MAX17598_13 [MAXIM]

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers; 低IQ ,宽输入范围,有源钳位电流模式PWM控制器
MAX17598_13
型号: MAX17598_13
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
低IQ ,宽输入范围,有源钳位电流模式PWM控制器

控制器
文件: 总24页 (文件大小:1206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
General Description  
Benefits and Features  
The MAX17598/MAX17599 low I , active clamp current-  
Q
S Active Clamp, Peak Current-Mode Forward PWM  
mode PWM controllers contain all the control circuitry  
required for the design of wide-input isolated/non-iso-  
lated forward-converter industrial power supplies. The  
MAX17598 is well-suited for universal input (rectified 85V  
AC to 265V AC) or telecom (36V DC to 72V DC) power  
supplies. The MAX17599 is optimized for low-voltage  
industrial supplies (4.5V DC to 36V DC).  
Controller  
S 20FA Startup Current in UVLO  
S 4.5V to 36V Input-Supply Operating Range  
(MAX17599)  
S Programmable Input Undervoltage Lockout  
S Programmable Input Overvoltage Protection  
The devices include an AUX driver that drives an aux-  
iliary MOSFET (clamp switch) that helps implement the  
active-clamp transformer reset topology for forward con-  
verters. Such a reset topology has several advantages  
including reduced voltage stress on the switches, trans-  
former size reduction due to larger allowable flux swing,  
and improved efficiency due to elimination of dissipative  
snubber circuitry. Programmable dead time between the  
AUX and main driver allows for zero voltage switching (ZVS).  
S Programmable 100kHz to 1MHz Switching  
Frequency  
S Switching Frequency Synchronization  
S Programmable Frequency Dithering for Low EMI  
Spread-Spectrum Operation  
S Programmable Dead Time  
S Adjustable Soft-Start  
S Programmable Slope Compensation  
S Fast Cycle-by-Cycle Peak-Current-Limit  
The switching frequency is programmable from 100kHz  
to 1MHz for the devices with an accuracy of Q8%  
using an external resistor. This allows optimization of  
the magnetic and filter components, resulting in com-  
pact, cost-effective isolated/nonisolated power supplies.  
For EMI-sensitive applications, the ICs incorporate a  
programmable frequency-dithering scheme, enabling  
low-EMI spread-spectrum operation.  
S 70ns Internal Leading-Edge Current-Sense  
Blanking  
S Hiccup Mode Output Short-Circuit Protection  
S Soft-Stop for Well-Controlled Clamp Capacitor  
Discharge  
S Negative Clamp-Switch Current Limit  
S 3mm x 3mm, Lead-Free 16-Pin TQFN  
S -40°C to +125°C Operating Temperature Range  
An input undervoltage lockout (EN/UVLO) is provided for  
programming input-supply start voltage, and to ensure  
proper operation during brownout conditions. EN/UVLO  
input is also used to turn on/off the ICs. Input overvoltage  
(OVI) protection scheme is provided to make sure that  
the regulator shuts down when input supply exceeds its  
maximum allowed value.  
Applications  
Telecom and Datacom Power Supplies  
Isolated Battery Chargers  
To control inrush current, the devices incorporate an SS pin  
to set the soft-start time for the regulators. Power dissipa-  
tion under fault conditions is minimized by hiccup overcur-  
rent protection (hiccup mode). Soft-stop feature provides  
safe discharging of the clamp capacitor when the device  
is turned off, and allows the controller to restart in a well-  
controlled manner. Additionally, negative current limit is  
provided in the current-sense circuitry, helping limit clamp  
switch current under dynamic operating conditions.  
Servers and Embedded Computing  
Industrial Power Supplies  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part,  
refer to www.maximintegrated.com/MAX17598.related.  
SYNC feature is provided to synchronize multiple convert-  
ers to a common external clock in noise-sensitive applica-  
tions. Overtemperature fault triggers thermal shutdown for  
reliable protection of the device. The ICs are available in a  
16-pin, TQFN package with 0.5 mm lead spacing.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6179; Rev 1; 3/13  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
ABSOLUTE MAXIMUM RATINGS  
V
V
(MAX17599 only) ............................................-0.3V to +40V  
Maximum Input/Output Current (Continuous)  
, V ......................................................................100mA  
IN  
DRV  
to SGND  
V
IN DRV  
(MAX17598 Only) ..............................................-0.3V to +16V  
(MAX17599 Only) ................................................-0.3V to +6V  
NDRV (pulsed for less than 100ns) .........................+0.9A/-1.5A  
AUXDRV (pulsed for less than 100ns).....................+0.3A/-0.7A  
EN/UVLO to SGND.....................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70NC)  
IN  
A
NDRV, AUXDRV to PGND.......................-0.3V to (V  
OVI, RT, DITHER, COMP, SS, FB,  
SLOPE, DT to SGND ..........................................-0.3V to +6V  
CS to SGND ............................................................-0.8V to +6V  
PGND to SGND....................................................-0.3V to +0.3V  
+ 0.3V)  
TQFN (derate 20.8mW/°C above 70°C)....................1666mW  
Operating Temperature Range........................ -40°C to +125°C  
Maximum Junction Temperature.....................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
Soldering Temperature (reflow) ......................................+260°C  
DRV  
PACKAGE THERMAL CHARACTERISTICS  
(Note 1)  
TQFN  
Junction-to-Case Thermal Resistance (q ).................7°C/W  
JC  
Junction-to-Ambient Thermal Resistance (q ) ..........48°C/W  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 12V (for MAX17598, bring V up to 21V for startup), V = V  
= V = V  
= V  
= V  
SGND  
= 0V, V  
= +2V,  
EN/UVLO  
OVI  
IN  
IN  
CS  
DITHER  
FB  
PGND  
AUXDRV = NDRV = SS = COMP = SLOPE = unconnected, R = 25kI, R = 10kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to  
RT  
DT  
VIN  
VDRV  
A
J
+125NC, unless otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
MAX17598  
MAX17599  
8
29  
36  
V
Voltage Range  
V
V
V
IN  
IN  
4.5  
18.5  
3.8  
6.5  
3.6  
MAX17598  
20  
4.1  
7
21.5  
4.4  
7.5  
4.2  
V
V
Bootstrap UVLO Wakeup  
Bootstrap UVLO  
V
IN rising  
IN falling  
IN  
IN-UVR  
MAX17599  
MAX17598  
MAX17599  
IN  
V
V
IN-UVF  
Shutdown Level  
3.9  
V
Supply Startup Current  
I
IN  
IN-  
STARTUP  
V
V
< UVLO  
= 0V  
20  
32  
32  
FA  
IN  
(under UVLO)  
V
Supply Shutdown  
IN  
I
20  
2
FA  
mA  
V
IN-SH  
EN  
Current  
V
Supply Current  
Clamp Voltage  
I
Switching, f  
= 400kHz  
IN  
IN  
IN-SW  
SW  
V
= 0V, I = 2mA sinking  
IN  
EN  
V
V
30  
33  
36  
INC  
(MAX17598) (Note 3)  
ENANBLE (EN)  
V
V
V
V
rising  
falling  
1.16  
1.1  
1.21  
1.15  
1.26  
1.20  
+100  
ENR  
EN  
EN  
EN  
EN Threshold  
V
V
ENF  
EN Input Leakage Current  
I
= 1.5V, T = +25NC  
-100  
nA  
EN  
A
Maxim Integrated  
2
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for MAX17598, bring V up to 21V for startup), V = V  
= V = V  
= V  
= V  
SGND  
= 0V, V  
= +2V,  
EN/UVLO  
OVI  
IN  
IN  
CS  
DITHER  
FB  
PGND  
AUXDRV = NDRV = SS = COMP = SLOPE = unconnected, R = 25kI, R = 10kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to  
RT  
DT  
VIN  
VDRV  
A
J
+125NC, unless otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
INTERNAL LDO (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
DRV  
8V < V < 15V and 0mA < I  
IN  
50mA (MAX17598)  
<
<
VDRV  
7.1  
4.7  
7.4  
7.7  
5.1  
V
Output Voltage Range  
V
V
DRV  
VDRV  
6V < V < 15V and 0mA < I  
IN  
50mA (MAX17599)  
VDRV  
4.9  
V
V
Current Limit  
Dropout  
I
70  
100  
mA  
V
DRV  
VDRV-MAX  
V
V
= 4.5V, I = 20mA (MAX17599)  
VDRV  
4.2  
DRV  
VDRV-DO  
IN  
OVERVOLTAGE PROTECTION (OVI)  
V
V
V
rising  
falling  
1.16  
1.1  
1.21  
1.15  
2
1.26  
1.2  
OVIR  
OVI  
OVI Overvoltage Threshold  
V
V
OVIF  
OVI  
OVI Masking Delay  
t
Fs  
OVI-MD  
OVI Input Leakage Current  
OSCILLATOR (RT)  
I
V
= 1V, T = +25NC  
-100  
100  
+100  
1000  
nA  
OVI  
OVI  
A
NDRV Switching Frequency  
Range  
f
kHz  
SW  
NDRV Switching Frequency  
Accuracy  
-8  
+8  
74  
%
%
Maximum Duty Cycle  
D
f
= 400KHz, R = 10kI  
71  
72.5  
50  
MAX  
SW  
DT  
SYNCHRONIZATION (DITHER/SYNC)  
Synchronization Logic-High  
Input  
V
3
V
IH-SYNC  
Synchronization Pulse Width  
ns  
Synchronization Frequency  
Range  
1.1 x  
1.3 x  
f
SYNC  
f
f
SW  
SW  
DITHERING RAMP GENERATOR (DITHER/SYNC)  
Charging Current  
45  
43  
50  
55  
57  
FA  
FA  
Discharging Current  
Ramp-High Trip Point  
Ramp-Low Trip Point  
50  
2
V
0.4  
Maxim Integrated  
3
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for MAX17598, bring V up to 21V for startup), V = V  
= V = V  
= V  
= V  
SGND  
= 0V, V  
= +2V,  
EN/UVLO  
OVI  
IN  
IN  
CS  
DITHER  
FB  
PGND  
AUXDRV = NDRV = SS = COMP = SLOPE = unconnected, R = 25kI, R = 10kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to  
RT  
DT  
VIN  
VDRV  
A
J
+125NC, unless otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SOFT-START/SOFT-STOP (SS)  
Soft-Start Charging Current  
I
9
10  
5
11  
5.6  
FA  
FA  
SSCH  
Soft-Stop Discharging  
Current  
I
4.4  
SSDISCH  
SS Bias Voltage  
V
1.19  
1.21  
0.15  
1.23  
V
V
SS  
SS Discharge Threshold  
NDRV DRIVER (NDRV)  
Pulldown Impedance  
V
Soft-stop completion  
SSDISCH  
I
I
R
I
I
(sinking) = 100mA  
(sourcing) = 50mA  
1.37  
3
NDRV-N  
NDRV  
NDRV  
Pullup Impedance  
Peak Sink Current  
Peak Source Current  
Fall Time  
R
4.26  
1.5  
0.9  
10  
8.5  
NDRV-P  
C
C
C
= 10nF  
= 10nF  
= 1nF  
A
A
NDRV  
NDRV  
NDRV  
t
ns  
NDRV-F  
Rise Time  
t
C
= 1nF  
20  
ns  
NDRV-R  
NDRV  
AUXDRV DRIVER (AUXDRV)  
Pulldown Impedance  
I
I
R
I
I
(sinking) = 100mA  
3.35  
7
AUXDRV-N  
AUXDRV  
AUXDRV  
Pullup Impedance  
Peak Sink Current  
Peak Source Current  
Fall Time  
R
(sourcing) = 50mA  
= 10nF  
9.78  
0.7  
0.3  
16  
19  
AUXDRV-P  
C
C
C
A
A
AUXDRV  
AUXDRV  
AUXDRV  
= 10nF  
t
= 1nF  
ns  
AUXDRV-F  
Rise Time  
t
C
= 1nF  
32  
ns  
AUXDRV-R  
AUXDRV  
DEAD TIME (DT)  
R
R
R
R
= 10kI  
= 100kI  
= 10kI  
= 100kI  
25  
250  
25  
DT  
DT  
DT  
DT  
NDRV$ to AUXDRV$  
AUXDRV# to NDRV#  
NDRV to AUXDRV Delay  
(Dead Time)  
t
ns  
DT  
250  
CURRENT-LIMIT COMPARATOR (CS)  
Cycle-by-Cycle Peak-  
Current-Limit Threshold  
V
290  
340  
-122  
305  
360  
-102  
320  
380  
-82  
mV  
mV  
mV  
CS-PEAK  
Cycle-by-Cycle Runaway-  
Current-Limit Threshold  
V
CS-RUN  
Cycle-by-Cycle Reverse-  
Current-Limit Threshold  
V
CS-REV  
Maxim Integrated  
4
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for MAX17598, bring V up to 21V for startup), V = V  
= V = V  
= V  
= V  
SGND  
= 0V, V  
= +2V,  
EN/UVLO  
OVI  
IN  
IN  
CS  
DITHER  
FB  
PGND  
AUXDRV = NDRV = SS = COMP = SLOPE = unconnected, R = 25kI, R = 10kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to  
RT  
DT  
VIN  
VDRV  
A
J
+125NC, unless otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current-Sense Leading-Edge  
Blanking Time  
t
From NDRV# edge  
70  
70  
ns  
CS-BLANK  
Current-Sense-Blanking Time  
for Reverse-Current Limit  
t
CS-BLANK-  
Rev  
From AUXDRV$ edge  
ns  
ns  
From CS rising (10mV overdrive) to  
NDRV falling (excluding leading-edge  
blanking)  
Propagation Delay from  
Comparator Input to NDRV  
t
40  
PDCS  
Number of Consecutive  
Peak-Current-Limit Events to  
HICCUP  
N
8
1
event  
event  
HICCUP-P  
Number of Runaway Current-  
Limit Events to HICCUP  
N
-HICCUP-R  
Overcurrent Hiccup Timeout  
Minimum On-Time  
32,768  
130  
cycle  
ns  
t
90  
170  
ON-MIN  
SLOPE COMPENSATION (SLOPE)  
Slope Bias Current  
I
9
10  
11  
FA  
kI  
SLOPE  
Slope Resistor Range  
R
25  
200  
SLOPE  
Slope Compensation Ramp  
R
= 100kW  
140  
165  
50  
190  
mV/Fs  
mV/Fs  
SLOPE  
SLOPE  
COMP,  
Default Slope Compensation  
Ramp  
V
V
< 0.2V or 4V < V  
SLOPE  
PWM COMPARATOR  
Comparator Offset Voltage  
Current-Sense Gain  
V
when V = 0V  
1.65  
1.75  
1.81  
1.97  
2
V
PWM-OS  
CS  
A
DV  
/DV  
CS  
2.15  
V/V  
CS-PWM  
COMP  
Comparator Propagation  
Delay  
Change in V = 10mV (including  
CS  
internal lead-edge blanking)  
t
110  
ns  
PWM  
ERROR AMPLIFIER  
V
, when I  
= 0V  
= 1.8V  
FB  
COMP  
FB Reference Voltage  
V
1.19  
-100  
1.21  
1.23  
V
REF  
and V  
COMP  
FB Input Bias Current  
Open-Loop Voltage Gain  
Transconductance  
I
V
= 1.5V, T = +25NC  
+100  
nA  
dB  
mS  
FB  
FB  
A
A
EAMP  
Gm  
90  
1.5  
1.8  
2.1  
Maxim Integrated  
5
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V (for MAX17598, bring V up to 21V for startup), V = V  
= V = V  
= V  
= V  
SGND  
= 0V, V  
= +2V,  
EN/UVLO  
OVI  
IN  
IN  
CS  
DITHER  
FB  
PGND  
AUXDRV = NDRV = SS = COMP = SLOPE = unconnected, R = 25kI, R = 10kI, C  
= 1FF, C  
= 1FF, T = T = -40NC to  
RT  
DT  
VIN  
VDRV  
A
J
+125NC, unless otherwise noted. Typical values are at T = T = +25NC.) (Note 2)  
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Transconductance  
Bandwidth  
BW  
Open-loop (gain = 1), -3dB frequency°  
10  
MHz  
Source Current  
V
V
= 1.8V, V = 1V  
80  
80  
120  
120  
210  
210  
FA  
FA  
COMP  
FB  
Sink Current  
= 1.8V, V = 1.75V  
FB  
COMP  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Temperature rising  
160  
20  
°C  
°C  
Thermal Shutdown  
Hysteresis  
Note 2: All devices are 100% production tested at +25NC. Limits over temperature are guaranteed by design.  
Note 3: The MAX17598 is intended for use in universal input power supplies. The internal clamp circuit at IN is used to prevent the  
bootstrap capacitor from charging to a voltage beyond the absolute maximum rating of the device when EN is low (shut-  
down mode). Externally limit the maximum current to IN (hence to clamp) to 2mA (max) when EN is low.  
Typical Operating Characteristics  
(V = 15V, V  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
A J  
IN  
EN/UVLO  
VIN  
VDRV  
V
WAKEUP LEVEL  
IN UVLO SHUTDOWN LEVEL  
vs. TEMPERATURE (MAX17598)  
BOOTSTRAP UVLO WAKE-UP LEVEL  
vs. TEMPERATURE (MAX17598)  
IN  
vs. TEMPERATURE (MAX17599)  
20.04  
20.03  
20.02  
20.01  
20.00  
19.99  
19.98  
4.13  
4.12  
4.11  
4.10  
4.09  
4.08  
4.07  
7.025  
7.020  
7.015  
7.010  
7.005  
7.000  
6.995  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
6
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 15V, V  
IN  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
EN/UVLO  
VIN  
VDRV A J  
V
FALLING THRESHOLD vs.  
IN SUPPLY CURRENT UNDER UVLO  
vs. TEMPERATURE  
NDRV SWITCHING FREQUENCY  
vs. RESISTOR  
IN  
TEMPERATURE (MAX17599)  
3.92  
3.91  
3.90  
3.89  
3.88  
3.87  
25.5  
24.5  
23.5  
22.5  
21.5  
20.5  
19.5  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
5
15 25 35 45 55 65 75 85 95  
FREQUENCY SELECTION RESISTOR (kI)  
NDRV SWITCHING FREQUENCY  
vs. TEMPERATURE  
FREQUENCY DITHERING vs. R  
DEAD TIME vs. R  
DT  
DITHER  
14  
12  
10  
8
950  
850  
750  
650  
550  
450  
350  
250  
150  
50  
R = 10kI  
T
220  
180  
140  
100  
60  
6
4
R = 100kI  
T
2
20  
200 300 400 500 600 700 800 900 1000  
(kI)  
10 20 30 40 50 60 70 80 90 100  
(kI)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
R
R
DT  
DITHER  
PEAK-CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
REVERSE CURRENT LIMIT THRESHOLD  
vs. TEMPERATURE  
DEAD TIME vs. TEMPERATURE  
252  
250  
248  
246  
244  
242  
307  
306  
305  
304  
303  
302  
301  
300  
-95  
-96  
-97  
-98  
-99  
-100  
-101  
-102  
-103  
-104  
R
= 100kI  
DT  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
7
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 15V, V  
IN  
= +2V, COMP = open, C  
= 1FF, C  
= 1FF, T = T = -40NC to +125NC, unless otherwise noted.)  
EN/UVLO  
VIN  
VDRV  
A
J
FB REGULATION VOLTAGE  
vs. TEMPERATURE  
CURRENT-SENSE GAIN  
vs. TEMPERATURE  
1.217  
1.215  
1.213  
1.211  
1.209  
1.207  
1.205  
1.99  
1.98  
1.97  
1.96  
1.95  
1.94  
1.93  
1.92  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
NDRV PEAK SOURCE AND  
SINK CURRENTS  
AUXDRV PEAK SOURCE AND  
SINK CURRENTS  
MAX17598/9 toc15  
MAX17598/9 toc16  
PEAK SOURCE  
CURRENT  
PEAK SOURCE  
CURRENT  
I
AUXDRV  
0.28A/div  
I
NDRV  
0.7A/div  
PEAK SINK  
CURRENT  
PEAK SINK  
CURRENT  
200ns/div  
200ns/div  
Maxim Integrated  
8
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
ENABLE SHUTDOWN WAVEFORM  
(SOFT-STOP)  
ENABLE STARTUP WAVEFORM  
(DUTY-CYCLE SOFT-START)  
MAX17598/9 toc18  
MAX17598/9 toc17  
V
EN/UVLO  
2V/div  
V
EN/UVLO  
2V/div  
V
OUT  
2V/div  
V
OUT  
2V/div  
4ms/div  
4ms/div  
SOFT-START FROM INPUT (FIGURE 9)  
INPUT SHUTDOWN (FIGURE 9)  
MAX17598/9 toc19  
MAX17598/9 toc20  
V
IN  
20V/div  
V
IN  
20V/div  
V
OUT  
2V/div  
V
OUT  
2V/div  
200ms/div  
20ms/div  
DEAD TIME BETWEEN NDRV  
AND AUXDRV (FIGURE 9)  
NDRV AND AUXDRV SIGNALS (FIGURE 9)  
MAX17598/9 toc21  
MAX17598/9 toc22  
50ns  
V
NDRV  
5V/div  
V
NDRV  
5V/div  
V
AUXDRV  
5V/div  
V
AUXDRV  
5V/div  
1µs/div  
40ns/div  
Maxim Integrated  
9
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
MOMENTARY OVI  
OPERATION (FIGURE 9)  
SS, NDRV AND AUXDRV IN  
HICCUP MODE (FIGURE 9)  
MAX17598/9 toc24  
MAX17598/9 toc23  
V
OVI  
5V/div  
V
SS  
500mV/div  
V
SS  
1V/div  
V
NDRV  
5V/div  
V
OUT  
5V/div  
V
AUXDRV  
5V/div  
V
CLAMPCAP  
50V/div  
4ms/div  
4ms/div  
LOAD TRANSIENT RESPONSE (FIGURE 9)  
EFFICIENCY CURVES  
MAX17598/9 toc25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
15  
0
I
LOAD  
2A/div  
V
(AC)  
OUT  
100mV/div  
V
V
V
= 36V  
= 48V  
= 72V  
IN  
IN  
IN  
0
2
4
6
8
10  
200µs/div  
OUTPUT CURRENT (A)  
BODE PLOT (FIGURE 9)  
ACTIVE CLAMP SWITCHING  
WAVEFORM (FIGURE 9)  
MAX17598/98 toc27  
MAX17598/9 toc28  
V
DS  
50V/div  
PHASE  
36°/div  
I
PRIMARY  
1A/div  
BANDWIDTH = 10.3kHz  
PHASE MARGIN = 72°  
GAIN  
10dB/div  
6 8 1  
2
4
6 8 1  
2
4 6 8 1  
1µs/div  
Maxim Integrated  
10  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Pin Configuration  
TOP VIEW  
12  
11  
10  
9
SGND  
SS  
13  
14  
V
8
7
6
5
DRV  
V
IN  
MAX17598  
MAX17599  
FB  
EN/UVLO 15  
OVI 16  
EP  
COMP  
+
1
2
3
4
TQFN  
Pin Description  
PIN  
NAME  
FUNCTION  
Dead-Time Programming Resistor Connection. Connect resistor from DT to GND to set the desired  
dead time between the NDRV and AUXDRV signals. See the Dead Time section to calculate the  
resistor value for a particular dead time.  
1
DT  
Slope Compensation Programming Input. A resistor RSLOPE connected from SLOPE to SGND  
programs the amount of internal slope compensation. Shorting this pin to SGND sets a default slope  
compensation of 50mV/Fs.  
2
3
SLOPE  
RT  
Switching Frequency Programming Resistor Connection. Connect resistor from RT to SGND to set the  
PWM switching frequency.  
Frequency Dithering Programming or Synchronization Connection. For spread-spectrum frequency  
operation, connect a capacitor from DITHER to SGND and a resistor from DITHER to RT. To  
synchronize the internal oscillator to the externally applied frequency, connect DITHER/SYNC to the  
synchronization pulse.  
4
DITHER/SYNC  
Transconductance Amplifier Output. Connect the frequency compensation network between COMP  
and SGND in nonisolated applications and between COMP and FB pins in isolated applications.  
5
6
COMP  
FB  
Transconductance Error Amplifier Inverting Input  
Soft-Start/Soft-Stop Capacitor Pin for Forward/Flyback Regulator. Connect a capacitor from SS to  
SGND to set the soft-start/soft-stop time interval.  
7
SS  
8
SGND  
CS  
Signal Ground. Connect SGND to the signal ground plane.  
Current-Sense Input. Current-sense connection for average current-sense and cycle-by-cycle  
current limit. Peak current limit trip voltage is 350mV (typ).  
9
10  
PGND  
Power Ground. Connect PGND to the power ground plane.  
Maxim Integrated  
11  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
11  
NDRV  
External Switching NMOS Gate-Driver Output  
PMOS Active-Clamp-Switch Gate-Driver Output. AUXDRV can also be used to drive a pulse  
transformer for synchronous flyback application.  
12  
13  
14  
15  
AUXDRV  
Linear Regulator Output and Driver Input. Connect a 1FF bypass capacitor from V  
to PGND as  
DRV  
V
DRV  
close as possible to the IC.  
Internal V  
Regulator Input. Connect V to the input voltage source. Bypass V to PGND with a  
IN IN  
DRV  
V
IN  
0.1FF minimum ceramic capacitor.  
Enable/Undervoltage Lockout Pin. To externally program the UVLO threshold of the input supply,  
connect a resistive divider among input supply, EN/UVLO, and SGND.  
EN/UVLO  
Overvoltage Comparator Input. Connect a resistive divider among the input supply, OVI, and SGND  
to set the input overvoltage threshold.  
16  
OVI  
EP  
Exposed Pad  
Input Voltage Range  
The MAX17598 has different rising and falling undervolt-  
Detailed Description  
The MAX17598/MAX17599 low I active-clamp current-  
Q
age lockout (UVLO) thresholds on the V pin than those  
IN  
mode PWM controllers contain all the control circuitry  
required for design of wide-input isolated/nonisolated for-  
ward converter industrial power supplies. The MAX17598  
has a rising UVLO threshold of 20V with a 13V hysteresis,  
and is therefore well-suited for universal input (rectified  
85V AC to 265V AC) or telecom (36V DC to 72V DC)  
power supplies. The MAX17599 features a 4.1V rising  
UVLO with a 200mV hysteresis and is optimized for low-  
voltage industrial supplies (4.5V DC to 36V DC).  
of the MAX17599. The thresholds for the MAX17598  
are optimized for implementing power-supply startup  
schemes typically used for off-line AC/DC and telecom  
DC-DC power supplies that are typically encountered in  
industrial applications. As such, the MAX17598 has no  
limitation on the maximum input voltage, as long as the  
external components are rated suitably, and the maxi-  
mum operating voltages of the MAX17598 are respected.  
The MAX17598 can be successfully used in universal  
input (85V to 265V AC) rectified bus applications, recti-  
fied 3-phase DC bus applications, and telecom (36V to  
72V DC) applications.  
The devices include an AUX driver that drives an auxiliary  
MOSFET (clamp switch) that helps implement the active-  
clamp transformer reset topology for forward converters.  
Such a reset topology has several advantages, including  
reduced voltage stress on the switches, transformer size  
reduction due to larger allowable flux swing, and improved  
efficiency due to elimination of dissipative snubber circuit-  
ry. Programmable dead time between the AUX and main  
driver allows for zero voltage switching (ZVS).  
The V pin of the MAX17599 has a maximum operating  
IN  
voltage of 36V. The MAX17599 implements rising and  
falling thresholds on the V pin that assume power-  
IN  
supply startup schemes, typical of lower voltage DC-DC  
applications down to an input voltage of 4.5V DC. Thus  
isolated/non-isolated active-clamp converters with sup-  
ply-voltage range of 4.5V to 36V can be implemented  
with the MAX17599. See Startup Operation section  
for more details on power-supply startup schemes for  
MAX17598/MAX17599.  
Maxim Integrated  
12  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
DT  
V
DRV  
AUXDRV  
MAX17598  
MAX17599  
DRIVER  
PGND  
NDRV  
V
DRV  
AUXDRV  
TSDN  
THERMAL SENSOR  
7.4V (MAX17598)  
OR  
4.9V (MAX17599)  
NDRV  
DRIVER  
PGND  
V
DRV  
CONTROL AND  
DRIVER LOGIC  
LDO  
DEAD TIME  
HICCUP  
REVERSE ILIM  
COMP  
POK  
V
IN  
-102mV  
UVLO  
1.21V  
1.21V  
SGND  
PGND  
EN/  
UVLO  
CHIPEN  
CLK  
SSDONE  
8 PEAKEVENTS  
OR 1 RUNAWAY  
OSC  
PEAKLIM  
COMP  
DITHER/SYNC  
305mV  
360mV  
OVI  
RT  
RUNAWAY  
COMP  
BLANKING  
70ns  
0.9V  
PWM  
COMP  
CS  
CHIPEN  
SS  
10µA  
5µA  
SS  
FIXED OR  
VARIABLE  
10µA  
SSDONE  
1.21V  
SLOPE  
DECODE  
SLOPE  
R
1x  
CHIPEN/  
HICCUP  
CLK  
COMP  
FB  
R
1.21V  
DITHER/  
SYNC  
Q50µA  
SS  
CURRENT  
SOFT-START  
2V/0.4V  
Figure 1. Block Diagram  
Maxim Integrated  
13  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
tion, only if the voltage at the OVI pin falls below 1.15V  
(typ). The OVI feature is easily disabled by tying the pin  
to ground. For given values of startup DC input voltage  
Linear Regulator (V  
)
DRV  
The MAX17598/MAX17599 have an internal linear regu-  
lator that is powered from the V pin. The output of  
IN  
(V  
START  
) and input overvoltage protection voltage (V ),  
the linear regulator is connected to the V  
pin, and  
OVI  
DRV  
the resistor values for the divider can be calculated as  
follows, assuming a 24.9kI resistor for R . R rep-  
should be decoupled with a 1FF capacitor to ground  
for stable operation. The V converter output sup-  
OVI SUM  
DRV  
resents the series combination of several resistors that  
might be needed in high-voltage DC bus applications  
(MAX17598) or a single resistor in low-voltage DC-DC  
applications (MAX17599).  
plies the MOSFET drivers internal to the MAX17598/  
MAX17599. The V voltage is regulated at 7.4V (typ)  
in the MAX17598, and at 4.9V (typ) in the MAX17599. The  
maximum operating voltage of the IN pin is 29V for the  
MAX17598 and 36V for the MAX17599.  
DRV  
V
OVI  
Maximum Duty Cycle (Dmax)  
The MAX17598/MAX17599 operate at a maximum duty  
cycle of 72.5% (typ). When the SLOPE pin is left OPEN,  
the ICs have the necessary amount of slope compensa-  
tion to provide stable, jitter-free current-mode control  
operation in applications where the operating duty cycle  
is less than 50%. Slope compensation is necessary for  
stable operation of current-mode controlled converters  
at duty cycles greater than 50%, in addition to the loop  
compensation required for small signal stability. The  
MAX17598/MAX17599 implement a SLOPE pin for this  
purpose. See the Slope Compensation Programming  
section for more details.  
R
= 24.9×  
1 kW,  
EN  
V
START  
where V  
and V  
are in volts.  
START  
OVI  
V
START  
1.21  
R
= 24.9 + R  
×
EN  
1 kW,  
[
]
SUM  
where R is in kI. R  
might need to be implemented  
as equal multiple resistors in series (R  
so that voltage across each resistor is limited to its maxi-  
mum operating voltage.  
EN  
SUM  
, R  
, R  
)
DC1 DC2 DC3  
R
SUM  
3
R
= R  
= R =  
DC3  
kW.  
DC1  
DC2  
Applications Information  
V
DC  
Startup Voltage and Input Overvoltage  
Protection Setting (EN/UVLO, OVI)  
The EN/UVLO pin in the MAX17598/MAX17599 serves  
as an enable/disable input, as well as an accurate  
programmable undervoltage lockout (UVLO) pin. The  
MAX17598/MAX17599 do not commence startup opera-  
tions unless the EN/UVLO pin voltage exceeds 1.21V  
(typ). The MAX17598/MAX17599 turn off if the EN/UVLO  
pin voltage falls below 1.15V (typ). A resistor divider from  
the input DC bus to ground maybe used to divide down  
and apply a fraction of the input DC voltage to the EN/  
UVLO pin as shown in Figure 2. The values of the resistor  
divider can be selected so that the EN/UVLO pin voltage  
exceeds the 1.21V (typ) turn on threshold at the desired  
input DC bus voltage. The same resistor divider can be  
R
R
R
DC1  
DC2  
DC3  
R
SUM  
EN/UVLO  
MAX17598  
MAX17599  
R
EN  
OVI  
modified with an additional resistor, R , to implement  
OVI  
R
OVI  
input overvoltage protection, in addition to the EN/UVLO  
functionality as shown in Figure 2. When the voltage at the  
OVI pin exceeds 1.21V (typ), the MAX17598/MAX17599  
stop switching. Switching resumes with soft-start opera-  
Figure 2. Programming EN/UVLO, OVI  
Maxim Integrated  
14  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
tor R  
might need to be implemented as equal, mul-  
Startup Operation  
The MAX17598 is optimized for implementing active-  
clamp converters operating either from a rectified AC  
START  
tiple resistors in series (R , R  
applied high DC voltage in offline applications so that the  
voltage across each resistor is limited to the maximum  
continuous operating voltage rating. R  
can be calculated as follows:  
and R ) to share the  
IN1  
IN2  
IN3  
input or in a 36V DC to 72V  
telecom application.  
DC  
and C  
A cost-effective RC startup circuit can be used in such  
applications. In this startup method (Figure 3), when  
the input DC voltage is applied, the startup resistor  
START  
START  
7.4× C  
+ 0.04×I × C  
VDRV  
Q
IN  
SS  
R
charges the startup capacitor C  
, causing  
START  
START  
C
= 0.09  
µF  
the voltage at the V pin to increase towards the rising  
× f  
6
IN  
START  
GATE sw  
+ I  
+
t
IN  
SS  
V
UVLO threshold (20V typical). During this time, the  
IN  
10  
MAX17598 draws a low startup current of 20FA (typ)  
through the startup resistor R . When the voltage at  
where I is the supply current drawn at the IN pin in  
IN  
mA, Q  
nal MOSFETs Q1 and Q2 in nC, f  
frequency of the converter in Hz, t  
START  
is the sum of the gate charges of the exter-  
V
IN  
reaches the rising IN UVLO threshold, the MAX17598  
GATE  
is the switching  
is the soft-start  
commences all internal operations and drives the exter-  
nal MOSFETs connected to NDRV and AUXDRV. In this  
condition, the MAX17598 draws 2mA (typ) current in  
sw  
SS  
time programmed for the converter in ms. C  
is  
VDRV  
cummulative capacitor used at DRV node in μF, and  
is soft-start capacitor in nF. See the Soft-Start  
from C , in addition to the current required to switch  
START  
C
the gates of the external MOSFETs Q1and Q2. Since  
this current cannot be supported by the current through  
SS  
section.  
R
, the voltage on C  
starts to drop. When  
START  
START  
V
10 × 50  
(
)
START  
suitably configured as shown in Figure 3, the converter  
operates to generate an output voltage (V ) that is  
bootstrapped to the V pin. If the voltage V  
R
=
kW,  
START  
1+ C  
BIAS  
START  
exceeds  
IN  
BIAS  
7V before the voltage on C  
where C  
is the startup capacitor in FF.  
START  
START  
then the V voltage is sustained by V  
IN  
The IN UVLO rising threshold of the MAX17599 is set  
to 4.1V with a hysteresis of 200mV, and is optimized for  
low-voltage DC-DC applications in the range of 4.5V DC  
to 36V DC. The IN pin is rated for a maximum operating  
input voltage of 36V DC and can directly be connected  
to the input DC supply.  
ing the MAX17598 to continue to operate with energy  
from V . The large hysteresis (13V typical) of the  
BIAS  
MAX17598 allows for a small startup capacitor (C  
The low startup current (20FA typical) allows the use of  
a large startup resistor (R ), thus reducing power  
START  
dissipation at higher DC bus voltages. The startup resis-  
V
DC  
R
R
R
IN1  
IN2  
IN3  
V
DC  
V
BIAS  
L
BIAS  
D1  
R
START  
C
D2  
START  
AUXDRV  
NDRV  
V
V
IN  
LDO  
Q1  
C
CLAMP  
MAX17598  
DRV  
C
VDRV  
Q2  
Figure 3. RC-Based Startup Circuit  
Maxim Integrated  
15  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
4.5V TO 36V DC  
V
OUT  
L
OUT  
D1  
MAX17599  
C
D2  
OUT  
V
V
AUXDRV  
NDRV  
IN  
LDO  
Q1  
C
CLAMP  
DRV  
C
VDRV  
Q2  
Figure 4. Typical Startup Circuit with IN Connected Directly to DC Input  
A soft-stop feature ramps down the output voltage when  
the device is turned off, and provides safe discharging  
of the clamp capacitor, thus allowing the controller to  
restart in a well-controlled manner. Additionally, a nega-  
tive current limit is provided in the current-sense circuitry  
that helps limit the clamp switch current under dynamic  
operating conditions, such as momentary input overvolt-  
age charging from a precharged output capacitor. The  
soft-stop duration is twice that of the programmed soft-  
start period.  
Soft-Start and Soft-Stop  
In a current-mode isolated active clamp forward con-  
verter, the COMP voltage programs the peak current  
in the primary, and thus the secondary-side inductor  
current as well. The MAX17598/MAX17599 implement a  
soft-start scheme that controls the COMP pin of the  
device at turn on. A useful benefit of this feature is the  
elimination of need for secondary-side soft-start circuitry  
in such isolated applications. In the absence of sec-  
ondary-side soft-start circuitry, the secondary-side error  
amplifier can cause the output voltage to rapidly reach  
the regulation value, thus causing inrush current and  
output voltage overshoot. The MAX17598/MAX17599  
avoid this issue by applying a soft-start to the COMP  
pin. Thus the regulator’s primary and secondary currents  
are ramped up in a well-controlled manner resulting in a  
current-mode soft-start operation.  
Programming Slope Compensation  
Since the MAX17598/MAX17599 operate at a maximum  
duty cycle of 72.5% (typ), slope compensation is required  
to prevent subharmonic instability that occurs naturally  
in continuous-conduction mode, peak current mode-  
controlled converters operating at duty cycles greater  
than 50%. A minimum amount of slope signal is added to  
the sensed current signal, even for converters operating  
below 50% duty to provide stable, jitter-free operation.  
The SLOPE pin allows the user to program the necessary  
slope compensation by setting the value of the resistor  
Soft-start period of MAX17598/MAX17599 can be pro-  
grammed by selecting the value of capacitor connected  
from SS pin to GND. The capacitor C  
lated as follows:  
can be calcu-  
SS  
R
connected from SLOPE pin to ground.  
SLOPE  
10× t  
SS  
1.81  
C
=
nF  
SS  
S
8  
E
V
COMP  
R
=
kW  
SLOPE  
1.55  
where t is in ms, V  
is steady-state COMP voltage  
SS  
COMP,MAX  
COMP  
where S , the slope is expressed in mV per microseconds.  
E
(V  
= 2.6V).  
For the default minimum slope compensation of 50mV/Fs  
(typ), the SLOPE pin should be connected to SGND or  
left unconnected.  
Maxim Integrated  
16  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
V
= I  
x t/C  
SS SSCH SS  
V
COMP  
* - 1.36V  
SOFT-START BEGIN  
0.4V  
SOFT-START ENDS  
0.0V  
NDRV  
AUXDRV  
CS  
Figure 5. Duty Cycle Soft-Start  
V
* - 1.36V  
SOFT-STOP ENDS  
COMP  
V
SS  
= 1.21V - I x t/C  
SSDISCH SS  
0.4V  
0.0V  
SOFT-STOP BEGINS  
NDRV  
AUXDRV  
CS  
Figure 6. Duty Cycle or Current Soft-Stop  
*V is steady-state COMP voltage.  
COMP  
Maxim Integrated  
17  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
n-Channel MOSFET Gate Driver  
The NDRV output drives an external n-channel MOSFET.  
NDRV  
NDRV can source/sink in excess of 900mA/1500mA  
peak current. Therefore, select a MOSFET that yields  
acceptable conduction and switching losses.  
AUXDRV  
DEAD TIME, t  
p-Channel MOSFET Gate Driver  
The AUXDRV output drives an external p-channel  
MOSFET with the aid of a level shifter, as shown in the  
Typical Application Circuits. AUXDRV can source/sink in  
excess of 300mA/700mA peak current. Therefore, select  
a MOSFET that yields acceptable conduction and switch-  
ing losses. The external PMOSFET used must be able to  
withstand the maximum clamp voltage.  
DT  
Figure 7. Dead Time Between AUXDRV and NDRV  
compensation applied to stabilize the converter. The  
following equation is used to calculate the value of R  
Dead Time  
Dead time between the main and AUX output edges  
allow ZVS to occur, minimizing switching losses and  
:
CS  
305mV  
R
=
CS  
improving efficiency. The dead time (t ) is applied to  
1.2×I  
DT  
PRI_PEAK  
both leading and trailing edges of the main and AUX  
outputs as shown in Figure 7. Connect a resistor between  
where I  
is the peak current in the primary side  
PRI_PEAK  
DT and GND to set t  
250ns. RDT in kΩ, is calculated as:  
to any value between 25ns and  
of the transformer, which also flows through the main  
n-channel MOSFET. When the voltage produced by this  
current (through the current-sense resistor) exceeds the  
current-limit comparator threshold, the MOSFET driver  
(NDRV) terminates the current on-cycle within 40ns (typ).  
DT  
R
= 0.4× t kW,  
DT  
DT  
where t is in ns.  
DT  
Oscillator/Switching Frequency  
The devices implement 70ns of internal leading-edge  
blanking to ignore leading-edge current spikes encoun-  
tered in practice due to parasitics. Use a small RC  
network for additional filtering of the leading-edge spike  
on the sense waveform when needed. Set the corner  
frequency of the RC filter network at 5 to 10 times the  
switching frequency.  
The ICs’ switching frequency is programmable between  
100kHz and 1MHz with a resistor R connected between  
RT  
RT and GND. Use the following formula to determine the  
appropriate value of R needed to generate the desired  
RT  
output switching frequency (f ):  
SW  
10  
1×10  
R
=
For a given peak-current-limit setting, the runaway cur-  
rent limit is typically 20% higher. The peak current-limit-  
triggered hiccup operation is disabled until the end of  
soft-start, while the runaway current-limit-triggered hiccup  
operation is always enabled.  
RT  
f
SW  
where f  
is the desired switching frequency.  
SW  
Peak-Current-Limit  
The current-sense resistor (R ), connected between  
CS  
Negative Peak Current Limit  
The MAX17598/MAX17599 protect against excessive  
negative currents through the clamp switch, primary of  
the transformer and the clamp capacitor under dynamic  
operating conditions. The devices limit negative current  
the source of the n-channel MOSFET and PGND, sets  
the current limit. The source end of current-sense  
resistor connects to CS pin of MAX17598/MAX17599.  
The signal thus obtained is used by the devices,  
both for current-mode control and peak-current limiting  
purposes. The current-limit comparator has a voltage trip  
by monitoring the voltage across R , while the AUXDRV  
CS  
output is low and the p-Channel FET is on. The typical  
negative-current-limit threshold is set at -102mV (1/3 of  
the positive-peak-current-limit threshold).  
level (V  
) of 305mV, and is independent of slope  
CS-PEAK  
Maxim Integrated  
18  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
V
CS-PEAK  
(305mV)  
CURRENT-SENSE  
VOLTAGE  
HICCUP TIMEOUT  
HICCUP SIGNAL  
DISCHARGE WITH  
ISSDISCH  
V
SS-HI  
SOFT-START  
VOLTAGE, V  
SS  
t
t
RSTR  
SS  
Figure 8. Hiccup-Mode Timing Diagram  
operation. Figure 8 shows the behavior of the device prior  
and during hiccup mode.  
Output Short-Circuit Protection  
with Hiccup Mode  
When the MAX17598/MAX17599 detect eight consecu-  
tive peak-current-limit events, both NDRV and AUXDRV  
driver outputs are turned off (hiccup is followed by soft-  
Oscillator Synchronization  
The internal oscillator can be synchronized to an external  
clock by applying the clock to SYNC/DITHER directly.  
The external clock frequency can be set anywhere  
between 1.1x to 1.3x the internal clock frequency. Using  
an external clock increases the maximum duty cycle by  
stop) for a restart period, t  
. After t , the device  
RSTR  
RSTR  
turns on again with a soft-start. The duration of the restart  
period is 32678 clock cycles, and therefore depends on  
the switching frequency setting. The device also features  
a runaway current limit setting at 120% (typ) of the peak  
current limit. This feature is useful under short-circuit  
faults in forward converters with synchronous rectifiers  
that occur during minimum on-time conditions at high  
input voltages. Under these conditions, the primary peak  
current tends to build up and staircase beyond the peak  
current limit setting due to insufficient discharging of the  
output inductor. One single event of a runaway current  
limit forces the MAX17598/MAX17599 into hiccup mode  
a factor equal to f  
/f  
.
SYNC SW  
Frequency Dithering for Spread-Spectrum  
Applications (Low EMI)  
The switching frequency of the converter can be dith-  
ered in a range of Q10% by connecting a capacitor from  
DITHER/SYNC to GND, and a resistor from DITHER to RT  
as shown in the Typical Applications Circuit. This results  
in lower EMI.  
Maxim Integrated  
19  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
A current source at SYNC/DITHER charges the capacitor  
to 2V with 50FA. Upon reaching this trip point,  
to the high di/dt of the currents in high-frequency switch-  
ing power converters. This implies that the loop areas for  
forward- and return-pulsed currents in various parts of the  
circuit should be minimized. Additionally, small current  
loop areas reduce radiated EMI. Similarly, the heatsink of  
the MOSFET presents a dV/dt source. Therefore, the sur-  
face area of the MOSFET heatsink should be minimized as  
much as possible.  
C
DITHER  
it discharges C  
to 0.4V with 50FA. The charging  
DITHER  
and discharging of the capacitor generates a triangular  
waveform on SYNC/DITHER with peak levels at 0.4V and  
2V. C  
is calculated as:  
DITHER  
15.625  
C
=
nF  
DITHER  
f
TRI  
Ground planes must be kept as intact as possible. The  
ground plane for the power section of the converter should  
be kept separate from the analog ground plane, except for  
a connection at the least-noisy section of the power ground  
plane, typically the return of the input filter capacitor. The  
negative terminal of the filter capacitor, the ground return  
of the power switch, and current-sensing resistor must  
be close together. PCB layout also affects the thermal  
performance of the design. A number of thermal vias that  
connect to a large ground plane should be provided under  
the exposed pad of the part for efficient heat dissipation.  
For a sample layout that ensures first pass success, please  
refer to the MAX17598/MAX17599 Evaluation Kit layouts  
available at www.maximintegrated.com. For universal  
AC input designs, follow all applicable safety regulations.  
Offline power supplies can require UL, VDE, and other  
similar agency approvals.  
where f  
is in kHz.  
TRI  
Typically, f  
should be set close to 1kHz. The resistor  
connected from SYNC/DITHER to RT deter-  
TRI  
R
DITHER  
mines the amount of dither as follows:  
R
RT  
DITHER  
%DITHER =  
R
where %DITHER is the amount of dither expressed as a  
percentage of the switching frequency. Setting R  
to 10 x R generates Q10% dither.  
DITHER  
RT  
Layout Recommendations  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due  
Maxim Integrated  
20  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Application Circuits  
V
IN  
L1  
10mH  
D1  
V
OUT  
T1  
L2  
1.5µH  
C7  
4.7µF  
V
OUT  
R1  
D2  
NB  
NP  
221kI  
V
DC  
R2  
0R  
R3  
0R  
3.3V, 8A  
OUTPUT  
C5  
47µF  
C4  
330µF  
C6  
47µF  
NS  
INPUT  
N1  
36V TO  
72V INPUT  
C2  
22µF  
C3  
2.2µF  
PGND  
PGND0  
N2  
PGND  
PGND0  
PGND  
V
IN  
C8  
0.47µF  
C10  
22nF  
PGND  
IN  
V
U1  
C11  
0.047µF  
C16  
100nF  
R9  
0R  
SS  
AUXDRV  
P1  
R20  
OPEN  
R12  
0R  
SLOPE  
RT  
NDRV  
V
N3  
OUT  
R18  
28.7kI  
R14  
10kI  
V
DRV  
R10  
221  
R11  
49.9kI  
D4  
U2  
R15  
OPEN  
PGND  
CS  
4
DITHER/  
SYNC  
SGND  
1
2
R19  
100  
C18  
0.47µF  
C13  
OPEN  
DITHER/SYNC  
R16  
OPEN  
V
C12  
FB  
SHORT  
(PC TRACE)  
C15  
1000pF  
SGND  
3
SGND  
R21  
0.1  
MAX17598  
C14  
2.2nF  
R17  
470  
R13  
10kI  
R23  
49.9kI  
SGND  
SGND  
D3  
PGND  
V
OUT  
C20  
4.7µF  
SGND  
C19  
R6  
10kI  
2
3
33nF  
U3  
COMP  
1
PGND0  
R22  
C1  
100pF  
30kI  
V
DRV  
C9  
1µF  
V
FB  
V
DRV  
R24  
22kI  
FB  
PGND0  
PGND  
R8  
20kI  
V
DC  
DT  
EP  
R5  
1.6MI  
EN/UVLO  
OVI  
EN/UVLO  
C17  
OPEN  
R7  
35.7kI  
SGND  
OVI  
R4  
SGND  
24.9kI  
SGND  
SGND  
Figure 9. Typical Application Circuit (Telecom Power Supplies)  
Maxim Integrated  
21  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Typical Application Circuits (continued)  
V
IN  
D2  
T1  
C16  
47nF  
NB  
V
OUT  
V
DC  
L1  
PGND  
10µH  
V
OUT  
INPUT  
R3  
0R  
17V TO  
34V INPUT  
C1  
22µF  
C2  
0.1µF  
R2  
0R  
R22  
100kI  
3.3V, 3A  
OUTPUT  
C4  
100µF  
C14  
100µF  
C15  
100µF  
C5  
OPEN  
NP  
NS  
N3  
PGND  
V
IN  
Q1  
D3  
PGND  
GND0  
Z2  
N2  
6.2V  
C6  
0.47µF  
GND0  
C8  
0.01µF  
PGND  
V
U1  
IN  
C18  
2.2µF  
C9  
47nF  
C13  
47nF  
R10  
0R  
SS  
AUXDRV  
P1  
R11  
OPEN  
3
1
2
R12  
0R  
SLOPE  
RT  
NDRV  
V
OUT  
N1  
R24  
100kI  
R25  
R21  
150kI  
47I  
R15  
40kI  
R6  
10kI  
D1  
GND0  
R7  
120I  
R8  
332kI  
R23  
OPEN  
PGND  
CS  
V
DRV  
C17  
SHORT  
DITHER/  
SYNC  
U2  
R16  
100R  
5
4
1
2
C19  
0.1µF  
C10  
10nF  
SGND  
R13  
C12  
V
FB  
22kI  
R17  
100m  
4.7nF  
MAX17599  
SGND  
SGND  
SGND  
C11  
47pF  
R19  
49.9kI  
R14  
470R  
PGND  
COMP  
C20  
100pF  
2
3
V
DRV  
U3  
C7  
2.2µF  
SGND  
V
FB  
1
V
DRV  
R20  
R18  
200kI  
33.2kI  
FB  
PGND  
R9  
20kI  
V
DC  
DT  
EP  
GND0  
R1  
3.3MI  
EN/UVLO  
OVI  
EN/UVLO  
SGND  
R4  
150kI  
OVI  
R5  
121kI  
SGND  
SGND  
Figure 10. Typical Application Circuit (Power Supply for Low-Voltage DC-DC Applications)  
Maxim Integrated  
22  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Ordering Information  
UVLO, IN  
CLAMP  
PART  
TEMP RANGE  
-40NC to +125NC  
-40NC to +125NC  
PIN PACKAGE  
16 TQFN  
FUNCTIONALITY  
Dmax  
70%  
Active-clamp, peak-current-mode,  
offline PWM controller  
MAX17598ATE+  
MAX17599ATE+  
20V, Yes  
Active-clamp, peak-current-mode,  
PWM DC-DC controller  
16 TQFN  
4V, No  
70%  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
16 TQFN  
T1633+4  
21-0136  
90-0032  
Maxim Integrated  
23  
MAX17598/MAX17599  
Low I , Wide-Input Range, Active Clamp  
Q
Current-Mode PWM Controllers  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1/12  
Initial release  
Updated General Description, Benefits and Features, Absolute Maximum Ratings,  
Electrical Characteristics, Typical Operating Characteristics, Pin Description,  
Detailed Description sections, and Figures 1, 3–6, 8–10  
1
3/13  
1–23  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
24  
©
2013 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX17599ATE+

Low IQ, Wide-Input Range, Active Clamp Current-Mode PWM Controllers
MAXIM

MAX1759EUB

Buck/Boost Regulating Charge Pump in レMAX
MAXIM

MAX1759EUB+

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX1759EUB+T

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX1759EUB-T

Switched Capacitor Regulator, Voltage-mode, 0.1A, 1800kHz Switching Freq-Max, PDSO10, MICRO MAX PACKAGE-10
MAXIM

MAX176

Serial Output.250ksps.12-Bit ADC with Track/Hold and Reference
MAXIM

MAX1760

0.8A, Low-Noise, 1MHz, Step-Up DC-DC Converter
MAXIM

MAX17600

4A Sink /Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ASA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ASA+T

暂无描述
MAXIM

MAX17600ATA+

4A Sink/Source Current, 12ns, Dual MOSFET Drivers
MAXIM

MAX17600ATA+T

暂无描述
MAXIM