MAX16961RAUEA/V+ [MAXIM]

Switching Regulator, Voltage-mode, 3.3A, 2400kHz Switching Freq-Max, BICMOS, PDSO16, ROHS COMPLIANT, TSSOP-16;
MAX16961RAUEA/V+
型号: MAX16961RAUEA/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Voltage-mode, 3.3A, 2400kHz Switching Freq-Max, BICMOS, PDSO16, ROHS COMPLIANT, TSSOP-16

信息通信管理 开关 光电二极管
文件: 总13页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
General Description  
Benefits and Features  
The MAX16961 is a high-efficiency, synchronous step-  
down converter that operates with a 2.7V to 5.5V input  
voltage range and provides a 0.8V to 3.6V output voltage  
range. The wide input/output voltage range and the ability  
to provide up to 3A to load current make this device ideal  
for on-board point-of-load and post-regulation applica-  
tions. The device achieves -3.7%/+2.6% output error over  
load, line, and temperature ranges.  
S Small External Components  
2.2MHz Operating Frequency  
S Ideal for Point-of-Load Applications  
3A Maximum Load Current  
Adjustable Output Voltage: 0.8V to 3.6V  
2.7V to 5.5V Operating Supply Voltage  
S High Efficiency at Light Load  
26µA Skip Mode Quiescent Current  
The device features a 2.2MHz fixed-frequency PWM  
mode for better noise immunity and load transient  
response, and a pulse-frequency modulation mode  
(skip) for increased efficiency during light-load operation.  
The 2.2MHz frequency operation allows for the use of all-  
ceramic capacitors and minimizes external components.  
The optional spread-spectrum frequency modulation  
minimizes radiated electromagnetic emissions.  
S Minimizes Electromagnetic Interference  
Programmable SYNC I/O Pin  
Operates Above AM-Radio Band  
Available Spread Spectrum  
S Low Power Mode Saves Energy  
1µA Shutdown Current  
S Open-Drain Power-Good Output  
Integrated low R  
heavy loads and make the layout a much simpler task  
with respect to discrete solutions.  
switches improve efficiency at  
DSON  
S Limits Inrush Current During Startup  
Soft-Start  
S Overtemperature and Short-Circuit Protections  
The device can be offered with factory-preset output volt-  
ages, or with an adjustable output voltage (contact factory  
for preset output-voltage options). Factory-preset output-  
voltage versions allow customers to achieve -3.7%/+2.6%  
output-voltage accuracy without using external resistors,  
while the adjustable output-voltage version provides the  
flexibility to set the output voltage to any desired value  
between 0.8V to 3.6V using an external resistive divider.  
S 16-Pin TSSOP-EP and 16-Pin (4mm x 4mm)  
TQFN-EP Packages  
S -40°C to 125°C Operating Temperature Range  
Applications  
Automotive Infotainment  
Point-of-Load Applications  
Industrial/Military  
Additional features include 8ms soft-start, 16ms power-  
good output delay, overcurrent, and overtemperature  
protections.  
The MAX16961 is available in thermally enhanced  
16-pin TSSOP-EP and 16-pin (4mm x 4mm) TQFN-EP  
packages, and is specified for operation over the -40NC  
to +125NC automotive temperature range.  
Typical Application Circuit  
V
PV1  
PV1  
PV2  
EN  
OUTS  
0.47µH  
4.7µF  
V
LX1  
LX2  
OUT1  
Ordering Information appears at end of data sheet.  
47µF  
PGND1  
PGND2  
V
OUT1  
V
PV  
10  
1µF  
PV  
MAX16961  
20kΩ  
GND  
PG  
EP  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6520; Rev 5; 6/15  
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
PV, PV1, PV2 to GND..............................................-0.3V to +6V  
EN, PG to GND .......................................................-0.3V to +6V  
PGND1 and PGND2 to GND ..............................-0.3V to +0.3V  
LX1, LX2 Continuous RMS Current  
(LX1 connected in Parallel with LX2)...................................4A  
LX Current (LX1 connected in Parallel with LX2).....Q6A (Note 5)  
Continuous Power Dissipation (T = +70NC)  
A
TQFN (derate 25mW/NC above +70NC)................... 2000mW*  
TSSOP (derate 26.1mW/NC above +70NC)........... 2088.8mW*  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
All Other Pins Voltages to GND .. (V + 0.3V) to (V  
- 0.3V)  
PV  
GND  
Output Short-Circuit Duration....................................Continuous  
*As per JEDEC51 Standard (multilayer board).  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
TSSOP  
Junction-to-Ambient Thermal Resistance (B ) ..........40NC/W  
Junction-to-Ambient Thermal Resistance (B )....38.3NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................6NC/W  
Junction-to-Case Thermal Resistance (B )..............3NC/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
PARAMETER  
SYMBOL  
CONDITIONS  
Normal operation  
No load, V = 0V  
MIN  
2.7  
12  
TYP  
MAX  
5.5  
45  
UNITS  
V
Supply Voltage Range  
Supply Current  
V
PV  
I
26  
1
FA  
PV  
PWM  
Shutdown Supply Current  
I
V
= 0V, T = +25°C  
5
FA  
SHDN  
EN  
A
Undervoltage-Lockout Threshold  
Low  
V
2.37  
V
UVLO_L  
Undervoltage-Lockout Threshold  
High  
V
2.6  
V
V
UVLO_H  
Undervoltage-Lockout Hysteresis  
0.07  
SYNCHRONOUS STEP-DOWN DC-DC CONVERTER  
FB Regulation Voltage  
V
800  
0
mV  
%
OUTS  
I
I
= 4A  
= 0A  
-3  
+3  
+3  
LOAD  
Feedback Set-Point Accuracy  
V
OUTS  
-0.5  
+2  
LOAD  
V
= 5V, I  
= 0.4A,  
PV1  
LX_  
pMOS On-Resistance  
nMOS On-Resistance  
R
34  
25  
55  
45  
mI  
mI  
A
DSON_P  
LX1 in parallel with LX2  
V
= 5V, I = 0.8A,  
PV1  
LX_  
R
DSON_N  
LX1 in parallel with LX2  
Maximum pMOS Current-Limit  
Threshold  
I
LX1 and LX2 shorted together  
3.9  
5.1  
6.3  
LIMP1  
Maxim Integrated  
2
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
PARAMETER  
SYMBOL  
CONDITIONS  
+ 0.5V PV P5.5V) (Note 3)  
MIN  
3.3  
1
TYP  
MAX  
UNITS  
Maximum Output Current  
I
(V  
A
OUT  
OUT  
PV1  
Fixed output voltage variants  
Adjustable output version  
2
5
OUTS Bias Current  
I
FA  
FA  
B_OUTS  
-1  
+1  
V
= 5V, LX_ = PGND_ or PV_,  
= 0V, through the OUTS pin  
EN  
PV_  
LX_ Leakage Current  
I
-1  
+1  
LX_LEAK  
T
= +25°C  
A
Minimum On-Time  
t
60  
24  
ns  
ON_MIN  
I
LX Discharge Resistance  
R
V
15  
55  
LX  
Maximum Short-Circuit Current  
OSCILLATOR  
7.8  
A
Oscillator Frequency  
f
Internally generated  
2.0  
1.7  
2.2  
+6  
2.4  
2.4  
MHz  
%
SW  
Spread Spectrum  
Df/f  
Spread spectrum enabled  
50% duty cycle (Note 4)  
SYNC Input Frequency Range  
THERMAL OVERLOAD  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
POWER-GOOD OUTPUT (PG)  
PG Overvoltage Threshold  
PG Undervoltage Threshold  
PG Timeout Period  
f
MHz  
SYNC  
+165  
15  
°C  
°C  
PG  
PG  
Percentage of nominal output  
Percentage of nominal output  
106  
90  
110  
92  
114  
94  
%
%
OVTH  
UVTH  
16  
ms  
Undervoltage-/Overvoltage-  
Propagation Delay  
28  
Fs  
FA  
V
Output High Leakage Current  
T
= +25°C  
0.2  
0.4  
0.4  
A
I
= 3mA  
SINK  
PG Output Low Voltage  
V
= 1.2V, I  
= 100FA  
PV  
SINK  
ENABLE INPUTS (EN)  
Input Voltage High  
Input Voltage Low  
Input Hysteresis  
V
Input rising  
Input falling  
2.4  
V
V
INH  
V
0.5  
INL  
0.85  
1.0  
V
Input Current  
V
V
= high  
= low  
0.1  
50  
2
FA  
kI  
EN  
EN  
Pulldown Resistor  
100  
200  
DIGITAL INPUTS (PWM, SYNC AS INPUT)  
Input Voltage High  
Input Voltage Low  
Input Voltage Hysteresis  
Pulldown Resistor  
V
1.8  
50  
V
V
INH  
V
0.4  
INL  
50  
mV  
kI  
100  
200  
Maxim Integrated  
3
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUT (SYNC AS OUTPUT)  
Output-Voltage Low  
Output-Voltage High  
V
I
= 3mA  
SINK  
0.4  
V
V
OL  
V
V
= 5V, I = 3mA  
SOURCE  
4.2  
OH  
PV  
Note 2: All limits are 100% production tested at +25°C. Limits over temperature are guaranteed by design.  
Note 3: Calculated value based on an assumed inductor current ripple of 30%.  
Note 4: For SYNC frequency outside (1.7, 2.4) MHz, contact factory.  
Note 5: LX_ has internal clamp diodes to PGND_ and IN_. Applications that forward bias these diodes should take care not to  
exceed the IC’s package power dissipation limits.  
Typical Operating Characteristics  
(V = V  
PV  
= 5V, V = 5V, T = +25°C, unless otherwise noted.)  
EN A  
PV1  
EFFICIENCY vs. LOAD CURRENT (PWM)  
EFFICIENCY vs. LOAD CURRENT (PWM)  
EFFICIENCY vs. LOAD CURRENT (SKIP)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V
= 5V  
IN  
IN  
V
= 3.3V  
OUT  
V
= 2.5V  
OUT  
V
= 3.3V  
OUT  
V
= 1.8V  
OUT  
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
= 1.2V  
OUT  
V
= 5V  
IN  
0.0010  
0.0100  
0.1000  
(A)  
1.0000  
10.0000  
0.0010  
0.0100  
0.1000  
1.0000  
10.0000  
0
0.001  
0.010  
0.100  
1.000 10.000  
I
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD  
V
LOAD REGULATION (PWM)  
V
LOAD REGULATION (SKIP)  
OUT  
EFFICIENCY vs. LOAD CURRENT (SKIP)  
OUT  
0.50  
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V  
IN  
V
V
= 5V  
IN  
0
= 3.3V  
OUT  
= 3.3V  
OUT  
-0.50  
-1.00  
-1.50  
-1  
-2  
-3  
-4  
-5  
-6  
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
= 2.5V  
OUT  
-2.00  
-2.50  
-3.00  
-3.50  
T
= -40°C  
A
T
A
= -40°C  
T
A
= +25°C  
T
= +25°C  
A
T
= +125°C  
A
T
A
= +125°C  
V
= 3.3V  
IN  
-4.00  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
I
1.5  
(A)  
2.0  
2.5  
3.0  
0.0001 0.0010 0.0100 0.1000 1.0000 10.0000  
I
LOAD CURRENT (A)  
LOAD  
LOAD  
Maxim Integrated  
4
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
V
OUT  
vs. V (PWM)  
I vs. V (SKIP)  
PV PV  
PV  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
40  
35  
30  
25  
20  
15  
10  
V
V
V
= 0V  
PWM  
EN1  
OUT1  
I
= 0A  
LOAD  
= V = V  
EN2  
PV  
= 0.8V  
= V  
OUT2  
T
= -40°C  
A
T
= +125°C  
= +25°C  
A
T
= +25°C  
A
T
A
T
A
= -40°C  
4.0  
T
= +125°C  
A
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
V
V
(V)  
PV  
PV  
I
vs. TEMPERATURE (SKIP)  
LOAD-TRANSIENT RESPONSE (PWM)  
MAX16961 toc10  
PV  
40  
38  
36  
34  
32  
30  
28  
V
= 3.3V  
V
V
V
V
= 5V  
PWM  
EN1  
OUT  
IN  
PV  
= 0V  
PV  
= 0.9V  
3.0A  
= V  
0.30A  
0A  
I
LOAD  
V
OUT  
AC-COUPLED  
26  
24  
22  
50mV/div  
20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
100µs/div  
SHDN CURRENT vs. V  
f
vs. TEMPERATURE  
PV  
SW  
1000  
100  
10  
2.20  
2.18  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
V
= 5V  
IN  
PWM MODE  
T
= +125°C  
A
1
0.1  
T
= +25°C  
A
T
0.01  
0.001  
= -40°C  
4.5  
A
2.5  
3.0  
3.5  
4.0  
(V)  
5.0  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
V
PV  
Maxim Integrated  
5
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Pin Configurations  
TOP VIEW  
TOP VIEW  
12  
11  
10  
9
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
PV2  
GND  
GND  
PG  
8
7
6
5
GND 13  
GND 14  
LX2  
PV  
PGND2  
PGND1  
LX1  
SYNC  
PWM  
GND  
OUTS  
EN  
MAX16961  
MAX16961  
GND  
PV2  
15  
16  
PV1  
PG  
EP  
EP  
PV1  
+
EN  
OUTS  
1
2
3
4
TSSOP  
TQFN  
(4mm x 4mm)  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
Switching Node 2. LX2 is high impedance when the converter is off.  
TQFN  
TSSOP  
1
2
3
4
3
4
5
6
LX2  
PGND2 Power Ground 2  
PGND1 Power Ground 1  
LX1  
Switching Node 1. LX1 is high impedance when the converter is off.  
Input Supply 1. Bypass PV1 with at least a 4.7FF ceramic capacitor to PGND1. Connect PV1 to  
PV2 for normal operation.  
5
6
7
7
8
9
PV1  
EN  
Enable Input. Drive EN high to enable the converter. Drive EN low to disable the converter.  
Feedback Input (Adjustable Output Option Only). Connect an external resistive divider from  
VOUT to OUTS and GND to set the output voltage. See Figure 2.  
OUTS  
Power-Good Output. Open-drain output. PG asserts when VOUT drops below 8% or rises above  
10% of the nominal output voltage. Connect to a 20kI pullup resistor.  
8
10  
PG  
9,  
13–15  
1, 11,  
15, 16  
GND  
PWM  
Ground  
PWM Control Input. Drive PWM high to put the converters in forced-PWM mode. Drive PWM low  
to put the converters in skip mode.  
10  
11  
12  
13  
Factory-Set Sync Input or Output. As an input, SYNC accepts a 1.7MHz to 2.4MHz external clock  
signal. As an output, SYNC outputs a 90° phase-shifted signal with respect to internal oscillator.  
SYNC  
Maxim Integrated  
6
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Pin Descriptions (continued)  
PIN  
NAME  
PV  
FUNCTION  
TQFN  
TSSOP  
Device Supply Voltage Input. Bypass with at least a 1FF ceramic capacitor to GND. In addition,  
connect a 10I decoupling resistor between PV and the bypass capacitor.  
12  
14  
Input Supply 2. Bypass PV2 with at least a 4.7FF ceramic capacitor to PGND2. Connect PV2 to  
PV1 for normal operation.  
16  
2
PV2  
EP  
Exposed Pad. Connect EP to a large-area contiguous copper ground plane for effective power  
dissipation. Do not use EP as the only IC ground connection. EP must be connected to GND.  
Soft-Start  
Detailed Description  
The device includes an 8ms fixed soft-start time.  
Soft-start time limits startup inrush current by forcing  
the output voltage to ramp up over time towards its  
regulation point.  
The MAX16961 is a high-efficiency, synchronous step-  
down converter that operates with a 2.7V to 5.5V input  
voltage range and provides a 0.8V to 3.6V output voltage  
range. The device delivers up to 3A of load current and  
achieves -3.7%/+2.6% output error over load, line, and  
temperature ranges.  
Spread-Spectrum Option  
The device featuring spread-spectrum (SS) operation  
varies the internal operating frequency up by SS = 6%  
relative to the internally generated operating frequency of  
2.2MHz (typ). This function does not apply to externally  
applied oscillation frequency. The internal oscillator is  
frequency modulated with a 6% frequency deviation. See  
the Selector Guide for available options.  
The PWM input forces the device into either a fixed-  
frequency, 2.2MHz PWM mode or a low-power pulse-  
frequency modulation mode (skip). Optional spread-  
spectrum frequency modulation minimizes radiated  
electromagnetic emissions due to the switching  
frequency. The factory-programmable synchronization  
I/O (SYNC) enables system synchronization.  
Synchronization (SYNC)  
SYNC is a factory-programmable I/O. See the Selector  
Guide for available options. When SYNC is configured  
as an input, a logic-high on PWM enables SYNC to  
Integrated low R  
switches help improve efficiency  
at heavy loads and make the layout a much simpler task  
with respect to discrete solutions.  
DSON  
accept signal frequency in the range of 1.7MHz < f  
SYNC  
The device is offered with factory-preset output  
voltages that achieve -3.7%/+2.6% output-voltage  
accuracy without using external resistors. In addition, the  
output voltage can be set to any desired values between  
0.8V to 3.6V using an external resistive divider with the  
adjustable option.  
< 2.4MHz. When SYNC is configured as an output, a  
logic-high on PWM enables SYNC to output a 90Nphase-  
shifted signal with respect to internal oscillator.  
Current-Limit/Short-Circuit Protection  
The device features current limit that protects the device  
against short-circuit and overload conditions at the out-  
put. In the event of a short-circuit or overload condition,  
the high-side MOSFET remains on until the inductor  
current reaches the high-side MOSFET’s current-limit  
threshold. The converter then turns on the low-side  
MOSFET to allow the inductor current to ramp down.  
Once the inductor current crosses the low-side MOSFET  
current-limit threshold, the converter turns on the high-  
side MOSFET for minimum on-time period. This cycle  
repeats until the short or overload condition is removed.  
Additional features include 8ms soft-start, 16ms power-  
good delay output, overcurrent, and overtemperature  
protections. See Figure 1.  
Power-Good Output (PG)  
The device features an open-drain power-good output  
that asserts when the output voltage drops 8% below  
or rises 10% above the regulated voltage. PG remains  
asserted for a fixed 16ms timeout period after the output  
rises up to its regulated voltage. Connect PG to OUTS  
with a 20kI resistor.  
Maxim Integrated  
7
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
CURRENT-SENSE  
PV1  
AMP  
PV  
MAX16961  
SKIP CURRENT  
PV2  
COMP  
PV1  
CLK  
PEAK CURRENT  
LX1  
RAMP  
GENERATOR  
COMP  
PGND  
PV  
CONTROL  
LOGIC  
STEP-DOWN  
LX2  
Σ
PMW  
COMP  
PWM  
PGND2  
PGND1  
PGND  
V
REF  
ERROR  
AMP  
ZERO-CROSSING  
COMP  
FPWM CLK  
SOFT-START  
GENERATOR  
CURRENT LIM  
COMP  
POWER-GOOD  
COMP  
P1-OK  
FEEDBACK  
DRIVER  
OUTS  
SYNC  
CLK  
OSC.  
MAIN  
OTP  
TRIM BITS  
FPWM  
VOLTAGE  
REFERENCE  
TH-SD  
V
REF  
PG  
P1-OK  
CONTROL  
LOGIC  
EN  
GND  
Figure 1. Internal Block Diagram  
the high-side switch only when needed to maintain  
regulation. As such, the converter does not switch  
MOSFETs on and off as often as is the case in the FPWM  
mode. Consequently, the gate charge and switching  
losses are much lower in skip mode.  
FPWM/Skip Modes  
The device features an input (PWM) that puts the  
converter either in skip mode or forced-PWM (FPWM)  
mode of operation. See the Pin Descriptions section for  
mode details. In FPWM mode, the converter switches at  
a constant frequency with variable on-time. In skip mode,  
the converter’s switching frequency is load-dependent  
until the output load reaches the skip threshold. At  
higher load current, the switching frequency does not  
change and the operating mode is similar to the FPWM  
mode. Skip mode helps improve efficiency in light-load  
applications by allowing the converters to turn on  
Overtemperature Protection  
Thermal overload protection limits the total power dissipa-  
tion in the device. When the junction temperature exceeds  
+165°C (typ), an internal thermal sensor shuts down  
the internal bias regulator and the step-down controller,  
allowing the IC to cool. The thermal sensor turns on the IC  
again after the junction temperature cools by 15°C.  
Maxim Integrated  
8
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Table 1. Inductor Values vs. (V - V  
)
IN  
OUT  
VIN - VOUT (V)  
5.0 to 3.3  
0.8  
5.0 to 2.5  
0.6  
5.0 to 1.5  
0.47  
3.3 to 0.8  
0.33  
INDUCTOR (µH)  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the MAX16961: inductance value (L),  
V
OUT  
inductor saturation current (I  
), and DC resistance  
SAT  
(R ). Use the following formulas to determine the  
DCR  
R1  
C1  
MAX16962  
OUTS  
minimum inductor value:  
V
3
× 3A  
OUT_  
L
= V V  
×(  
)×  
(
)
MIN  
IN  
OUT_  
V
f
IN  
OP  
R2  
where f  
is the operating frequency. This value is  
OP  
2.2MHz unless externally synchronized to a different  
frequency.  
The next equation ensures that the inductor current  
downslope is less than the internal slope compensation.  
For this to be the case, the following equation needs to  
be satisfied:  
Figure 2. Adjustable Output Voltage Setting  
Applications Information  
m2  
2
Setting the Output Voltage  
OUT  
put voltage (see the Selector Guide). To set the output  
to other voltages between 0.8V and 3.6V, connect a  
m ≥  
Connect OUTS to V  
for factory-programmed out-  
where m2 is the inductor current downslope:  
resistive divider from output (V  
(Figure 2). Select R2 (OUTS to GND resistor) less than  
or equal to 100kI. Calculate R1 (V  
with the following equation:  
) to OUTS to GND  
OUT  
V
OUT  
L
to OUTS resistor)  
OUT  
and -m is the slope compensation:  
V
OUT  
R1 = R2  
1  
0.8xIMAX  
V
OUTS   
µs  
R1×R2  
R1+ R2  
where  
7.5kΩ  
Solving for L:  
where V  
table).  
= 800mV (see the Electrical Characteristics  
OUTS  
µs  
1.6 × 3A  
L
= V  
×
MIN2  
OUT  
The external feedback resistive divider must be frequency  
compensated for proper operation. Place a capacitor  
across each resistor in the resistive-divider network.  
Use the following equation to determine the value of the  
capacitors:  
The equation that provides the bigger inductor value  
must be chosen for proper operation:  
L
MIN  
= max(L  
, L  
)
MIN1 MIN2  
The maximum inductor value recommended is twice the  
chosen value from the above formula.  
R2  
C1 = 10pF  
R1  
L
= 2 x L  
MIN  
MAX  
Maxim Integrated  
9
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
The maximum inductor value must not exceed the  
Output Capacitor  
The minimum capacitor required depends on output  
voltage, maximum device current capability, and the  
error-amplifier voltage gain. Use the following formula to  
determine the required output capacitor value:  
calculated value from the above formula. This ensures  
that the current feedback loop receives the correct  
amount of current ripple for proper operation.  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
V
G
REF x EAMP  
C
=
OUT(MIN)  
2π × f  
× V  
R
CO  
OUT x CS  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
RMS  
0.8Vx31.7  
2π × 210kHz × V  
=
OUT×167mΩ  
V
(V  
V  
)
OUT PV1  
OUT  
I
= I  
RMS LOAD(MAX)  
V
PV1  
where f , the target crossover frequency, is 210kHz,  
CO  
G
, the error-amplifier voltage gain, is 31.7V/V, and  
EAMP  
I
has a maximum value when the input voltage  
RMS  
R
CS  
is 167mΩ.  
equals twice the output voltage (V  
I
= 2V  
), so  
OUT  
PV1  
= I  
/2.  
PCB Layout Guidelines  
RMS(MAX)  
LOAD(MAX)  
Careful PCB layout is critical to achieve low switching  
losses and clean, stable operation. Use a multilayer  
board whenever possible for better noise immunity and  
power dissipation. Follow these guidelines for good PCB  
layout:  
Choose an input capacitor that exhibits less than +10NC  
self-heating temperature rise at the RMS input current for  
optimal long-term reliability.  
The input-voltage ripple is composed of DV (caused  
Q
by the capacitor discharge) and DV  
(caused by the  
ESR  
1) Use a large contiguous copper plane under the  
device package. Ensure that all heat-dissipating  
components have adequate cooling. The bottom  
pad of the device must be soldered down to this  
copper plane for effective heat dissipation and  
maximizing the full power out of the device. Use  
multiple vias or a single large via in this plane for  
heat dissipation.  
ESR of the capacitor). Use low-ESR ceramic capacitors  
with high ripple-current capability at the input. Assume  
the contribution from the ESR and capacitor discharge  
equal to 50%. Calculate the input capacitance and ESR  
required for a specified input voltage ripple using the  
following equations:  
V  
ESR  
ESR  
=
IN  
I  
L
I
+
OUT  
2) Isolate the power components and high-current path  
from the sensitive analog circuitry. This is essential to  
prevent any noise coupling into the analog signals.  
2
where:  
and:  
(V  
V  
)× V  
×L  
PV1  
V
OUT OUT  
× f  
I  
=
L
3) Add small footprint blocking capacitors with low self-  
resonance frequency close to PV1, PV2, and PV.  
PV1 SW  
I
×D(1D)  
V
OUT  
V
4) Keep the high-current paths short, especially at the  
ground terminals. This practice is essential for stable,  
jitter-free operation. The high-current path composed  
of input capacitors at PV1, PV2, inductor, and the  
output capacitor should be as short as possible.  
OUT  
C
=
and D =  
IN  
V × f  
Q
SW  
PV1  
where I  
duty cycle.  
is the maximum output current, and D is the  
OUT  
It is strongly recommended that a 4.7FF small footprint  
be placed close to PV1 and PV2 and a minimum of 100nF  
small footprint be placed close to PV. Using a small foot-  
print such as 0805 or smaller helps to reduce the total  
parasitic inductance.  
5) Keep the power traces and load connections short.  
This practice is essential for high efficiency. Use  
thick copper PCBs (2oz vs. 1oz) to enhance full-load  
efficiency.  
Maxim Integrated  
10  
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
6) OUTS is sensitive to noise for devices with external  
7) The ground connection for the analog and power  
section should be close to the IC. This keeps the  
ground current loops to a minimum. In cases where  
only one ground is used enough isolation between  
analog return signals and high power signals must be  
maintained.  
feedback option. The resistive network (R1 and R2)  
and the capacitive network (C1 and C2) must be  
placed close to OUTS and far away from the LX_ node  
and high switching current paths. The ground node of  
R2 and C2 must be close to GND.  
Chip Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
T1644+4  
U16E+3  
NO.  
16 TQFN-EP  
16 TSSOP-EP  
21-0139  
21-0108  
90-0070  
90-0120  
Maxim Integrated  
11  
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Selector Guide  
PACKAGE  
SUFFIX  
OUTPUT  
VOLTAGE  
SPREAD  
SPECTRUM  
ROOT PART  
OPTION SUFFIX  
SYNC IN/OUT  
MAX16961  
MAX16961  
MAX16961  
MAX16961  
RAUE  
SAUE  
RATE  
SATE  
A/V+  
A/V+  
A/V+  
A/V+  
Ext. Adj.  
Ext. Adj.  
Ext. Adj.  
Ext. Adj.  
Disabled  
Enabled  
Disabled  
Enabled  
In  
In  
In  
In  
Note: Contact the factory for variants with different output-voltage, spread-spectrum, and power-good delay time settings.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
LOAD CURRENT CAPABILITY (A)  
PIN-PACKAGE  
MAX16961_ATE_/V+  
MAX16961_AUE_/V+  
4
4
16 TQFN-EP*  
16 TSSOP-EP*  
Note: “_” is a package suffix placeholder for either “R” or “S”, as shown in the Selector Guide. The 2nd “_” is in the option suffix.  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Maxim Integrated  
12  
 
MAX16961  
3A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
11/12  
4/13  
0
1
Initial release  
Added non-automotive parts to Selector Guide  
11  
Updated input voltage high min spec and input voltage low max spec, Figure 2,  
equation, step 6 in the PCB Layout Guidelines section, and the Ordering Information  
2
9/13  
3–5, 10, 11  
2, 3, 9–11  
Added FB regulation voltage specifications and updated V condition in Electrical  
PV  
3
5/14  
Characteristics table; corrected equations and updated Table 2 in the Inductor  
Selection and Output Capacitor sections; updated Ordering Information  
Updated General Description section to make it clear that factory needs to be  
contacted for fixed output-voltage trim options  
4
5
6/15  
7/15  
1
Added formula to equation in the Setting the Output Voltage section, replaced the  
Output Capacitor section, and deleted Table 2  
9, 10  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
13  
©
2015 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX16961SATEA/V+

Switching Regulator, Voltage-mode, 3.3A, 2400kHz Switching Freq-Max, BICMOS, 4 X 4 MM, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16961SAUEA/V+

Switching Regulator, Voltage-mode, 3.3A, 2400kHz Switching Freq-Max, BICMOS, PDSO16, ROHS COMPLIANT, TSSOP-16
MAXIM

MAX16962SATEA/V+

Switching Regulator, 5.2A, BICMOS, 4 X 4 MM, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16963SATEA/V+

Dual Switching Controller,
MAXIM

MAX16963SAUEA/V+

Dual Switching Controller,
MAXIM

MAX1697

60mA, SOT23 Inverting Charge Pump with Shutdown
MAXIM

MAX16970

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GEEA/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GEEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GTEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971GEEA/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM