MAX17597ATE+T [MAXIM]

暂无描述;
MAX17597ATE+T
型号: MAX17597ATE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

稳压器 控制器
文件: 总29页 (文件大小:2478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6178; Rev 0; 1/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Benefits and Features  
The MAX17595/MAX17596/MAX17597 is a family of peak-  
current-mode controllers which contain all the circuitry  
required for the design of wide input-voltage flyback  
and boost regulators. The MAX17595 offers optimized  
input rising and falling thresholds for universal input  
AC-DC converters and telecom DC-DC (36V–72V input  
range) power supplies. The MAX17596 offers input rising  
and falling thresholds suitable for low-voltage DC-DC  
applications (4.5V–36V input range). The MAX17597  
offers all circuitry needed to implement a boost converter  
controller. All three controllers contain a built-in gate  
driver for external n-channel MOSFETs.  
S Peak Current Mode Offline (Universal Input AC)  
and Telecom (36V–72V) Flyback Controller  
(MAX17595)  
S Peak-Current-Mode DC-DC Flyback Controller  
(4.5V–36V Input Range) (MAX17596)  
S Peak-Current-Mode Nonsynchronous Boost PWM  
Controller (4.5V–36V Input Range) (MAX17597)  
S Current Mode Control Provides Excellent  
Transient Response  
S Low 20µA Startup Supply Current  
S 100kHz to 1MHz Programmable Switching  
The MAX17595/MAX17596/MAX17597 house an inter-  
nal error amplifier with 1% accurate reference, useful  
in implementations without the need for an external  
reference. The switching frequency is programmable  
from 100kHz to 1MHz with an accuracy of 8% using an  
external resistor, allowing optimization of magnetic and  
filter components, resulting in compact and cost-effective  
power conversion solutions. For EMI sensitive applica-  
tions, the MAX17595/MAX17596/MAX17597 family incor-  
porates a programmable-frequency dithering scheme,  
enabling low-EMI spread-spectrum operation.  
Frequency  
S Programmable Frequency Dithering for Low-EMI  
Spread-Spectrum Operation  
S Switching Frequency Synchronization  
S Adjustable Current Limit with External Current-  
Sense Resistor  
S Fast Cycle-By-Cycle Peak Current Limiting  
S Hiccup-Mode Short-Circuit Protection  
S Overtemperature Protection  
An EN/UVLO input allows the user to start the  
power supply precisely at the desired input voltage,  
while also functioning as an on/off pin. The OVI pin  
enables implementation of an input overvoltage protection  
scheme, ensuring that the converter shuts down when  
the DC input voltage exceeds a set maximum value. The  
SS pin allows programmable soft-start time for the power  
converter, and helps limit inrush current during startup.  
The MAX17595/MAX17596/MAX17597 family also allows  
the designer to choose between voltage soft-start and  
current soft-start modes, useful in optoisolated designs.  
A programmable slope compensation scheme is pro-  
vided to enhance the stability of the peak-current-mode  
control scheme.  
S Programmable Soft-Start and Slope Compensation  
S Programmable Voltage or Current Soft-Start  
Schemes  
S Input Overvoltage Protection  
S Space-Saving, 3mm x 3mm TQFN Package  
Applications  
Universal Input Offline AC-DC Power Supplies  
Wide-Range DC-Input Flyback/Boost Battery  
Chargers  
Battery-Powered Applications  
Industrial, Telecom, and Automotive Applications  
Hiccup-mode overcurrent protection and thermal  
shutdown are provided to minimize dissipation in  
overcurrent and overtemperature fault conditions. The IC  
is available in a space-saving 16-pin, 3mm x 3mm TQFN  
package with 0.5mm lead spacing.  
Ordering Information/Selector Guide appears at end of  
data sheet.  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX17595.related.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to SGND..........................................................-0.3V to +40V  
Maximum Input/Output Current (Continuous)  
V , NDRV ........................................................................100mA  
IN  
IN  
DRV  
DRV  
to SGND..................................-0.3V to +16V (MAX17595)  
to SGND..........-0.3V to +6V (MAX17596 and MAX17597)  
NDRV (pulsed, for less than 100ns) .................................... Q1A  
Continuous Power Dissipation TQFN (single-layer board)  
(derate 20.8mW/NC above +70NC)............................1666mW  
Operating Temperature Range........................ -40NC to +125NC  
Storage Temperature Range............................ -65NC to +150NC  
Junction Temperature .....................................................+150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
NDRV to SGND .................................... -0.3V to +(V  
EN/UVLO to SGND.................................. -0.3V to +(V + 0.3)V  
OVI, RT, DITHER, COMP, SS, FB,  
SLOPE to SGND .................................................... -0.3V to +6V  
CS to SGND ............................................................-0.8V to +6V  
PGND to SGND....................................................-0.3V to +0.3V  
+ 0.3)V  
DRV  
IN  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
Junction-to-Ambient Thermal Resistance (q )..............48°C/W  
Junction-to-Case Thermal Resistance (q ).....................7°C/W  
JA  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V = 12V (for the MAX17595, bring V up to 21V for startup), V  
= V  
= V  
= V  
= V  
= V  
= 0V,  
SGND  
IN  
IN  
CS  
SLOPE  
DITHER  
FB  
OVI  
V
= +2V; NDRV, SS, COMP are unconnected, R = 25kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless  
EN/UVLO  
RT  
VIN  
VDRV  
A
J
otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
MAX17595  
MAX17596/MAX17597  
8
29  
36  
V
Voltage Range  
V
V
V
IN  
IN  
4.5  
18.5  
3.5  
6.5  
3.3  
MAX17595  
20  
4
21.5  
4.4  
V
V
Bootstrap UVLO Wakeup  
Bootstrap UVLO Shutdown  
V
IN-UVR  
V
rising #  
IN  
IN  
MAX17596/MAX17597  
MAX17595  
7
7.7  
IN  
V
V
V
V
V
falling $  
< UVLO  
= 0V  
IN-UVF  
IN  
Level  
MAX17596/MAX17597  
3.9  
4.25  
V
Supply Start-Up Current  
I
IN  
VIN-  
STARTUP  
20  
32  
32  
FA  
IN  
(Under UVLO)  
V
V
Supply Shutdown Current  
Supply Current  
I
20  
2
FA  
IN  
IN-SH  
EN  
I
Switching, f  
= 400kHz  
mA  
IN  
IN-SW  
SW  
V
CLAMP (INC) (MAX17595 ONLY)  
IN  
MAX17595, I  
(Note 3)  
= 2mA sinking, V = 0V  
EN  
VIN  
V
Clamp Voltage  
V
30  
33  
36  
V
IN  
INC  
ENABLE (EN)  
V
1.16  
1.1  
1.21  
1.15  
1.26  
1.2  
V
V
V
rising #  
falling $  
ENR  
EN  
EN  
EN  
EN Undervoltage Threshold  
EN Input Leakage Current  
V
V
ENF  
I
= 1.5V, T = +25NC  
-100  
+100  
nA  
EN  
A
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for the MAX17595, bring V up to 21V for startup), V  
= V  
= V  
= V  
= V  
= V  
= 0V,  
SGND  
IN  
IN  
CS  
SLOPE  
DITHER  
FB  
OVI  
V
= +2V; NDRV, SS, COMP are unconnected, R = 25kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless  
EN/UVLO  
RT  
VIN  
VDRV  
A
J
otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL LDO (VDRV)  
8V < V < 15V and 0mA < I  
IN  
(MAX17595)  
< 50mA  
< 50mA  
VDRV  
7.1  
7.4  
7.7  
5.1  
V
Output Voltage Range  
V
V
DRV  
DRV  
6V < V < 12V and 0mA < I  
IN  
(MAX17596/MAX17597)  
VDRV  
4.7  
70  
4.9  
V
V
Current Limit  
Dropout  
I
100  
mA  
V
DRV  
VDRV-MAX  
V
= 4.5V, I  
= 20mA (MAX17596/  
IN  
VDRV  
V
4.2  
DRV  
VDRV-DO  
MAX17597)  
OVERVOLTAGE PROTECTION (OVI)  
V
1.16  
1.1  
1.21  
1.15  
2
1.26  
1.2  
V
V
rising #  
OVIR  
OVI  
OVI Overvoltage Threshold  
V
V
falling $  
OVIF  
OVI  
OVI Masking Delay  
t
Fs  
OVI-MD  
OVI Input Leakage Current  
OSCILLATOR (RT)  
I
V
= 1V, T = +25NC  
-100  
+100  
nA  
OVI  
OVI  
A
NDRV Switching Frequency  
Range  
f
100  
-8  
1000  
+8  
kHz  
%
SW  
NDRV Switching Frequency  
Accuracy  
(MAX17595/MAX17596)  
(MAX17597)  
46  
90  
48  
50  
95  
Maximum Duty Cycle  
D
%
MAX  
92.5  
SYNCHRONIZATION (DITHER)  
Synchronization Logic-High  
Input  
V
3
V
HI-SYNC  
Synchronization Pulse Width  
50  
ns  
Hz  
Synchronization Frequency  
Range  
f
(MAX17595/MAX17596)  
1.1 x f  
1.8 x f  
SW  
SYNCIN  
SW  
DITHERING RAMP GENERATOR (DITHER)  
Charging Current  
V
V
= 0V  
45  
43  
50  
50  
2
55  
57  
FA  
FA  
V
DITHER  
Discharging Current  
= 2.2V  
DITHER  
Ramp-High Trip Point  
Ramp-Low Trip Point  
0.4  
V
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for the MAX17595, bring V up to 21V for startup), V  
= V  
= V  
= V  
= V  
= V  
= 0V,  
SGND  
IN  
IN  
CS  
SLOPE  
DITHER  
FB  
OVI  
V
= +2V; NDRV, SS, COMP are unconnected, R = 25kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless  
EN/UVLO  
RT  
VIN  
VDRV  
A
J
otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SOFT-START/SOFT-STOP (SS)  
Soft-Start Charging Current  
I
9
10  
5
11  
5.6  
FA  
FA  
V
SSCH  
Soft-Stop Discharging Current  
SS Bias Voltage  
I
For soft-stop enabled parts  
Soft-stop completion  
4.4  
1.19  
SSDISCH  
V
1.21  
0.15  
1.23  
SS  
SS Discharge Threshold  
NDRV DRIVER (NDRV)  
Pulldown Impedance  
Pullup Impedance  
Peak Sink Current  
Peak Source Current  
Fall Time  
V
V
SSDISCH  
R
I
I
(sinking) = 100mA  
(sourcing) = 5mA  
1.37  
4.26  
1.5  
0.9  
10  
3
I
I
NDRV-N  
NDRV  
NDRV  
R
8.5  
NDRV-P  
C
C
C
C
= 10nF  
= 10nF  
= 1nF  
A
NDRV  
NDRV  
NDRV  
NDRV  
A
t
ns  
ns  
NDRV-F  
Rise Time  
t
= 1nF  
20  
NDRV-R  
CURRENT-LIMIT COMPARATOR (CS)  
Cycle-by-Cycle Peak -Current-  
Limit Threshold  
V
290  
340  
-122  
305  
360  
-102  
70  
320  
380  
-82  
mV  
mV  
mV  
ns  
CS-PEAK  
Cycle-by-Cycle Runaway  
Current-Limit Threshold  
V
CS-RUN  
Cycle-by-Cycle Reverse-  
Current Limit Threshold  
V
CS-REV  
Current-Sense Leading-Edge  
Blanking Time  
t
From NDRV rising # edge  
CS-BLANK  
From CS rising (10mV overdrive) to  
NDRV falling (excluding leading  
edge blanking)  
Propagation Delay from  
Comparator Input to NDRV  
t
40  
ns  
PDCS  
Number of Consecutive Peak-  
Current-Limit Events to Hiccup  
N
N
8
1
event  
event  
HICCUP-P  
Number of Runaway-Current-  
Limit Events to Hiccup  
HICCUP-R  
Overcurrent Hiccup Timeout  
Minimum On-Time  
32768  
130  
cycle  
ns  
t
90  
170  
ON-MIN  
SLOPE COMPENSATION (SLOPE)  
Slope Bias Current  
I
9
10  
11  
FA  
kI  
SLOPE  
Slope Resistor Range  
25  
200  
Slope Voltage Range to  
Enable Current Soft-Start and  
Minimum Slope Compensation  
0
200  
mV  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for the MAX17595, bring V up to 21V for startup), V  
= V  
= V  
= V  
= V  
= V  
= 0V,  
SGND  
IN  
IN  
CS  
SLOPE  
DITHER  
FB  
OVI  
V
= +2V; NDRV, SS, COMP are unconnected, R = 25kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless  
EN/UVLO  
RT  
VIN  
VDRV  
A
MIN  
4
J
otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
TYP  
MAX  
UNITS  
Slope Voltage Range to  
Enable Voltage Soft-Start and  
Minimum Slope Compensation  
V
Slope Voltage Range to  
Enable Voltage Soft-Start  
and Programmable Slope  
Compensation  
0.2  
4
V
Slope Compensation Ramp  
140  
165  
50  
190  
mV/Fs  
mV/Fs  
R
= 100kW  
SLOPE  
Default Slope Compensation  
Ramp  
V
< 0.2V or 4V < V  
SLOPE  
SLOPE  
PWM COMPARATOR  
Comparator Offset Voltage  
Current-Sense Gain  
V
V
- V  
CS  
1.65  
1.75  
1.81  
1.97  
13  
2
V
PWM-OS  
COMP  
A
DCOMP/DCS (T = +25NC)  
2.15  
20  
V/V  
FA  
CS-PWM  
A
CS Peak Slope Ramp Current  
I
Ramp current peak (T = +25NC)  
A
CSSLOPE  
Comparator Propagation  
Delay  
Change in V = 10mV (including internal  
CS  
lead-edge blanking)  
t
110  
ns  
PWM  
ERROR AMPLIFIER  
FB Reference Voltage  
FB Input Bias Current  
Voltage Gain  
V
V
V
, when I  
= 0 and V = 1.8V  
COMP  
1.19  
-100  
1.21  
1.23  
V
nA  
REF  
FB  
COMP  
I
= 1.5V, T = +25NC  
+100  
FB  
FB  
A
A
EAMP  
Gm  
80  
1.8  
10  
dB  
mS  
MHz  
FA  
Transconductance  
1.5  
2.1  
Transconductance Bandwidth  
Source Current  
BW  
Open-loop (gain = 1), -3dB frequency  
V
= 1.8V, V = 1V  
80  
80  
120  
120  
210  
210  
COMP  
COMP  
FB  
Sink Current  
V
= 1.8V, V = 1.75V  
FA  
FB  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Temperature rising  
+160  
20  
NC  
NC  
Note 2: All devices 100% production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 3: The MAX17595 is intended for use in universal input power supplies. The internal clamp circuit at V is used to prevent  
IN  
the bootstrap capacitor from changing to a voltage beyond the absolute maximum rating of the device when EN is low  
(shutdown mode). Externally limit the maximum current to V (hence to clamp) to 2mA (max) when EN is low.  
IN  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Characteristics  
VCC A J  
(V = 15V, V  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
IN  
EN/UVLO  
VIN  
BOOTSTRAP UVLO WAKE-UP LEVEL  
V
IN  
WAKE-UP LEVEL vs. TEMPERATURE  
V FALLING THRESHOLD  
IN  
vs. TEMPERATURE (MAX17595)  
(MAX17596/MAX17597)  
vs. TEMPERATURE (MAX17595)  
MAX17595/6/7 toc01  
MAX17595/6/7 toc02  
MAX17595/6/7 toc03  
20.04  
20.03  
20.02  
20.01  
20.00  
19.99  
19.98  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
7.025  
7.020  
7.015  
7.010  
7.005  
7.000  
6.995  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
EN/UVLO RISING THRESHOLD  
vs. TEMPERATURE  
V
FALLING THRESHOLD vs. TEMPERATURE  
IN  
(MAX17596/MAX17597)  
MAX17595/6/7 toc05  
MAX17595/6/7 toc04  
1.209  
1.208  
1.207  
1.206  
1.205  
1.204  
1.203  
1.202  
4.00  
3.95  
3.90  
3.85  
3.80  
3.75  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
EN/UVLO FALLING THRESHOLD  
vs. TEMPERATURE  
OVI RISING THRESHOLD  
vs. TEMPERATURE  
MAX17595/6/7 toc06  
MAX17595/6/7 toc07  
1.149  
1.148  
1.147  
1.146  
1.145  
1.211  
1.210  
1.209  
1.208  
1.207  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Characteristics (continued)  
(V = 15V, V  
IN  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
EN/UVLO  
VIN  
VCC A J  
OVI FALLING THRESHOLD  
vs. TEMPERATURE  
V
IN  
SUPPLY CURRENT UNDER UVLO  
SWITCHING CURRENT  
vs. TEMPERATURE  
MAX17595/6/7 toc10  
vs. TEMPERATURE  
MAX17595/6/7 toc08  
MAX17595/6/7 toc09  
1.1505  
1.1500  
1.1495  
1.1490  
1.1485  
1.1480  
25.5  
24.5  
23.5  
22.5  
21.5  
20.5  
19.5  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.1475  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
NDRV SWITCHING FREQUENCY  
vs. RESISTOR  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
MAX17595/6/7 toc11  
MAX17595/6/7 toc12  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
950  
850  
750  
650  
550  
450  
350  
250  
150  
50  
R
= 10kI  
RT  
R
= 100kI  
RT  
5
15 25 35 45 55 65 75 85 95  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
FREQUENCY SELECTION RESISTOR (kI)  
SWITCHING WAVEFORMS (MAX17595)  
FREQUENCY DITHERING vs. R  
DITHER  
MAX17595/6/7 toc13  
MAX17595/6/7 toc14  
14  
12  
10  
8
V
DRAIN  
100V/div  
6
I
PRI  
4
1A/div  
2
200 300 400 500 600 700 800 900 1000  
(kI)  
s/div  
R
DITHER  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Characteristics (continued)  
(V = 15V, V  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
IN  
EN/UVLO  
VIN  
VCC A J  
ENABLE STARTUP  
ENABLE SHUTDOWN  
HICCUP OPERATION  
MAX17595/6/7 toc17  
MAX17595/6/7 toc15  
MAX17595/6/7 toc16  
EN/UVLO  
5V/div  
EN/UVLO  
5V/div  
V
OUT  
10V/div  
V
OUT  
10V/div  
V
OUT  
V
DRAIN  
10V/div  
100V/div  
COMP  
1V/div  
COMP  
1V/div  
I
PRI  
2A/div  
2ms/div  
400µs/div  
1ms/div  
LOAD TRANSIENT RESPONSE  
(15V OUTPUT)  
SWITCHING CURRENT  
vs. SWITCHING FREQUENCY  
MAX17595/6/7 toc18  
MAX17595/6/7 toc19  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
V
(AC)  
OUT  
0.5V/div  
I
LOAD  
0.5A/div  
100 200 300 400 500 600 700 800 900 1000  
SWITCHING FREQUENCY (Hz)  
20ms/div  
BODE PLOT (15V OUTPUT)  
EFFICIENCY GRAPH (15V OUTPUT)  
MAX17595/6/7 toc20  
MAX17595/6/7 toc21  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 120V  
DC  
PHASE  
36°/div  
BANDWIDTH = 8.8kHz  
PHASE MARGIN = 64°  
GAIN  
10dB/div  
6 8 1  
2
4
6 8 1  
2
4 6 8  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
LOAD CURRENT (A)  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Pin Configuration  
TOP VIEW  
12  
11  
10  
9
SGND  
SS  
13  
14  
V
8
7
6
5
DRV  
V
IN  
MAX17595  
MAX17596  
MAX17597  
FB  
EN/UVLO 15  
16  
EP  
4
COMP  
OVI  
+
1
2
3
TQFN  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 12  
N.C.  
No Connection  
Slope Compensation Input. A resistor, R  
, connected from SLOPE to SGND programs the  
SLOPE  
amount of slope compensation with reference-voltage soft-start mode. Connecting this pin to  
SGND enables duty-cycle soft-start with minimum slope compensation of 50mV/Fs. Setting V  
> 4V enables reference voltage soft-start with minimum slope compensation of 50mV/Fs.  
2
3
4
SLOPE  
RT  
SLOPE  
Switching Frequency Programming Resistor Connection. Connect resistor R from RT to SGND to  
RT  
set the PWM switching frequency.  
Frequency Dithering Programming or Synchronization Connection. For spread-spectrum frequency  
operation, connect a capacitor from DITHER to SGND, and a resistor from DITHER to RT. To  
synchronize the internal oscillator to the externally applied frequency, connect DITHER/SYNC to  
the synchronization pulse.  
DITHER/SYNC  
Transconductance Amplifier Output. Connect the frequency compensation network between  
COMP and SGND.  
5
6
7
COMP  
FB  
Transconductance Amplifier Inverting Input  
Soft-Start Capacitor Pin for Flyback Regulator. Connect a capacitor C from SS to SGND to set  
SS  
the soft-start time interval.  
SS  
8
9
SGND  
CS  
Signal Ground. Connect SGND to the signal ground plane.  
Current-Sense Input. Peak-current-limit trip voltage is 300mV.  
Power Ground. Connect PGND to the power ground plane.  
External Switching nMOS Gate-Driver Output  
10  
11  
PGND  
NDRV  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Linear Regulator Output and Driver Input. Connect input bypass capacitor from V  
close as possible to the IC.  
to SGND as  
DRV  
13  
V
DRV  
Internal V  
a 1FF minimum ceramic capacitor.  
Regulator Input. Connect V to the input voltage source. Bypass V to PGND with  
IN IN  
DRV  
14  
15  
V
IN  
Enable/Undervoltage Lockout. To externally program the UVLO threshold of the input supply,  
connect a resistive divider between input supply, EN, and SGND.  
EN/UVLO  
Overvoltage Comparator Input. Connect a resistive divider between the input supply, OVI, and  
SGND to set the input overvoltage threshold.  
16  
OVI  
EP  
Exposed Pad  
Input Voltage Range (V  
)
IN  
Detailed Description  
The MAX17595 has different rising and falling under-  
The MAX17595 offers a bootstrap UVLO wakeup level  
of 20V with a wide hysteresis of 15V minimum, and is  
optimized for implementing isolated and non-isolated  
universal (85V to 265V AC) offline single-switch flyback  
converter or telecom (36V to 72V) power supplies. The  
MAX17596/MAX17597 offer a UVLO wakeup level of  
4.4V and are well-suited for low-voltage DC-DC flyback/  
boost power supplies. An internal 1% reference (1.21V)  
can be used to regulate the output down to 1.21V in  
nonisolated flyback and boost applications. Additional  
semi-regulated outputs, if needed, can be generated  
by using additional secondary windings on the flyback  
converter transformer.  
voltage lockout (UVLO) thresholds on the V pin than  
IN  
the thresholds of the MAX17596/MAX17597. The thresh-  
olds for the MAX17595 are optimized for implementing  
power supply startup schemes, typically used for offline  
AC-DC power supplies. The MAX17595 is well-suited for  
operation from rectified DC bus in AC-DC power-supply  
applications, which are typical of front-end industrial  
power-supply applications. As such, the MAX17595 has no  
limitationonmaximuminputvoltage,aslongastheexternal  
components are rated suitably and the maximum  
operating voltages of the MAX17595 are respected.  
The MAX17595 can be successfully used in universal  
input (85V to 265V AC) rectified bus applications, in recti-  
fied 3-phase DC bus applications, and in telecom (36V to  
72V DC) applications.  
The MAX17595/MAX17596/MAX17597 family utilizes  
peak-current-mode control and external compensation  
for optimizing closed-loop performance. The devices  
include cycle-by-cycle peak current limit, and eight  
consecutive occurrences of current-limit-event trig-  
ger hiccup mode, which protects external com-  
ponents by halting switching for a period of 32,768  
cycles. The devices also include voltage soft-start  
for nonisolated designs, and current soft-start for  
isolated designs to allow monotonic and smooth rise of the  
outpu voltage during startup. The voltage and current  
soft-start modes can be selected using the SLOPE pin.  
See Figure 1 for more information.  
The MAX17596/MAX17597 are intended to implement  
flyback (isolated and nonisolated) and boost convert-  
ers. The V pin of the MAX17596/MAX17597 has a  
IN  
maximum operating voltage of 36V. The MAX17596/  
MAX17597 implement rising and falling thresholds on  
the V pin that assume power-supply startup schemes  
IN  
typical of low-voltage DC-DC applications, down to  
an input voltage of 4.5V DC. Therefore, flyback/boost  
converters with a 4.5V to 36V supply voltage range can  
be implemented with the MAX17596/MAX17597.  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
THERMAL SENSOR  
50µA  
7.5V (MAX17595)  
OR  
5V (MAX17596/  
MAX17597)  
MAX17595  
MAX17596  
MAX17597  
DITHER  
V
DRV  
5V  
LDO  
LDO  
CONTROL  
AND  
2V/0.4V  
AV  
DRIVER LOGIC  
POK  
HICCUP  
V
DRV  
V
IN  
NDRV  
DRIVER  
PGND  
8 PEAK EVENTS  
OR 1 RUNAWAY  
SSDONE  
UVLO  
1.21V  
CHIPEN  
OSC  
OSC  
PEAKLIM  
COMP  
EN/  
UVLO  
PGND  
305mV  
360mV  
DITHER  
(SYNC)  
RUNAWAY  
COMP  
OVI  
1.21V  
BLANKING  
70ns  
CS  
PWM COMP  
RT  
FIXED  
OR VAR  
10µA  
10µA  
CHIPPEN  
SLOPE  
SLOPE  
DECODE  
SS  
SS  
SSDONE  
SS MODE OSC  
1.23V  
R
5µA  
COMP  
1X  
CHIPPEN/  
HICCUP  
(FACTORY OPTION)  
VOLTAGE  
SOFT-START  
1.21V  
SS MODE  
SS  
R
SGND  
FB  
SS  
CURRENT  
SOFT-START  
SS MODE  
Figure 1. MAX17595/MAX17596/MAX17597 Block Diagram  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
duration is twice that of the programmed soft-start period.  
This is particularly useful in implementing controlled  
shutdown of output voltage in isolated power converters.  
Internal Linear Regulator (V  
)
DRV  
The internal functions and driver circuits are designed  
to operate from 7.5V (MAX17595) or 5V (MAX17596/  
MAX17597) power supply voltages. The MAX17595/  
MAX17596/MAX17597 family has an internal linear regu-  
Switching Frequency Selection (RT)  
The ICs’ switching frequency is programmable between  
lator that is powered from the V pin. The output of the  
IN  
100kHz and 1MHz with a resistor R connected between  
RT  
linear regulator is connected to the V  
pin, and should  
DRV  
RT and SGND. Use the following formula to determine the  
be decoupled with a 1FF capacitor to ground for stable  
operation. The V regulator output supplies all the oper-  
appropriate value of R needed to generate the desired  
RT  
DRV  
output-switching frequency (f ):  
SW  
ating current of the MAX17595/MAX17596/MAX17597.  
10  
The maximum operating voltage on the V pin is 29V for  
IN  
10  
R
=
the MAX17595, and 36V for the MAX17596/MAX17597.  
RT  
f
SW  
n-Channel MOSFET Gate Driver (NDRV)  
The MAX17595/MAX17596/MAX17597 family offers a  
built-in gate driver for driving an external n-channel  
MOSFET. The NDRV pin can source/sink currents in  
excess of 650mA/1000mA.  
where f  
is the desired switching frequency.  
SW  
Frequency Dithering for  
Spread-Spectrum Applications (Low EMI)  
The switching frequency of the converter can be  
dithered in a range of Q10% by connecting a capaci-  
tor from DITHER/SYNC to SGND, and a resistor from  
DITHER to RT, as shown in the Typical Operating Circuits.  
Spread-spectrum modulation technique spreads the  
energy of switching frequency and its harmonics over a  
wider band while reducing their peaks, helping to meet  
stringent EMI goals.  
Maximum Duty Cycle  
The MAX17595/MAX17596 operate at a maximum duty  
cycle of 49%. The MAX17597 offers a maximum duty  
cycle of 94% to implement flyback and boost converters  
involving large input-to-output voltage ratios in DC-DC  
applications. Slope compensation is necessary for stable  
operation of peak-current-mode controlled converters  
such as the MAX17595/MAX17596/MAX17597 at duty  
cycles greater than 50%, in addition to the loop compen-  
sation required for small signal stability. The MAX17595/  
MAX17596/MAX17597 implement a SLOPE pin for this  
purpose. See the Slope Compensation section for more  
details.  
Applications Information  
Startup Voltage and Input Overvoltage  
Protection Setting (EN/UVLO, OVI)  
The devices’ EN/UVLO pin serves as an enable/disable  
input, as well as an accurate programmable input UVLO  
pin. The devices do not commence startup operation  
unless the EN/UVLO pin voltage exceeds 1.21V (typ).  
The devices turn off if the EN/UVLO pin voltage falls  
below 1.15V (typ). A resistor-divider from the input DC  
bus to ground can be used to divide down and apply a  
Soft-Start (SS)  
The MAX17595/MAX17596/MAX17597 devices imple-  
ment soft-start operation for the flyback/boost regulator.  
A capacitor connected to the SS pin programs the soft-  
start period. The soft-start feature reduces input inrush  
current during startup. The devices allow the end user  
to select between voltage soft-start, usually preferred in  
nonisolated applications, and current soft-start, which is  
useful in isolated applications to get a monotonic and  
smooth rise in output voltage. See the Input Voltage  
fraction of the input DC voltage (V ) to the EN/UVLO  
DC  
pin. The values of the resistor-divider can be selected  
so that the EN/UVLO pin voltage exceeds the 1.23V (typ)  
turn-on threshold at the desired input DC bus voltage. The  
same resistor-divider can be modified with an additional  
Range (V ) section.  
IN  
resistor (R ) to implement input overvoltage protec-  
OVI  
tion in addition to the EN/UVLO functionality as shown  
in Figure 2. When voltage at the OVI pin exceeds  
1.21V (typ), the devices stop switching and resume  
switching operations only if voltage at the OVI pin falls  
below 1.15V (typ). For given values of startup DC input  
Soft-Stop  
A soft-stop feature can be requested from the factory.  
This feature ramps down the duty cycle of operation of  
the converter to zero in a controlled fashion, and enables  
controlled ramp down of output voltage. The soft-stop  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
voltage (V  
) and input overvoltage-protection  
START  
voltage (V ), the resistor values for the divider can  
OVI  
be calculated as follows, assuming a 24.9kI resistor  
R
R
R
DC1  
DC2  
DC3  
for R  
:
OVI  
V
OVI  
R
SUM  
R
= R  
×
OVI  
1 kI  
EN  
V
START  
where R  
is in kI, while V  
and V  
are in volts.  
OVI  
R
START  
OVI  
EN/UVLO  
OVI  
V
START  
1.21  
= R  
+ R  
EN  
×
1 kI  
SUM  
OVI  
MAX17595  
MAX17596  
MAX17597  
R
R
EN  
where R  
R
is in kI, while V is in volts.  
START  
,
EN  
OVI  
In universal AC input applications, R  
to be implemented as equal resistors in series (R  
might need  
OVI  
SUM  
,
DC1  
R
DC2  
, and R ) so that voltage across each resistor is  
DC  
limited to its maximum operation voltage.  
Figure 2. Programming EN/UVLO and OVI  
R
SUM  
3
R
= R  
= R =  
DC3  
kI  
DC1  
DC2  
(V  
), and a bias voltage (V  
IN  
) that is bootstrapped  
BIAS  
OUT  
to the V pin through the diode (D2). If V  
exceeds  
BIAS  
For low-voltage DC-DC applications based on the  
MAX17596/MAX17597, a single resistor can be used in  
the sum of 7V, and the drop across D2 before the volt-  
age on C falls below 7V, then the V voltage is  
START  
IN  
the place of R  
mately 40V.  
, as the voltage across it is approxi-  
SUM  
sustained by V  
operating with energy from V  
, allowing the MAX17595 to continue  
BIAS  
. The large hysteresis  
BIAS  
(13V typ) of the MAX17595 allows for a small startup  
capacitor (C ). The low startup current (20FA typ)  
Startup Operation  
START  
The MAX17595 is optimized for implementing an offline  
allows the use of a large startup resistor (R  
),  
START  
single-switch flyback converter and has a 20V V UVLO  
IN  
thus reducing power dissipation at higher DC bus volt-  
ages. Figure 3 shows the typical RC startup scheme  
wake-up level with hysteresis of 15V (min). In offline  
applications, a simple cost-effective RC startup circuit is  
used. When the input DC voltage is applied, the startup  
for the MAX17595, when the output voltage V  
is  
OUT  
used as the bias voltage to sustain switching operation.  
might need to be implemented as equal, multiple  
resistor (R  
) charges the startup capacitor (C  
),  
START  
START  
R
START  
causing the voltage at the V pin to increase towards  
IN  
resistors in series (R , R , and R ) to share the  
IN1  
IN2  
IN3  
the wake-up V UVLO threshold (20V typ). During this  
time, the MAX17595 draws a low startup current of 20FA  
IN  
applied high DC voltage in offline applications so  
that the voltage across each resistor is limited to its  
(typ) through R  
. When the voltage at V reaches  
START  
IN  
maximum continuous operating voltage rating. R  
START  
the wake-up V UVLO threshold, the MAX17595 com-  
IN  
and C  
can be calculated as:  
START  
mences switching and control operations. In this con-  
dition, the MAX17595 draws 2mA (typ) current from  
Q
× f  
6
t
SS  
10  
GATE SW  
C
START  
, when operated at 1MHz switching frequency,  
C
= I  
+
×
FF  
START  
IN  
for its internal operation. In addition, the average value  
of gate drive current is also drawn from C , which  
10  
START  
where I is the supply current drawn at the V pin in  
IN  
GATE  
used in nC, f  
IN  
is a function of the gate charge of the external MOSFET  
used. Since this total current cannot be supported by  
mA, Q  
is the gate charge of the external MOSFET  
SW  
SS  
is the switching frequency of the convert-  
the current through R  
, the voltage on C  
starts  
START  
START  
er in Hz, and t is the soft-start time programmed for the  
to drop. When suitably configured, as shown in Figure  
9, the external MOSFET is switched by the NDRV pin  
and the flyback converter generates an output voltage  
flyback converter in ms. See the Programming Soft-Start  
of Flyback/Boost Converter (SS) section.  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
The startup capacitor (C  
) can be calculated as:  
START  
V
10 × 50  
(
)
START  
R
=
kI  
START  
1+ C  
Q
× f  
t
SS  
START  
GATE SW  
C
= I  
+
×
FF  
START  
IN  
6
10  
10  
where C  
is the startup capacitor in FF.  
START  
where I is the supply current drawn at the V pin in  
For designs that cannot accept power dissipation in the  
startup resistors at high DC input voltages in offline appli-  
cations, the startup circuit can be set up with a current  
source instead of a startup resistor as shown in Figure 4.  
IN  
IN  
mA, Q  
used in nC, f  
is the gate charge of the external MOSFET  
GATE  
is the switching frequency of the con-  
SW  
verter in kHz, and t is the soft-start time programmed  
SS  
for the flyback converter in ms.  
V
DC  
V
OUT  
R
R
R
IN1  
IN2  
IN3  
R
START  
V
C
DC  
F
V
OUT  
MAX17595  
NDRV  
CS  
V
IN  
LDO  
DRV  
C
START  
V
DRV  
C
VDRV  
Figure 3. MAX17595 RC-Based Startup Circuit  
V
DC  
R
R
R
IN1  
IN2  
IN3  
R
SUM  
V
V
OUT  
DC  
D1  
C
OUT  
V
OUT  
MAX17595  
R
ISRC  
NDRV  
CS  
V
IN  
LDO  
DRV  
C
START  
V
DRV  
R
S
C
VDRV  
Figure 4. MAX17595 Current-Source-Based Startup Circuit  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Resistors R  
and R  
can be calculated as:  
incurred to supply the operating current of the MAX17596/  
MAX17597 can be tolerated, the V pin is directly  
SUM  
ISRC  
IN  
V
START  
10  
connected to the DC input, as shown in Figure 5. In the  
case of higher DC input voltages (e.g., 16V to 32V DC),  
a startup circuit, such as that shown in Figure 6, can be  
used to minimize power dissipation in the startup circuit.  
In this startup scheme, the transistor (Q1) supplies the  
switching current until a bias winding NB comes up. The  
R
=
MW  
MW  
SUM  
V
BEQ1  
70  
R
=
ISRC  
The V  
UVLO wakeup threshold of the MAX17596/  
IN  
resistor (R ) can be calculated as:  
MAX17597 is set to 4.1V (typ) with a 200mV hysteresis,  
optimized for low-voltage DC-DC applications down to  
4.5V. For applications where the input DC voltage is low  
enough (e.g., 4.5V to 5.5V DC) that the power loss  
Z
R
= 9 ×(V  
6.3) kW  
Z
INMIN  
V
DC  
V
OUT  
D1  
V
IN  
V
DRV  
V
LDO  
IN  
C
OUT  
C
DRV  
Np  
Ns  
NDRV  
CS  
R
S
MAX17596  
MAX17597  
Figure 5. MAX17596/MAX17597 Typical Startup Circuit with V Connected Directly to DC Input  
IN  
V
DC  
D1  
R
Z
V
IN  
V
DRV  
NB  
Q
LDO  
1
C
Z
D1  
6.3V  
C
DRV  
OUT  
Np  
Ns  
V
IN  
C
IN  
NDRV  
CS  
R
S
MAX17596  
MAX17597  
Figure 6. MAX17596/MAX17597 Typical Startup Circuit with Bias Winding to Turn Off Q1 and Reduce Power Dissipation  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Programming Soft-Start of  
V
OUT  
Flyback/Boost Converter (SS)  
The soft-start period in the voltage soft-start scheme of  
the devices can be programmed by selecting the value  
of the capacitor connected from the SS pin to SGND. The  
R
U
MAX17595  
MAX17596  
MAX17597  
FB  
capacitor C can be calculated as:  
SS  
C
= 8.2645× t nF  
SS  
R
B
SS  
where t  
is expressed in ms. The soft-start period in  
SS  
the current soft-start scheme depends on the load at the  
output and the soft-start capacitor.  
Figure 7. Programming Output Voltage  
Programming Output Voltage  
The devices incorporate an error amplifier with a 1% pre-  
cision voltage reference that enables negative feedback  
control of the output voltage. The output voltage of the  
switching converter can be programmed by selecting the  
when needed. Set the corner frequency between 10MHz  
and 20MHz. After the leading-edge blanking time,  
the device monitors V . The duty cycle is terminated  
CS  
immediately when V exceeds 300mV.  
CS  
values for the resistor-divider connected from V  
, and  
OUT  
The devices offer a runaway current limit scheme that  
protects the devices under high-input-voltage short-  
circuit conditions when there is insufficient output volt-  
age available to restore inductor current built up during  
the on period of the flyback/boost converter. Either eight  
consecutive occurrences of the peak-current-limit event  
or one occurrence of the runaway current limit trigger a  
hiccup mode that protects the converter by immediately  
the flyback/boost output to ground, with the midpoint of  
the divider connected to the FB pin (Figure 7). With R  
B
selected in the 20kI to 50kI range, R can be calcu-  
lated as:  
U
V
OUT  
R
= R  
×
1 kI, whereR is in kI.  
U
B
B
1.21  
suspending switching for a period of time (t  
).  
RSTART  
Peak-Current-Limit Setting (CS)  
The devices include a robust overcurrent protection  
scheme that protects the device under overload and  
This allows the overload current to decay due to power  
loss in the converter resistances, load, and the output  
diode of the flyback/boost converter before soft-start  
is attempted again. The runaway current limit is set  
short-circuit conditions. A current-sense resistor (R  
CS  
in the Typical Operating Circuits), connected between  
the source of the MOSFET and PGND, sets the peak  
current limit. The current-limit comparator has a voltage  
at a V  
of 360mV (typ). The peak-current-limit-  
CS-PEAK  
triggered hiccup operation is disabled until the end of  
the soft-start period, while the runaway current-limit-  
triggered hiccup operation is always enabled.  
trip level (V  
) of 300mV. Use the following equa-  
CS-PEAK  
tion to calculate the value of R  
:
CS  
Programming Slope  
Compensation (SLOPE)  
300mV  
R
=
I
CS  
I
MOSFET  
The MAX17595/MAX17596 operate at a maximum duty  
cycle of 49%. In theory, they do not require slope  
compensation to prevent subharmonic instability that  
occurs naturally in continuous-conduction mode (CCM)  
peak-current-mode-controlled converters operating at  
duty cycles greater than 50%. In practice, the MAX17595/  
MAX17596 require a minimum amount of slope compen-  
sation to provide stable operation. The devices allow the  
user to program this default value of slope compensation  
simply by leaving the SLOPE pin unconnected. It is rec-  
ommended that discontinuous-mode designs also use  
this minimum amount of slope compensation to provide  
better noise immunity and jitter-free operation.  
where I  
is the peak current flowing through the  
MOSFET  
MOSFET. When the voltage produced by this current  
(through the current-sense resistor) exceeds the current-  
limit comparator threshold, the MOSFET driver (NDRV)  
terminates the current on-cycle within 30ns (typ).  
The devices implement 65ns of leading-edge blanking  
to ignore leading-edge current spikes. These spikes are  
caused by reflected secondary currents, capacitance  
discharging current at the MOSFET’s drain, and gate  
charging current. Use a small RC network for additional  
filtering of the leading edge spike on the sense waveform  
���������������������������������������������������������������� Maxim Integrated Products 16  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
The MAX17597 flyback/boost converter can be designed  
Error Amplifier, Loop Compensation,  
and Power Stage Design of  
to operate in either discontinuous-conduction mode  
(DCM) or to enter into the continuous-conduction mode  
at a specific load condition for a given DC input  
voltage. In continuous-conduction mode, the flyback/  
boost converter needs slope compensation to avoid  
subharmonic instability that occurs naturally over all  
specified load and line conditions in peak-current-mode  
controlled converters operating at duty cycles greater  
than 50%. A minimum amount of slope signal is added to  
the sensed current signal even for converters operating  
below 50% duty to provide stable, jitter-free operation.  
The SLOPE pin allows the user to program the necessary  
slope compensation by setting the value of the resistor  
Flyback/Boost Converter  
The flyback/boost converter requires proper loop  
compensation to be applied to the error-amplifier output  
to achieve stable operation. The goal of the compensator  
design is to achieve desired closed-loop bandwidth,  
and sufficient phase margin at the crossover frequency  
of the open-loop gain-transfer function of the converter.  
The error amplifier provided in the devices is a transcon-  
ductance amplifier. The compensation network used  
to apply the necessary loop compensation is shown in  
Figure 8.  
The flyback/boost converter can be used to implement  
the following converters and operating modes:  
(R ) connected from the SLOPE pin to ground.  
SLOPE  
S
8  
•ꢀ Nonisolated flyback converter in discontinuous-con-  
E
R
=
kI  
SLOPE  
duction mode (DCM flyback)  
1.55  
where the slope (S ) is expressed in mV/Fs.  
•ꢀ Nonisolated flyback converter in continuous-conduc-  
E
tion mode (CCM flyback)  
Frequency Dithering for  
•ꢀ Boost converter in discontinuous-conduction mode  
Spread-Spectrum Applications (Low EMI)  
The switching frequency of the converter can be dithered  
in a range of Q10% by connecting a capacitor from  
DITHER/SYNC to SGND, and a resistor from DITHER  
to RT as shown in the Typical Operating Circuits. This  
results in lower EMI.  
(DCM boost)  
•ꢀ Boost converter in continuous-conduction mode  
(CCM boost)  
Calculations for loop-compensation values (R , C , and  
C ) for these converter types and design procedures for  
power-stage components are detailed in the following  
sections.  
Z
Z
P
A current source at DITHER/SYNC charges the capacitor  
C
to 2V at 50FA. Upon reaching this trip point, it  
DITHER  
discharges C  
to 0.4V at 50FA. The charging and  
DITHER  
discharging of the capacitor generates a triangular wave-  
form on DITHER/SYNC with peak levels at 0.4V and 2V  
and a frequency that is equal to:  
COMP  
50FA  
f
=
TRI  
MAX17595  
R
Z
C
× 3.2V  
DITHER  
C
P
MAX17596  
MAX17597  
C
Z
typically, f  
should be set close to 1kHz. The resistor  
TRI  
R
connected from DITHER/SYNC to RT deter-  
DITHER  
mines the amount of dither as follows:  
R
RT  
DITHER  
%DITHER =  
R
Figure 8. Error-Amplifier Compensation Network  
where %DITHER is the amount of dither expressed as a  
percentage of the switching frequency. Setting R  
DITHER  
to 10 x R generates Q10% dither.  
RT  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Maximum secondary peak current:  
DCM Flyback  
I
PRIPEAK  
K
I
=
SECPEAK  
Primary Inductance Selection  
In a DCM flyback converter, the energy stored in the  
primary inductance of the flyback transformer is  
delivered entirely to the output. The maximum primary  
inductance value for which the converter remains in DCM  
at all operating conditions can be calculated as:  
Maximum primary peak current:  
I
xL  
x f  
PRI SW  
+ V )  
D
SECPEAK  
I
= I  
SECRMS PRIPEAK  
3 x(V  
OUT  
2
V
×D  
× 0.4  
× f  
(
)
For the purpose of current-limit setting, I  
lated as follows:  
can be calcu-  
INMIN  
MAX  
LIM  
L
PRIMAX  
V
+ V ×I  
(
)
OUT  
D
OUT SW  
I
= I  
×1.2  
LIM PRIPEAK  
where D  
is chosen as 0.35 for the MAX17595/  
MAX  
MAX17596 and 0.7 for the MAX17597; V is the  
voltage drop of the output rectifier diode on the secondary  
D
Primary Snubber Selection  
Ideally, the external MOSFET experiences a drain-source  
voltage stress equal to the sum of the input voltage and  
reflected voltage across the primary winding during the  
off period of the MOSFET. In practice, parasitic inductors  
and capacitors in the circuit, such as leakage inductance  
of the flyback transformer, cause voltage overshoot and  
ringing, in addition to the ideally expected voltage stress.  
Snubber circuits are used to limit the voltage overshoots  
to safe levels within the voltage rating of the external  
MOSFET. The snubber capacitor can be calculated  
using the following equation:  
winding, and f  
is the switching frequency of the power  
SW  
converter. Choose the primary inductance value to be  
less than L  
.
PRIMAX  
Duty Cycle Calculation  
The accurate value of the duty cycle (D ) for the  
selected primary inductance (L ) can be calculated  
NEW  
PRI  
using the following equation:  
2.5×L  
× V  
(
+ V ×I × f  
OUT SW  
)
PRI  
OUT  
D
D
=
NEW  
V
INMIN  
2
2
2 ×L ×I  
×K  
Turns Ratio Calculation (Ns/Np)  
Transformer turns ratio (K = Ns/Np) can be calculated as:  
LK PRIPEAK  
C
=
SNUB  
2
V
OUT  
V
+ V ×(1D  
)
(
)
OUT  
V
D
MAX  
MAX  
where L  
is the leakage inductance that can be  
LK  
K =  
obtained from the transformer specifications (usually  
1.5%–2% of the primary inductance).  
×D  
INMIN  
The power to be dissipated in the snubber resistor is  
calculated using the following formula:  
Peak/RMS Current Calculation  
The transformer manufacturer needs RMS current  
values in the primary and secondary to design the wire  
diameter for the different windings. Peak current calcula-  
tions are useful in setting the current limit. Use the fol-  
lowing equations to calculate the primary and secondary  
peak and RMS currents.  
2
P
= 0.833×L ×I  
× f  
SW  
SNUB  
LK PRIPEAK  
The snubber resistor is calculated based on the equation  
below:  
2
6.25× V  
Maximum primary peak current:  
OUT  
R
=
SNUB  
2
P
×K  
V
×D  
× f  
SNUB  
INMIN  
NEW  
I
=
PRIPEAK  
L
The voltage rating of the snubber diode is:  
PRI SW  
V
OUT  
K
Maximum primary RMS current:  
= I  
V
= V  
+ 2.5×  
DSNUB  
INMAX  
D
NEW  
3
I
×
PRIRMS PRIPEAK  
���������������������������������������������������������������� Maxim Integrated Products 18  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
A) Capacitor selection based on switching ripple  
Output Capacitor Selection  
X7R ceramic output capacitors are preferred in industrial  
applications due to their stability over temperature. The  
output capacitor is usually sized to support a step load  
of 50% of the maximum output current in the application,  
so that the output-voltage deviation is contained to 3% of  
the output-voltage change. The output capacitance can  
be calculated as follows:  
(MAX17596/MAX17597)  
For DC-DC applications, X7R ceramic capacitors  
are recommended due to their stability over the  
operating temperature range. The ESR and ESL of a  
ceramic capacitor are relatively low, so the ripple  
voltage is dominated by the capacitive component.  
For the flyback converter, the input capacitor sup-  
plies the current when the main switch is on. Use the  
following equation to calculate the input capacitor  
for a specified peak-to-peak input switching ripple  
I
× t  
RESPONSE  
STEP  
C
t
=
OUT  
V  
OUT  
(V  
IN_RIP  
):  
0.33  
1
+
2
RESPONSE  
f
f
SW  
NEW  
D
×I  
10.5×D  
(
)
C
NEW PRIPEAK  
C
=
IN  
2× f  
× V  
SW  
IN_RIP  
where I  
time of the controller, DV  
age deviation, and f is the target closed-loop crossover  
frequency. f is chosen to be one-tenth of the switching  
is the load step, t  
is the response  
RESPONSE  
STEP  
is the allowable output volt-  
OUT  
B) Capacitor selection based on rectified line voltage  
C
ripple (MAX17595)  
C
SW  
For the flyback converter, the input capacitor  
supplies the input current when the diode rectifier is  
frequency, f . For the flyback converter, the output  
capacitor supplies the load current when the main  
switch is on; therefore, the output voltage ripple is a  
function of load current and duty cycle. Use the following  
equation to calculate the output capacitor ripple:  
off. The voltage discharge (V  
average current, should be within the limits specified:  
), due to the input  
IN_RIP  
0.5×I  
×D  
PRIPEAK  
NEW  
× V  
IN_RIP  
C
=
IN  
2
f
RIPPLE  
D
× I  
K ×I  
NEW  
PRIPEAK  
OUT  
V  
=
COUT  
2×I  
× f  
× C  
where f  
, the input AC ripple frequency equal  
RIPPLE  
PRIPEAK SW  
OUT  
to the supply frequency for half-wave rectification,  
is two times the AC supply frequency for full-wave  
rectification.  
where I  
minimum input voltage.  
is load current and D  
is the duty cycle at  
OUT  
NEW  
Input Capacitor Selection  
C) Capacitor selection based on holdup time require-  
The MAX17595 is optimized to implement offline AC-DC  
converters. In such applications, the input capacitor  
must be selected based on either the ripple due to  
the rectified line voltage, or based on holdup-time  
requirements. Holdup time can be defined as the time  
period over which the power supply should regulate  
its output voltage from the instant the AC power fails.  
The MAX17596/MAX17597 are useful in implementing  
low-voltage DC-DC applications where the switching-  
frequency ripple must be used to calculate the input  
capacitor. In both cases, the capacitor must be sized to  
meet RMS current requirements for reliable operation.  
ments (MAX17595)  
For a given output power (P  
be delivered during holdup time (t  
voltage at which the AC supply fails (V  
the minimum DC bus voltage at which the converter  
) that needs to  
HOLDUP  
), DC bus  
HOLDUP  
), and  
INFAIL  
can regulate the output voltages (V  
), the input  
INMIN  
capacitor (C ) is estimated as:  
IN  
3×P  
× t  
HOLDUP  
2
HOLDUP  
2
C
=
IN  
(V  
V  
)
INFAIL  
INMIN  
the input capacitor RMS current can be calculated as:  
2
0.6× V  
× D  
(
)
INMIN  
MAX  
×L  
PRI  
I
=
INCRMS  
f
SW  
���������������������������������������������������������������� Maxim Integrated Products 19  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
where:  
External MOSFET Selection  
A MOSFET selection criterion includes maximum drain  
voltage, peak/RMS current in the primary, and the  
maximum allowable power dissipation of the package  
without exceeding the junction temperature limits. The  
voltage seen by the MOSFET drain is the sum of the input  
voltage, the reflected secondary voltage on the trans-  
former primary, and the leakage inductance spike. The  
I
OUT  
f
=
P
π × V  
× C  
OUT  
OUT  
1
C
=
Z
π ×R × f  
Z
1
P
C
=
P
π ×R × f  
SW  
MOSFET’s absolute maximum V rating must be higher  
Z
DS  
than the worst-case drain voltage:  
f
is the switching frequency of the devices.  
SW  
V
+ V  
OUT  
DIODE  
V
= V  
+
× 2.5  
CCM Flyback  
DSMAX  
INMAX  
K
Transformer Turns Ratio Calculation  
(K = Ns/Np)  
The transformer turns ratio can be calculated using the  
following formula:  
The drain current rating of the external MOSFET is  
selected to be greater than the worst-case peak-current-  
limit setting.  
Secondary Diode Selection  
Secondary-diode selection criteria includes the maxi-  
mum reverse voltage, average current in the secondary-  
reverse recovery time, junction capacitance, and the  
maximum allowable power dissipation of the package.  
The voltage stress on the diode is the sum of the output  
voltage and the reflected primary voltage. The maximum  
operating reverse-voltage rating must be higher than the  
worst-case reverse voltage:  
V
+ V ×(1D  
)
MAX  
(
)
OUT  
V
D
K =  
×D  
INMIN  
MAX  
where D  
is the duty cycle assumed at minimum  
input (0.35 for the MAX17595/MAX17596 and 0.7 for the  
MAX17597).  
MAX  
Primary Inductance Calculation  
Calculate the primary inductance based on the ripple:  
V
+ V ×(1D  
) ×K  
(
=
)
V
= 1.25×(K × V  
+ V  
)
OUT  
D
NOM  
SW  
SECDIODE  
INMAX  
OUT  
L
PRI  
2×I  
×β × f  
OUT  
The current rating of the secondary diode should be  
selected so that the power loss in the diode (given as  
the product of forward-voltage drop and the average  
diode current) should be low enough to ensure that the  
junction temperature is within limits. This necessitates  
where D  
, the nominal duty cycle at nominal operating  
NOM  
DC input voltage V  
, is given as:  
INNOM  
V
+ V ×K  
D
(
)
OUT  
D
=
NOM  
+ V ×K  
OUT D  
V
+ V  
that the diode current rating be in the order of 2 x I  
(
)
INNOM  
OUT  
to 3 x I  
. Select fast-recovery diodes with a recovery  
OUT  
The output current, down to which the flyback converter  
should operate in CCM, is determined by selection of  
the fraction A in the above primary inductance formula.  
For example, A should be selected as 0.15 so that the  
converter operates in CCM down to 15% of the maximum  
output load current. Since the ripple in the primary current  
waveform is a function of duty cycle and is maximum at  
maximum DC input voltage, the maximum (worst-case)  
load current down to which the converter operates in  
CCM occurs at maximum operating DC input voltage.  
time less than 50ns, or Schottky diodes with low junction  
capacitance.  
Error Amplifier Compensation Design  
The loop compensation values are calculated as:  
2
0.1× f  
SW  
1+  
× V  
× f  
×I  
OUT OUT  
f
P
R
= 450×  
Z
2×L  
PRI SW  
V
is the forward drop of the selected output diode at  
D
maximum output current.  
���������������������������������������������������������������� Maxim Integrated Products 20  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
of 50% of the maximum output current in the application  
so that the output-voltage deviation is contained to 3% of  
the output-voltage change. The output capacitance can  
be calculated as:  
Peak and RMS Current Calculation  
RMS current values in the primary and secondary are  
needed by the transformer manufacturer to design the  
wire diameter for the different windings. Peak current  
calculations are useful in setting the current limit. Use the  
following equations to calculate the primary and secondary  
peak and RMS currents.  
I
× t  
RESPONSE  
STEP  
C
=
OUT  
V  
OUT  
0.33  
1
Maximum primary peak current:  
t
(  
+
)
RESPONSE  
f
f
SW  
I
×K  
V
×D  
C
OUT  
INMIN MAX  
I
=
+
PRIPEAK  
1D  
2×L  
× f  
where I  
is the load step, t  
is the response  
RESPONSE  
MAX   
PRI SW   
STEP  
time of the controller, DV  
is the allowable output  
OUT  
Maximum primary RMS current:  
2
voltage deviation, and f is the target closed-loop cross-  
over frequency. f is chosen to be less than one-fifth of  
the worst-case (lowest) RHP zero frequency f  
right half-plane zero frequency is calculated as follows:  
C
2
C
I
+ ∆I  
I  
(
× ∆I  
)
PRIPEAK  
PRI  
PRIPEAK  
PRI  
I
=
. The  
PRIRMS  
RHP  
3
×
D
MAX  
2
(1D  
) × V  
OUT  
MAX  
f
=
where DI  
waveform and is given by:  
is the ripple current in the primary current  
PRI  
ZRHP  
2
2× π ×D  
×L  
×I  
×K  
MAX  
PRI OUT  
V
×D  
MAX  
For the CCM flyback converter, the output capacitor  
supplies the load current when the main switch is on;  
therefore, the output voltage ripple is a function of load  
current and duty cycle. Use the following equation to  
estimate the output voltage ripple:  
INMIN  
L
I  
=
PRI  
× f  
PRI SW  
Maximum secondary peak current:  
I
PRIPEAK  
K
I
=
SECPEAK  
I
×D  
OUT  
MAX  
OUT  
V  
=
COUT  
Maximum secondary RMS current:  
f
× C  
SW  
2
2
I
+ ∆I  
+ I  
× ∆I  
SECPEAK SEC  
(
)
SECPEAK  
SEC  
I
=
Input Capacitor Selection  
The design procedure for input capacitor selection is  
SECRMS  
3
× 1D  
identical to that outlined in the DCM Flyback section.  
MAX  
where DI  
waveform and is given by:  
is the ripple current in the secondary current  
External MOSFET Selection  
The design procedure for external MOSFET selection is  
identical to that outlined in the DCM Flyback section.  
SEC  
V
×D  
MAX  
INMIN  
I  
=
SEC  
Secondary-Diode Selection  
The design procedure for secondary-diode selection is  
identical to that outlined in the DCM Flyback section.  
L
× f  
×K  
PRI SW  
For the purpose of current-limit setting, the peak current  
can be calculated as follows:  
Error Amplifier Compensation Design  
In the CCM flyback converter, the primary inductance  
and the equivalent load resistance introduces a right  
half-plane zero at the following frequency:  
I
= I  
×1.2  
LIM PRIPEAK  
Primary RCD Snubber Selection  
The design procedure for primary RCD snubber selection  
is identical to that outlined in the DCM Flyback section.  
2
(1D  
) × V  
MAX  
OUT  
f
=
ZRHP  
Output Capacitor Selection  
X7R ceramic output capacitors are preferred in industrial  
applications due to their stability over temperature. The  
output capacitor is usually sized to support a step load  
2
2× π ×D  
×L  
×I  
×K  
MAX  
PRI OUT  
���������������������������������������������������������������� Maxim Integrated Products 21  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
The loop compensation values are calculated as:  
where is I given by:  
PK  
2
2×(V  
V  
)×I  
225×I  
(1D  
f
RHP  
OUT  
L
IN_MIN OUT  
× f  
OUT  
)
I
=
R
=
× 1+  
PK  
Z
5 × f  
INMIN SW  
MAX  
P   
where f , the pole due to output capacitor and load is  
P
L
is the minimum value of the input inductor taking  
INMIN  
given by:  
into account tolerance and saturation effects.  
(1+ D  
) ×I  
OUT  
MAX  
f
=
Output Capacitor Selection  
P
2× π × C  
× V  
OUT  
OUT  
The output capacitance can be calculated as follows:  
The above selection of R sets the loop-gain crossover  
I
× t  
RESPONSE  
Z
STEP  
C
t
=
OUT  
frequency (f , where the loop gain equals 1) equal to  
C
V  
OUT  
1/5th the right half-plane zero frequency.  
0.33  
1
f
ZRHP  
(  
+
)
RESPONSE  
f
C
f
f
SW  
C
5
where I  
time of the controller, DV  
voltage deviation, and f is the target closed-loop  
crossover frequency. f is chosen to be one-tenth of  
C
the switching frequency f . For the boost converter,  
is the load step, t  
is the response  
RESPONSE  
With the control loop zero placed at the load pole  
frequency:  
STEP  
is the allowable output  
OUT  
C
1
C
=
Z
2π ×R × f  
Z
P
SW  
the output capacitor supplies the load current when the  
main switch is on; therefore, the output voltage ripple is a  
function of duty cycle and load current. Use the following  
equation to calculate the output capacitor ripple:  
With the high-frequency pole placed at half the switching  
frequency:  
1
C
=
P
π ×R × f  
Z
SW  
I
×L ×I  
IN PK  
OUT  
V  
=
COUT  
V
× C  
OUT  
DCM Boost  
INMIN  
In a DCM boost converter, the inductor current returns to  
zero in every switching cycle. Energy stored during the  
on-time of the main switch Q1 is delivered entirely to the  
load in each switching cycle.  
Input Capacitor Selection  
The input ceramic capacitor value required can be  
calculated based on the ripple allowed on the input DC  
bus. The input capacitor should be sized based on the  
RMS value of the AC current handled by it. The calcula-  
tions are:  
Inductance Selection  
The design procedure starts with calculating the boost  
converter’s input inductor, such that it operates in  
DCM at all operating line and load conditions. The  
critical inductance required to maintain DCM operation is  
calculated as:  
3.75×I  
OUT  
×(1D  
C
=
IN  
V
× f  
)
MAX  
INMIN SWMIN  
The capacitor RMS can be calculated as:  
I
2
PK  
× 0.4  
V
V  
× V  
IN_MIN  
I
=
(
)
OUT  
IN_MIN  
CIN_RMS  
2× 3  
L
IN  
2
I
× V  
× f  
SW  
OUT  
OUT  
Error Amplifier Compensation Design  
The loop compensation values for the error amplifier can  
now be calculated as:  
where V  
is the minimum input voltage.  
INMIN  
Peak/RMS Currents Calculation  
For the purposes of setting the current limit, the peak cur-  
rent in the inductor can be calculated as:  
G
×G ×10  
M
DC  
2× π × f  
C
=
= G  
(
×10 nF  
DC  
)
Z
SW  
I
= I ×1.2  
where G , the DC gain of the power stage, is given as:  
LIM PK  
DC  
���������������������������������������������������������������� Maxim Integrated Products 22  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
The RMS current in the MOSFET is useful in estimating  
2
8×(V  
V  
)× f  
× V  
×L  
IN  
the conduction loss, and is given as:  
3
OUT  
INMIN  
SW  
OUT  
G
=
DC  
2
(2V  
V  
) ×I  
V  
OUT  
INMIN  
OUT  
I
×L  
× f  
PK  
INS SW  
I
=
MOSFETRMS  
3× V  
V
× C  
×(V  
)
INMIN  
INMIN  
OUT  
OUT  
OUT  
R
=
Z
I
× C ×(2V  
V  
)
where I  
operating input voltage, V  
is the peak current calculated at the lowest  
OUT  
Z
OUT  
INMIN  
PK  
.
INMIN  
where V  
is the minimum operating input voltage,  
INMIN  
CCM Boost  
and I  
is the maximum load current.  
OUT  
C
×ESR  
OUT  
R
In a CCM boost converter, the inductor current does  
not return to zero during a switching cycle. Since  
the MAX17597 implements a nonsynchronous boost  
converter, the inductor current will enter DCM operation  
at load currents below a critical value equal to half of the  
peak-peak ripple in the inductor current.  
C
=
P
Z
Slope Compensation  
In theory, the DCM boost converter does not require  
slope compensation for stable operation. In practice, the  
converter needs a minimum amount of slope for good  
noise immunity at very light loads. The minimum slope is  
set for the MAX17596/MAX17597 by leaving the SLOPE  
pin unconnected.  
Inductor Selection  
The design procedure starts with calculating the boost  
converter’s input inductor at nominal input voltage for  
a ripple in the inductor current equal to 30% of the  
maximum input current.  
Output Diode Selection  
The voltage rating of the output diode for the boost  
converter ideally equals the output voltage of the  
boost converter. In practice, parasitic inductances and  
capacitances in the circuit interact to produce voltage  
overshoot during the turn-off transition of the diode that  
occurs when the main switch Q1 turns on. The diode  
rating should therefore be selected with the necessary  
margin to accommodate this extra voltage stress. A volt-  
V
×D ×(1D)  
IN  
L
=
IN  
0.3×I  
× f  
OUT SW  
where D is the duty cycle calculated as:  
+ V V  
V
OUT  
D
IN  
D =  
V
+ V (R ×I  
)
OUT  
D
DS OUT  
age rating of 1.3 x V  
margin in most cases.  
provides the necessary design  
OUT  
V
is the voltage drop across the output diode of the  
D
boost converter at maximum output current, and R  
the resistance of the MOSFET in the on state.  
is  
DS  
The current rating of the output diode should be selected  
so that the power loss in the diode (given as the prod-  
uct of forward-voltage drop and the average diode  
current) should be low enough to ensure that the junction  
temperature is within limits. This necessitates the diode  
Peak/RMS Current Calculation  
For the purposes of setting the current limit, the peak  
current in the inductor and MOSFET can be calculated  
as follows:  
current rating to be in the order of 2 x I  
to 3 x I  
.
OUT  
OUT  
Select fast-recovery diodes with a recovery time less than  
50ns or Schottky diodes with low junction capacitance.  
V
×D  
×(1D  
)
I
OUT  
(1D)  
OUT  
MAX  
MAX  
I
=
+
PK  
L
× f  
INMIN SW  
MOSFET RMS Current Calculation  
The voltage stress on the MOSFET ideally equals the  
sum of the output voltage and the forward drop of the  
output diode. In practice, voltage overshoot and ringing  
occur due to action of circuit parasitic elements during  
the turn-off transition. The MOSFET voltage rating should  
be selected with the necessary margin to accommodate  
×1.2 for D  
< 0.5  
MAX  
0.25× V  
I
OUT  
(1D)  
OUT  
And, I  
=
+
PK  
L
× f  
INMIN SW  
×1.2 forD  
0.5  
MAX  
this extra voltage stress. A voltage rating of 1.3 x V  
provides the necessary design margin in most cases.  
OUT  
���������������������������������������������������������������� Maxim Integrated Products 23  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
D
, the maximum duty cycle, is obtained by substituting  
Error Amplifier Compensation Design  
The loop compensation values for the error amplifier can  
now be calculated as:  
MAX  
the minimum input operating voltage V  
equation above for duty cycle. L  
in the  
INMIN  
is the minimum  
INMIN  
value of the input inductor taking into account tolerance  
and saturation effects.  
2
250× V  
× C  
×(1D  
)
MIN  
OUT  
I
OUT  
×L  
R
=
Z
OUTMIN  
IN  
Output Capacitor Selection  
The output capacitance can be calculated as follows:  
where D  
is the duty cycle at the highest operating  
MIN  
I
× t  
RESPONSE  
input voltage, and I  
is the minimum load current.  
STEP  
OUTMIN  
C
t
=
OUT  
V  
OUT  
V
× C  
OUT OUT  
2×I  
C
=
Z
0.33  
1
×R  
Z
OUT  
1
(  
+
)
RESPONSE  
f
f
SW  
C
C
=
P
π × f  
×R  
Z
SW  
where I  
time of the controller, DV  
voltage deviation, and f is the target closed-loop  
crossover frequency. f is chosen to be one-tenth of  
is the load step, t  
is the response  
RESPONSE  
STEP  
is the allowable output  
OUT  
C
Slope Compensation Ramp  
The slope required to stabilize the converter at duty  
cycles greater than 50% can be calculated as follows:  
C
the switching frequency f . For the boost converter,  
SW  
the output capacitor supplies the load current when the  
main switch is on; therefore, the output voltage ripple is a  
function of duty cycle and load current. Use the following  
equation to calculate the output capacitor ripple:  
0.5×(0.82× V  
V  
)
OUT  
IN  
INMIN  
S
=
V/Fs,  
E
L
where L is in µH.  
IN  
I
×D  
MAX  
OUT  
C
Output Diodes Selection  
V  
=
COUT  
× f  
The design procedure for output-diode selection is  
OUT SW  
identical to that outlined in the DCM Boost section.  
Input Capacitor Selection  
MOSFET RMS Current Calculation  
The voltage stress on the MOSFET ideally equals the  
sum of the output voltage and the forward drop of the  
output diode. In practice, voltage overshoot and ringing  
occur due to action of circuit parasitic elements during  
the turn-off transition. The MOSFET voltage rating should  
be selected with the necessary margin to accommodate  
The input ceramic capacitor value required can be  
calculated based on the ripple allowed on the input DC  
bus. The input capacitor should be sized based on the RMS  
value of the AC current handled by it. The calculations are:  
3.75×I  
OUT  
C
=
IN  
V
× f  
×(1D  
)
MAX  
INMIN SW  
this extra voltage stress. A voltage rating of 1.3 x V  
OUT  
The input capacitor RMS current can be calculated as:  
I  
provides the necessary design margin in most cases.  
The RMS current in the MOSFET is useful in estimating  
the conduction loss, and is given as:  
LIN  
I
=
CIN_RMS  
2× 3  
I
× D  
MAX  
OUT  
where:  
I
=
MOSFETRMS  
(1D  
)
MAX  
V
×D  
×(1D  
)
MAX  
OUT  
MAX  
I  
=
LIN  
where D  
is the duty cycle at the lowest operating  
MAX  
L
× f  
INMIN SW  
input voltage, and I  
is the maximum load current.  
OUT  
forD  
< 0.5,  
MAX  
0.25× V  
OUT  
I  
=
LIN  
L
× f  
INMIN SW  
for D  
0.5  
MAX  
���������������������������������������������������������������� Maxim Integrated Products 24  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Circuits  
V
IN  
V
OUT  
R15  
R16  
V
OUT  
D2  
D6  
D4  
402kI  
402kI  
5
T1  
8
7
C9  
2.2µF  
50V  
C19  
OPEN  
R1  
0I  
C12  
1µF  
R14  
402kI  
6
1
V
IN  
PGND  
C13  
22µF  
C14  
22µF  
C15  
22µF  
C16  
22µF  
R1  
10  
1
AC1  
AC2  
C5  
100µF  
450V  
4
3
R17  
100kI  
R18  
100kI  
C10  
3300pF  
D1  
11  
L1  
6.6mH  
GND0  
D3  
R8  
1.5MI  
2
12  
2
C1  
0.1µF/  
275V AC  
V
IN  
R7  
1.5MI  
PGND  
GND0  
C6  
0.47µF  
PGND  
V
IN  
C7  
47nF  
SS  
R10  
0I  
SLOPE  
V
OUT  
R19  
0I  
R23  
OPEN  
NDRV  
PGND  
SGND  
DITHER/  
SYNC  
N1  
SGND  
R9  
10kI  
R26  
DITHER/  
SYNC  
8.06kI  
6
RT  
5
4
1
V
DRV  
R11  
OPEN  
R28  
562kI  
R25  
OPEN  
SGND  
R20  
100I  
DITHER/  
SYNC  
PGND  
MAX17595  
DITHER/  
SYNC  
V
CS  
IN  
2
C2  
SHORT  
V
FB  
C18  
15000pF  
R27  
20kI  
C11  
330pF  
R21  
0.1I  
SGND  
COMP  
R22  
1.2kI  
R2  
2.67MI  
R12  
12.1kI  
C17  
47pF  
V
DRV  
V
FB  
SGND  
R3  
C3  
SHORT  
C4  
OPEN  
C8  
R13  
10kI  
2.67MI  
2.2µF  
FB  
V
2
3
DRV  
1
U3  
V
DRV  
R24  
OPEN  
R4  
R29  
49.9kI  
N.C.  
N.C.  
2.67MI  
PGND  
EN/UVLO  
OVI  
EN/UVLO  
R5  
75kI  
OVI  
SGND  
R6  
24.9kI  
SGND  
SGND  
SGND  
Figure 9. MAX17595 Typical Application Circuit (Universal Offline Isolated Power Supply)  
���������������������������������������������������������������� Maxim Integrated Products 25  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Circuits (continued)  
V
V
OUT  
IN  
D2  
T1  
V
V
OUT  
IN  
C1  
47µF  
50V  
C2  
4.7µF  
50V  
C9  
22µF  
16V  
C10  
22µF  
16V  
C11  
22µF  
16V  
R1  
7.5kI  
C4  
33nF, 50V  
18V TO 36V  
INPUT  
5V, 1.5A  
OUTPUT  
D1  
C3  
0.22µF  
50V  
GND  
PGND  
V
IN  
SS  
EP  
C5  
47nF  
NDRV  
CS  
SLOPE  
N1  
R2  
SHORT  
R8  
100I  
V
OUT  
R3  
C6  
R9  
10kI  
300pF  
0.5I  
FB  
COMP  
PGND  
V
FB  
R12  
OPEN  
MAX17596  
R4  
15kI  
V
CC  
R14  
1kI  
R15  
V
DRV  
30.3kI  
C12  
OPEN  
C13  
R16  
20kI  
V
DRV  
4.7nF  
C7  
2.2µF  
16V  
V
FB  
C14  
33pF  
SGND  
RT  
V
IN  
R13  
511I  
U2  
R10  
17.4kI  
R5  
348kI  
2
R17  
EN/UVLO  
OVI  
U3  
1
3
EN/UVLO  
10kI  
R11  
OPEN  
R6  
20kI  
C8  
SHORT  
OVI  
DITHER  
R7  
10kI  
PGND  
Figure 10. MAX17596 Typical Application Circuit (Power Supply for DC-DC Applications)  
���������������������������������������������������������������� Maxim Integrated Products 26  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Typical Operating Circuits (continued)  
V
IN  
V
IN  
V
IN  
C1  
47µF  
C2  
0.1µF  
10.8V TO  
13.2V DC  
EP  
PGND  
SS  
C3  
47µF  
V
DRV  
C4  
2.2µF  
V
DRV  
R1  
120kI  
V
IN  
SLOPE  
FB  
L1  
220µH  
R2  
9.92kI  
MAX17597  
D1  
SS26-TP  
V
R3  
184kI  
OUT  
24V, 0.3A  
C7  
4.7µF/35V  
V
OUT  
NDRV  
CS  
N1  
R4  
5kI  
COMP  
PGND  
R8  
100I  
C5  
47nF  
C6  
120pF  
C8  
300pF  
R9  
0.5I  
V
IN  
R10  
17.4kI  
RT  
R5  
481kI  
EN/UVLO  
OVI  
R11  
OPEN  
R6  
25kI  
C9  
SHORT  
DITHER  
R7  
49.9kI  
SGND  
SGND  
PGND  
Figure 11. MAX17597 Typical Application Circuit (Nonsynchronous Boost Converter)  
���������������������������������������������������������������� Maxim Integrated Products 27  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
except for a connection at the least noisy section of the  
power ground plane, typically the return of the input filter  
capacitor. The negative terminal of the filter capacitor, the  
ground return of the power switch and current sensing  
resistor, must be close together. PCB layout also affects  
the thermal performance of the design. A number of  
thermal vias that connect to a large ground plane should  
be provided under the exposed pad of the part for  
efficient heat dissipation. For a sample layout that  
ensures first-pass success, refer to the MAX17595 evalu-  
ation kit layout available at www.maxim-ic.com. For  
universal AC input designs, follow all applicable safety  
regulations. Offline power supplies can require UL, VDE,  
and other similar agency approvals.  
Layout, Grounding and Bypassing  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents in high-frequency-switching  
power converters. This implies that the loop areas for  
forward and return pulsed currents in various parts of the  
circuit should be minimized. Additionally, small current  
loop areas reduce radiated EMI. Similarly, the heatsink  
of the MOSFET presents a dV/dt source; therefore,  
the surface area of the MOSFET heatsink should be  
minimized as much as possible.  
Ground planes must be kept as intact as possible. The  
ground plane for the power section of the converter  
should be kept separate from the analog ground plane,  
Ordering Information/Selector Guide  
TEMP  
RANGE  
PIN  
PACKAGE  
UVLO, V  
IN  
PART  
FUNCTIONALITY  
D
MAX  
CLAMP  
20V, Yes  
4V, No  
MAX17595ATE+ -40NC to +125NC  
MAX17596ATE+ -40NC to +125NC  
MAX17597ATE+ -40NC to +125NC  
16 TQFN-EP*  
16 TQFN-EP*  
16 TQFN-EP*  
Offline Flyback Controller  
Low-Voltage DC-DC Flyback Controller  
Boost Controller  
46%  
46%  
93%  
4V, No  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Exposed pad.  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains  
to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0136  
LAND PATTERN NO.  
90-0032  
16 TQFN  
T1633+4  
���������������������������������������������������������������� Maxim Integrated Products 28  
MAX17595/MAX17596/MAX17597  
Peak-Current-Mode Controllers for  
Flyback and Boost Regulators  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1/12  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
29  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX17598

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
MAXIM

MAX17598ATE+

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
MAXIM

MAX17598_13

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
MAXIM

MAX17599ATE+

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
MAXIM

MAX1759EUB

Buck/Boost Regulating Charge Pump in レMAX
MAXIM

MAX1759EUB+

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX1759EUB+T

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX1759EUB-T

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX176

Serial Output.250ksps.12-Bit ADC with Track/Hold and Reference
MAXIM

MAX1760

0.8A, Low-Noise, 1MHz, Step-Up DC-DC Converter
MAXIM

MAX17600

4A Sink /Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ASA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM