MAX16962SATEA/V+ [MAXIM]

Switching Regulator, 5.2A, BICMOS, 4 X 4 MM, ROHS COMPLIANT, TQFN-16;
MAX16962SATEA/V+
型号: MAX16962SATEA/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, 5.2A, BICMOS, 4 X 4 MM, ROHS COMPLIANT, TQFN-16

信息通信管理 开关
文件: 总13页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
General Description  
Benefits and Features  
The MAX16962 is a high-efficiency, synchronous step-  
down converter that operates with a 2.7V to 5.5V input  
voltage range and provides a 0.8V to 3.6V output voltage  
range. The wide input/output voltage range and the abil-  
ity to provide up to 4A to load current make this device  
ideal for on-board point-of-load and post-regulation  
applications. The MAX16962 achieves -3.7%/+2.6% out-  
put error over load, line, and temperature ranges.  
S Small External Components  
2.2MHz Operating Frequency  
S Ideal for Point-of-Load Applications  
4A Maximum Load Current  
Adjustable Output Voltage: 0.8V to 3.6V  
2.7V to 5.5V Operating Supply Voltage  
S High Efficiency at Light Load  
26µA Skip Mode Quiescent Current  
The MAX16962 features a 2.2MHz fixed-frequency PWM  
mode for better noise immunity and load transient  
response, and a pulse frequency modulation mode  
(SKIP) for increased efficiency during light-load opera-  
tion. The 2.2MHz frequency operation allows for the use  
of all-ceramic capacitors and minimizes external compo-  
nents. The optional spread-spectrum frequency modula-  
tion minimizes radiated electromagnetic emissions.  
S Minimizes Electromagnetic Interference  
Programmable SYNC I/O Pin  
Operates Above AM-Radio Band  
Available Spread Spectrum  
S Low Power Mode Saves Energy  
1µA Shutdown Current  
Open-Drain Power-Good Output  
Integrated low R  
heavy loads and make the layout a much simpler task  
with respect to discrete solutions.  
switches improve efficiency at  
DSON  
S Limits Inrush Current During Startup  
Soft-Start  
S Overtemperature and Short-Circuit Protections  
The MAX16962 is offered with factory-preset output  
voltages or with an adjustable output voltage. (See the  
Selector Guide for options). Factory preset output volt-  
age versions allow customers to achieve -3.7%/+2.6%  
output voltage accuracy without using external resistors,  
while the adjustable output voltage version provides the  
flexibility to set the output voltage to any desired value  
between 0.8V to 3.6V using an external resistive divider.  
S 4mm x 4mm, 16-Pin Thin QFN and 16-Pin TSSOP  
Packages  
S -40°C to 125°C Operating Temperature Range  
Applications  
Automotive Infotainment  
Point-of-Load Applications  
Industrial/Military  
Additional features include 8ms soft-start, 16ms power-  
good output delay, overcurrent, and overtemperature  
protections.  
The MAX16962 is available in thermally enhanced  
Typical Application Circuit  
16-pin TSSOP-EP and 4mm  
x
4mm, 16-pin  
TQFN-EP packages, and is specified for operation over  
the -40NC to +125NC automotive temperature range.  
V
PV1  
PV1  
PV2  
EN  
OUTS  
0.47µH  
4.7µF  
V
LX1  
LX2  
OUT1  
Ordering Information appears at end of data sheet.  
47µF  
PGND1  
PGND2  
V
OUT1  
V
PV  
10  
1µF  
MAX16962  
PV  
20kΩ  
GND  
PG  
EP  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6213; Rev 3; 7/15  
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
PV, PV1, PV2 to GND..............................................-0.3V to +6V  
EN, PG to GND .......................................................-0.3V to +6V  
PGND1 and PGND2 to GND ..............................-0.3V to +0.3V  
LX1, LX2 Continuous RMS Current  
(LX1 connected in Parallel with LX2)...................................4A  
LX Current (LX1 connected in Parallel with LX2).....Q6A (Note 5)  
Continuous Power Dissipation (T = +70NC)  
A
TQFN (derate 25mW/NC above +70NC)................... 2000mW*  
TSSOP (derate 26.1mW/NC above +70NC)........... 2088.8mW*  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
All Other Pins Voltages to GND .. (V + 0.3V) to (V  
- 0.3V)  
PV  
GND  
Output Short-Circuit Duration....................................Continuous  
*As per JEDEC51 Standard (multilayer board).  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
TSSOP  
Junction-to-Ambient Thermal Resistance (B ) ..........40NC/W  
Junction-to-Ambient Thermal Resistance (B )....38.3NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................6NC/W  
Junction-to-Case Thermal Resistance (B )..............3NC/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
PARAMETER  
SYMBOL  
VPV  
CONDITIONS  
Normal operation  
MIN  
2.7  
12  
TYP  
MAX  
5.5  
45  
UNITS  
V
Supply Voltage Range  
Supply Current  
IPV  
No load, VPWM = 0V  
VEN = 0V, TA = +25°C  
26  
1
FA  
Shutdown Supply Current  
ISHDN  
5
FA  
Undervoltage Lockout Threshold  
Low  
VUVLO_L  
VUVLO_H  
2.37  
V
Undervoltage Lockout Threshold  
High  
2.6  
V
V
Undervoltage Lockout Hysteresis  
0.07  
SYNCHRONOUS STEP-DOWN DC-DC CONVERTER  
FB Regulation Voltage  
VOUTS  
800  
0
mV  
%
ILOAD = 4A  
ILOAD = 0A  
-3.7  
-1.9  
+2.6  
+2.6  
Feedback Set-Point Accuracy  
VOUTS  
VPV1 = 5V, ILX_ = 0.4A,  
LX1 in parallel with LX2  
pMOS On-Resistance  
nMOS On-Resistance  
RDSON_P  
RDSON_N  
34  
25  
55  
45  
mI  
mI  
VPV1 = 5V, ILX_ = 0.8A,  
LX1 in parallel with LX2  
Maxim Integrated  
2
 
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
Maximum pMOS Current-Limit  
Threshold  
ILIMP1  
LX1 and LX2 shorted together  
5.2  
6.8  
8.5  
A
PARAMETER  
SYMBOL  
CONDITIONS  
(VOUT + 0.5V P VPV1 P 5.5V) (Note 3)  
Fixed output voltage variants  
Adjustable output version  
MIN  
4.4  
1
TYP  
MAX  
UNITS  
Maximum Output Current  
IOUT  
A
2
5
OUTS Bias Current  
IB_OUTS  
ILX_LEAK  
FA  
FA  
-1  
+1  
VPV_ = 5V, LX_ = PGND_ or PV_,  
TA = +25°C  
LX_ Leakage Current  
-1  
+1  
Minimum On-Time  
tON_MIN  
RLX  
60  
24  
ns  
I
LX Discharge Resistance  
Maximum Short-Circuit Current  
OSCILLATOR  
VEN = 0V, through the OUTS pin  
15  
55  
10.4  
A
Oscillator Frequency  
fSW  
Df/f  
Internally generated  
2.0  
1.7  
2.2  
+6  
2.4  
2.4  
MHz  
%
Spread Spectrum  
Spread-spectrum enabled  
50% duty cycle (Note 4)  
SYNC Input Frequency Range  
THERMAL OVERLOAD  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
POWER-GOOD OUTPUT (PG)  
PG Overvoltage Threshold  
PG Undervoltage Threshold  
PG Timeout Period  
fSYNC  
MHz  
+165  
15  
°C  
°C  
PGOVTH  
PGUVTH  
Percentage of nominal output  
Percentage of nominal output  
106  
90  
110  
92  
114  
94  
%
%
16  
ms  
Undervoltage/Overvoltage  
Propagation Delay  
28  
Fs  
FA  
V
Output High Leakage Current  
TA = +25°C  
0.2  
0.4  
0.4  
ISINK = 3mA  
PG Output Low Voltage  
VPV = 1.2V, ISINK = 100FA  
ENABLE INPUTS (EN)  
Input Voltage High  
Input Voltage Low  
Input Hysteresis  
VINH  
VINL  
Input rising  
Input falling  
2.4  
V
V
0.5  
0.85  
1.0  
V
Input Current  
VEN = high  
VEN = low  
0.1  
50  
2
FA  
kI  
Pulldown Resistor  
100  
200  
DIGITAL INPUTS (PWM, SYNC AS INPUT)  
Input Voltage High  
Input Voltage Low  
VINH  
VINL  
1.8  
V
V
0.4  
Maxim Integrated  
3
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 5V, V = 5V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
PV  
PV1  
PV2 EN A J A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
50  
MAX  
200  
0.4  
UNITS  
mV  
Input Voltage Hysteresis  
Pulldown Resistor  
50  
100  
kI  
DIGITAL OUTPUT (SYNC AS OUTPUT)  
Output Voltage Low  
Output Voltage High  
VOL  
VOH  
ISINK = 3mA  
VPV = 5V, ISOURCE = 3mA  
V
V
4.2  
Note 2: All limits are 100% production tested at +25°C. Limits over temperature are guaranteed by design.  
Note 3: Calculated value based on an assumed inductor current ripple of 30%.  
Note 4: For SYNC frequency outside (1.7, 2.4) MHz, contact factory.  
Note 5: LX_ has internal clamp diodes to PGND_ and IN_. Applications that forward bias these diodes should take care not to  
exceed the IC’s package power dissipation limits.  
Typical Operating Characteristics  
(V = V  
PV  
= 5V, V = 5V, T = +25°C, unless otherwise noted.)  
EN A  
PV1  
EFFICIENCY vs. LOAD CURRENT (SKIP)  
EFFICIENCY vs. LOAD CURRENT (PWM)  
EFFICIENCY vs. LOAD CURRENT (PWM)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 2.2MHz, PWM MODE  
= 5V  
f
= 2.2MHz, PWM MODE  
V = 3.3V  
IN  
V
= 5V  
SW  
SW  
IN  
V
IN  
V
= 3.3V  
OUT  
V
= 2.5V  
OUT  
V
= 3.3V  
OUT  
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
= 1.8V  
V
= 1.8V  
OUT  
OUT  
V
= 1.2V  
0.1  
OUT  
V
= 1.2V  
OUT  
f
= 2.2MHz, SKIP MODE  
SW  
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
1.0  
10  
0.001  
0.01  
0.1  
LOAD CURRENT (A)  
1.0  
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Maxim Integrated  
4
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
V
LOAD REGULATION (PWM)  
V
LOAD REGULATION (SKIP)  
EFFICIENCY vs. LOAD CURRENT (SKIP)  
OUT  
OUT  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
100  
V
= 3.3V  
IN  
V = 5V  
V
= 5V  
IN  
SKIP MODE  
IN  
PWM MODE  
T
A
= +25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
A
= +25°C  
T
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
= 2.5V  
OUT  
= +125°C  
A
T
A
= +125°C  
T
A
= -40°C  
T
= -40°C  
A
f
= 2.2MHz, SKIP MODE  
SW  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
(A)  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
(A)  
0.0001 0.0010  
0.01  
0.1  
1.0  
10  
I
I
LOAD  
LOAD CURRENT (A)  
LOAD  
V
OUT  
vs. V (PWM)  
I vs. V (SKIP)  
PV PV  
I
PV  
vs. TEMPERATURE  
PV  
1.850  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
28  
26  
24  
22  
20  
18  
16  
14  
PWM MODE  
V
= 5V  
SKIP MODE  
PV  
SKIP MODE  
SET TO PRESET  
1.840  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
1.760  
1.750  
I
= 0A  
LOAD  
V
OUT  
VOLTAGE OF 0.8V  
T
A
= +125°C  
T
A
= -40°C  
T
= +25°C  
A
T
= +25°C  
4.0  
A
T
= -40°C  
5.0  
A
T
A
= +125°C  
0
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
2.5  
3.0  
3.5  
4.5  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
V
V
(V)  
PV  
PV  
SHUTDOWN CURRENT vs. V  
f
vs. TEMPERATURE  
LOAD-TRANSIENT RESPONSE  
IN PWM MODE  
PV  
SW  
1000  
100  
10  
2.20  
2.18  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
MAX16962 toc10  
V
= 5V  
IN  
PWM MODE  
T
A
= +125°C  
4A  
1
0.5A  
0A  
I
LOAD  
0.1  
T
A
= +25°C  
V
OUT  
100mV/div  
0.01  
0.001  
AC-COUPLED  
T
= -40°C  
4.5  
A
2.5  
3.0  
3.5  
4.0  
(V)  
5.0  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
100µs/div  
V
PV  
Maxim Integrated  
5
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Pin Configurations  
TOP VIEW  
TOP VIEW  
12  
11  
10  
9
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
PV2  
GND  
GND  
PG  
8
7
6
5
GND 13  
GND 14  
LX2  
PV  
PGND2  
PGND1  
LX1  
SYNC  
PWM  
GND  
OUTS  
EN  
MAX16962  
MAX16962  
GND  
PV2  
15  
16  
PV1  
PG  
EP  
EP  
PV1  
+
EN  
OUTS  
1
2
3
4
TSSOP  
TQFN  
(4mm x 4mm)  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
Switching Node 2. LX2 is high impedance when the converter is off.  
TQFN  
TSSOP  
1
2
3
4
3
4
5
6
LX2  
PGND2 Power Ground 2  
PGND1 Power Ground 1  
LX1  
Switching Node 1. LX1 is high impedance when the converter is off.  
Input Supply 1. Bypass PV1 with at least a 4.7FF ceramic capacitor to PGND1. Connect PV1 to  
PV2 for normal operation.  
5
6
7
7
8
9
PV1  
EN  
Enable Input. Drive EN high to enable converter. Drive EN low to disable converter.  
Feedback Input (Adjustable Output Option Only). Connect an external resistive divider from  
VOUT to OUTS and GND to set the output voltage. See Figure 2.  
OUTS  
Power-Good Output. Open-drain output. PG asserts when VOUT drops below 8% or rises above  
10% of the nominal output voltage. Connect to a 20kI pullup resistor.  
8
10  
PG  
9,  
13–15  
1, 11,  
15, 16  
GND  
PWM  
Ground  
PWM Control Input. Drive PWM high to put converters in forced-PWM mode. Drive PWM low to  
put converters in SKIP mode.  
10  
11  
12  
13  
Factory-Set Sync Input or Output. As an input, SYNC accepts a 1.7MHz to 2.4MHz external clock  
signal. As an output, SYNC outputs a 90° phase-shifted signal with respect to internal oscillator.  
SYNC  
Maxim Integrated  
6
 
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Pin Descriptions (continued)  
PIN  
NAME  
PV  
FUNCTION  
TQFN  
TSSOP  
Device Supply Voltage Input. Bypass with at least a 1FF ceramic capacitor to GND. In addition,  
connect a 10I decoupling resistor between PV and the bypass capacitor.  
12  
14  
Input Supply 2. Bypass PV2 with at least a 4.7FF ceramic capacitor to PGND2. Connect PV2 to  
PV1 for normal operation.  
16  
2
PV2  
EP  
Exposed Pad. Connect EP to a large-area contiguous copper ground plane for effective power  
dissipation. Do not use as the only IC ground connection. EP must be connected to GND.  
Soft-Start  
Detailed Description  
The MAX16962 includes an 8ms fixed soft-start time.  
Soft-start time limits startup inrush current by forcing the  
output voltage to ramp up over time towards its regula-  
tion point.  
The MAX16962 is a high-efficiency, synchronous step-  
down converter that operates with a 2.7V to 5.5V input  
voltage range and provides a 0.8V to 3.6V output voltage  
range. The MAX16962 delivers up to 4A of load current  
and achieves -3.7%/+2.6% output error over load, line,  
and temperature ranges.  
Spread-Spectrum Option  
The MAX16962 featuring spread-spectrum (SS) opera-  
tion varies the internal operating frequency up by  
SS = 6% relative to the internally generated operating  
frequency of 2.2MHz (typ). This function does not apply  
to externally applied oscillation frequency. The internal  
oscillator is frequency modulated with a 6% frequency  
deviation. See the Selector Guide for available options.  
The PWM input forces the MAX16962 into either a fixed-  
frequency, 2.2MHz PWM mode or a low-power pulse  
frequency modulation mode (SKIP). Optional spread-  
spectrum frequency modulation minimizes radiated elec-  
tromagnetic emissions due to the switching frequency.  
The factory programmable synchronization I/O (SYNC)  
enables system synchronization.  
Synchronization (SYNC)  
SYNC is a factory-programmable I/O. See the Selector  
Guide for available options. When SYNC is configured  
as an input, a logic-high on PWM enables SYNC to  
Integrated low R  
switches help improve efficiency  
at heavy loads and make the layout a much simpler task  
with respect to discrete solutions.  
DSON  
accept signal frequency in the range of 1.7MHz < f  
SYNC  
The device is offered with factory-preset output volt-  
ages that achieve -3.7%/+2.6% output voltage accuracy  
without using external resistors. In addition, the output  
voltage can be set to any desired values between 0.8V  
to 3.6V using an external resistive divider wth the adjust-  
able option.  
< 2.4MHz. When SYNC is configured as an output, a  
logic-high on PWM enables SYNC to output a 90Nphase-  
shifted signal with respect to internal oscillator.  
Current-Limit/Short-Circuit Protection  
The MAX16962 features current limit that protects the  
device against short-circuit and overload conditions at  
the output. In the event of a short-circuit or overload  
condition, the high-side MOSFET remains on until the  
inductor current reaches the high-side MOSFET’s cur-  
rent-limit threshold. The converter then turns on the low-  
side MOSFET to allow the inductor current to ramp down.  
Once the inductor current crosses the low-side MOSFET  
current-limit threshold, the converter turns on the high-  
side MOSFET for minimum on-time periode. This cycle  
repeats until the short or overload condition is removed.  
Additional features include 8ms soft-start, 16ms power-  
good delay output, overcurrent, and overtemperature  
protections. See Figure 1.  
Power-Good Output  
The MAX16962 features an open-drain power-good out-  
put that asserts when the output voltage drops 8% below  
or rises 10% above the regulated voltage. PG remains  
asserted for a fixed 16ms timeout period after the output  
rises up to its regulated voltage. Connect PG to OUTS  
with a 20kI resistor.  
Maxim Integrated  
7
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
CURRENT-SENSE  
PV1  
AMP  
PV  
MAX16962  
SKIP CURRENT  
PV2  
COMP  
PV1  
CLK  
PEAK CURRENT  
LX1  
RAMP  
GENERATOR  
COMP  
PGND  
PV  
CONTROL  
LOGIC  
STEP-DOWN  
LX2  
Σ
PMW  
COMP  
PWM  
PGND2  
PGND1  
PGND  
V
REF  
ERROR  
AMP  
ZERO-CROSSING  
COMP  
FPWM CLK  
SOFT-START  
GENERATOR  
CURRENT LIM  
COMP  
POWER-GOOD  
COMP  
P1-OK  
FEEDBACK  
DRIVER  
OUTS  
SYNC  
CLK  
OSC.  
MAIN  
OTP  
TRIM BITS  
FPWM  
VOLTAGE  
REFERENCE  
TH-SD  
V
REF  
PG  
P1-OK  
CONTROL  
LOGIC  
EN  
GND  
Figure 1. Internal Block Diagram  
switch only when needed to maintain regulation. As such,  
the converter does not switch MOSFETs on and off as  
often as is the case in the FPWM mode. Consequently,  
the gate charge and switching losses are much lower in  
SKIP mode.  
FPWM/SKIP Modes  
The MAX16962 features an input (PWM) that puts the  
converter either in SKIP mode or forced-PWM (FPWM)  
mode of operation. See the Pin Descriptions for mode  
detail. In FPWM mode, the converter switches at a con-  
stant frequency with variable on-time. In skip mode, the  
converter’s switching frequency is load-dependent until  
the output load reaches the SKIP threshold. At higher  
load current, the switching frequency does not change  
and the operating mode is similar to the FPWM mode.  
SKIP mode helps improve efficiency in light-load applica-  
tions by allowing the converters to turn on the high-side  
Overtemperature Protection  
Thermal overload protection limits the total power dissi-  
pation in the MAX16962. When the junction temperature  
exceeds +165°C (typ), an internal thermal sensor shuts  
down the internal bias regulator and the step-down con-  
troller, allowing the IC to cool. The thermal sensor turns on  
the IC again after the junction temperature cools by 15°C.  
Maxim Integrated  
8
 
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Table 1. Inductor Values vs. (V - V  
)
IN  
OUT  
V
- V  
(V)  
5.0 to 3.3  
0.8  
5.0 to 2.5  
0.6  
5.0 to 1.5  
0.47  
3.3 to 0.8  
0.33  
IN  
OUT  
INDUCTOR (µH)  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the MAX16962: inductance value (L),  
V
OUT  
inductor saturation current (I  
), and DC resistance  
SAT  
R1  
R2  
C1  
(R  
). Use the following formulas to determine the  
DCR  
MAX16962  
OUTS  
minimum inductor value:  
V
3
OUT_  
L
=
V
V  
×(  
)×(  
)
(
)
MIN1  
IN OUT_  
V
f × 4A  
OP  
IN  
where f  
is the operating frequency. This value is  
OP  
2.2MHz unless externally synchronized to a different  
frequency.  
Figure 2. Adjustable Output Voltage Setting  
The next equation ensures that the inductor curent  
downslope is less than the internal slope compensation.  
For this to be the case, the following equation needs to  
be satisfied:  
Applications Information  
m2  
2
m ≥  
Setting the Output Voltage  
OUT  
voltage.(See the Selector Guide.) To set the output to  
Connect OUTS to V  
for factory programmed output  
where m2 is the inductor current downslope:  
other voltages between 0.8V and 3.6V, connect a resis-  
VOUT_  
L
tive divider from output (V ) to OUTS to GND (Figure  
OUT  
2). Select R2 (OUTS to GND resistor) less than or equal  
to 100kI. Calculate R1 (V  
following equation:  
to OUTS resistor) with the  
OUT  
and -m is the slope compensation:  
0.8xIMAX  
V
OUT  
µs  
R1 = R2  
1  
V
OUTS  
Solving for L:  
R1×R2  
R1+ R2  
where  
7.5kΩ  
µs  
1.6 × 4A  
L
= V  
×
MIN2  
OUT  
where V  
table).  
= 800mV (see the Electrical Characteristics  
OUTS  
The equation that provides the bigger inductor value  
must be chosen for proper operation:  
The external feedback resistive divider must be frequency  
compensated for proper operation. Place a capacitor  
across each resistor in the resistive divider network.  
Use the following equation to determine the value of the  
capacitors:  
L
MIN  
= max(L  
, L  
)
MIN1 MIN2  
The maximum inductor value recommended is twice the  
chosen value from the above formula.  
R2  
R1  
L
= 2 x L  
MIN  
MAX  
C1 = 10pF  
Maxim Integrated  
9
 
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
Output Capacitor  
The minimum capacitor required depends on output  
voltage, maximum device current capability, and the  
error-amplifier voltage gain. Use the following formula to  
determine the required output capacitor value:  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
RMS  
V
x G  
EAMP  
V
(V  
V  
)
REF  
OUT PV1  
OUT  
C
=
OUT(MIN)  
I
= I  
RMS LOAD(MAX)  
2π × f  
× V  
×R  
CO  
OUT CS  
V
PV1  
0.8V x 31.7  
2π × 210kHz × V  
=
I
has a maximum value when the input voltage  
RMS  
139mΩ  
OUT ×  
equals twice the output voltage (V  
I
= 2V  
), so  
OUT  
PV1  
= I  
/2.  
RMS(MAX)  
LOAD(MAX)  
where f , the target crossover frequency, is 210kHz,  
CO  
Choose an input capacitor that exhibits less than +10NC  
self-heating temperature rise at the RMS input current for  
optimal long-term reliability.  
G
R
, the error-amplifier voltage gain, is 31.7V/V, and  
is 139mΩ.  
EAMP  
CS  
The input-voltage ripple is composed of DV (caused  
PCB Layout Guidelines  
Q
by the capacitor discharge) and DV  
(caused by the  
Careful PCB layout is critical to achieve low switching  
losses and clean, stable operation. Use a multilayer  
board whenever possible for better noise immunity and  
power dissipation. Follow these guidelines for good PCB  
layout:  
ESR  
ESR of the capacitor). Use low-ESR ceramic capacitors  
with high-ripple current capability at the input. Assume  
the contribution from the ESR and capacitor discharge  
equal to 50%. Calculate the input capacitance and ESR  
required for a specified input voltage ripple using the fol-  
lowing equations:  
1) Use a large contiguous copper plane under the  
MAX16962 package. Ensure that all heat-dissipating  
components have adequate cooling. The bottom  
pad of the MAX16962 must be soldered down to  
this copper plane for effective heat dissipation and  
maximizing the full power out of the MAX16962. Use  
multiple vias or a single large via in this plane for  
heat dissipation.  
V  
ESR  
ESR  
=
IN  
I  
L
I
+
OUT  
2
where:  
and:  
(V  
V  
)× V  
OUT  
×L  
PV1  
V
OUT  
× f  
I  
=
L
PV1 SW  
2) Isolate the power components and high current path  
from the sensitive analog circuitry. This is essential to  
prevent any noise coupling into the analog signals.  
I
×D(1D)  
V
OUT  
V
OUT  
C
=
and D =  
IN  
V × f  
Q
SW  
PV1  
3) Add small footprint blocking capacitors with low  
self-resonance frequency close to PV1, PV2, and PV.  
where I  
duty cycle.  
is the maximum output current, and D is the  
OUT  
4) Keep the high-current paths short, especially at the  
ground terminals. This practice is essential for stable,  
jitter-free operation. The high current path composed  
of input capacitors at PV1, PV2, inductor, and the  
output capacitor should be as short as possible.  
It is strongly recommended that a 4.7FF small footprint  
be placed close to PV1 and PV2 and a minimum of 100nF  
small footprint be placed close to PV. Using a small  
footprint such as 0805 or smaller helps to reduce the total  
parasitic inductance.  
Maxim Integrated  
10  
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
5) Keep the power traces and load connections short.  
7) The ground connection for the analog and power  
section should be close to the IC. This keeps the  
ground current loops to a minimum. In cases where  
only one ground is used enough isolation between  
analog return signals and high power signals must be  
maintained.  
This practice is essential for high efficiency. Use  
thick copper PCBs (2oz vs. 1oz) to enhance full-load  
efficiency.  
6) OUTS are sensitive to noise for devices with external  
feedback option. The resistive network, R1, R2, and  
C1 must be placed close to OUTS and far away from  
the LX_ node and high switching current paths. The  
ground node of R2 must be close to GND.  
Chip Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
T1644+4  
U16E+3  
NO.  
16 TQFN-EP  
16 TSSOP-EP  
21-0139  
21-0108  
90-0070  
90-0120  
Maxim Integrated  
11  
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Selector Guide  
PACKAGE  
SUFFIX  
OUTPUT  
VOLTAGE  
SPREAD  
SPECTRUM  
ROOT PART  
OPTION SUFFIX  
SYNC IN/OUT  
MAX16962  
MAX16962  
MAX16962  
MAX16962  
RAUE  
SAUE  
RATE  
SATE  
A/V+  
A/V+  
A/V+  
A/V+  
Ext. Adj.  
Ext. Adj.  
Ext. Adj.  
Ext. Adj.  
Disabled  
Enabled  
Disabled  
Enabled  
In  
In  
In  
In  
Note: Contact the factory for variants with different output-voltage, spread-spectrum , and power-good delay time settings.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
LOAD CURRENT CAPABILITY (A)  
PIN-PACKAGE  
16 TQFN-EP*  
16 TSSOP-EP*  
MAX16962_ATE_/V+  
MAX16962_AUE_/V+  
4
4
Note: “_” is a package suffix placeholder for either “R” or “S,” as shown the Selector Guide. The second “_” is in the option suffix.  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Maxim Integrated  
12  
 
 
MAX16962  
4A, 2.2MHz, Synchronous Step-Down  
DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
7/12  
Initial release  
Updated Electrical Characteristics table, TOCs 1, 2, and 4, equation in the Setting  
the Output Voltage section, step 6 in the PCB Layout Guidelines, and the Ordering  
Information section  
1
9/13  
35, 911  
Added FB regulation voltage specifications and updated V condition in Electrical  
PV  
2
3
5/14  
7/15  
Characteristics table; corrected equations and updated Table 2 in the Inductor  
Selection and Output Capacitor sections; updated Ordering Information  
2, 3, 911  
Added formula to equation in the Setting the Output Voltage section, replaced the  
Output Capacitor section, and deleted Table 2  
9, 10  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
13  
©
2014 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX16963SATEA/V+

Dual Switching Controller,
MAXIM

MAX16963SAUEA/V+

Dual Switching Controller,
MAXIM

MAX1697

60mA, SOT23 Inverting Charge Pump with Shutdown
MAXIM

MAX16970

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GEEA/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GEEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16970GTEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971GEEA/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971GEEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16971GTEB/V+

3A Automotive Hi-Speed USB Protectors with Apple iPhone/iPad and USB 2.0 Charge Detection
MAXIM

MAX16974

High-Voltage, 2.2MHz, 2A Automotive Step- Down Converter with Low Operating Current
MAXIM