect a resistor  
SETI  
from SETI to GND to set overcurrent limit. See the Setting the Current-Limiting Thresh-  
old (ILIM) section.  
8
9
8
9
GND  
EN  
Ground  
Active High Enable Input. Internally pulled up to 1.8V. Leave it unconnected for always  
on operation.  
Open-Drain, Fault Indicator Output. UVOV goes low with any of the following  
• Input voltage falls below UVLO threshold.  
• Input voltage rises above OVLO threshold.  
10  
UVOV  
REV  
10  
Open-Drain, Fault Indicator Output. REV goes low when reverse current is detected.  
Open-Drain, Fault Indicator Output. FLAG goes low with any of the following  
• Overcurrent duration exceeds the blanking time.  
• Overcurrent duration exceeds the startup blanking time.  
• Reverse current is detected.  
11  
FLAG  
FWD  
• Thermal shutdown is active.  
• R  
is less than 1.5kΩ (max).  
SETI  
Open-Drain, Fault Indicator Output. FWD goes low when:  
• Overcurrent duration exceeds the blanking time.  
• Overcurrent duration exceeds the startup blanking time.  
• Thermal shutdown is active.  
11  
12  
• R  
is less than 1.5kΩ (max).  
SETI  
Programmable Startup Blanking Time. Connect a capacitor from TSTART to GND  
to set the desired startup blanking time. Leaving the pin unconnected enables the  
TSTART TSTART pin to charge faster, If the TSTART pin voltage charges within 100µs, a default  
blanking time of 100ms is set as startup time. See the Programming Startup Blanking  
Time (TSTART) section for more details.  
12  
Output Pins. For a long output cable or inductive load, see the Applications Information  
section.  
13-15  
16-20  
13-15  
OUT  
4, 5, 16-20  
NC  
EP  
Not Connected  
Exposed Pad. Connect EP to a large GND plane with several thermal vias for best  
thermal performance. Refer to the MAX17613A/B/C EV kit data sheet for a reference  
layout design.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Functional Diagrams  
MAX17613A and MAX17613B  
IN  
IN  
IN  
OUT  
I
FET  
Q1  
Q2  
OUT  
I
/C  
OUT  
FET IRATIO  
CURRENT  
REGULATION  
I
/C  
FET IRATIO  
SETI  
HV FET  
CONTROL  
1.5V  
UVOV  
FLAG  
REVERSE  
PROTECTION  
(MAX17613A only)  
1.5V  
OVLO  
UVLO  
1.5V  
CONTROL  
LOGIC  
1.8V  
5µA  
TSTART  
EN  
CLMODE  
THERMAL  
SHUTDOWN  
GND  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Functional Diagrams (continued)  
MAX17613C  
IN  
OUT  
I
FET  
Q1  
Q2  
IN  
OUT  
I
/C  
IN  
OUT  
FET IRATIO  
CURRENT  
REGULATION  
I
/C  
FET IRATIO  
SETI  
HV FET  
CONTROL  
1.5V  
REV  
REVERSE  
PROTECTION  
FWD  
5µA  
TSTART  
CONTROL  
LOGIC  
1.8V  
CLMODE  
EN  
THERMAL  
SHUTDOWN  
GND  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Typical Operating Circuit to adjust the UVLO threshold  
voltage. Use the following equation to adjust the UVLO  
threshold. The recommended value of R1 is 2.2MΩ.  
Detailed Description  
The MAX17613A/MAX17613B/MAX17613C overvoltage  
and overcurrent protection devices offer adjustable pro-  
tection boundaries for systems against input positive and  
negative faults up to +60V and -65V, and output load cur-  
rent up to 3A. The devices feature two internal MOSFETs  
R1  
V
= V  
× 1 +  
[
UVLO  
REF  
]
R2  
where V  
= 1.5V.  
connected in series with a low cumulative R  
of 130mΩ  
REF  
ON  
(typ). The devices block out negative input voltages com-  
pletely. Input undervoltage protection can be programmed  
between 4.5V and 59V, while the overvoltage protection  
can be independently programmed between 5.5V and  
60V. Additionally, the devices have an internal default  
undervoltage lockout set at 4.2V (typ). The devices are  
enabled or disabled through the EN pin by a master  
supervisory system; hence, offering a switch operation to  
turn on or turn off power delivery to connected load.  
All three devices have an input UVLO threshold set at  
4.2V (typ). MAX17613C has no UVLO pin to adjust the  
UVLO threshold voltage externally.  
Overvoltage Lockout (OVLO)  
MAX17613A and MAX17613B have OVLO adjustment  
range from 5.5V to 60V. Connect an external resistive  
potential divider to the OVLO pin as shown in the Typical  
Operating Circuit to adjust OVLO threshold voltage. Use  
the following equation to adjust OVLO threshold. The rec-  
ommended value of R3 is 450kΩ500kΩ.  
The current through the devices is limited by setting a cur-  
rent limit, which is programmed by a resistor connected  
from SETI to GND. The current limit can be programmed  
between 0.15A to 3A. When the device current reaches  
or exceeds the set current limit, the on-resistance of the  
internal output NFET Q2 is modulated to limit the current  
to set limits. The devices offer three different behavioral  
modes when under current-limited operations: autoretry,  
continuous, and latchoff modes. The SETI pin also pres-  
ents a voltage with reference to GND, which under normal  
operation is proportional to the device current. The volt-  
age appearing on the SETI pin can be read by an ADC on  
the monitoring system for recording instantaneous device  
current. To avoid oscillation, do not connect more than  
10pF to the SETI pin.  
R3  
R4  
V
= V  
× 1 +  
[
OVLO  
REF  
]
where V  
= 1.5V.  
REF  
The MAX17613C device has no OVLO pin to adjust the  
OVLO threshold voltage.  
The OVLO reference voltage (V  
) is set at 1.5V. If the  
REF  
voltage at the OVLO pin exceeds V  
for time equal to  
REF  
overvoltage switch turn-off time (t  
), the switch is  
OFF_OVP  
turned off and UVOV is asserted. When the OVLO condi-  
tion is removed, the device takes overvoltage falling edge  
debounce time (t  
) to start the switch turn-on pro-  
DEB_OVP  
cess. The switch turns back on after switch turn-on time  
(t ) and UVOV is deasserted. Figure 1 depicts  
The devices offer status signals to indicate different oper-  
ational and fault signals. MAX17613A and MAX17613B  
offer FLAG and UVOV signals, while MAX17613C offers  
FWD and REV signals. All status signal pins are open  
drain in nature and require external pullup resistors to  
appropriate system interface voltage. MAX17613A and  
MAX17613C block reverse current flow (from OUT to IN)  
while MAX17613B allows reverse current flow. All three  
devices offer internal thermal shutdown protection against  
excessive power dissipation.  
ON_SWITCH  
a typical behavior in overvoltage condition.  
t
t
DEB_OVP  
OFF_OVP  
t
ON_SWITCH  
1.5V (typ)  
OVLO  
OUTPUT NFET  
Q2 STATUS  
ACTIVE/ON  
OFF  
UVOV  
Undervoltage Lockout (UVLO)  
MAX17613A and MAX17613B have UVLO adjustment  
range from 4.5V to 59V. Connect an external resis-  
tive potential divider to the UVLO pin as shown in the  
NOTE: TIME NOT TO SCALE  
Figure 1. Overvoltage Fault Timing Diagram  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Do not use R  
current-limit thresholds for different resistor values.  
smaller than 1.5kΩ. Table 1 shows  
Input Debounce Protection  
SETI  
The device features input debounce protection. The  
device starts operation (turn on the internal FETs) only if  
the input voltage is higher than the UVLO threshold for a  
When the device current reaches or exceeds the set cur-  
rent limit during overload, short-circuit or during startup  
cycle charging large capacitance, the on-resistance of  
the internal output NFET Q2 is modulated to limit the  
current to set limits, resulting in the output voltage droop  
and increased power dissipation in the device. If the  
device junction temperature reaches the thermal shut-  
period greater than the debounce time (t  
). The t  
DEB  
DEB  
elapses only at power-up of the devices. This feature is  
intended for applications where the EN signal is present  
when the power supply ramps up. Figure 2 depicts a typi-  
cal debounce timing diagram.  
down threshold T  
and FLAG (or FWD) is asserted. The output NFET Q2  
turns back on in current-limit mode only after the junc-  
tion temperature cools down by T  
feature read out of the current flowing into the IN pin. A  
current mirror, with a ratio of C , is implemented,  
the output NFET Q2 turns off  
JC_MAX  
Enable (EN)  
The device can be enabled or disabled through the EN pin  
by driving it above or below EN threshold voltage. Hence  
the device can be used to turn on or off power delivery to  
connected loads using the EN pin.  
. The devices  
JC_HYS  
IRATIO  
using a current-sense auto-zero operational amplifier. The  
mirrored current flows out through the SETI pin, into the  
external current-limit resistor. The voltage on the SETI pin  
provides information about IN current with the following  
relationship:  
Setting the Current-Limiting Threshold (ILIM)  
During overload events, the device continuously regu-  
lates the device current to the overcurrent limit I  
pro-  
LIM  
grammed by the resistor R  
connected at the SETI  
SETI  
pin. The current limit can be programmed between 0.3A  
to 3A. Use the following equation to calculate current-limit  
setting resistor:  
3 × V  
SETI  
I
=
IN − OUT  
R
SETI  
4500  
If SETI is left unconnected, V  
regulator does not allow any current to flow. During start-  
≥ 1.5V. The current  
SETI  
R
=
I
SETI  
LIM  
up, this causes the switches to remain off and FLAG (or  
where,  
is the desired current limit in mA and R  
FWD) to assert after t  
elapses. During startup,  
BLANK  
270μA current is forced to flow through R  
. If the volt-  
SETI  
I
is in kΩ.  
SETI  
LIM  
age at SETI is below 150mV, the switches remain off and  
FLAG (or FWD) asserts.  
Table 1. Current-Limit Threshold vs.  
SETI Resistor Values  
< t  
< t  
t
DEB  
DEB  
DEB  
OVLO  
UVLO  
R
(kΩ)  
CURRENT LIMIT I  
(A)  
LIM  
SETI  
15.00  
0.3  
1.0  
2.0  
2.5  
3.0  
V
IN  
4.53  
2.26  
1.80  
1.50  
ACTIVE/ON  
OUTPUT NFET  
Q2 STATUS  
OFF  
NOTE: TIME NOT TO SCALE  
Figure 2. Debounce Timing Diagram  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
For the given output capacitor, the startup capacitor  
Programming Startup Blanking  
Time (TSTART)  
(C  
) is calculated to be  
TSTART  
The MAX17613A/MAX17613B/MAX17613C devices offer  
a programmable startup blanking time that enables charg-  
ing the large capacitances on the output during startup  
and when recovering from a fault condition. Connecting  
a capacitor from the TSTART pin to GND programs the  
C
× V  
3.33 ×  
OUT(MAX)  
IN(MAX)  
C
TSTART  
I
LIM  
The startup time (t  
) is related to the startup capac-  
itor by the following equation:  
TSTART  
startup blanking time. t  
is the time allowed for  
TSTART  
V
OUT  
to reach the designated value (V - V ) before  
t
= 300 × C  
IN FA  
TSTART  
TSTART  
the device enter in to fault mode. If the output voltage  
doesn't charge to its nominal set voltage (V - V  
where,  
)
FA  
IN  
within the programmed time (t  
), then the FLAG (or  
TSTART  
C
C
V
is in nF,  
TSTART  
FWD) is asserted and both the MOSFETs are turned off.  
In order to allow the charging of large capacitances in all  
conditions, thermal fault does not induce a retry cycle (or  
a latchoff) during the startup phase rather a thermal and  
recycling happens as explained in the Thermal Shutdown  
= Maximum output capacitance in μF,  
OUT(MAX)  
= Maximum input voltage in V,  
IN(MAX)  
I
t
= Programmed current limit in mA,  
LIM  
is in μs.  
TSTART  
Protection section. In order to program t  
, the  
TSTART  
If the TSTART pin is left unconnected, a situation that  
would correspond to a very short t , the minimum  
startup time is internally set to a default interval. If the  
capacitor C  
connected to the TSTART pin is  
TSTART  
charged with a constant current of 5μA. When the volt-  
age on the capacitor reaches 1.5V, t is considered  
expired and the capacitor is discharged to ground.  
TSTART  
TSTART  
voltage threshold is crossed in less than t  
TSTART-UNCON-  
, the pin is considered unconnected and the  
NECTED  
C
device applies a preset startup time t  
Figure 3 depicts the startup behavior with and without a  
capacitor at the TSTART pin.  
.
TSTART-DEFAULT  
TSTART  
t
=
× 1.5  
TSTART  
5μ  
The following table presents C  
required for differ-  
TSTART  
Current Limit Type Selection (CLMODE)  
ent t  
durations.  
TSTART  
The CLMODE pin shall be used to program the overcur-  
rent response of the device in one of the three modes.  
Connect a 150kΩ resistor between CLMODE and GND  
for latchoff current-limit mode. Connect CLMODE to GND  
for continuous current-limit mode. Leave the CLMODE pin  
unconnected for autoretry current-limit mode.  
Table 2. C  
vs. t  
TSTART  
TSTART  
t
(ms)  
C
(nF)  
TSTART  
TSTART  
15  
50  
In all the three current-limit modes, if the current through  
the device reaches or exceeds the current-limit threshold,  
the device limits output current to the programmed current  
limit by modulating the internal output NFET Q2 on-state  
resistance.  
60  
200  
300  
100  
1000  
Left open  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
t
TSTART-UNCONNECTED  
V
(1.5V typ)  
TSTART-REF  
V
TSTART  
t
TSTART  
GREATER THAN t  
TSTART-DEFAULT  
(a) t  
TSTART  
t
TSTART-UNCONNECTED  
V
(1.5V typ)  
TSTART-REF  
V
TSTART  
t
TSTART  
(b) t  
TSTART  
LOWER THAN t , BUT GREATER THAN t  
START-DEFAULT TSTART-UNCONNECTED  
t
TSTART-UNCONNECTED  
V
(1.5V typ)  
TSTART-REF  
V
TSTART  
t
(100ms typ)  
TSTART-DEFAULT  
(c) WITH TSTART PIN UNCONNECTED OR WITH C  
CAPACITOR  
TSTART  
CORRESPONDING TO t  
< t  
TSTART TSTART-UNCONNECTED  
NOTE: NOT TO SCALE  
Figure 3. Startup Behavior with Respect to C  
TSTART  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
timer resets, the FLAG (or FWD) pin asserts, the output  
NFET Q2 is not turned off, and the operation continues. If  
the device enters thermal shutdown mode, the FLAG (or  
FWD) pin asserts and the output NFET Q2 turns off and  
it turns back on after the junction temperature cools down  
Continuous Current-Limit Mode  
In continuous current-limit mode during startup, the  
device starts as the startup blanking time (t  
) inter-  
TSTART  
val starts. The timer t  
resets if the output voltage  
TSTART  
V
OUT  
reaches (V - V ) within t  
and then the  
IN  
FA  
TSTART  
by T  
. The FLAG (or FWD) deasserts after V  
JC_HYS  
OUT  
normal operation continues. If the output voltage V  
OUT  
TSTART  
reaches (V - V ). Figure 4 depicts a typical startup  
IN  
FA  
does not reach (V - V ) within t  
, the t  
IN  
FA  
TSTART  
behavior in continuous current-limit mode.  
tDEB  
tTSTART  
VIN  
VIN - VFA  
VOUT  
ILIM  
IOUT  
DEVICE ENTERS THERMAL  
SHUTDOWN MODE  
DEVICE COMES OUT OF  
THERMAL SHUTDOWN  
FLAG (or) FWD  
V
(1.5V typ)  
TSTART-REF  
VTSTART  
NOTE: NOT TO SCALE  
Figure 4. Startup Fault Timing Diagram in Continuous Current-Limit Mode  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
In continuous current-limit mode during normal operation,  
the output NFET Q2 is not turned-off and the operation  
continues. If the device enters thermal shutdown mode,  
FLAG (or FWD) pin asserts and the output NFET Q2  
turns off and it turns back on after the junction tempera-  
if the device enters an overcurrent condition the t  
BLANK  
timer starts. The t  
timer resets when the overcur-  
BLANK  
rent condition resolves before the t  
duration has  
BLANK  
elapsed and then the normal operation continues. If the  
ture cools down by T  
. FLAG (or FWD) deasserts  
IN FA  
JC_HYS  
overcurrent condition exists for the t duration, the  
after V  
reaches (V - V ). Figure 5 depicts a typical  
BLANK  
OUT  
t
timer resets, the FLAG (or FWD) pin asserts,  
operating behavior in continuous current-limit mode.  
BLANK  
OVERCURRENT EVENT  
t
BLANK  
OVERCURRENT CONDITION  
REMOVED  
V
OUT  
V
- V  
FA  
IN  
I
LIM  
I
OUT  
DEVICE ENTER INTO  
DEVICE COMES OUT OF  
THERMAL SHUTDOWN MODE  
THERMAL SHUTDOWN MODE  
FLAG (or) FWD  
NOTE: NOT TO SCALE  
Figure 5. Overcurrent Fault Timing Diagram in Continuous Current-Limit Mode  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
out of thermal shutdown mode, if it was entered. During  
Autoretry Current-Limit Mode  
In autoretry current-limit mode during startup, the device  
operates in continuous current-limit mode until t  
t
time, the output NEFT Q2 remains off. Once  
RETRY  
the t  
time has elapsed, the device reinitiates the  
RETRY  
.
TSTART  
startup cycle again. If the overcurrent fault still exists,  
the autoretry startup cycle is repeated and the FLAG (or  
FWD) pin remains asserted. If the overcurrent condition  
The timer t  
resets if the output voltage V  
TSTART  
OUT  
reaches (V - V ) within t and then the normal  
IN  
FA  
TSTART  
operation continues. If the overcurrent condition is pres-  
is resolved, and the output voltage (V  
) reaches (V  
OUT  
IN  
ent for startup blanking time (t ), the output NFET  
TSTART  
- V ) the output NFET Q2 stays on and the FLAG (or  
FA  
Q2 is turned off, the timer t  
resets, and the FLAG  
TSTART  
FWD) deasserts. Figure 6 depicts a typical startup behav-  
(or FWD) pin asserts. A retry time delay (t  
) starts  
RETRY  
ior in autoretry current-limit mode.  
after t  
has elapsed and after the device comes  
TSTART  
t
t
t
t
t
t
RETRY  
TSTART  
DEB  
TSTART  
RETRY  
TSTART  
V
V
IN  
V
- V  
IN  
FA  
OUT  
I
LIM  
I
OUT  
DEVICE ENTERS  
THERMAL SHUTDOWN  
DEVICE COMES OUT OF  
THERMAL SHUTDOWN  
FLAG (or) FWD  
V
(1.5V typ)  
TSTART-REF  
V
TSTART  
NOTE: NOT TO SCALE  
Figure 6. Startup Fault Timing Diagram in Autoretry Current-Limit Mode  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
In autoretry current-limit mode during normal operation,  
and the FLAG (or FWD) pin asserts. A retry time delay  
if the device enters an overcurrent condition, the t  
(t  
) starts after t  
has elapsed and after the  
BLANK  
RETRY  
TSTART  
timer starts. The t  
overcurrent condition resolves before the t  
timer resets as and when the  
device comes out of thermal shutdown mode, if it was  
entered. During the t interval, the output NFET Q2  
BLANK  
duration  
BLANK  
RETRY  
has elapsed, and then the normal operation continues. If  
remains turned off. Once t  
has elapsed, the device  
RETRY  
the overcurrent condition is present for t duration or  
initiates the startup cycle. Figure 7 depicts a typical oper-  
ating behavior in autoretry current-limit mode.  
BLANK  
if the device junction temperature reaches T  
, the  
JC_MAX  
output NFET Q2 is turned-off, the t  
timer resets,  
BLANK  
OVERCURRENT EVENT  
OVERCURRENT CONDITION REMOVED  
t
t
TSTART  
t
t
t
TSTART  
BLANK  
RETRY  
RETRY  
V
OUT  
V
- V  
FA  
IN  
I
LIM  
I
OUT  
FLAG (or) FWD  
NOTE: NOT TO SCALE  
Figure 7. Overcurrent Fault Timing Diagram in Autoretry Current-Limit Mode  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
The autoretry feature reduces system power compared  
to continuous current-limit mode in case of overcurrent  
or short-circuit conditions. When the device is turned on  
t
TSTART  
I
=
I
LIM  
LOAD  
t
+
t
TRY  
RE  
]
[
TSTART  
for t  
time, the supply current is held at the current  
TSTART  
The duty cycle is dependent on t  
current-limit threshold setting of 300mA, output voltage of  
24V and output capacitance of 1000µF, the t time  
is ~80ms. With 1000ms (typ) of t  
cycle is ~8%, resulting in a 92% power reduction when  
compared to the device being on the entire time.  
time. For a  
TSTART  
limit. During t  
time, there is no current through the  
RETRY  
switch. Thus, the average output current is much less  
than the programmed current limit. Calculate the average  
output current using the following equation:  
TSTART  
time, the duty  
RETRY  
FAULT CONDITION  
REMOVED  
t
t
t
DEB  
TSTART  
DEB  
t
TSTART  
t
t
TSTART  
DEB  
V
OR EN CYCLE  
V OR EN CYCLE  
IN  
IN  
V
V
IN  
V
- V  
IN  
FA  
OUT  
I
LIM  
DEVICE COMES OUT OF  
THERMAL SHUTDOWN MODE  
DEVICE ENTERS THERMAL  
SHUTDOWN MODE  
I
OUT  
FLAG (or) FWD  
V
(1.5V typ)  
TSTART-REF  
V
TSTART  
NOTE: NOT TO SCALE  
Figure 8. Startup Fault Timing Diagram in Latchoff Current-Limit Mode  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
In latchoff current-limit mode during normal operation, if  
Latchoff Current-Limit Mode  
In latchoff current-limit mode during startup, the device  
operates in continuous current-limit mode until t  
the device enters an overcurrent condition, the t  
BLANK  
timer starts. The t  
timer resets as and when the  
BLANK  
.
TSTART  
overcurrent condition resolves before the t  
duration  
BLANK  
The timer t  
resets if the output voltage V  
TSTART  
OUT  
has elapsed, and then the normal operation continues. If  
the overcurrent condition exists for the t duration  
reaches (V - V ) within t and then the nor-  
IN  
FA  
TSTART  
BLANK  
mal operation continues. If the overcurrent condition is  
present for longer than startup blanking time (t ),  
the output NFET Q2 is turned off and latched, the timer  
or if the device junction temperature reaches T  
,
JC_MAX  
TSTART  
the output NFET Q2 is turned off and latched, the t  
BLANK  
timer resets, and the FLAG (or FWD) pin asserts. To reset  
the device, either toggle enable control signal (EN) or  
cycle the input voltage. Figure 9 depicts a typical operat-  
ing behavior in latchoff current-limit mode.  
t
resets, and the FLAG (or FWD) pin asserts. To  
TSTART  
reset the device, either toggle the enable control signal  
(EN) or cycle the input voltage. Figure 8 depicts a typical  
startup behavior in latchoff current-limit mode.  
OVERCURRENT  
EVENT  
LATCHOFF  
V
OR EN CYCLE  
IN  
t
t
t
TSTART  
BLANK  
DEB  
V
OVERCURRENT CONDITION REMOVED  
OUT  
V
- V  
FA  
IN  
I
LIM  
I
OUT  
FLAG (or) FWD  
NOTE: NOT TO SCALE  
Figure 9. Overcurrent Fault Timing Diagram in Latchoff Current-Limit Mode  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
between the OUT and IN pins to determine whether the  
reverse current is still present. Once the reverse current  
condition has been removed, input NFET Q1 turns back  
on and the FLAG (or REV) pin is deasserted. The input  
Reverse Current Protection  
In MAX17613A and MAX17613C, the reverse current  
protection feature is enabled and it prevents reverse  
current flow from the OUT to IN pins. In MAX17613B,  
the reverse current protection feature is disabled, which  
allows reverse current flow from the OUT to IN pins. This  
feature is useful in applications with inductive loads.  
NFET Q1 takes ~100μs (t  
) to turn on. Figure 10  
Q1_ON  
depicts typical behavior in slow reverse current condi-  
tions.  
A fast reverse current condition is detected if (V - V  
)
IN  
OUT  
The MAX17613A and MAX17613C devices monitor V  
IN  
< -V  
is present for reverse current blocking fast  
RIBF  
and V  
to provide true reverse current blocking when a  
OUT  
response time (t ). During this condition, only the input  
RIB  
reverse condition or input failure condition is detected. In  
both MAX17613A and MAX17613C devices, two reverse  
current protection features are implemented.  
NFET Q1 turns off and FLAG (or REV) is asserted while  
the output NFET Q2 is kept on. During and after this time,  
the device monitors the voltage difference between the  
OUT and IN pins to determine whether the reverse cur-  
rent is still present. Once the reverse current condition  
has been removed, input NFET Q1 turns back on and the  
FLAG (or REV) pin is deasserted. The input NFET Q1  
A slow reverse current condition is detected if (V  
-
IN  
V
OUT  
) < -V  
is present for reverse current blocking  
RIBS  
debounce blanking time (t  
). During this condition,  
DEBRIB  
only the input NFET Q1 turns off and FLAG (or REV) is  
asserted while the output NFET Q2 is kept on. During and  
after this time, the device monitors the voltage difference  
takes ~100μs (t  
) to turn on. Figure 11 depicts typi-  
Q1_ON  
cal behavior in fast reverse current conditions.  
t
t
t
Q1_ON  
DEBRIB  
DEBRIB  
t
DEBRIB  
t
Q1_ON  
t
RIB  
(V - V  
IN  
)
OUT  
0V  
(V - V  
IN  
)
OUT  
0V  
-V  
RIBS  
-V  
-V  
RIBS  
RIBF  
I
LOAD  
I
LIMIT  
0A  
0A  
I
LOAD  
-(V  
/R  
)
)
RIB_SLOW ON  
-(V /R  
RIB_FAST ON  
-(V )  
/R  
RIBS ON  
INPUT NFET  
Q1 STATUS  
INPUT NFET  
Q1 STATUS  
FLAG (or) REV  
FLAG (or) REV  
NOTE: NOT TO SCALE  
NOTE: TIME NOT TO SCALE  
Figure 10. Slow Reverse Current Fault Timing Diagram  
Figure 11. Fast Reverse Current Fault Timing Diagram  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Fault Output  
Applications Information  
The MAX17613A and MAX17613B devices have two  
open-drain fault outputs, FLAG and UVOV. They require  
external pullup resistors to a DC supply. The FLAG pin  
goes low when any of the following conditions occur:  
IN Capacitor  
A 0.47μF capacitor from the IN pin to GND is recom-  
mended to hold input voltage during sudden load current  
changes.  
Overcurrent duration exceeds blanking time t  
.
BLANK  
Hot Plug-In at the IN terminal  
Overcurrent duration exceeds startup blanking time  
(t ) during the startup cycle.  
In many system powering applications, an input-filtering  
capacitor is required to lower radiated emission and  
enhance ESD capability. In hot plug-in applications,  
parasitic cable inductance along with the input capacitor  
causes overshoot and ringing when a live power cable is  
connected to the input terminal.  
TSTART  
Reverse current is detected (MAX17613A only).  
Thermal shutdown is active.  
R  
is less than 1.5kΩ (max).  
SETI  
The other fault output UVOV goes low when input voltage  
falls below the UVLO threshold or rises above the OVLO  
threshold. Note that the UVLO fault has a debounce time  
of 16ms. This fault is removed 16ms after the input volt-  
age has crossed the UVLO threshold. This debounce also  
elapses only at powerup. As a consequence, the UVOV  
pin fault signal is always asserted at power-up for at least  
16ms.  
This effect causes the protection device to see almost  
twice the applied voltage. A transient voltage suppressor  
(TVS) is often used in industrial applications to protect  
the system from these conditions. A TVS that is capable  
of limiting surge voltage to 60V (max) should be placed  
close to the input terminal for enhanced protection. The  
tolerated slew rate at the IN pins is 100V/μs (max).  
The MAX17613C device has two open-drain fault outputs,  
FWD and REV. They require external pullup resistors to  
a DC supply. FWD goes low when any of the following  
conditions occur:  
Input Hard Short to Ground  
In many system applications, an input short-circuit pro-  
tection is required. The MAX17613A and MAX17613C  
devices detect reverse current entering at the OUT pin and  
flowing out of the IN pin, then turns off the internal FETs.  
The magnitude of reverse current depends on the induc-  
tance of input circuitry and any capacitance installed near  
the IN pins.  
Overcurrent duration exceeds the blanking time.  
Thermal shutdown is active.  
R  
is less than 1.5kΩ (max).  
SETI  
REV goes low when reverse current is detected.  
The devices can be damaged in case V goes so nega-  
IN  
tive that (V  
- V ) > 60V.  
OUT  
IN  
Thermal Shutdown Protection  
The device has the thermal shutdown feature to protect  
against overheating. The device turns off and the FLAG  
(or FWD) pin asserts when the junction temperature  
OUT Capacitor  
The maximum capacitive load (C  
connected is a function of current-limit setting (I  
mA), the startup time (t  
in μF) that can be  
MAX  
in  
LIM  
exceeds T  
(+155°C typ). The device exits thermal  
JC_MAX  
in ms) and the input volt-  
TSTART  
shutdown and resume normal operation after the junction  
temperature cools down by T (15°C typ), except  
age. C  
is calculated using the following relationship:  
MAX  
JC_HYS  
when in latchoff mode, the device remains latched off.  
ꢀꢁ  
The thermal limit behaves similar to the current limit. In  
autoretry mode, the thermal limit works with the autoretry  
timer. When the device comes out of thermal limit, the  
part is turned on after the retry time. In latchoff mode, the  
device latches off until power or EN is cycled. In continu-  
ous mode, the device only disables while the temperature  
is over the limit. There is no blanking time for thermal  
protection.  
For example, for V = 24V, t  
= 60ms, and I  
=
LIM  
IN  
TSTART  
1000mA, C  
equals 2500μF.  
MAX  
Output capacitor values in excess of C  
can trigger  
MAX  
false overcurrent condition. Note that the above expres-  
sion assumes no load current is drawn from the OUT pins.  
Any load current drawn would offset the capacitor charg-  
ing current resulting in a larger charging period; hence,  
the possibility of a false overcurrent condition.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
cause the device to reach the thermal shutdown threshold.  
Thermal vias from the exposed pad to the ground plane are  
highly recommended to increase system thermal capaci-  
tance while reducing the thermal resistance to ambient  
temperature.  
Hot Plug-In at the OUT terminal  
In some applications, there might be a possibility of apply-  
ing an external voltage at the OUT terminal of the devices  
with or without presence of input voltage. During these  
conditions, devices detect any reverse current entering  
at the OUT pin and flowing out of the IN pin and turn off  
the internal FETs. Parasitic cable inductance along with  
input and output capacitors cause overshoot and ringing  
when an external voltage is applied at the OUT terminal.  
This causes the protection devices to see up to twice the  
applied voltage, which can damage the devices. It is rec-  
ommended to maintain overvoltages such that the voltages  
at the pins do not exceed the absolute maximum ratings.  
The tolerated slew rate at the OUT pins is 100V/μs (max).  
ESD Protection  
The devices are specified for ±15kV (HBM) typical ESD  
resistance on IN when IN is bypassed to ground with  
a 0.47μF low-ESR ceramic capacitor. No capacitor is  
required for ±2kV (HBM) typical ESD on IN. All the pins  
have a ±2kV (HBM) typical ESD protection.  
Figure 12 shows the Human Body Model and Figure 13  
shows the current waveform it generates when discharged  
into a low impedance. This model consists of a 100pF  
capacitor charged to the ESD voltage of interest, which is  
then discharged into the device through a 1.5kΩ resistor.  
Output Freewheeling Diode for Inductive Hard  
Short to Ground  
In applications that require protection from a sudden short  
to ground with an inductive load or a long cable, a schott-  
ky diode between the OUT terminal and ground is recom-  
mended. This is to prevent a negative spike on the OUT  
due to the inductive kickback during a short-circuit event.  
R
1MΩ  
R
D
1.5kΩ  
C
Layout and Thermal Dissipation  
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR RESISTOR  
To optimize the switch response time to output short-circuit  
conditions, it is very important to keep all traces as short  
as possible to reduce the effect of undesirable parasitic  
inductance. Place input and output capacitors as close as  
possible to the device (no more than 5mm). The IN and  
OUT pins must be connected with wide short traces to the  
power bus. During normal operation, the power dissipation  
is small and the package temperature change is minimal.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
STORAGE  
CAPACITOR  
SOURCE  
Power dissipation under steady-state normal operation  
may be calculated as:  
Figure 12. Human Body ESD Test Model  
2
× R  
P
=
(I  
)
ON  
SS  
(
)
OUT  
Refer to the Electrical Characteristics table and Typical  
Operating Characteristics for R  
values at various oper-  
ON  
ating temperatures.  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
P
I
R
If the output is continuously shorted to ground at the  
maximum supply voltage, the switches with the autoretry  
option might not cause thermal shutdown detection to trip.  
Power dissipation in the devices operating in autoretry  
mode can be calculated using the following equation:  
AMPERES  
36.8%  
10%  
0
0
TIME  
V
× I  
× t  
(
)
START  
t
DL  
IN MAX  
OUT MAX  
( )  
(
)
t
t
RL  
P
=
)
CURRENT WAVEFORM  
AVG  
(
+ t  
START RETRY  
Attention must be given to continuous current-limit mode  
when the power dissipation during a fault condition can  
Figure 13. Human Body Current Waveform  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Ordering Information  
PART  
TEMP RANGE  
PIN PACKAGE  
FEATURE DIFFERENCES  
OV, UV, Reverse Voltage Protection  
OV,UV  
MAX17613AATP+T  
MAX17613BATP+T  
MAX17613CATP+T  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
20 TQFN-CU EP*  
20 TQFN-CU EP*  
20 TQFN-CU EP*  
Reverse Voltage Protection  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape-and-reel.  
*EP = Exposed pad.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX17613A/  
MAX17613B/  
MAX17613C  
4.5V to 60V, 3A Current-Limiter with  
OV, UV and Reverse Protection  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
2/19  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
28  

相关型号:

MAX1761EEE

Small, Dual, High-Efficiency Buck Controller for Notebooks
MAXIM

MAX1761EEE+

Switching Controller, Current-mode, 428kHz Switching Freq-Max, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1761EEE+T

Switching Controller, Current-mode, 428kHz Switching Freq-Max, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1761EEE-T

Switching Controller, Current-mode, 428kHz Switching Freq-Max, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1761EVKIT

Evaluation Kit for the MAX1761
MAXIM

MAX1762

High-Efficiency, 10-Pin レMAX, Step-Down Controllers for Notebooks
MAXIM

MAX1762-MAX1791

High-Efficiency, 10-Pin レMAX, Step-Down Controllers for Notebooks
MAXIM

MAX17620ATA+T

Switching Regulator, Current-mode, 1.8A, 4160kHz Switching Freq-Max, CMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, TDFN-8
MAXIM

MAX17623

2.9V to 5.5V,1A, Synchronous Step-Down Converter with Integrated MOSFETs
MAXIM

MAX17623ATA

2.9V to 5.5V,1A, Synchronous Step-Down Converter with Integrated MOSFETs
MAXIM

MAX17623EVKIT

2.9V to 5.5V Input-Voltage Range
MAXIM

MAX17624

2.9V to 5.5V,1A, Synchronous Step-Down Converter with Integrated MOSFETs
MAXIM