MAX1645AEEI+ [MAXIM]

Battery Charge Controller, PDSO28, QSOP-28;
MAX1645AEEI+
型号: MAX1645AEEI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Battery Charge Controller, PDSO28, QSOP-28

电池 光电二极管
文件: 总32页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1566; Rev 2; 1/01  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
General Description  
Features  
The MAX1645 are high-efficiency battery chargers capa-  
ble of charging batteries of any chemistry type. It uses the  
Intel System Management Bus (SMBus) to control volt-  
age and current charge outputs.  
Input Current Limiting  
175s Charge Safety Timeout  
128mA Wake-Up Charge  
When charging lithium-ion (Li+) batteries, the MAX1645  
automatically transition from regulating current to regu-  
lating voltage. The MAX1645 can also limit line input  
current so as not to exceed a predetermined current  
drawn from the DC source. A 175s charge safety timer  
prevents “runaway charging” should the MAX1645 stop  
receiving charging voltage/ current commands.  
Charges Any Chemistry Battery: Li+, NiCd,  
NiMH, Lead Acid, etc.  
Intel SMBus 2-Wire Serial Interface  
Compliant with Level 2 Smart Battery Charger  
Spec Rev. 1.0  
+8V to +28V Input Voltage Range  
Up to 18.4V Battery Voltage  
11-Bit Battery Voltage Setting  
The MAX1645 employs a next-generation synchronous  
buck control circuity that lowers the minimum input-to-  
output voltage drop by allowing the duty cycle to  
exceed 99%. The MAX1645 can easily charge one to  
four series Li+ cells.  
0.8ꢀ ꢁutput Voltage Accuracy with Internal  
Reference  
Applications  
3A max Battery Charge Current  
6-Bit Charge Current Setting  
Notebook Computers  
Point-of-Sale Terminals  
Personal Digital Assistants  
99.99ꢀ max Duty Cycle for Low-Dropout ꢁperation  
Load/Source Switchover Drivers  
>97ꢀ Efficiency  
Ordering Information  
Pin Configuration  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 QSOP  
TOP VIEW  
MAX1645EEI  
MAX1645AEEI  
DCIN  
LDO  
CLS  
REF  
1
2
3
4
5
6
7
8
9
28 CVS  
27 PDS  
26 CSSP  
25 CSSN  
24 BST  
23 DHI  
28 QSOP  
CCS  
CCI  
MAX1645  
MAX1645A  
CCV  
GND  
BATT  
22 LX  
21 DLOV  
20 DLO  
19 PGND  
18 CSIP  
17 CSIN  
16 PDL  
15 INT  
DAC 10  
11  
V
DD  
THM 12  
SCL 13  
SDA 14  
Typical Operating Circuit appears at end of data sheet.  
SMBus is a trademark of Intel Corp.  
QSꢁP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ABSꢁLUTE MAXIMUM RATINGS  
DCIN, CVS, CSSP, CSSN, LX to GND....................-0.3V to +30V  
CSSP to CSSN, CSIP to CSIN ...............................-0.3V to +0.3V  
V
, SCL, SDA, INT, DLOV to GND.........................-0.3V to +6V  
DD  
THM to GND...............................................-0.3V to (V  
+ 0.3V)  
DD  
PDS, PDL to GND ...................................-0.3V to (V  
BST to LX..................................................................-0.3V to +6V  
DHI to LX...................................................-0.3V to (V + 0.3V)  
+ 0.3V)  
PGND to GND .......................................................-0.3V to +0.3V  
LDO Continuous Current.....................................................50mA  
CSSP  
Continuous Power Dissipation (T = +70°C)  
BST  
A
CSIP, CSIN, BATT to GND .....................................-0.3V to +22V  
28-Pin QSOP (derate 10.8mW/°C above +70°C).........860mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature.........................................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LDO to GND.....................-0.3V to (lower of 6V or V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DCIN  
DLOV  
DLO to GND ...........................................-0.3V to (V  
REF, DAC, CCV, CCI, CCS, CLS to GND.....-0.3V to (V  
LDO  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
TYP  
MAX  
UNITS  
GENERAL SPECIFICATIꢁNS  
DCIN Typical Operating Range  
DCIN Supply Current  
V
8
28  
6
V
DCIN  
I
8V < V  
< 28V  
1.7  
0.7  
mA  
DCIN  
DCIN  
DCIN Supply Current Charging  
Inhibited  
8V < V  
< 28V  
2
mA  
DCIN  
DCIN rising  
DCIN falling  
7.5  
7.4  
5.4  
7.85  
When AC_PRESENT  
switches  
DCIN Undervoltage Threshold  
LDO Output Voltage  
V
V
V
7
V
8V < V  
< 28V, 0 < I  
< 15mA  
LDO  
5.15  
5.65  
5.65  
2.8  
LDO  
DCIN  
V
Input Voltage Range  
DD  
8V < V  
< 28V  
2.8  
2.1  
DCIN  
(Note 1)  
V
V
rising  
falling  
2.55  
2.5  
DD  
When the SMB res-  
ponds to commands  
V
V
Undervoltage Threshold  
Quiescent Current  
V
DD  
DD  
DD  
0 < V  
< 6V, V  
= 5V, V  
= 5V,  
SCL  
DCIN  
= 5V  
DD  
I
80  
150  
4.126  
2.8  
µA  
V
DD  
V
SDA  
REF Output Voltage  
V
0 < I  
< 200µA  
4.066  
2.4  
4.096  
REF  
REF  
BATT Undervoltage Threshold  
(Note 2)  
When I  
drops to 128mA  
V
CHARGE  
PDS Charging Source Switch  
Turn-Off Threshold  
V
V
V
V
referred to V  
referred to V  
= 0  
, V  
falling  
50  
100  
8
100  
200  
10  
150  
300  
mV  
mV  
V
PDS-OFF  
PDS-HYS  
CVS  
CVS  
PDS  
BATT CVS  
PDS Charging Source Switch  
Threshold Hysteresis  
BATT  
PDS Output Low Voltage, PDS  
Below CSSP  
I
12  
PDS Turn-On Current  
PDS Turn-Off Current  
PDS = CSSP  
100  
10  
150  
50  
300  
µA  
V
PDS  
= V  
- 2V, V = 16V  
DCIN  
mA  
CSSP  
PDL Load Switch Turn-Off  
Threshold  
V
V
CVS  
referred to V  
, V  
CVS  
rising  
-150  
-100  
-50  
mV  
PDL-OFF  
BATT  
2
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
referred to V  
MIN  
TYP  
MAX  
UNITS  
PDL Load Switch Threshold  
Hysteresis  
V
V
V
100  
200  
300  
mV  
PDL-HYS  
CVS  
BATT  
PDL Turn-Off Current  
PDL Turn-On Resistance  
CVS Input Bias Current  
- V  
= 1V  
PDL  
6
12  
100  
6
mA  
k  
µA  
CSSN  
PDL to GND  
= 28V  
50  
150  
20  
V
CVS  
ChargingVoltage() = 0x41A0  
ChargingVoltage() = 0x3130  
ChargingVoltage() = 0x20D0  
ChargingVoltage() = 0x1060  
16.666  
16.8  
16.934  
12.492 12.592 12.692  
BATT Full-Charge Voltage  
V0  
I0  
V
8.333  
4.150  
8.4  
8.467  
4.234  
4.192  
ChargingCurrent() =  
0x0BC0  
2.798  
61.6  
3.008  
128  
3.218  
194.4  
A
mA  
A
BATT Charge Current (Note 3)  
R
R
= 50mΩ  
CS  
ChargingCurrent() =  
0x0080  
V
V
V
= 4.096V  
= 2.048V  
4.714  
2.282  
5.12  
2.56  
5.526  
2.838  
DCIN Source Current Limit  
(Note 3)  
CLS  
CLS  
= 40mΩ  
CSS  
= 1V,  
BATT  
MAX1645  
20  
61.6  
0
128  
128  
200  
194.4  
20  
R
= 50mΩ  
CSI  
BATT Undervoltage Charge  
Current  
mA  
V
= 1V,  
BATT  
MAX1645A  
R
= 50mΩ  
CSI  
BATT/CSIP/CSIN Input Voltage  
Range  
V
Total of I  
, I  
and I  
and I  
;
;
BATT CSIP,  
CSIN  
Total BATT Input Bias Current  
Total BATT Quiescent Current  
Total BATT Standby Current  
-700  
-100  
-5  
700  
100  
5
µA  
µA  
µA  
V
= 0 to 20V  
BATT  
Total of I  
, I  
BATT CSIP,  
CSIN  
V
= 0 to 20V, charge inhibited  
BATT  
Total of I  
, I  
and I  
;
BATT CSIP,  
CSIN  
V
V
V
V
= 0 to 20V, V  
= 0  
BATT  
CSSP  
CSSP  
CSSP  
DCIN  
CSSP Input Bias Current  
CSSN Input Bias Current  
CSSP/CSSN Quiescent Current  
= V  
= V  
= 0 to 28V  
= 0 to 28V  
-100  
-100  
-1  
540  
35  
1000  
100  
1
µA  
mA  
µA  
CSSN  
DCIN  
= C  
= V  
DCIN  
CSSN  
CSSN  
= V  
= 28V, V  
= 0  
DCIN  
Battery Voltage-Error Amp DC  
Gain  
From BATT to CCV  
= V /2 to V  
REF  
200  
-1  
500  
0.05  
V/V  
µA  
CLS Input Bias Current  
V
1
CLS  
REF  
Battery Voltage-Error Amp  
Transconductance  
From BATT to CCV, ChargingVoltage() =  
0x41A0, V = 16.8V  
0.111  
0.222  
0.444 µA/mV  
BATT  
Battery Current-Error Amp  
Transconductance  
From CSIP/SCIN to CCI, ChargingCurrent() =  
0x0BC0, V - V = 150.4mV  
0.5  
0.5  
1
1
2
2
µA/mV  
µA/mV  
mV  
CSIP  
CSIN  
Input Current-Error Amp  
Transconductance  
From CSSP/CSSN to CCS, V  
= 2.048V,  
CLS  
V
- V  
= 102.4mV  
CSSP  
CSSN  
CCV/CCI/CCS Clamp Voltage  
(Note 4)  
V
= V  
= V = 0.25V to 2V  
CCS  
150  
300  
600  
CCV  
CCI  
_______________________________________________________________________________________  
3
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
TYP  
MAX  
UNITS  
DC-Tꢁ-DC CꢁNVERTER SPECIFICATIꢁNS  
Minimum Off-Time  
t
1
5
1.25  
10  
1.5  
15  
µs  
ms  
%
OFF  
Maximum On-Time  
t
ON  
Maximum Duty Cycle  
LX Input Bias Current  
LX Input Quiescent Current  
BST Supply Current  
99  
99.99  
200  
V
V
= 28V, V  
= V = 20V  
500  
1
µA  
µA  
µA  
µA  
A
DCIN  
DCIN  
BATT  
LX  
= 0, V  
= V = 20V  
LX  
BATT  
DHI high  
= V  
6
5
15  
10  
7.0  
14  
14  
DLOV Supply Current  
Inductor Peak Current Limit  
DHI Output Resistance  
DLO Output Resistance  
V
, DLO low  
LDO  
DLOV  
R
= 50mΩ  
5.0  
-1  
6.0  
6
CSI  
DHI high or low, V  
- V = 4.5V  
BST  
LX  
DLO high or low, V  
= 4.5V  
6
DLOV  
THERMISTꢁR CꢁMPARATꢁR SPECIFICATIꢁNS  
V
V
= 4% of V  
= 2.8V to 5.65V  
to 96% of V  
,
THM  
DD  
DD  
DD  
THM Input Bias Current  
1
µA  
Thermistor Overrange Threshold  
Thermistor Cold Threshold  
Thermistor Hot Threshold  
V
V
V
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
falling  
falling  
falling  
89.5  
74  
91  
92.5 % of V  
DD  
DD  
DD  
THM  
THM  
THM  
DD  
DD  
DD  
75.5  
23.5  
77  
25  
% of V  
% of V  
22  
Thermistor Underrange  
Threshold  
V
= 2.8V to 5.65V, V  
falling  
6
7.5  
1
9
% of V  
DD  
THM  
DD  
DD  
Thermistor Comparator  
Threshold Hysteresis  
All 4 comparators, V  
= 2.8V to 5.65V  
% of V  
DD  
SMB INTERFACE LEVEL SPECIFICATIꢁNS (V  
SDA/SCL Input Low Voltage  
= 2.8V to 5.65V)  
DD  
0.6  
1
V
SDA/SCL Input High Voltage  
1.4  
V
SDA/SCL Input Hysteresis  
220  
25  
mV  
µA  
mA  
µA  
mV  
SDA/SCL Input Bias Current  
-1  
6
SDA Output Low Sink Current  
INT Output High Leakage  
INT Output Low Voltage  
V
V
I
= 0.4V  
SDA  
= 5.65V  
= 1mA  
1
INT  
200  
INT  
SMB INTERFACE TIMING SPECIFICATIꢁNS (V  
= 2.8V to 5.65V, Figures 4 and 5)  
DD  
SCL High Period  
SCL Low Period  
t
4
µs  
µs  
HIGH  
t
4.7  
LOW  
Start Condition Setup Time  
from SCL  
t
4.7  
4
µs  
µs  
SU:STA  
Start Condition Hold Time  
from SCL  
t
t
HD:STA  
SDA Setup Time from SCL  
SDA Hold Time from SCL  
250  
0
ns  
ns  
SU:DAT  
HD:DAT  
t
4
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
TYP  
MAX  
UNITS  
SDA Output Data Valid from SCL  
t
1
µs  
DV  
Maximum Charge Period  
Without a ChargingVoltage() or  
Charging Current() Loaded  
t
140  
175  
210  
s
WDT  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V  
= +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
BATT  
DCIN A  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
MAX  
UNITS  
GENERAL SPECIFICATIꢁNS  
DCIN Typical Operating Range  
DCIN Supply Current  
V
8
28  
6
V
DCIN  
I
8V < V  
< 28V  
mA  
DCIN  
DCIN  
DCIN Supply Current Charging  
Inhibited  
8V < V  
< 28V  
2
mA  
DCIN  
DCIN rising  
DCIN falling  
7.85  
When AC_PRESENT  
switches  
DCIN Undervoltage Threshold  
LDO Output Voltage  
V
V
V
7
V
8V < V  
< 28V, 0 < I  
< 15mA  
LDO  
5.15  
5.65  
5.65  
2.8  
LDO  
DCIN  
V
DD  
Input Voltage Range  
8V < V  
< 28V  
2.8  
2.1  
DCIN  
(Note 1)  
V
V
rising  
falling  
DD  
DD  
When the SMB res-  
ponds to commands  
V
Undervoltage Threshold  
Quiescent Current  
V
DD  
DD  
0 < V  
< 6V, V  
= 5V, V  
= 5V,  
SCL  
DCIN  
= 5V  
DD  
V
I
150  
4.157  
2.8  
µA  
V
DD  
V
SDA  
REF Output Voltage  
V
0 < I  
< 200µA  
4.035  
2.4  
REF  
REF  
BATT Undervoltage Threshold  
(Note 2)  
When I  
drops to 128mA  
V
CHARGE  
PDS Charging Source Switch  
Turn-Off Threshold  
V
V
V
V
referred to V  
referred to V  
= 0  
, V  
falling  
50  
100  
8
150  
300  
mV  
mV  
V
PDS-OFF  
CVS  
CVS  
PDS  
BATT CVS  
PDS Charging Source Switch  
Threshold Hysteresis  
PDS-HYS  
BATT  
PDS Output Low Voltage, PDS  
Below CSSP  
I
12  
PDS Turn-On Current  
PDS Turn-Off Current  
PDS = CSSP  
100  
10  
300  
µA  
V
PDS  
= V  
- 2V, V = 16V  
DCIN  
mA  
CSSP  
PDL Load Switch Turn-Off  
Threshold  
V
V
V
referred to V  
referred to V  
, V  
rising  
-150  
-50  
mV  
PDL-OFF  
CVS  
BATT CVS  
PDL Load Switch Threshold  
Hysteresis  
V
V
100  
6
300  
mV  
mA  
PDL-HYS  
CVS  
BATT  
PDL Turn-Off Current  
- V  
= 1V  
PDL  
CSSN  
_______________________________________________________________________________________  
5
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
PDL Turn-On Resistance  
CVS Input Bias Current  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
MAX  
150  
20  
UNITS  
kΩ  
PDL to GND  
50  
V
CVS  
= 28V  
µA  
ERRꢁR AMPLIFIER SPECIFICATIꢁNS  
ChargingVoltage() = 0x41A0  
ChargingVoltage() = 0x3130  
ChargingVoltage() = 0x20D0  
ChargingVoltage() = 0x1060  
16.532  
12.391  
8.266  
17.068  
12.793  
8.534  
BATT Full-Charge Voltage  
V0  
I0  
V
4.124  
4.260  
ChargingCurrent() =  
2.608  
15.2  
3.408  
240.8  
A
mA  
A
0x0BC0  
BATT Charge Current (Note 3)  
R
R
= 50mΩ  
= 40mΩ  
CSI  
ChargingCurrent() =  
0x0080  
V
V
= 4.096V  
= 2.048V  
4.358  
2.054  
5.882  
3.006  
CLS  
CLS  
DCIN Source Current Limit  
(Note 3)  
CSS  
BATT Undervoltage Charge  
Current  
V
BATT  
= 1V, R  
= 50mΩ  
20  
0
200  
20  
mA  
V
CSI  
BATT/CSIP/CSIN Input Voltage  
Range  
Total of I  
, I  
and I  
and I  
;
;
BATT CSIP,  
CSIN  
Total BATT Input Bias Current  
Total BATT Quiescent Current  
Total BATT Standby Current  
-700  
-100  
-5  
700  
100  
5
µA  
µA  
µA  
V
BATT  
= 0 to 20V  
Total of I  
, I  
BATT CSIP,  
CSIN  
V
BATT  
= 0 to 20V, charge inhibited  
Total of I  
, I  
and I  
;
BATT CSIP,  
CSIN  
V
V
V
V
= 0 to 20V, V  
= 0  
BATT  
DCIN  
CSSP/Input Bias Current  
CSSN Input Bias Current  
CSSP/CSSN Quiescent Current  
= V  
= V  
= V  
= V  
= V  
= 28V  
= 28V  
-100  
-100  
-1  
1000  
100  
1
µA  
µA  
µA  
CSSP  
CSSP  
CSSP  
CSSN  
CSSN  
CSSN  
DCIN  
DCIN  
= 28V, V  
= 0  
DCIN  
Battery Voltage-Error Amp DC  
Gain  
From BATT to CCV  
= V /2 to V  
REF  
200  
-1  
V/V  
µA  
CLS Input Bias Current  
V
1
CLS  
REF  
Battery Voltage-Error Amp  
Transconductance  
From BATT to CCV, ChargingVoltage() =  
0x41A0, V = 16.8V  
0.111  
0.444 µA/mV  
BATT  
Battery Current-Error Amp  
Transconductance  
From CSIP/CSIN to CCI, ChargingCurrent() =  
0x0BC0, V -V = 150.4mV  
0.5  
0.5  
150  
2
2
µA/mV  
µA/mV  
mV  
CSIP CSIN  
Input Current-Error Amp  
Transconductance  
From CSSP/CSSN to CCS, V  
= 2.048V,  
CLS  
V
CSSP  
- V  
= 102.4mV  
CSSN  
CCV/CCI/CCS Clamp Voltage  
(Note 4)  
V
CCV  
= V  
= V = 0.25V to 2V  
CCS  
600  
CCI  
DC-Tꢁ-DC CꢁNVERTER SPECIFICATIꢁNS  
Minimum Off-Time  
Maximum On-Time  
Maximum Duty Cycle  
t
1
5
1.5  
15  
µs  
ms  
%
OFF  
t
ON  
99  
6
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
LX Input Bias Current  
LX Input Quiescent Current  
BST Supply Current  
SYMBꢁL  
CꢁNDITIꢁNS  
= 28V, V = V = 20V  
BATT  
MIN  
MAX  
500  
1
UNITS  
µA  
µA  
µA  
µA  
A
V
V
DCIN  
LX  
= 0, V  
= V = 20V  
LX  
DCIN  
BATT  
DHI high  
= V  
15  
DLOV Supply Current  
Inductor Peak Current Limit  
DHI Output Resistance  
DLO Output Resistance  
V
DLOV  
, DLO low  
LDO  
10  
R
= 50mΩ  
5.0  
-1  
7.0  
14  
CSI  
DHI high or low, V  
- V = 4.5V  
BST  
LX  
DLO high or low, V  
= 4.5V  
14  
DLOV  
THERMISTꢁR CꢁMPARATꢁR SPECIFICATIꢁNS  
V
V
= 4% of V  
to 96% of V  
,
THM  
DD  
DD  
DD  
THM Input Bias Current  
1
µA  
= 2.8V to 5.65V  
Thermistor Overrange Threshold  
Thermistor Cold Threshold  
Thermistor Hot Threshold  
V
DD  
V
DD  
V
DD  
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
falling  
falling  
falling  
89.5  
74  
92.5 % of V  
THM  
THM  
THM  
DD  
DD  
DD  
77  
25  
% of V  
% of V  
22  
Thermistor Underrange  
Threshold  
V
DD  
= 2.8V to 5.65V, V  
falling  
6
9
% of V  
THM  
DD  
SMB INTERFACE LEVEL SPECIFICATIꢁNS (V  
SDA/SCL Input Low Voltage  
= 2.8V to 5.65V)  
DD  
0.6  
1
V
SDA/SCL Input High Voltage  
1.4  
-1  
6
V
SDA/SCL Input Bias Current  
µA  
mA  
µA  
mV  
SDA Output Low Sink Current  
INT Output High Leakage  
INT Output Low Voltage  
V
V
I
= 0.4V  
SDA  
= 5.65V  
= 1mA  
1
INT  
200  
INT  
SMB INTERFACE TIMING SPECIFICATIꢁNS (V  
= 2.8V to 5.65V, Figures 4 and 5)  
DD  
SCL High Period  
SCL Low Period  
t
4
µs  
µs  
HIGH  
t
4.7  
LOW  
Start Condition Setup Time  
from SCL  
t
4.7  
4
µs  
µs  
SU:STA  
Start Condition Hold Time  
from SCL  
t
t
HD:STA  
SDA Setup Time from SCL  
SDA Hold Time from SCL  
250  
0
ns  
ns  
SU:DAT  
HD:DAT  
t
_______________________________________________________________________________________  
7
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
SYMBꢁL  
CꢁNDITIꢁNS  
MIN  
MAX  
UNITS  
SDA Output Data Valid  
from SCL  
t
1
µs  
DV  
Maximum Charge Period  
Without a ChargingVoltage() or  
Charging Current() loaded  
t
140  
210  
s
WDT  
Note 1: Guaranteed by meeting the SMB timing specs.  
Note 2: The charger reverts to a trickle-charge mode of I  
= 128mA below this threshold.  
CHARGE  
Note 3: Does not include current-sense resistor tolerance.  
Note 4: Voltage difference between CCV, and CCI or CCS when one of these three pins is held low and the others try to pull high.  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LOAD-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
(STEP IN LOAD CURRENT)  
(BATTERY REMOVAL AND REINSERTION)  
LDO LINE REGULATION  
MAX1645 toc01  
MAX1645 toc02  
16V  
14V  
12V  
1A  
4A  
2A  
0
5.60  
5.55  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
I
= 0  
LOAD  
CCS  
0
2A  
1V  
0
CCI  
CCI  
CCI  
1.5V  
1V  
CCV  
CCI  
CCV  
CCI  
CCI  
CCS  
CCS  
CCV  
0.5V  
2ms/div  
1ms/div  
ChargingCurrent() = 3008mA  
= 16V  
BATTERY REMOVED  
BATTERY INSERTED  
5
10  
15  
20  
(V)  
25  
30  
ChargingVoltage() = 15000mV  
ChargingCurrent() = 1000mA  
V
DCIN  
V
BATT  
LOAD STEP: 0A TO 2A  
LIMIT = 2.5A  
I
SOURCE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
LDO LOAD REGULATION  
REFERENCE VOLTAGE LOAD REGULATION  
4.110  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
5.60  
5.55  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
4.100  
4.098  
4.096  
4.094  
4.092  
4.090  
-40 -20  
0
20  
40  
60  
80 100  
0
2
4
6
8
10 12 14 16 18 20  
0
50  
100  
150  
200  
250  
300  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (µA)  
8
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
EFFICIENCY vs. BATTERY CURRENT  
(VOLTAGE-CONTROL LOOP)  
EFFICIENCY vs. BATTERY CURRENT  
(CURRENT-CONTROL LOOP)  
OUTPUT VI CHARACTERISTICS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0.001  
0.01  
0.1  
A
B
A
B
1.0  
ChargingVoltage() = 16,800mV  
ChargingCurrent() = 3008mA  
A: V  
B: V  
= 20V, ChargingVoltage() = 16.8V  
= 16V, ChargingVoltage() = 8.4V  
A: V  
B: V  
= 20V, V  
= 16V, V  
= 16.8V  
= 8.4V  
DCIN  
DCIN  
DCIN  
DCIN  
BATT  
BATT  
10  
0
500 1000 1500 2000 2500 3000  
BATTERY CURRENT (mA)  
0
500 1000 1500 2000 2500 3000  
ChargingCurrent() (CODE)  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
BATT VOLTAGE ERROR  
vs. ChargingVoltage() CODE  
CURRENT-SETTING ERROR  
vs. ChargingCurrent() CODE  
5
4
0.3  
0.2  
0.1  
0
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
-0.3  
V
= 12.6V  
I
= 0  
BATT  
BATT  
MEASURED AT AVAILABLE CODES  
MEASURED AT AVAILABLE CODES  
0000  
4000  
8000  
12000 16000 20000  
0
500 1000 1500 2000 2500 3000  
ChargingCurrent() (CODE)  
ChargingVoltage() (CODE)  
SOURCE/BATT CURRENT vs. V  
BATT  
WITH SOURCE CURRENT LIMIT  
SOURCE/BATT CURRENT vs. LOAD CURRENT  
WITH SOURCE CURRENT LIMIT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
IN  
I
IN  
I = 2A  
LOAD  
V
CLS  
R
CSS  
V
BATT  
= 2V  
V
R
= 2V  
= 40mΩ  
CLS  
CSS  
I
BATT  
I
BATT  
= 40mΩ  
= 16.8V  
ChargingVoltage() = 18,432mV  
ChargingCurrent() = 3008mA  
SOURCE CURRENT LIMIT = 2.5A  
SOURCE CURRENT LIMIT = 2.5A  
ChargingCurrent() = 3008mA  
ChargingVoltage() = 18,432mV  
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
LOAD CURRENT (A)  
BATT  
_______________________________________________________________________________________  
9
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Pin Description  
PIN  
1
NAME  
DCIN  
LDO  
CLS  
FUNCTIꢁN  
DC Supply Voltage Input  
2
5.4V Linear-Regulator Voltage Output. Bypass with a 1µF capacitor to GND.  
Source Current Limit Input  
3
4
REF  
4.096V Reference Voltage Output  
5
CCS  
CCI  
Charging Source Compensation Capacitor Connection. Connect a 0.01µF capacitor from CCS to GND.  
Battery Current-Loop Compensation Capacitor Connection. Connect a 0.01µF capacitor from CCI to GND.  
6
Battery Voltage-Loop Compensation Capacitor Connection. Connect a 10kresistor in series with a 0.01µF  
capacitor to GND.  
7
CCV  
8
GND  
BATT  
DAC  
Ground  
9
Battery Voltage Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DAC Voltage Output  
V
Logic Circuitry Supply Voltage Input (2.8V to 5.65V)  
Thermistor Voltage Input  
DD  
THM  
SCL  
SMB Clock Input  
SDA  
INT  
SMB Data Input/Output. Open-drain output. Needs external pull-up.  
Interrupt Output. Open-drain output. Needs external pull-up.  
PMOS Load Switch Driver Output  
PDL  
CSIN  
CSIP  
PGND  
DLO  
DLOV  
LX  
Battery Current-Sense Negative Input  
Battery Current-Sense Positive Input  
Power Ground  
Low-Side NMOS Driver Output  
Low-Side NMOS Driver Supply Voltage. Bypass with 0.1µF capacitor to GND.  
Inductor Voltage Sense Input  
DHI  
High-Side NMOS Driver Output  
BST  
High-Side Driver Bootstrap Voltage Input. Bypass with 0.1µF capacitor to LX.  
Charging Source Current-Sense Negative Input  
Charging Source Current-Sense Positive Input  
Charging Source PMOS Switch Driver Output  
Charging Source Voltage Input  
CSSN  
CSSP  
PDS  
CVS  
10 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Input Current Limiting  
Detailed Description  
The MAX1645/MAX1645A limit the current drawn by the  
The MAX1645/MAX1645A consist of current-sense  
charger when the load current becomes high. The  
amplifiers, an SMBus interface, transconductance  
devices limit the charging current so the AC adapter  
amplifiers, reference circuitry, and a DC–DC converter  
voltage is not loaded down. An internal amplifier, CSS,  
(Figure 2). The DC–DC converter generates the control  
compares the voltage between CSSP and CSSN to the  
signals for the external MOSFETs to maintain the volt-  
voltage at CLS/20. V  
is set by a resistor-divider  
CLS  
age and the current set by the SMBus interface. The  
MAX1645/MAX1645A feature a voltage-regulation loop  
and two current-regulation loops. The loops operate  
independently of each other. The voltage-regulation  
loop monitors BATT to ensure that its voltage never  
exceeds the voltage set point (V0). The battery current-  
regulation loop monitors current delivered to BATT to  
ensure that it never exceeds the current-limit set point  
(I0). The battery current-regulation loop is in control as  
long as BATT voltage is below V0. When BATT voltage  
reaches V0, the current loop no longer regulates. A  
third loop reduces the battery-charging current when  
the sum of the system (the main load) and the battery  
charger input current exceeds the charging source cur-  
rent limit.  
between REF and GND.  
The input source current is the sum of the device cur-  
rent, the charge input current, and the load current. The  
device current is minimal (6mA max) in comparison to  
the charge and load currents. The charger input cur-  
rent is generated by the DC-DC converter; therefore, the  
actual source current required is determined as follows:  
I
= I  
+ [(I  
· V  
/ (V · η)]  
BATT) IN  
SOURCE  
LOAD  
CHARGE  
where η is the efficiency of the DC-DC converter (typi-  
cally 85% to 95%).  
V
determines the threshold voltage of the CSS com-  
CLS  
parator. R3 and R4 (Figure 1) set the voltage at CLS.  
Sense resistor R1 sets the maximum allowable source  
current. Calculate the maximum current as follows:  
Setting Output Voltage  
The MAX1645/MAX1645A voltage DACs have a 16mV  
LSB and an 18.432V full scale. The SMBus specifica-  
tion allows for a 16-bit ChargingVoltage() command  
that translates to a 1mV LSB and a 65.535V full-scale  
voltage; therefore, the ChargingVoltage() value corre-  
sponds to the output voltage in millivolts. The  
MAX1645/MAX1645A ignore the first four LSBs and use  
the next 11 LSBs to control the voltage DAC. All codes  
greater than or equal to 0b0100 1000 0000 0000  
(18432mV) result in a voltage overrange, limiting the  
charger voltage to 18.432V. All codes below 0b0000  
0100 0000 0000 (1024mV) terminate charging.  
I
= V  
/ (20 · R )  
1
CLS  
MAX  
(Limit V  
- V  
to between 102.4mV and  
CSSN  
CSSP  
204.8mV.)  
The configuration in Figure 1 provides an input current  
limit of:  
I
= (2.048V / 20) / 0.04= 2.56A  
MAX  
LDO Regulator  
An integrated LDO regulator provides a +5.4V supply  
derived from DCIN, which can deliver up to 15mA of  
current. The LDO sets the gate-drive level of the NMOS  
switches in the DC-DC converter. The drivers are actu-  
ally powered by DLOV and BST, which must be con-  
nected to LDO through a lowpass filter and a diode as  
shown in Figure 1. See also the MOSFET Drivers sec-  
tion. The LDO also supplies the 4.096V reference and  
most of the control circuitry. Bypass LDO with a 1µF  
capacitor.  
Setting Output Current  
The MAX1645/MAX1645A current DACs have a 64mA  
LSB and a 3.008A full scale. The SMBus specification  
allows for a 16-bit ChargingCurrent() command that  
translates to a 1mA LSB and a 65.535A full-scale cur-  
rent; the ChargingCurrent() value corresponds to the  
charging voltage in milliamps. The MAX1645/  
MAX1645A drop the first six LSBs and use the next  
six LSBs to control the current DAC. All codes above  
0b00 1011 1100 0000 (3008mA) result in a current  
overrange, limiting the charger current to 3.008A. All  
codes below 0b0000 0000 1000 0000 (128mA) turn the  
charging current off. A 50msense resistor (R2 in  
Figure 1) is required to achieve the correct CODE/cur-  
rent scaling.  
V
Supply  
DD  
This input provides power to the SMBus interface and  
the thermistor comparators. Typically connect V to  
DD  
LDO or, to keep the SMBus interface of the  
MAX1645/MAX1645A active while the supply to DCIN is  
removed, connect an external supply to V  
.
DD  
______________________________________________________________________________________ 11  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ADAPTER IN  
R13  
D4  
P1  
FDS6675  
1k  
1N4148  
D1  
1N5821  
PDS  
CVS  
R14  
DCIN  
4.7  
C5  
1µF  
C23  
0.1µF  
CSSP  
C2  
22µF  
C1  
22µF  
C20, 1µF  
C19, 1µF  
R1  
0.04Ω  
MAX1645A  
REF  
CSSN  
LDO  
R15  
4.7Ω  
C7  
1µF  
R3  
100k  
LOAD  
C6  
1µF  
CLS  
R12  
33Ω  
D3  
1N4148  
R4  
100k  
BST  
GND  
DLOV  
DAC  
CCV  
C16  
0.1µF  
C8  
0.1µF  
C14  
0.1µF  
R5  
10k  
DHI  
LX  
N1  
FDS6680  
CCI  
C9  
0.01µF  
C10  
0.01µF  
CCS  
DLO  
C11  
0.01µF  
L1  
22µH  
N2  
FDS6612A  
D2  
1N5821  
PGND  
R11  
1Ω  
CSIP  
C18  
0.1µF  
R2  
0.05Ω  
C24  
0.1µF  
R16  
1Ω  
CSIN  
PDL  
P2  
FDS6675  
C3  
22µF  
C4  
22µF  
BATT  
R7  
BATTERY  
HOST  
R6  
10k  
10k  
THM  
C13  
1.5nF  
V
DD  
C12  
1µF  
R8  
10k  
R10  
10k  
R9  
10k  
SCL  
SDA  
INT  
Figure 1. Typical Application Circuit  
12 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
BST  
MAX1645/MAX1645A  
DHI  
LX  
CSSP  
CSSN  
CLS  
DHI  
CSS  
GMS  
DC-DC  
LVC  
DLOV  
DLO  
DLO  
CSIP  
CSIN  
CSI  
PGND  
GMI  
BATT  
CCS  
CCI  
CCV  
GMV  
CVS  
BATT  
PDL  
PDS  
PDS  
PDL  
DCIN  
LDO  
V
DD  
VL  
SCL  
SDA  
INT  
DACI  
SMB  
REF  
REF  
DACV  
GND  
DAC  
TEMP  
THM  
Figure 2. Functional Diagram  
______________________________________________________________________________________ 13  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
that monitors the battery-to-charger communications as  
a Level 2 SMBus charger. The MAX1645/MAX1645A  
are SMBus slave devices and do not initiate communi-  
cation on the bus. They receive commands and  
respond to queries for status information. Figure 3  
shows examples of the SMBus Write-Word and Read-  
Word protocols, and Figures 4 and 5 show the SMBus  
serial-interface timing.  
Operating Conditions  
The MAX1645/MAX1645A change their operation  
depending on the voltages at DCIN, BATT, V  
THM. Several important operating states follow:  
and  
DD,  
AC Present. When DCIN is > 7.5V, the battery is  
considered to be in an AC Present state. In this con-  
dition, both the LDO and REF will function properly  
and battery charging is allowed. When AC is pre-  
sent, the AC_PRESENT bit (bit 15) in the  
ChargerStatus() register is set to “1.”  
Each communication with these parts begins with the  
MASTER issuing a START condition that is defined as a  
falling edge on SDA with SCL high and ends with a  
STOP condition defined as a rising edge on SDA with  
SCL high. Between the START and STOP conditions,  
the device address, the command byte, and the data  
bytes are sent. The MAX1645/MAX1645As’ device  
address is 0x12 and supports the charger commands  
as described in Tables 1–6.  
Power Fail. When DCIN is < BATT + 0.3V, the part is  
in the Power Fail state, since the charger doesn’t  
have enough input voltage to charge the battery. In  
Power Fail, the PDS input PMOS switch is turned off  
and the POWER_FAIL bit (bit 13) in the  
ChargerStatus() register is set to “1.”  
Battery Present. When THM is < 91% of V , the  
DD  
battery is considered to be present. The MAX1645/  
MAX1645A use the THM pin to detect when a battery  
is connected to the charger. When the battery is pre-  
sent, the BATTERY_PRESENT bit (bit 14) in the  
ChargerStatus() register is set to “1” and charging  
can proceed. When the battery is not present, all of  
the registers are reset. With no battery present, the  
charger will perform a "Float" charge to minimize  
contact arcing on battery connection. "Float" charge  
will still try to regulate the BATT pin voltage at 18.32V  
with 128mA of current compliance.  
Battery Charger Commands  
ChargerSpecInfo()  
The ChargerSpecInfo() command uses the Read-Word  
protocol (Figure 3b). The command code for  
ChargerSpecInfo() is 0x11 (0b00010001). Table 1 lists  
the functions of the data bits (D0–D15). Bit 0 refers to  
the D0 bit in the Read-Word protocol. The  
MAX1645/MAX1645A comply with level 2 Smart Battery  
Charger Specification Revision 1.0; therefore, the  
ChargerSpecInfo() command returns 0x01.  
ChargerMode()  
The ChargerMode() command uses the Write-Word  
protocol (Figure 3a). The command code for  
ChargerMode() is 0x12 (0b00010010). Table 2 lists the  
functions of the data bits (D0–D15). Bit 0 refers to the  
D0 bit in the Write-Word protocol.  
Battery Undervoltage. When BATT < 2.5V, the bat-  
tery is in an undervoltage state. This causes the  
charger to reduce its current compliance to 128mA.  
The content of the ChargingCurrent() register is unaf-  
fected and, when the BATT voltage exceeds 2.7V,  
normal charging resumes. ChargingVoltage() is unaf-  
fected and can be set as low as 1.024V.  
To charge a battery that has a thermistor impedance in  
the HOT range (i.e., THERMISTOR_HOT = 1 and THER-  
MISTOR_UR = 0), the host must use the Charger  
Mode() command to clear HOT_STOP after the battery  
is inserted. The HOT_STOP bit returns to its default  
power-up condition (“1”) whenever the battery is  
removed.  
V  
Undervoltage. When V  
< 2.5V, the V  
sup-  
DD  
DD  
DD  
ply is in an undervoltage state, and the SMBus inter-  
face will not respond to commands. Coming out of  
the undervoltage condition, the part will be in its  
Power-On Reset state. No charging will occur when  
V
is under voltage.  
DD  
ChargerStatus()  
The ChargerStatus() command uses the Read-Word  
protocol (Figure 3b). The command code for Charger  
Status() is 0x13 (0b00010011). Table 3 describes the  
functions of the data bits (D0–D15). Bit 0 refers to the  
D0 bit in the Read-Word protocol.  
SMBus Interface  
The MAX1645/MAX1645A receive control inputs from  
the SMBus interface. The serial interface complies with  
the SMBus specification (refer to the System  
Management Bus Specification from Intel Corporation).  
Charger functionality complies with the Intel/Duracell  
Smart Charger Specification for a Level 2 charger.  
The ChargerStatus() command returns information  
about thermistor impedance and the MAX1645/  
MAX1645A’s internal state. The latched bits, THERMIS-  
TOR_HOT and ALARM_INHIBITED, are cleared when-  
The MAX1645/MAX1645A use the SMBus Read-Word  
and Write-Word protocols to communicate with the bat-  
tery being charged, as well as with any host system  
14 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ever BATTERY_PRESENT = 0 or ChargerMode() is writ-  
ten with POR_RESET = 1. The ALARM_INHIBITED sta-  
tus bit can also be cleared by writing a new charging  
current OR charging voltage.  
a) Write-Word Format  
LꢁW  
DATA  
BYTE  
HIGH  
DATA  
BYTE  
SLAVE  
ADDRESS  
CꢁMMAND  
BYTE  
S
W
ACK  
ACK  
ACK  
ACK  
P
7 bits  
1b  
0
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
ChargerMode() = 0x12  
ChargingCurrent() = 0x14  
ChargerVoltage() = 0x15  
AlarmWarning() = 0x16  
Preset to  
0b0001001  
D7  
D0  
D15  
D8  
b) Read-Word Format  
SLAVE  
LꢁW  
DATA  
BYTE  
HIGH  
DATA  
BYTE  
CꢁMMAND  
ACK  
SLAVE  
ADDRESS  
S
W
ACK  
S
R
ACK  
ACK  
NACK P  
ADDRESS  
BYTE  
7 bits  
1b 1b  
8 bits  
1b  
0
7 bits  
1b 1b  
8 bits  
1b  
0
8 bits  
1b  
1
MSB LSB  
0
0
MSB LSB  
MSB LSB  
1
0
MSB LSB  
MSB LSB  
Preset to  
0b0001001  
Preset to  
0b0001001  
D7  
D0  
D15  
D8  
ChargerSpecInfo() =  
0x11  
ChargerStatus() =  
0x13  
Legend:  
S = Start Condition or Repeated Start Condition  
ACK = Acknowledge (logic low)  
W = Write Bit (logic low)  
P = Stop Condition  
NACK = NOT Acknowledge (logic high)  
R = Read Bit (logic high)  
MASTER TO SLAVE  
SLAVE TO MASTER  
Figure 3. SMBus a) Write-Word and b) Read-Word Protocols  
______________________________________________________________________________________ 15  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
MOST SIGNIFICANT  
ADDRESS BIT (A6)  
CLOCKED INTO SLAVE  
A5 CLOCKED  
INTO SLAVE  
A4 CLOCKED  
INTO SLAVE  
A3 CLOCKED  
INTO SLAVE  
START  
CONDITION  
SCL  
SDA  
t
t
t
HIGH  
LOW  
HD:STA  
t
t
t
HD:DAT  
t
t
SU:DAT  
SU:STA  
HD:DAT  
SU:DAT  
Figure 4. SMBus Serial Interface Timing—Address  
MOST SIGNIFICANT BIT  
OF DATA CLOCKED  
INTO MASTER  
ACKNOWLEDGE  
BIT CLOCKED  
INTO MASTER  
R/W BIT  
CLOCKED  
INTO SLAVE  
SCL  
SDA  
SLAVE PULLING  
SDA LOW  
t
t
DV  
DV  
Figure 5. SMBus Serial Interface Timing—Acknowledgment  
16 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 1. ChargerSpecInfo()  
BIT  
0
NAME  
DESCRIPTIꢁN  
CHARGER_SPEC  
CHARGER_SPEC  
CHARGER_SPEC  
CHARGER_SPEC  
SELECTOR_SUPPORT  
Reserved  
Returns a “1” for Version 1.0  
Returns a “0” for Version 1.0  
Returns a “0” for Version 1.0  
Returns a “0” for Version 1.0  
1
2
3
4
Returns a “0,” indicating no smart battery selector functionality  
Returns a “0”  
5
6
Reserved  
Returns a “0”  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
Returns a “0”  
8
9
10  
11  
12  
13  
14  
15  
Command: 0x11  
______________________________________________________________________________________ 17  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 2. ChargerMode()  
BIT  
NAME  
DESCRIPTIꢁN  
0* = Allow normal operation; clear the CHG_INHIBITED flip-flop.  
1 = Turn off the charger; set the CHG_INHIBITED flip-flop.  
The CHG_INHIBITED flip-flop is not affected by any other commands.  
0
INHIBIT_CHARGE  
ENABLE_POLLING  
1
Not implemented  
0 = No change.  
1 = Change the ChargingVoltage() to 0xFFFF and the ChargingCurrent()  
to 0x00C0; clear the THERMISTOR_HOT and ALARM_INHIBITED flip-  
flops.  
2
POR_RESET  
3
4
RESET_TO_ZERO  
Not implemented  
0* = Interrupt on either edge of the AC_PRESENT status bit.  
1 = Do not interrupt because of an AC_PRESENT bit change.  
AC_PRESENT_MASK  
0* = Interrupt on either edge of the BATTERY_PRESENT status bit.  
1 = Do not interrupt because of a BATTERY_PRESENT bit change.  
5
6
BATTERY_PRESENT_ MASK  
POWER_FAIL_MASK  
0* = Interrupt on either edge of the POWER_FAIL status bit.  
1 = Do not interrupt because of a POWER_FAIL bit change.  
7
8
9
Not implemented  
Not implemented  
Not implemented  
0 = The THERMISTOR_HOT status bit does not turn off the charger.  
1* = The THERMISTOR_HOT status bit does turn off the charger.  
THERMISTOR_HOT is reset by either POR_RESET or  
BATTERY_PRESENT = 0 status bit.  
10  
HOT_STOP  
11  
Not implemented  
Not implemented  
Not implemented  
Not implemented  
Not implemented  
12  
13  
14  
15  
Command: 0x12  
*State at chip initial power-on (i.e., V  
from 0 to +3.3V)  
DD  
18 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 3. ChargerStatus()  
BIT  
NAME  
FUNCTIꢁN  
0* = Ready to charge Smart Battery.  
0
CHARGE_INHIBITED  
1 = Charger is inhibited, I(chg) = 0mA.  
This status bit returns the value of the CHG_INHIBITED flip-flop.  
1
2
MASTER_MODE  
Always returns “0”  
0 = Battery voltage is limited at the set point.  
1 = Battery voltage is less than the set point.  
VOLTAGE_NOT_REG  
0 = Battery current is limited at the set point.  
1 = Battery current is less than the set point.  
3
CURRENT_NOT_REG  
4
5
LEVEL_2  
LEVEL_3  
Always returns a “1”  
Always returns a “0”  
0* = The ChargingCurrent() value is valid for the MAX1645.  
1 = The ChargingCurrent() value exceeds the MAX1645 output range, i.e.,  
programmed ChargingCurrent() exceeds 3008mA.  
6
7
CURRENT_OR  
VOLTAGE_OR  
0 = The ChargingVoltage() value is valid for the MAX1645.  
1* = The ChargingVoltage() value exceeds the MAX1645 output range, i.e.,  
programmed ChargingVoltage() exceeds 1843mV.  
0 = THM is < 91% of the reference voltage.  
1 = THM is > 91% of the reference voltage.  
8
9
THERMISTOR_OR  
0 = THM is < 75.5% of the reference voltage.  
1 = THM is > 75.5% of the reference voltage.  
THERMISTOR_COLD  
0 = THM has not dropped to < 23.5% of the reference voltage.  
1 = THM has dropped to < 23.5% of the reference voltage.  
THERMISTOR_HOT flip-flop cleared by BATTERY_PRESENT = 0 or writing a “1” into  
the POR_RESET bit in the ChargerMode() command.  
10  
11  
THERMISTOR_HOT  
THERMISTOR_UR  
0 = THM is > 7.5% of the reference voltage.  
1 = THM is < 7.5% of the reference voltage.  
Returns the state of the ALARM_INHIBITED flip-flop. This flip-flop is set by either a  
watchdog timeout or by writing an AlarmWarning() command with bits 11, 12, 13, 14,  
or 15 set. This flip-flop is cleared by BATTERY_PRESENT = 0, writing a “1” into the  
POR_RESET bit in the ChargerMode() command, or by receiving successive  
ChargingVoltage() and ChargingCurrent() commands. POR: 0.  
12  
ALARM_INHIBITED  
0 = The charging source voltage CVS is above the BATT voltage.  
1 = The charging source voltage CVS is below the BATT voltage.  
13  
POWER_FAIL  
BATTERY_PRESENT  
AC_PRESENT  
0 = No battery is present (based on THM input).  
1 = Battery is present (based on THM input).  
14  
0 = DCIN is below the 7.5V undervoltage threshold.  
1 = DCIN is above the 7.5V undervoltage threshold.  
15  
Command: 0x13  
*State at chip initial power-on.  
______________________________________________________________________________________ 19  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 4. ChargerCurrent()  
BIT  
0
NAME  
FUNCTIꢁN  
Not used. Normally a 1mA weight.  
Not used. Normally a 2mA weight.  
Not used. Normally a 4mA weight.  
Not used. Normally an 8mA weight.  
Not used. Normally a 16mA weight.  
Not used. Normally a 32mA weight.  
1
2
3
4
5
0 = Adds 0mA of charger-current compliance.  
1 = Adds 64mA of charger-current compliance, 128mA min.  
6
7
Charge Current, DACI 0  
Charge Current, DACI 1  
Charge Current, DACI 2  
Charge Current, DACI 3  
Charge Current, DACI 4  
Charge Current, DACI 5  
0 = Adds 0mA of charger-current compliance.  
1 = Adds 128mA of charger-current compliance.  
0 = Adds 0mA of charger-current compliance.  
1 = Adds 256mA of charger-current compliance.  
8
0 = Adds 0mA of charger-current compliance.  
1 = Adds 512mA of charger-current compliance.  
9
0 = Adds 0mA of charger-current compliance.  
1 = Adds 1024mA of charger-current compliance.  
10  
11  
12–15  
0 = Adds 0mA of charger-current compliance.  
1 = Adds 2048mA of charger-current compliance, 3008mA max.  
0 = Adds 0mA of charger current compliance.  
1 = Sets charger compliance into overrange, 3008mA.  
Command: 0x14  
20 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 5. ChargingVoltage()  
PIN  
0
BIT NAME  
FUNCTIꢁN  
Not used. Normally a 1mV weight.  
Not used. Normally a 2mV weight.  
Not used. Normally a 4mV weight.  
Not used. Normally an 8mV weight.  
1
2
3
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 16mV of charger-voltage compliance, 1.024V min.  
4
5
Charge Voltage, DACV 0  
Charge Voltage, DACV 1  
Charge Voltage, DACV 2  
Charge Voltage, DACV 3  
Charge Voltage, DACV 4  
Charge Voltage, DACV 5  
Charge Voltage, DACV 6  
Charge Voltage, DACV 7  
Charge Voltage, DACV 8  
Charge Voltage, DACV 9  
Charge Voltage, DACV 10  
Charge Voltage, Overrange  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 32mV of charger-voltage compliance, 1.024V min.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 64mV of charger-voltage compliance, 1.024V min.  
6
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 128mV of charger-voltage compliance, 1.024V min.  
7
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 256mV of charger-voltage compliance, 1.024V min.  
8
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 512mV of charger-voltage compliance, 1.024V min.  
9
0 = Adds 0mA of charger-voltage compliance.  
1 = Adds 1024mV of charger-voltage compliance.  
10  
11  
12  
13  
14  
15  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 2048mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 4096mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 8192mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 16384mV of charger-voltage compliance, 18432mV max.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Sets charger compliance into overrange, 18432mV.  
Command: 0x15  
______________________________________________________________________________________ 21  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 6. AlarmWarning()  
BIT  
0
BIT NAME  
Error Code  
DESCRIPTIꢁN  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
1
Error Code  
2
Error Code  
3
Error Code  
4
FULLY_DISCHARGED  
FULLY_CHARGED  
DISCHARGING  
5
6
7
INITIALIZING  
8
REMAINING_TIME_ ALARM  
REMAINING_CAPACITY_ ALARM  
Reserved  
9
10  
0 = Charge normally  
1 = Terminate charging  
11  
12  
13  
14  
TERMINATE_ DISCHARGE_ALARM  
OVER_TEMP_ALARM  
0 = Charge normally  
1 = Terminate charging  
0 = Charge normally  
1 = Terminate charging  
OTHER_ALARM  
0 = Charge normally  
1 = Terminate charging  
TERMINATE_CHARGE_ ALARM  
OVER_CHARGE_ALARM  
0 = Charge normally  
1 = Terminate charging  
15  
Command: 0x16  
22 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
ChargingCurrent() (POR: 0x0080)  
The ChargingCurrent() command uses the Write-Word  
protocol (Figure 3a). The command code for Charging-  
Current() is 0x14 (0b00010100). The 16-bit binary num-  
ber formed by D15–D0 represents the current-limit set  
point (I0) in milliamps. However, since the  
MAX1645/MAX1645A have 64mA resolution in setting  
I0, the D0–D5 bits are ignored as shown in Table 4.  
Figure 6 shows the mapping between I0 (the current-  
regulation-loop set point) and the ChargingCurrent()  
code. All codes above 0b00 1011 1100 0000 (3008mA)  
result in a current overrange, limiting the charger current  
to 3.008A. All codes below 0b0000 0000 1000 0000  
(128mA) turn the charging current off. A 50msense  
resistor (R2 in Figure 1) is required to achieve the cor-  
rect CODE/current scaling.  
sets the ALARM_INHIBITED status bit in the  
MAX1645/MAX1645A if D15, D14, D13, D12, or D11 of  
the Write-Word protocol data equals 1. Table 6 summa-  
rizes the Alarm-Warning() command’s function. The  
ALARM_INHIBITED status bit remains set until the bat-  
tery is removed, a ChargerMode() command is written  
with the POR_RESET bit set, or new ChargingCurrent()  
AND ChargingVoltage() values are written. As long as  
ALARM_INHIBITED = 1, the MAX1645/MAX1645A  
switching regulators remain off.  
Interrupts and Alert Response Address  
The MAX1645/MAX1645A request an interrupt by  
pulling the INT pin low. An interrupt is normally request-  
ed when there is a change in the state of the  
ChargerStatus() bits POWER_FAIL (bit 13),  
BATTERY_PRESENT (bit 14), or AC_PRESENT (bit 15).  
Therefore, the INT pin will pull low whenever the AC  
adapter is connected or disconnected, the battery is  
inserted or removed, or the charger goes in or out of  
dropout. The interrupts from each of the ChargerStatus()  
bits can be masked by an associated ChargerMode()  
bit POWER_FAIL_MASK (bit 6), BATTERY_PRE-  
SENT_MASK (bit 5), or AC_PRESENT_MASK (bit 4).  
The power-on reset value for the ChargingCurrent() reg-  
ister is 0x0080; thus, the first time a MAX1645/  
MAX1645A is powered on, the BATT current regulates  
to 128mA. Any time the battery is removed, the  
ChargingCurrent() register returns to its power-on reset  
state.  
ChargingVoltage() (POR: 0x4800)  
The ChargingVoltage() command uses the Write-Word  
protocol (Figure 3a). The command code for  
ChargingVoltage() is 0x15 (0b00010101). The 16-bit  
binary number formed by D15–D0 represents the volt-  
age set point (V0) in millivolts; however, since the  
MAX1645/MAX1645A have 16mV resolution in setting  
V0, the D0, D1, D2, and D3 bits are ignored as shown in  
Table 5.  
All interrupts are cleared by sending any command to  
the MAX1645/MAX1645A, or by sending a command to  
the AlertResponse() address, 0x19, using a modified  
Receive Byte protocol. In this protocol, all devices that  
set an interrupt will try to respond by transmitting their  
address, and the device with the highest priority, or  
most leading 0’s, will be recognized and cleared. The  
process will be repeated until all devices requesting  
interrupts are addressed and cleared. The MAX1645/  
The ChargingVoltage command is used to set the bat-  
tery charging voltage compliance from 1.024V to  
18.432V. All codes greater than or equal to 0b0100  
1000 0000 0000 (18432mV) result in a voltage over-  
range, limiting the charger voltage to 18.432V. All codes  
below 0b0000 0100 0000 0000 (1024mV) terminate  
charge. Figure 7 shows the mapping between V0  
(the voltage-regulation-loop set point) and the  
ChargingVoltage() code.  
150.4  
102.4  
The power-on reset value for the ChargingVoltage() reg-  
ister is 0x4880; thus, the first time a MAX1645/  
MAX1645A are powered on, the BATT voltage regulates  
to 18.432V. Any time the battery is removed, the  
ChargingVoltage() register returns to its power-on reset  
state. The voltage at DAC corresponds to the set com-  
pliance voltage divided by 4.5.  
51.2  
6.4  
AlarmWarning() (POR: Not Alarm)  
The AlarmWarning() command uses the Write-Word  
protocol (Figure 3a). The command code for  
AlarmWarning() is 0x16 (0b00010110). AlarmWarning()  
0x0400  
1024  
0XFFFF  
65535  
0x0080  
128  
0x0800  
2048  
0x0BC0  
3008  
Figure 6. Average Voltage Between CSIP and CSIN vs. Charging  
Current() Code  
______________________________________________________________________________________ 23  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
18.432V  
16.800V  
V
= 4.096V  
REF  
VDCIN > 20V  
12.592V  
8.400V  
4.192V  
1.024V  
0
0
0x0400  
0xFFFF  
0x106x  
0x20Dx  
0x313x  
0x41A0 0x4800  
ChargingVoltage() D15–D0 DATA  
Figure 7. ChargingVoltage() Code to Voltage Mapping  
MAX1645A respond to the AlertResponse() address  
with 0x13, which is their address and a trailing “1.”  
DC-to-DC Converter  
The MAX1645/MAX1645A employ a buck regulator with  
a boot-strapped NMOS high-side switch and a low-side  
NMOS synchronous rectifier.  
Charger Timeout  
The MAX1645/MAX1645A include a timer that termi-  
nates charge if the charger has not received a  
ChargingVoltage() or ChargingCurrent() command in  
175sec. During charging, the timer is reset each time a  
ChargingVoltage() or ChargingCurrent() command is  
received; this ensures that the charging cycle is not ter-  
minated.  
DC-DC Controller  
The control scheme is a constant off-time, variable fre-  
quency, cycle-by-cycle current mode. The off-time is  
constant for a given BATT voltage; it varies with V  
BATT  
to keep the ripple current constant. During low-dropout  
operation, a maximum on-time of 10ms allows the con-  
troller to achieve >99% duty cycle with continuous con-  
duction. Figure 8 shows the controller functional  
diagram.  
If timeout occurs, charging will terminate and both  
ChargingVoltage() and ChargingCurrent() commands  
are required to restart charging. A power-on reset will  
also restart charging at 128mA.  
24 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
10ms  
S
CSSP  
ADAPTER IN  
LDO  
RESET  
4.0V  
BST  
R1  
CSS  
IMAX  
CCMP  
IMIN  
MAX1645/MAX1645A  
CSSN  
BST  
R
Q
DHI  
LX  
R
S
Q
C
BST  
DHI  
CHG  
Q
L1  
R2  
0.25V  
0.1V  
DLO  
DLO  
1µs  
CSIP  
ZCMP  
CSI  
CSIN  
BATT  
GMS  
GMI  
LVC  
C
OUT  
BATTERY  
R
FC  
70k  
GMV  
R
FI  
20k  
DACV  
DACI  
CLS  
CONTROL  
ON  
CCS  
CCI  
CCV  
Figure 8. DC-to-DC Converter Functional Diagram  
______________________________________________________________________________________ 25  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
MOSFET Drivers  
1000  
The low-side driver output DLO swings from 0V to DLOV.  
DLOV is usually connected through a filter to LDO. The  
high-side driver output DHI is bootstrapped off LX and  
100  
swings from V to V  
. When the low-side driver turns  
LX  
BST  
on, BST rises to one diode voltage below DLOV.  
10  
1
Filter DLOV with an RC circuit whose cutoff frequency  
is about 50kHz. The configuration in Figure 1 intro-  
duces a cutoff frequency of around 48kHz.  
f = 1 / 2πRC = 1 / (2 · π · 33· 0.1µF) = 48kHz  
0.1  
Thermistor Comparators  
Four thermistor comparators evaluate the voltage at the  
THM input to determine the battery temperature. This  
input is meant to be used with the internal thermistor  
connected to ground inside the battery pack. Connect  
the output of the battery thermistor to THM. Connect a  
-40  
-50  
-30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
TEMPERATURE (°C)  
Figure 9. Typical Thermistor Characteristics  
• THERMISTOR_HOT bit is set when the thermistor  
value is <3k. This is a latched bit and is cleared by  
removing the battery or sending a POR with the  
ChargerMode() command. The MAX1645 charger is  
stopped unless the HOT_STOP bit is cleared in the  
ChargerMode() command. The MAX1645A charger  
is stopped unless the HOT_STOP bit is cleared in the  
ChargerMode() command or the RES_UR bit is set.  
See Table 7.  
resistor from THM to V . The resistor-divider sets the  
DD  
voltage at THM. When the charger is not powered up,  
the battery temperature can still be determined if V  
powered from an external voltage source.  
is  
DD  
Thermistor Bits  
Figure 9 shows the expected electrical behavior of a  
103ETB-type thermistor (nominally 10kat +25°C 5%  
or better) to be used with the MAX1645/MAX1645A:  
• THERMISTOR_UR bit is set when the thermistor  
• THERMISTOR_OR bit is set when the thermistor  
value is >100k. This indicates that the thermistor is  
open or a battery is not present. The charger is set to  
POR, and the BATTERY_PRESENT bit is cleared.  
value is <500(i.e., THM is grounded).  
Multiple bits may be set depending on the value of the  
thermistor (e.g., a thermistor that is 450will cause both  
the THERMISTOR_HOT and the THERMISTOR_UR bits  
to be set). The thermistor may be replaced by fixed-  
value resistors in battery packs that do not require the  
thermistor as a secondary fail-safe indicator. In this  
• THERMISTOR_COLD bit is set when the thermistor  
value is >30k. The thermistor indicates a cold bat-  
tery. This bit does not affect the charge.  
Table 7. Thermistor Bit Settings  
THERMISTꢁR  
DESCRIPTIꢁN  
STATUS BIT  
CꢁNTRꢁLLED  
WAKE-UP CHARGE  
CHARGE  
REG_UR and RES_HOT  
RES_UR and RES_HOT  
RES_HOT  
Under Range  
Under Range  
Hot  
Not allowed by MAX1645  
Not allowed by MAX1645  
Allowed by MAX1645A  
Not Allowed  
Allowed for Timeout  
Period by MAX1645A  
Not Allowed  
Allowed for Timeout  
Period  
(None)  
Normal  
Allowed  
Allowed for Timeout  
Period  
RES_COLD  
Cold  
Allowed  
RES_OR and RES_COLD  
Over Range  
Float Charge*  
Not Allowed  
*See Battery Present item under Operating Conditions for more information.  
26 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
V
CC  
SYSTEM  
POWER  
CONTROL  
SYSTEM  
POWER  
SUPPLY  
DC (UNREGULATED) / V  
+12V, -12V  
BATTERY  
AC  
AC-DC  
V
DC (UNREGULATED)  
BATTERY  
CONVERTER  
(UNREGULATED)  
SAFETY  
SIGNAL  
SMART  
BATTERY  
MAX1645A  
SYSTEM HOST  
(SMBus HOST)  
SMART BATTERY  
CHARGER  
CRITICAL EVENTS  
CHARGING VOLTAGE/CURRENT  
REQUESTS  
SMBus  
BATTERY DATA/STATUS REQUESTS  
CRITICAL EVENTS  
Figure 10. Typical Single Smart Battery System  
case, it is the responsibility of the battery pack to manip-  
ulate the resistance to obtain correct charger behavior.  
time. This allows the charger to achieve dropout perfor-  
mance limited only by resistive losses in the DC-DC  
converter components (P1, R1, N1, R2; see Figure 1).  
The actual dropout voltage is limited to 300mV between  
CVS and BATT by the power-fail comparator (see  
Operating Conditions).  
Load and Source Switch Drivers  
The MAX1645/MAX1645A can drive two P-channel  
MOSFETs to eliminate voltage drops across the  
Schottky diodes, which are normally used to switch the  
load current from the battery to the main DC source:  
Applications Information  
Smart Battery Charging  
System/Background Information  
• The source switch P1 is controlled by PDS. This P-  
channel MOSFET is turned on when CVS rises to  
300mV above BATT and turns off when CVS falls to  
100mV above BATT. The same signal that controls  
the PDS also sets the POWER_FAIL bit in the  
Charger Status() register. See Operating Conditions.  
A smart battery charging system, at a minimum, con-  
sists of a smart battery and smart battery charger com-  
patible with the Smart Battery System Specifications  
using the SMBus.  
• The load switch P2 is controlled by PDL. This P-  
channel MOSFET is turned off when the CVS rises to  
100mV below BATT and turns on when CVS falls to  
300mV below BATT.  
A system may use one or more smart batteries. Figure 10  
shows a single-battery system. This configuration is  
typically found in notebook computers, video cameras,  
cellular phones, or other portable electronic equipment.  
Dropout Operation  
The MAX1645/MAX1645A have a 99.99% duty-cycle  
capability with a 10ms maximum on-time and 1µs off-  
Another configuration uses two or more smart batteries  
(Figure 11). The smart battery selector is used either to  
______________________________________________________________________________________ 27  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
AC  
V
CC  
SYSTEM  
POWER  
SUPPLY  
+12V, -12V  
DC (UNREGULATED) / V  
BATTERY  
NOTE: SB 1 POWERING SYSTEM  
SB 2 CHARGING  
AC-DC  
CONVERTER  
(UNREGULATED)  
SMART BATTERY 1  
SMART BATTERY 2  
SMBus  
MAX1645A  
SYSTEM HOST  
(SMBus HOST)  
SAFETY SIGNAL  
SMART BATTERY  
SELECTOR  
SMART  
BATTERY  
CHARGER  
V
CHARGE  
CRITICAL EVENTS  
SMBus  
BATTERY DATA/STATUS REQUESTS  
Figure 11. Typical System Using Multiple Smart Batteries  
connect batteries to the smart battery charger or the  
system, or to disconnect them, as appropriate. For  
each battery, three connections must be made: power  
(the battery’s positive and negative terminals), the  
SMBus (clock and data), and the safety signal (resis-  
tance, typically temperature dependent). Additionally,  
the system host must be able to query any battery so it  
can display the state of all batteries present in the system.  
Table 8. Smart Battery Charger Type  
by SMBus Mode and Charge Algorithm  
Source  
CHARGE ALGꢁRITHM SꢁURCE  
SMBus MꢁDE  
MꢁDIFIED FRꢁM  
BATTERY  
BATTERY  
Figure 11 shows a two-battery system where battery 2  
is being charged while battery 1 is powering the sys-  
tem. This configuration may be used to “condition” bat-  
tery 1, allowing it to be fully discharged prior to  
recharge.  
Slave only  
Level 2  
Level 3  
Level 3  
Level 3  
Slave/Master  
Note: Level 1 smart battery chargers were defined in the ver-  
sion 0.95a specification. While they can correctly interpret  
smart battery end-of-charge messages, minimizing over-  
charge, they do not provide truly chemistry-independent  
charging. They are no longer defined by the Smart Battery  
Charger Specification and are explicitly not compliant with this  
and subsequent Smart Battery Charger Specifications.  
Smart Battery Charger Types  
Two types of smart battery chargers are defined: Level 2  
and Level 3. All smart battery chargers communicate  
with the smart battery using the SMBus; the two types  
differ in their SMBus communication mode and whether  
they modify the charging algorithm of the smart battery  
28 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
(Table 8). Level 3 smart battery chargers are supersets  
of Level 2 chargers and, as such, support all Level 2  
charger commands.  
ers’ contacts. The following sections describe how to  
select these components.  
MOSFETs and Schottky Diodes  
Schottky diode D1 provides power to the load when the  
AC adapter is inserted. Choose a 3A Schottky diode or  
higher. This diode may not be necessary if P1 is used.  
Level 2 Smart Battery Charger  
The Level 2 or smart battery-controlled smart battery  
charger interprets the smart battery’s critical warning  
messages and operates as an SMBus slave device to  
respond to the smart battery’s ChargingVoltage() and  
ChargingCurrent() messages. The charger is obliged to  
adjust its output characteristics in direct response to  
the ChargingVoltage() and ChargingCurrent() mes-  
sages it receives from the battery. In Level 2 charging,  
the smart battery is completely responsible for initiating  
the communication and providing the charging algo-  
rithm to the charger.  
The P-channel MOSFET P1 turns on when V  
BATT  
>
CVS  
V
. This eliminates the voltage drop and power con-  
sumption of the Schottky diode. To minimize power loss,  
select a MOSFET with an R  
of 50mor less. This  
DS(ON)  
MOSFET must be able to deliver the maximum current  
as set by R1. D1 and P1 provide protection from  
reversed voltage at the adapter input.  
The N-channel MOSFETs N1 and N2 are the switching  
devices for the buck controller. High-side switch N1  
should have a current rating of at least 6A and have an  
The smart battery is in the best position to tell the smart  
battery charger how it needs to be charged. The charg-  
ing algorithm in the battery may request a static charge  
condition or may choose to periodically adjust the  
smart battery charger’s output to meet its present  
needs. A Level 2 smart battery charger is truly chem-  
istry independent and, since it is defined as an SMBus  
slave device only, the smart battery charger is relatively  
inexpensive and easy to implement.  
R
of 50mor less. The driver for N1 is powered  
DS(ON)  
by BST; its current should be less than 10mA. Select a  
MOSFET with a low total gate charge and determine  
the required drive current by I  
= Q  
· f (where f  
GATE  
GATE  
is the DC-DC converter maximum switching frequency  
of 400kHz).  
The low-side switch N2 should also have a current rat-  
ing of at least 3A, have an R  
of 100mor less,  
DS(ON)  
and a total gate charge less than 10nC. N2 is used to  
provide the starting charge to the BST capacitor C14.  
During normal operation, the current is carried by  
Schottky diode D2. Choose a 3A or higher Schottky  
diode.  
Selecting External Components  
Table 10 lists the recommended components and  
refers to the circuit of Figure 1; Table 9 lists the suppli-  
D3 is a signal-level diode, such as the 1N4148. This  
diode provides the supply current to the high-side  
MOSFET driver.  
Table 9. Component Suppliers  
CꢁMPꢁNENT  
MANUFACTURER  
PART  
The P-channel MOSFET P2 delivers the current to the  
load when the AC adapter is removed. Select a MOS-  
Sumida  
CDRH127 series  
D03316P series  
UP2 series  
FET with an R  
of 50mor less to minimize power  
DS(ON)  
loss and voltage drop.  
Inductor  
Coilcraft  
Coiltronics  
Internal Rectifier  
Fairchild  
Vishay-Siliconix  
Dale  
Inductor Selection  
IRF7309  
Inductor L1 provides power to the battery while it is  
MOSFET  
FDS series  
being charged. It must have a saturation current of at  
Si4435/6  
1
least 3A plus /2 of the current ripple (I ).  
L
WSL series  
Sense Resistor  
Capacitor  
1
I
= 3A + /2 I  
SAT  
L
IRC  
LR2010-01 series  
The controller determines the constant off-time period,  
which is dependent on BATT voltage. This makes the  
ripple current independent of input and battery voltage  
TPS series,  
TAJ series  
AVX  
Sprague  
Motorola  
Nihon  
595D series  
and should be kept to less than 1A. Calculate the I  
L
1N5817–1N5822  
NSQ03A04  
with the following equation:  
Diode  
I = 21Vµs / L  
L
Central  
Semiconductor  
CMSH series  
Higher inductor values decrease the ripple current.  
Smaller inductor values require higher saturation cur-  
______________________________________________________________________________________ 29  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Table 10. Component Selection  
DESIGNATIꢁN  
C1, C2 Input Capacitors  
DESCRIPTIꢁN  
22µF, 35V low-ESR tantalum capacitors  
AVX TPSE226M035R0300  
22µF, 25V low-ESR tantalum capacitors  
AVX TPSD226M025R0200  
C3, C4 Output Capacitors  
C5, C19, C20  
1µF, >30V ceramic capacitors  
1µF ceramic capacitors  
C6, C7, C12  
C8, C14, C16  
0.1µF ceramic capacitors  
0.01µF ceramic capacitors  
1500pF ceramic capacitor  
0.1µF, >20V ceramic capacitors  
0.1µF, >30V ceramic capacitor  
C9, C10, C11 Compensation Capacitors  
C13  
C18, C24  
C23  
40V, 2A schottky diodes  
Central Semiconductor CMSH2-40  
D1, D2  
Small-signal diodes  
Central Semiconductor CMPSH-3  
D3, D4  
22µH, 3.6A buck inductor  
Sumida CDRH127-220  
L1  
30V, 11.5A, high-side N-channel MOSFET (SO-8)  
Fairchild FDS6680  
N1 High-Side MOSFET  
30V, 8.4A, low-side N-channel MOSFET  
Fairchild FDS6612A or  
30V, signal level N-channel MOSFET  
2N7002  
N2 Low-Side MOSFET  
30V, 11A P-Channel MOSFET load and source switches  
Fairchild FDS6675  
P1, P2  
R1  
40m1%, 0.5W battery current-sense resistor  
Dale WSL-2010/40m/1%  
50m1%, 0.5W source current-sense resistor  
Dale WSL-2010/50m/1%  
R2  
R3, R4  
R3 + R4 >100kinput current-limit setting resistors  
10k5% resistors  
R5, R7, R8, R9, R10  
R6  
10k1% temperature sensor network resistor  
15% resistors  
R11, R16  
R12  
335% resistor  
R13  
1k5% resistor  
R14, R15  
4.75% resistors  
30 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
rent capabilities and degrade efficiency. Typically, a  
22µH inductor is ideal for all operating conditions.  
• Minimize current-sense resistor trace lengths and  
ensure accurate current sensing with Kelvin con-  
nections.  
Other Components  
CCV, CCI, and CCS are the compensation points for the  
three regulation loops. Bypass CCV with a 10kresistor  
in series with a 0.01µF capacitor to GND. Bypass CCI  
and CCS with 0.01µF capacitors to GND. R7 and R13  
serve as protection resistors to THM and CVS, respec-  
tively. To achieve acceptable accuracy, R6 should be  
10kand 1% to match the internal battery thermistor.  
• Minimize ground trace lengths in the high-current  
paths.  
• Minimize other trace lengths in the high-current  
paths:  
• Use > 5mm-wide traces  
• Connect C1 and C2 to high-side MOSFET  
(10mm max length)  
Current-Sense Input Filtering  
In normal circuit operation with typical components, the  
current-sense signals can have high-frequency tran-  
sients that exceed 0.5V due to large current changes  
and parasitic component inductance. To achieve prop-  
er battery and input current compliance, the current-  
sense input signals should be filtered to remove large  
common-mode transients. The input current limit sens-  
ing circuitry is the most sensitive case due to large cur-  
rent steps in the input filter capacitors (C1 and C2) in  
Figure 1. Use 1µF ceramic capacitors from CSSP and  
CSSN to GND. Smaller 0.1µF ceramic capacitors can  
be used on the CSIP and CSIN inputs to GND since the  
current into the battery is continuous. Place these  
capacitors next to the single-point ground directly  
under the MAX1645/MAX1645A.  
• Connect rectifier diode cathode to low-side.  
MOSFET (5mm max length)  
• LX node (MOSFETs, rectifier cathode, inductor:  
15mm max length). Ideally, surface-mount  
power components are flush against one another  
with their ground terminals almost touching.  
These high-current grounds are then connected  
to each other with a wide, filled zone of top-  
layer copper so they do not go through vias.  
The resulting top-layer subground plane is con-  
nected to the normal inner-layer ground plane  
at the output ground terminals, which ensures  
that the IC’s analog ground is sensing at the  
supply’s output terminals without interference  
from IR drops and ground noise. Other high-  
current paths should also be minimized, but  
focusing primarily on short ground and current-  
sense connections eliminates about 90% of all  
PC board layout problems.  
Layout and Bypassing  
Bypass DCIN with a 1µF to GND (Figure 1). D4 protects  
the device when the DC power source input is  
reversed. A signal diode for D4 is adequate as DCIN  
only powers the LDO and the internal reference.  
Bypass LDO, BST, DLOV, and other pins as shown in  
Figure 1.  
2) Place the IC and signal components. Keep the main  
switching nodes (LX nodes) away from sensitive ana-  
log components (current-sense traces and REF  
capacitor). Important: The IC must be no further  
than 10mm from the current-sense resistors.  
Good PC board layout is required to achieve specified  
noise, efficiency, and stable performance. The PC  
board layout artist must be given explicit instructions,  
preferably a pencil sketch showing the placement of  
power-switching components and high-current routing.  
Refer to the PC board layout in the MAX1645/  
MAX1645A evaluation kit manual for examples. A  
ground plane is essential for optimum performance. In  
most applications, the circuit will be located on a multi-  
layer board, and full use of the four or more copper lay-  
ers is recommended. Use the top layer for high-current  
connections, the bottom layer for quiet connections  
Keep the gate drive traces (DHI, DLO, and BST)  
shorter than 20mm and route them away from the  
current-sense lines and REF. Place ceramic bypass  
capacitors close to the IC. The bulk capacitors can  
be placed further away. Place the current-sense  
input filter capacitors under the part, connected  
directly to the GND pin.  
3) Use a single-point star ground placed directly below  
the part. Connect the input ground trace, power  
ground (subground plane), and normal ground to  
this node.  
(REF, CCV, CCI, CCS, DAC, DCIN, V , and GND),  
DD  
and the inner layers for an uninterrupted ground plane.  
Chip Information  
Use the following step-by-step guide:  
TRANSISTOR COUNT: 6996  
1) Place the high-power connections first, with their  
grounds adjacent:  
______________________________________________________________________________________ 31  
Advanced Chemistry-Independent, Level 2  
Battery Chargers with Input Current Limiting  
Typical Operating Circuit  
ADAPTER IN  
DDS  
CVS  
DCIN  
CSSP  
MAX1645A  
REF  
CSSN  
LDO  
LOAD  
CLS  
BST  
AGND  
DLOV  
DAC  
CCV  
DHI  
LX  
CCI  
CCS  
DLO  
PGND  
CSIP  
CSIN  
PDL  
BATT  
BATTERY  
HOST  
THM  
V
DD  
SCL  
SDA  
INT  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1645AEEI+T

Battery Charge Controller, PDSO28, QSOP-28
MAXIM

MAX1645AEEI-T

暂无描述
MAXIM

MAX1645AEVKIT|MAX1645AEVSYS

Evaluation Kit/Evaluation System for the MAX1645A
MAXIM

MAX1645B

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
MAXIM

MAX1645BEEI

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
MAXIM

MAX1645BEEI+

暂无描述
MAXIM

MAX1645BEEI+T

暂无描述
MAXIM

MAX1645EEI

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
MAXIM

MAX1645EVKIT

Evaluation Kit for the MAX1645
MAXIM

MAX1645EVSYSTEM

Evaluation System for the MAX1645/MAXSMBus
MAXIM

MAX1647

Chemistry-Independent Battery Chargers
MAXIM

MAX1647-MAX1648

Chemistry-Independent Battery Chargers
MAXIM