MAX17600 [MAXIM]

4A Sink /Source Current, 12ns, Dual MOSFET Drivers; 4A吸入/源出电流,为12ns ,双MOSFET驱动器
MAX17600
型号: MAX17600
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4A Sink /Source Current, 12ns, Dual MOSFET Drivers
4A吸入/源出电流,为12ns ,双MOSFET驱动器

驱动器
文件: 总12页 (文件大小:2831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6177; Rev 1; 5/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Features  
The MAX17600–MAX17605 devices are high-speed  
MOSFET drivers capable of sinking/sourcing 4A peak  
currents. The devices have various inverting and non-  
inverting part options that provide greater flexibility in  
controlling the MOSFET. The devices have internal logic  
circuitry that prevents shoot-through during output-state  
changes. The logic inputs are protected against voltage  
S Dual Drivers with Enable Inputs  
S +4V to +14V Single Power-Supply Range  
S 4A Peak Sink/Source Current  
S Inputs Rated to +14V, Regardless of V  
Voltage  
DD  
S Low 12ns Propagation Delay  
S 6ns Typical Rise and 5ns Typical Fall Times with  
spikes up to +14V, regardless of V voltage. Propagation  
DD  
1nF Load  
delay time is minimized and matched between the dual  
channels. The devices have very fast switching time,  
combined with short propagation delays (12ns typ),  
making them ideal for high-frequency circuits. The  
devices operate from a +4V to +14V single power  
supply and typically consume 1mA of supply cur-  
rent. The MAX17600/MAX17601 have standard TTL  
input logic levels, while the MAX17603/MAX17604/  
MAX17605 have CMOS-like high-noise margin (HNM)  
input logic levels. The MAX17600/MAX17603 are dual  
inverting input drivers, the MAX17601/MAX17604 are  
dual noninverting input drivers, and the MAX17602/  
MAX17605 devices have one noninverting and one  
inverting input. These devices are provided with enable  
pins (ENA, ENB) for better control of driver operation.  
S Matched Delays Between Channels  
S Parallel Operation of Dual Outputs for Larger  
Driver Output Current  
S TTL or HNM Logic-Level Inputs with Hysteresis for  
Noise Immunity  
S Low Input Capacitance: 10pF (typ)  
S Thermal Shutdown Protection  
S TDFN, µMAX, and SO Package Options  
S -40NC to +125NC Operating Temperature Range  
Typical Operating Circuit  
These devices are available in 8-pin (3mm x 3mm) TDFN,  
®
8-pin (3mm x 5mm) FMAX , and 8-pin SO packages and  
operate over the -40NC to +125NC temperature range.  
ENA  
V
DD  
(UP TO +14V)  
V
DD  
Applications  
OUTA  
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX17603  
MAX17604  
MAX17605  
Power MOSFET Switching  
Switch-Mode Power Supplies  
DC-DC Converters  
INA  
INB  
OUTB  
GND  
Motor Control  
Power-Supply Modules  
Ordering Information appears at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated  
Products, Inc.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
ABSOLUTE MAXIMUM RATINGS  
V
, INA, INB, ENA, ENB to GND........................-0.3V to +16V  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature ................................................... +150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+240NC  
DD  
OUTA, OUTB to GND............................................-0.3V to +16V  
Junction Operating Temperature Range ......... -40NC to +125NC  
Continuous Power Dissipation (T = +70NC)  
A
8-Pin TDFN (derate 23.8mW/NC above +70NC) ........1904mW  
8-Pin SO (derate 74mW/NC above +70NC)............. 588.2mW*  
8-Pin FMAX (derate 12.9mW/NC above +70NC).....1030.9mW  
*As per JEDEC 51 standard.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TDFN  
FMAX  
Junction-to-Ambient Thermal Resistance (B ) .......77.6NC/W  
Junction-to-Ambient Thermal Resistance (B ) ..........42NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................8NC/W  
Junction-to-Case Thermal Resistance (B ).................5NC/W  
JC  
JC  
SO  
Junction-to-Ambient Thermal Resistance (B ) ........136NC/W  
JA  
Junction-to-Case Thermal Resistance (B )...............38NC/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 12V, C = 0F, at T = -40NC to +125NC, unless otherwise noted. Typical values are specified at T = +25NC. Parameters  
DD  
L
A
A
specified at V  
= 4V apply to the TTL versions only.) (Note 2)  
DD  
PARAMETER  
POWER SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
DD  
TTL versions  
4
6
3
14  
14  
V
Operating Range  
V
V
DD  
DD  
HNM versions  
V
V
V
Undervoltage Lockout  
UVLO Hysteresis  
UVLO  
V
rising  
3.5  
200  
120  
1
3.85  
V
DD  
DD  
DD  
DD  
DD  
mV  
Fs  
UVLO to OUT_ Delay  
V
rising  
IDD_Q  
Not switching, V  
= 14V (Note 3)  
2
DD  
V
Supply Current  
mA  
V
= 4.5V, C = 1nF, both channels  
L
DD  
DD  
IDD_SW  
12  
18  
switching at 1MHz  
DRIVER OUTPUT (SOURCE) (OUTA, OUTB)  
Peak Output Current (Sourcing)  
I
V
V
V
= 14V, C = 10nF (Note 3)  
4
A
PK-P  
DD  
DD  
DD  
L
= 14V, I  
= 100mA  
0.88  
0.91  
1.85  
1.95  
Driver Output Resistance Pulling Up  
(Note 4)  
OUT_  
R
I
ON-P  
= 4V, I  
= 100mA  
OUT_  
DRIVER OUTPUT (SINK) (OUTA, OUTB)  
Peak Output Current (Sinking)  
I
V
V
V
= 14V, C = 10nF (Note 3)  
4
A
PK-N  
DD  
DD  
DD  
L
= 14V, I  
= -100mA  
0.5  
0.52  
0.95  
1
Driver Output Resistance Pulling  
Down (Note 4)  
OUT_  
R
I
ON-N  
= 4V, I  
= -100mA  
OUT_  
2
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 12V, C = 0F, at T = -40NC to +125NC, unless otherwise noted. Typical values are specified at T = +25NC. Parameters  
DD  
L
A
A
specified at V  
= 4V apply to the TTL versions only.) (Note 2)  
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUT (INA, INB)  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
2.1  
V
Logic-High Input Voltage  
Logic-Low Input Voltage  
V
V
V
V
IN_  
IN_  
IH  
4.25  
0.8  
2.0  
V
V
IL  
0.34  
0.9  
Logic Input Hysteresis  
V
HYS  
Logic Input Leakage Current  
Logic Input Bias Current  
Logic Input Capacitance  
ENABLE (ENA, ENB)  
I
V
= V  
= 0V or V  
(MAX17600/1/2)  
(MAX17603/4/5)  
-1  
+0.02  
+1  
FA  
FA  
pF  
LKG  
INA  
INA  
INB  
INB  
DD  
DD  
I
V
= V  
= 0V or V  
10  
10  
BIAS  
C
(Note 3)  
IN  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
EN_ rising  
2.1  
V
High Level Voltage  
Low Level Voltage  
V
V
EN_H  
EN_L  
4.25  
0.8  
2.0  
V
0.34  
0.9  
100  
200  
7
Enable Hysteresis  
EN_  
V
HYS  
50  
200  
400  
Enable Pullup Resistor to V  
R
kI  
ns  
DD  
pu  
100  
Propagation Delay from EN_ to OUT_  
(Note 3)  
t
pd  
EN_ falling  
7
SWITCHING CHARACTERISTICS (V  
= 14V) (Note 3)  
DD  
C = 1nF  
6
20  
40  
6
L
OUT_ Rise Time  
t
C = 4.7pF  
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
OUT_ Fall Time  
t
C = 4.7nF  
16  
25  
12  
12  
F
L
C = 10nF  
L
Turn-On Delay Time  
t
C = 1nF  
ns  
ns  
D-ON  
L
Turn-Off Delay Time  
t
C = 1nF  
L
D-OFF  
SWITCHING CHARACTERISTICS (V  
= 4.5V) (Note 3)  
DD  
C = 1nF  
5
L
OUT_ Rise Time  
OUT_ Fall Time  
t
C = 4.7pF  
15  
28  
5
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
t
C = 4.7nF  
10  
18  
F
L
C = 10nF  
L
3
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 12V, C = 0F, at T = -40NC to +125NC, unless otherwise noted. Typical values are specified at T = +25NC. Parameters  
DD  
L
A
A
specified at V  
= 4V apply to the TTL versions only.) (Note 2)  
DD  
PARAMETER  
Turn-On Delay Time  
Turn-Off Delay Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
12  
MAX  
UNITS  
ns  
t
C = 1nF  
L
D-ON  
t
C = 1nF  
12  
ns  
D-OFF  
L
MATCHING CHARACTERISTICS (Note 3)  
Matching Propagation Delays  
Between Channel A and Channel B  
V
= 14V, C = 10nF  
8
ns  
DD  
L
Note 2: All devices are production tested at T = +25NC. Limits over temperature are guaranteed by design.  
A
Note 3: Design guaranteed by bench characterization. Limits are not production tested.  
Note 4: For SOIC package options, these are only Typ parameters.  
Typical Operating Characteristics  
(C = 1nF, T = +25NC, unless otherwise noted.)  
L
A
RISE TIME vs. SUPPLY VOLTAGE  
FALL TIME vs. SUPPLY VOLTAGE  
(C = 1nF)  
PROPAGATION DELAY TIME (LOW TO HIGH)  
(C  
OUT_  
= 1nF)  
vs. SUPPLY VOLTAGE (C  
= 1nF)  
OUT_  
OUT_  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
18  
16  
14  
12  
10  
8
T
A
= +125°C  
T
= +85°C  
T
= +85°C  
A
A
T
A
= +125°C  
T
T
= +125°C  
T
= +85°C  
A
A
T
= +25°C  
= +25°C  
A
T
= +25°C  
A
A
T
= -40°C  
A
T
A
= 0°C  
8
T
= -40°C  
12  
A
T
= 0°C  
T
A
= 0°C  
A
T
= -40°C  
A
4
6
8
10  
14  
4
6
10  
12  
14  
4
6
8
10  
12  
14  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
DD  
SUPPLY VOLTAGE, V (V)  
DD  
DD  
PROPAGATION DELAY TIME (HIGH TO LOW)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(C = 0nF)  
SUPPLY CURRRENT vs. LOAD CAPACITANCE  
vs. SUPPLY VOLTAGE (C  
= 1nF)  
(V = 12V, C  
= 0nF)  
OUT_  
OUT_  
DD  
OUTB  
18  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
T
A
= +125°C  
1MHz  
500kHz  
T
= +85°C  
500kHz  
A
T
A
= +25°C  
1MHz  
100kHz  
T
6
= 0°C  
A
40  
30  
20  
10  
NO  
SWITCHING  
T
A
= -40°C  
100kHz  
NO SWITCHING  
0
4
8
10  
12  
14  
4
6
8
10  
12  
14  
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
LOAD CAPACITANCE (nF)  
DD  
DD  
4
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(C = 1nF, T = +25NC, unless otherwise noted.)  
L
A
INPUT THRESHOLD VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. LOGIC INPUT  
vs. SUPPLY VOLTAGE (C  
= 0nF)  
(V = 12V, C  
= 0nF)  
VOLTAGE (V = 12V, C  
= 0nF)  
OUT_  
DD  
OUT_  
DD  
OUT_  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1MHz  
RISING  
500kHz  
RISING  
FALLING  
FALLING  
100kHz  
NO SWITCHING  
4
6
8
10  
12  
14  
-40 -20  
0
20 40 60 80 100 120  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
SUPPLY VOLTAGE, V (V)  
AMBIENT TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
DD  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C = 4.7nF)  
MAX17600 toc12  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C = 4.7nF)  
(V = +4V, C  
= 10nF)  
DD  
OUTA  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc10  
MAX17600 toc11  
INA  
INA  
2V/div  
2V/div  
INA  
2V/div  
OUTA  
2V/div  
OUTA  
2V/div  
OUTA  
2V/div  
20ns/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C = 10nF)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +14V, C = 4.7nF)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +14V, C = 10nF)  
MAX17600 toc15  
DD  
OUTA  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc13  
MAX17600 toc14  
INA  
INA  
5V/div  
5V/div  
INA  
2V/div  
OUTA  
5V/div  
OUTA  
5V/div  
OUTA  
2V/div  
20ns/div  
20ns/div  
20ns/div  
5
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(C = 1nF, T = +25NC, unless otherwise noted.)  
L
A
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C  
= 4.7nF)  
(V = +14V, C  
= 10nF)  
(V = +14V, C  
= 4.7nF)  
OUTA  
MAX17600 toc18  
DD  
OUTA  
DD  
OUTA  
DD  
MAX17600 toc16  
MAX17600 toc17  
INA  
5V/div  
INA  
INA  
5V/div  
5V/div  
OUTA  
5V/div  
OUTA  
OUTA  
5V/div  
5V/div  
20ns/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C = 10nF)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C = 4.7nF)  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc19  
MAX17600 toc20  
INA  
5V/div  
INA  
5V/div  
OUTA  
5V/div  
OUTA  
5V/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C = 10nF)  
LOGIC OUTPUT vs. ENABLE  
(V = +14V, C = 0nF)  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc22  
MAX17600 toc21  
V
DD  
5V/div  
ENA  
5V/div  
INA  
5V/div  
INA  
5V/div  
OUTA  
OUTA  
10V/div  
5V/div  
4µs/div  
20ns/div  
6
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Pin Configurations  
TOP VIEW  
ENB OUTA  
8
V
OUTB  
5
DD  
TOP VIEW  
7
6
TOP VIEW  
+
ENA  
INA  
1
2
3
4
8
7
6
5
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX17603  
MAX17604  
MAX17605  
+ MAX17600  
MAX17601  
MAX17602  
MAX17603  
MAX17604  
MAX17605  
MAX17600  
MAX17601  
MAX17602  
MAX17603  
MAX17604  
MAX17605  
ENA  
INA  
1
8
7
6
5
ENB  
2
3
4
OUTA  
OUTA  
GND  
INB  
V
DD  
OUTB  
GND  
INB  
V
DD  
+
µMAX  
OUTB  
1
2
3
4
SO  
ENA INA GND INB  
TDFN  
Pin Description  
PIN  
NAME  
FUNCTION  
through a 100kI resistor. Leave unconnected for  
always-on operation. Connect to GND for disabling the corresponding channel.  
Enable Input for Driver A. Internally pulled to V  
DD  
1
ENA  
2
3
4
INA  
GND  
INB  
Logic Input for Channel A  
Ground  
Logic Input for Channel B  
Channel B Driver Output. Sources and sinks current for channel B to turn the external MOSFET at OUTB  
on or off.  
5
6
7
OUTB  
V
Power-Supply Input. Bypass to GND with one or more low-ESR 0.1FF ceramic capacitors.  
DD  
Channel A Driver Output. Sources and sinks current for channel A to turn the external MOSFET at OUTA  
on or off.  
OUTA  
Enable Input for Driver B. Internally pulled to V  
always-on operation. Connect to GND for disabling the corresponding channel.  
through a 100kI resistor. Leave unconnected for  
DD  
8
ENB  
EP  
Exposed Pad (TDFN Only). Internally connected to GND. Do not use the EP as the only ground connection.  
7
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Functional Diagram  
INA  
V
IH  
V
IL  
OUTA  
90%  
CHANNEL B  
GND  
10%  
t
t
D-ON  
D-OFF  
t
t
F
R
IN LOGIC  
LEVEL SHIFT DOWN  
PREDRIVER  
INB  
INB  
V
IH  
V = 5V  
L
V
IL  
OUTB  
BBM  
OUTB  
90%  
ENB  
10%  
t
IN LOGIC  
LEVEL SHIFT UP  
t
D-OFF  
D-ON  
PREDRIVER  
t
t
F
R
V
DD  
- 5V  
BG + UVLO +  
TSHDN  
Figure 1. Timing Diagram for the MAX17601/MAX17604  
V
DD  
BG + UVLO +  
TSHDN  
INA  
V
IH  
V
DD  
- 5V  
V
IL  
OUTA  
IN LOGIC  
LEVEL SHIFT UP  
90%  
10%  
PREDRIVER  
ENA  
INA  
t
t
D-OFF  
D-ON  
OUTA  
t
R
t
F
BBM  
V = 5V  
L
INA  
V
IH  
IN LOGIC  
LEVEL SHIFT DOWN  
V
IL  
PREDRIVER  
OUTB  
90%  
GND  
10%  
CHANNEL A  
t
t
D-ON  
D-OFF  
t
t
F
R
Figure 2. Timing Diagram for the MAX17602/MAX17605  
8
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Detailed Description  
INA  
V
IH  
The MAX17600–MAX17605 are high-speed MOSFET  
drivers capable of sinking/sourcing 4A peak currents.  
The devices have various inverting and noninverting part  
options that provide greater flexibility in controlling the  
MOSFET. The devices have internal logic circuitry that  
prevents shoot-through during output-state changes.  
The logic inputs are protected against voltage spikes  
V
IL  
OUTA  
90%  
10%  
t
t
D-OFF  
D-ON  
t
R
t
F
up to +16V, regardless of V  
voltage. Propagation  
DD  
delay time is minimized and matched between the dual  
channels. The devices have very fast switching time,  
combined with short propagation delays (12ns typ),  
making them ideal for high-frequency circuits. The  
devices operate from a +4V to +14V single power  
supply and typically consume 1mA of supply current.  
The MAX17600/MAX17601/MAX17602 have standard  
TTL input logic levels, while the MAX17603/MAX17604/  
MAX17605 have CMOS-like high-noise margin (HNM)  
input logic levels. The MAX17600/MAX17603 are dual  
inverting input drivers, the MAX17601/MAX17604 are  
dual noninverting input drivers, and the MAX17602/  
MAX17605 have one noninverting and one inverting  
input. These devices are provided with enable pins  
(ENA and ENB) for better control of driver operation.  
INB  
V
IH  
V
IL  
OUTB  
90%  
10%  
t
t
D-OFF  
D-ON  
t
t
F
R
Figure 3. Timing Diagram for the MAX17600/MAX17603  
ENA  
INA  
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX17603  
MAX17604  
MAX17605  
Logic Inputs  
The MAX17600/MAX17601/MAX17602 have standard  
TTL input logic levels, while the MAX17603/MAX17604/  
MAX17605 have CMOS-like HNM input logic levels (see  
the Electrical Characteristics table). Table 1 gives the  
truth table for various part options.  
OUTA  
C
OUTA  
V
DD  
GND  
INB  
V
DD  
OUTB  
C
OUTB  
Figure 4. Test Circuit for the Timing Diagrams  
Table 1. Truth Table  
ENABLE  
INPUTS  
LOGIC  
INPUTS  
DUAL NONINVERTING  
DRIVER  
DUAL INVERTING  
DRIVER  
ONE INVERTING AND ONE  
NONINVERTING DRIVER  
ENA  
ENB  
H
INA  
INB  
H
OUTA  
OUTB  
OUTA  
OUTB  
OUTA  
OUTB  
H
H
H
H
L
H
H
L
H
H
L
H
L
L
L
L
H
L
L
L
H
L
H
L
H
H
H
L
H
H
L
H
H
L
H
L
H
L
L
L
H
L
L
X
X
L
L
L
L = Logic-low, H = Logic-high.  
9
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
these components must be kept below the maximum  
power-dissipation limit.  
Undervoltage Lockout (UVLO)  
is below the UVLO threshold, the output  
When V  
DD  
stage n-channel device is on and the p-channel is off,  
independent of the state of the inputs. This holds the  
outputs low. The UVLO is typically 3.6V with 200mV  
typical hysteresis to avoid chattering. A typical falling  
delay of 2Fs makes the UVLO immune to narrow negative  
transients in noisy environments.  
The quiescent current is 1mA typical. The current  
required to charge and discharge the internal nodes  
is frequency dependent (see the Typical Operating  
Characteristics). The devices’ power dissipation when  
driving a ground referenced resistive load is:  
P = D x R  
(MAX) x I 2 per channel  
LOAD  
ON  
Driver Outputs  
The devices feature 4A peak sourcing/sinking capa-  
bilities to provide fast rise and fall times of the MOSFET  
gate. Add a resistor in series with OUT_ to slow the cor-  
responding rise/fall time of the MOSFET gate.  
where D is the fraction of the period the devices’ output  
pulls high, R (MAX) is the maximum pullup on-resist-  
ON  
ance of the device with the output high, and I  
output load current of the devices.  
is the  
LOAD  
For capacitive loads, the power dissipation is:  
P = C  
x (V )2 x FREQ per channel  
Applications Information  
LOAD  
DD  
where C  
is the capacitive load, V  
is the supply  
LOAD  
DD  
Supply Bypassing, Device  
Grounding, and Placement  
Ample supply bypassing and device grounding are  
extremely important because when large external  
voltage, and FREQ is the switching frequency.  
Layout Information  
The devices’ MOSFET drivers source and sink large  
currents to create very fast rise and fall edges at the  
gate of the switching MOSFET. The high di/dt can cause  
unacceptable ringing if the trace lengths and  
impedances are not well controlled. The following PCB  
layout guidelines are recommended when designing with  
the devices:  
capacitive loads are driven, the peak current at the V  
DD  
pin can approach 4A, while at the GND pin, the peak  
current can approach 4A. V drops and ground shifts  
DD  
are forms of negative feedback for inverters and, if  
excessive, can cause multiple switching when the  
inverting input is used and the input slew rate is low. The  
device driving the input should be referenced to the devic-  
es’ GND pin, especially when the inverting input is used.  
Ground shifts due to insufficient device grounding can  
disturb other circuits sharing the same AC ground return  
•ꢀ Placeꢀatꢀleastꢀoneꢀ2.2FF decoupling ceramic capacitor  
from V  
to GND as close as possible to the IC. At least  
DD  
one storage capacitor of 10FF (min) should be located  
on the PCB with a low-resistance path to the V pin  
DD  
path. Any series inductance in the V , OUT_, and/or  
DD  
of the devices. There are two AC current loops formed  
between the IC and the gate of the MOSFET being  
driven. The MOSFET looks like a large capacitance  
from gate to source when the gate is being pulled low.  
The active current loop is from OUT_ of the devices to  
the MOSFET gate to the MOSFET source and to GND  
of the devices. When the gate of the MOSFET is being  
pulled high, the active current loop is from OUT_ of the  
devices to the MOSFET gate to the MOSFET source to  
the GND terminal of the decoupling capacitor to the  
GND paths can cause oscillations due to the very high  
di/dt that results when the devices are switched with any  
capacitive load. A 2.2FF or larger value ceramic  
capacitor is recommended, bypassing V  
to GND and  
DD  
placed as close as possible to the pins. When driving  
very large loads (e.g., 10nF) at minimum rise time, 10FF or  
more of parallel storage capacitance is recommended. A  
ground plane is highly recommended to minimize ground  
return resistance and series inductance. Care should be  
taken to place the devices as close as possible to the  
external MOSFET being driven to further minimize board  
inductance and AC path resistance.  
V
V
terminal of the decoupling capacitor and to the  
terminal of the devices. While the charging current  
DD  
DD  
loop is important, the discharging current loop is also  
critical. It is important to minimize the physical distance  
and the impedance in these AC current paths.  
Power Dissipation  
Power dissipation of the devices consists of three  
components, caused by the quiescent current, capacitive  
charge and discharge of internal nodes, and the output  
current (either capacitive or resistive load). The sum of  
•ꢀ Inꢀ aꢀ multilayerꢀ PCB,ꢀ theꢀ componentꢀ surfaceꢀ layerꢀ  
surrounding the devices should consist of a ground plane  
containing the discharging and charging current loops.  
10  
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Ordering Information/Selector Guide  
PART  
PIN-PACKAGE  
8 TDFN-EP* (3mm x 3mm)  
8 SO  
CONFIGURATION  
Dual/Inverting  
LOGIC LEVELS  
TTL  
TOP MARK  
+BOJ  
+
MAX17600ATA+  
MAX17600ASA+  
MAX17600AUA+  
MAX17601ATA+  
MAX17601ASA+  
MAX17601AUA+  
MAX17602ATA+  
MAX17602ASA+  
MAX17602AUA+  
MAX17603ATA+  
MAX17603ASA+  
MAX17603AUA+  
MAX17604ATA+  
MAX17604ASA+  
MAX17604AUA+  
MAX17605ATA+  
MAX17605ASA+  
MAX17605AUA+  
Dual/Inverting  
TTL  
8 FMAX-EP*  
Dual/Inverting  
TTL  
+AACI  
+BOK  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
Dual/Noninverting  
Dual/Noninverting  
Dual/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Dual/Inverting  
TTL  
TTL  
8 FMAX-EP*  
TTL  
+AACJ  
+BOL  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
TTL  
TTL  
8 FMAX-EP*  
TTL  
+AACK  
+BOM  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
Dual/Inverting  
8 FMAX-EP*  
Dual/Inverting  
+AACL  
+BON  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
Dual/Noninverting  
Dual/Noninverting  
Dual/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
8 FMAX-EP*  
+AACM  
+BOO  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
8 FMAX-EP*  
+AACN  
Note: All devices are specified over the -40°C to +125°C temperature range. Optional 8-pin 2mm x 3mm TDFN package is  
available. Contact your Maxim sales representative for more information.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
8 TDFN-EP  
8 SO  
T833+2  
S8+2  
21-0137  
21-0041  
21-0107  
90-0059  
90-0096  
90-0145  
8 FMAX  
U8E+2  
11  
MAX17600–MAX17605  
4A Sink/Source Current, 12ns, Dual MOSFET Drivers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
1/12  
Initial release  
5/12  
Added the MAX17600  
1–12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, Inc. 160 Rio Robles Drive, San Jose, CA 95134 408-601-1000  
12  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX17600ASA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ASA+T

暂无描述
MAXIM

MAX17600ATA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ATA+T

暂无描述
MAXIM

MAX17600AUA+

Half Bridge Based MOSFET Driver,
MAXIM

MAX17600AUA+T

Half Bridge Based MOSFET Driver,
MAXIM

MAX17600EVKIT

4V to 14V Input Range
MAXIM

MAX17600_17

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17601

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17601ASA+

Half Bridge Based MOSFET Driver, 4A, BICMOS, PDSO8, SOP-8
MAXIM

MAX17601ATA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17601AUA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM