MAX1645B [MAXIM]

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting; 先进的化学类型无关的Level 2电池充电器,带有输入限流
MAX1645B
型号: MAX1645B
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
先进的化学类型无关的Level 2电池充电器,带有输入限流

电池
文件: 总32页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2593; Rev 0; 10/02  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
General Description  
Features  
The MAX1645B is a high-efficiency battery charger  
capable of charging batteries of any chemistry type. It  
uses the Intel System Management Bus (SMBus) to  
control voltage and current-charge outputs.  
o Input Current Limiting  
o 175s Charge Safety Timeout  
o 128mA Wake-Up Charge  
When charging lithium-ion (Li+) batteries, the MAX1645B  
automatically transitions from regulating current to regu-  
lating voltage. The MAX1645B can also limit line input  
current so as not to exceed a predetermined current  
drawn from the DC source. A 175s charge safety timer  
prevents “runaway charging” should the MAX1645B stop  
receiving charging voltage/current commands.  
o Charges Any Chemistry Battery: Li+, NiCd,  
NiMH, Lead Acid, etc.  
o Intel SMBus 2-Wire Serial Interface  
o Compliant with Level 2 Smart Battery Charger  
Spec Rev 1.0  
o +8V to +28V Input Voltage Range  
o Up to 18.4V Battery Voltage  
o 11-Bit Battery Voltage Setting  
The MAX1645B employs a next-generation synchro-  
nous buck control circuitry that lowers the minimum  
input-to-output voltage drop by allowing the duty cycle  
to exceed 99%. The MAX1645B can easily charge one  
to four series Li+ cells.  
o
0.8ꢀ ꢁutput Voltage Accuracy with Internal  
Reference  
Applications  
o 3A (max) Battery Charge Current  
o 6-Bit Charge-Current Setting  
Notebook Computers  
Point-of-Sale Terminals  
Personal Digital Assistants  
o 99.99ꢀ (max) Duty Cycle for Low-Dropout  
ꢁperation  
o Load/Source Switchover Drivers  
o >97ꢀ Efficiency  
Pin Configuration  
Ordering Information  
TOP VIEW  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1645BEEI  
-40°C to +125°C  
28 QSOP  
DCIN  
LDO  
CLS  
REF  
1
2
3
4
5
6
7
8
9
28 CVS  
27 PDS  
26 CSSP  
25 CSSN  
24 BST  
23 DHI  
CCS  
CCI  
MAX1645B  
CCV  
GND  
BATT  
22 LX  
21 DLOV  
20 DLO  
19 PGND  
18 CSIP  
17 CSIN  
16 PDL  
15 INT  
DAC 10  
11  
V
DD  
Typical Operating Circuit appears at end of data sheet.  
THM 12  
SCL 13  
SDA 14  
SMBus is a trademark of Intel Corp.  
QSꢁP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ABSꢁLUTE MAXIMUM RATINGS  
DCIN, CVS, CSSP, CSSN, LX to GND....................-0.3V to +30V  
CSSP to CSSN, CSIP to CSIN ...............................-0.3V to +0.3V  
V
, SCL, SDA, INT, DLOV to GND.........................-0.3V to +6V  
DD  
THM to GND...............................................-0.3V to (V  
+ 0.3V)  
DD  
PDS, PDL to GND ...................................-0.3V to (V  
BST to LX..................................................................-0.3V to +6V  
DHI to LX...................................................-0.3V to (V + 0.3V)  
+ 0.3V)  
PGND to GND .......................................................-0.3V to +0.3V  
LDO Continuous Current.....................................................50mA  
CSSP  
Continuous Power Dissipation (T = +70°C)  
BST  
A
CSIP, CSIN, BATT to GND .....................................-0.3V to +22V  
28-Pin QSOP (derate 10.8mW/°C above +70°C).........860mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LDO to GND.....................-0.3V to (lower of 6V or V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DCIN  
DLO to GND ...........................................-0.3V to (V  
DLOV  
REF, DAC, CCV, CCI, CCS, CLS to GND.....-0.3V to (V  
LDO  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL SPECIFICATIONS  
DCIN Typical Operating Range  
DCIN Supply Current  
V
8
28  
6
V
DCIN  
I
8V < V  
< 28V  
1.7  
0.7  
mA  
DCIN  
DCIN  
DCIN  
DCIN Supply Current Charging  
Inhibited  
8V < V  
< 28V  
2
mA  
V
DCIN rising  
DCIN falling  
7.5  
7.4  
5.4  
7.85  
When AC_PRESENT  
switches  
DCIN Undervoltage Threshold  
7
LDO Output Voltage  
V
8V < V  
8V < V  
< 28V, 0 < I < 15mA  
LDO  
5.15  
2.80  
5.65  
5.65  
2.8  
V
V
LDO  
DCIN  
DCIN  
V
V
Input Voltage Range  
< 28V (Note 1)  
V
DD  
DD  
rising  
falling  
2.55  
2.5  
DD  
DD  
When the SMB  
responds to commands  
Undervoltage Threshold  
V
V
2.1  
0 < V  
< 6V, V  
= 5V, V  
= 5V,  
SCL  
DCIN  
= 5V  
DD  
V
Quiescent Current  
I
80  
150  
µA  
DD  
DD  
V
SDA  
REF Output Voltage  
V
0 < I  
< 200µA  
4.066  
2.4  
4.096  
4.126  
2.8  
V
V
REF  
REF  
BATT Undervoltage Threshold  
When I  
drops to 128mA (Note 2)  
CHARGE  
PDS Charging Source Switch  
Turn-Off Threshold  
V
V
V
V
referred to V  
referred to V  
= 0  
, V  
falling  
50  
100  
8
100  
200  
10  
150  
300  
mV  
mV  
V
PDS-OFF  
CVS  
CVS  
PDS  
BATT CVS  
PDS Charging Source Switch  
Threshold Hysteresis  
PDS-HYS  
BATT  
PDS Output Low Voltage, PDS  
Below CSSP  
I
12  
PDS Turn-On Current  
PDS Turn-Off Current  
PDS = CSSP  
100  
10  
150  
50  
300  
µA  
V
= V  
- 2V, V = 16V  
DCIN  
mA  
PDS  
CSSP  
PDL Load Switch Turn-Off  
Threshold  
V
V
referred to V , V rising  
BATT CVS  
-150  
-100  
-50  
mV  
PDL-OFF  
CVS  
2
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
referred to V  
MIN  
TYP  
MAX  
UNITS  
PDL Load Switch Threshold  
Hysteresis  
V
V
V
100  
200  
300  
mV  
PDL-HYS  
CVS  
BATT  
PDL Turn-Off Current  
PDL Turn-On Resistance  
CVS Input Bias Current  
- V  
PDL  
= 1V  
6
12  
100  
6
mA  
k  
µA  
CSSN  
PDL to GND  
= 28V  
50  
150  
20  
V
CVS  
ChargingVoltage() = 0x41A0  
ChargingVoltage() = 0x3130  
ChargingVoltage() = 0x20D0  
ChargingVoltage() = 0x1060  
16.666  
16.8  
16.934  
12.492 12.592 12.692  
BATT Full-Charge Voltage  
V0  
I0  
V
8.333  
4.150  
8.4  
8.467  
4.234  
4.192  
ChargingCurrent() =  
139.9  
3.08  
150.4  
6.4  
160.9  
9.72  
0x0BC0  
BATT Charge Current-Sense  
Voltage  
V
V
- V  
mV  
mV  
CSIP  
CSIN  
ChargingCurrent() =  
0x0080  
V
V
= 4.096V  
= 2.048V  
188.6  
91.3  
204.8  
102.4  
221.0  
113.5  
CLS  
CLS  
DCIN Source Current-Limit  
Sense Voltage  
- V  
CSSP  
CSSN  
BATT Undervoltage Charge  
Current-Sense Voltage  
V
V
- V  
- V  
V
= 1V  
3.08  
250  
0
6.4  
9.72  
350  
20  
mV  
mV  
V
CSIP  
CSIP  
CSIN  
BATT  
Inductor Peak Current Limit  
300  
CSIN  
BATT/CSIP/CSIN Input Voltage  
Range  
Total of I  
, I  
, and I  
, and I  
;
CSIN  
BATT CSIP  
Total BATT Input Bias Current  
Total BATT Quiescent Current  
Total BATT Standby Current  
-700  
-100  
-5  
+700  
+100  
+5  
µA  
µA  
µA  
V
= 0 to 20V  
BATT  
Total of I  
, I  
;
CSIN  
BATT CSIP  
V
= 0 to 20V, charge inhibited  
BATT  
Total of I  
, I  
, and I  
;
CSIN  
BATT CSIP  
V
V
V
V
= 0 to 20V, V  
= 0  
BATT  
DCIN  
CSSP Input Bias Current  
CSSN Input Bias Current  
CSSP/CSSN Quiescent Current  
= V  
= V  
CSSN  
= 0 to 28V  
= 0 to 28V  
-100  
-100  
-1  
540  
35  
+1000  
+100  
+1  
µA  
µA  
µA  
CSSP  
CSSP  
CSSP  
DCIN  
= C  
= V  
DCIN  
CSSN  
CSSN  
= V  
= 28V, V  
= 0  
DCIN  
Battery Voltage-Error Amp DC  
Gain  
From BATT to CCV  
= V /2 to V  
REF  
200  
-1  
500  
V/V  
µA  
CLS Input Bias Current  
V
+0.05  
0.222  
+1  
CLS  
REF  
Battery Voltage-Error Amp  
Transconductance  
From BATT to CCV, ChargingVoltage() =  
0x41A0, V = 16.8V  
0.111  
0.444  
µA/mV  
BATT  
Battery Current-Error Amp  
Transconductance  
From CSIP/CSIN to CCI, ChargingCurrent()  
= 0x0BC0, V - V = 150.4mV  
0.5  
1
2.0  
µA/mV  
CSIP  
CSIN  
Input Current-Error Amp  
Transconductance  
From CSSP/CSSN to CCS, V  
= 2.048V,  
CLS  
0.5  
1
2.0  
µA/mV  
mV  
V
- V  
CSSN  
= 102.4mV  
CSSP  
CCV/CCI/CCS Clamp Voltage  
V
= V  
= V = 0.25V to 2V (Note 3)  
CCS  
150  
300  
600  
CCV  
CCI  
_______________________________________________________________________________________  
3
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC-TO-DC CONVERTER SPECIFICATIONS  
Minimum Off-Time  
t
1.0  
5
1.25  
10  
1.5  
15  
µs  
ms  
%
OFF  
Maximum On-Time  
t
ON  
Maximum Duty Cycle  
LX Input Bias Current  
LX Input Quiescent Current  
BST Supply Current  
DLOV Supply Current  
DHI Output Resistance  
DLO Output Resistance  
99  
99.99  
200  
V
V
= 28V, V  
= V = 20V  
500  
1
µA  
µA  
µA  
µA  
DCIN  
DCIN  
BATT  
LX  
= 0, V  
= V = 20V  
LX  
BATT  
DHI high  
= V  
6
5
6
6
15  
10  
14  
14  
V
, DLO low  
LDO  
DLOV  
DHI high or low, V  
- V = 4.5V  
LX  
BST  
DLO high or low, V  
= 4.5V  
DLOV  
THERMISTOR COMPARATOR SPECIFICATIONS  
V
= 4% of V  
to 96% of V , V  
=
THM  
DD  
DD DD  
THM Input Bias Current  
-1  
+1  
µA  
2.8V to 5.65V  
Thermistor Overrange Threshold  
Thermistor Cold Threshold  
Thermistor Hot Threshold  
V
V
V
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
falling  
falling  
falling  
89.5  
74  
91  
92.5  
77  
% of V  
DD  
DD  
DD  
DD  
THM  
THM  
THM  
75.5  
23.5  
% of V  
% of V  
DD  
DD  
22  
25  
Thermistor Underrange  
Threshold  
V
= 2.8V to 5.65V, V  
falling  
6
7.5  
1
9
% of V  
DD  
DD  
THM  
Thermistor Comparator  
Threshold Hysteresis  
All four comparators, V  
= 2.8V to 5.65V  
% of V  
DD  
DD  
SMB INTERFACE LEVEL SPECIFICATIONS (V  
SDA/SCL Input Low Voltage  
= 2.8V to 5.65V)  
DD  
0.6  
+1  
V
SDA/SCL Input High Voltage  
1.4  
V
SDA/SCL Input Hysteresis  
220  
25  
mV  
µA  
mA  
µA  
mV  
SDA/SCL Input Bias Current  
-1  
6
SDA Output Low Sink Current  
INT Output High Leakage  
V
V
= 0.4V  
SDA  
= 5.65V  
1
I NT  
INT Output Low Voltage  
I
= 1mA  
200  
I NT  
SMB INTERFACE TIMING SPECIFICATIONS (V  
= 2.8V to 5.65V, Figures 4 and 5)  
DD  
SCL High Period  
SCL Low Period  
t
4
µs  
µs  
HIGH  
t
4.7  
LOW  
Start Condition Setup Time  
from SCL  
t
4.7  
4
µs  
µs  
SU:STA  
Start Condition Hold Time  
from SCL  
t
t
HD:STA  
SDA Setup Time from SCL  
SDA Hold Time from SCL  
250  
0
ns  
ns  
SU:DAT  
HD:DAT  
t
4
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V  
= +3.3V, V  
= +16.8V, V  
= +18V, T = 0°C to +85°C, unless otherwise noted. Typical values are at  
A
DCIN  
DD  
BATT  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SDA Output Data Valid from SCL  
t
1
µs  
DV  
Maximum Charge Period Without  
a ChargingVoltage() or  
t
140  
175  
210  
s
WDT  
Charging Current() Loaded  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V  
= +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
BATT  
DCIN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL SPECIFICATIONS  
DCIN Typical Operating Range  
DCIN Supply Current  
V
8
28  
6
V
DCIN  
I
8V < V  
8V < V  
< 28V  
mA  
DCIN  
DCIN  
DCIN  
DCIN Supply Current Charging  
Inhibited  
< 28V  
2
mA  
V
DCIN rising  
DCIN falling  
7.85  
When AC_PRESENT  
switches  
DCIN Undervoltage Threshold  
7
LDO Output Voltage  
V
8V < V  
8V < V  
< 28V, 0 < I < 15mA  
LDO  
5.15  
2.80  
5.65  
5.65  
2.8  
V
V
LDO  
DCIN  
DCIN  
V
V
Input Voltage Range  
< 28V (Note 1)  
V
DD  
DD  
rising  
falling  
DD  
DD  
When the SMB  
responds to commands  
Undervoltage Threshold  
V
V
2.1  
0 < V  
< 6V, V  
= 5V, V  
= 5V,  
SCL  
DCIN  
= 5V  
DD  
V
Quiescent Current  
I
150  
µA  
DD  
DD  
V
SDA  
REF Output Voltage  
V
0 < I  
< 200µA  
4.035  
2.4  
4.157  
2.8  
V
V
REF  
REF  
BATT Undervoltage Threshold  
When I  
drops to 128mA (Note 2)  
CHARGE  
PDS Charging Source Switch  
Turn-Off Threshold  
V
V
V
V
referred to V  
referred to V  
= 0  
, V  
falling  
50  
100  
8
150  
300  
mV  
mV  
V
PDS-OFF  
CVS  
CVS  
PDS  
BATT CVS  
PDS Charging Source Switch  
Threshold Hysteresis  
PDS-HYS  
BATT  
PDS Output Low Voltage, PDS  
Below CSSP  
I
12  
PDS Turn-On Current  
PDS Turn-Off Current  
PDS = CSSP  
100  
10  
300  
µA  
V
= V  
- 2V, V = 16V  
DCIN  
mA  
PDS  
CSSP  
PDL Load Switch Turn-Off  
Threshold  
V
V
V
referred to V  
referred to V  
, V  
rising  
-150  
-50  
mV  
PDL-OFF  
PDL-HYS  
CVS  
BATT CVS  
PDL Load Switch Threshold  
Hysteresis  
V
V
100  
6
300  
mV  
mA  
CVS  
BATT  
PDL Turn-Off Current  
- V  
PDL  
= 1V  
CSSN  
_______________________________________________________________________________________  
5
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
PDL Turn-On Resistance  
CVS Input Bias Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
150  
20  
UNITS  
kΩ  
PDL to GND  
50  
V
= 28V  
µA  
CVS  
ERROR AMPLIFIER SPECIFICATIONS  
ChargingVoltage() = 0x41A0  
ChargingVoltage() = 0x3130  
ChargingVoltage() = 0x20D0  
ChargingVoltage() = 0x1060  
16.532  
12.391  
8.266  
17.068  
12.793  
8.534  
BATT Full-Charge Voltage  
V0  
I0  
V
4.124  
4.260  
ChargingCurrent() =  
130.4  
0.76  
170.4  
12.04  
0x0BC0  
BATT Charge Current-Sense  
Voltage  
V
V
- V  
mV  
mV  
CSIP  
CSIN  
ChargingCurrent() =  
0x0080  
V
V
= 4.096V  
= 2.048V  
174.3  
82.2  
235.3  
120.2  
CLS  
CLS  
DCIN Source Current-Limit  
Sense Voltage  
- V  
CSSP  
CSSN  
BATT Undervoltage Charge  
Current-Sense Voltage  
V
V
= 1V, V  
- V  
CSIN  
1
250  
0
10  
350  
20  
mV  
mV  
V
BATT  
CSIP  
CSIP  
Inductor Peak Current Limit  
- V  
CSIN  
BATT/CSIP/CSIN Input Voltage  
Range  
Total of I  
, I  
, and I  
, and I  
;
CSIN  
BATT CSIP  
Total BATT Input Bias Current  
Total BATT Quiescent Current  
Total BATT Standby Current  
-700  
-100  
-5  
+700  
+100  
+5  
µA  
µA  
µA  
V
= 0 to 20V  
BATT  
Total of I  
, I  
;
CSIN  
BATT CSIP  
V
= 0 to 20V, charge inhibited  
BATT  
Total of I  
, I  
, and I  
;
CSIN  
BATT CSIP  
V
V
V
V
= 0 to 20V, V  
= 0  
BATT  
DCIN  
CSSP/Input Bias Current  
CSSN Input Bias Current  
CSSP/CSSN Quiescent Current  
= V  
= V  
CSSN  
= 0 to 28V  
= 0 to 28V  
-100  
-100  
-1  
+1000  
+100  
+1  
µA  
mA  
µA  
CSSP  
CSSP  
CSSP  
DCIN  
= C  
= V  
DCIN  
CSSN  
CSSN  
= V  
= 28V, V  
= 0  
DCIN  
Battery Voltage-Error Amp DC  
Gain  
From BATT to CCV  
= V /2 to V  
REF  
200  
-1  
V/V  
µA  
CLS Input Bias Current  
V
+1  
CLS  
REF  
Battery Voltage-Error Amp  
Transconductance  
From BATT to CCV, ChargingVoltage() =  
0x41A0, V = 16.8V  
0.111  
0.444  
µA/mV  
BATT  
Battery Current-Error Amp  
Transconductance  
From CSIP/CSIN to CCI, ChargingCurrent()  
= 0x0BC0, V - V = 150.4mV  
0.5  
2.0  
µA/mV  
CSIP  
CSIN  
Input Current-Error Amp  
Transconductance  
From CSSP/CSSN to CCS, V  
= 2.048V,  
CLS  
0.5  
2.0  
µA/mV  
mV  
V
- V  
CSSN  
= 102.4mV  
CSSP  
CCV/CCI/CCS Clamp Voltage  
V
= V  
= V = 0.25V to 2V (Note 3)  
CCS  
150  
600  
CCV  
CCI  
6
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC-TO-DC CONVERTER SPECIFICATIONS  
Minimum Off-Time  
t
1.0  
5
1.5  
15  
µs  
ms  
%
OFF  
Maximum On-Time  
t
ON  
Maximum Duty Cycle  
LX Input Bias Current  
LX Input Quiescent Current  
BST Supply Current  
DLOV Supply Current  
DHI Output Resistance  
DLO Output Resistance  
99  
V
= 28V, V  
= V = 20V  
500  
1
µA  
µA  
µA  
µA  
DCIN  
DCIN  
BATT  
LX  
V
= 0, V  
= V = 20V  
BATT LX  
DHI high  
= V  
15  
10  
14  
14  
V
, DLO low  
LDO  
DLOV  
DHI high or low, V  
- V = 4.5V  
LX  
BST  
DLO high or low, V  
= 4.5V  
DLOV  
THERMISTOR COMPARATOR SPECIFICATIONS  
V
V
= 4% of V  
= 2.8V to 5.65V  
to 96% of V  
,
DD  
THM  
DD  
THM Input Bias Current  
-1  
+1  
µA  
DD  
Thermistor Overrange Threshold  
Thermistor Cold Threshold  
Thermistor Hot Threshold  
V
V
V
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
= 2.8V to 5.65V, V  
falling  
falling  
falling  
89.5  
74  
92.5  
77  
% of V  
DD  
DD  
DD  
DD  
THM  
THM  
THM  
% of V  
DD  
22  
25  
% of V  
DD  
Thermistor Underrange  
Threshold  
V
= 2.8V to 5.65V, V  
falling  
6
9
% of V  
DD  
DD  
THM  
SMB INTERFACE LEVEL SPECIFICATIONS (V  
SDA/SCL Input Low Voltage  
= 2.8V to 5.65V)  
DD  
0.6  
+1  
V
SDA/SCL Input High Voltage  
1.4  
-1  
6
V
SDA/SCL Input Bias Current  
µA  
mA  
µA  
mV  
SDA Output Low Sink Current  
V
V
= 0.4V  
SDA  
INT Output High Leakage  
= 5.65V  
1
I NT  
INT Output Low Voltage  
I
= 1mA  
200  
I NT  
SMB INTERFACE TIMING SPECIFICATIONS (V  
= 2.8V to 5.65V, Figures 4 and 5)  
DD  
SCL High Period  
SCL Low Period  
t
4
µs  
µs  
HIGH  
t
4.7  
LOW  
Start Condition Setup Time  
from SCL  
t
4.7  
4
µs  
µs  
SU:STA  
Start Condition Hold Time  
from SCL  
t
t
HD:STA  
SDA Setup Time from SCL  
SDA Hold Time from SCL  
250  
0
ns  
ns  
SU:DAT  
HD:DAT  
t
_______________________________________________________________________________________  
7
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +3.3V, V  
DD  
= +16.8V, V = +18V, T = -40°C to +85°C, unless otherwise noted. Guaranteed by design.)  
DCIN A  
BATT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SDA Output Data Valid from SCL  
t
1
µs  
DV  
Maximum Charge Period Without  
a ChargingVoltage() or  
t
140  
210  
s
WDT  
Charging Current() Loaded  
Note 1: Guaranteed by meeting the SMB timing specs.  
Note 2: The charger reverts to a trickle-charge mode of I  
= 128mA below this threshold.  
CHARGE  
Note 3: Voltage difference between CCV and CCI or CCS when one of these three pins is held low and the others try to pull high.  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LOAD-TRANSIENT RESPONSE  
(STEP-IN LOAD CURRENT)  
BATTERY REMOVAL AND REINSERTION  
LDO LINE REGULATION  
TRANSIENT RESPONSE  
MAX1645B toc02  
MAX1645B toc01  
5.60  
5.55  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
I
= 0  
LOAD  
15.5V  
15.0V  
16V  
15V  
1A  
CCS  
CCS  
CCI  
2.75V  
2.25V  
1.75V  
CCV  
CCV  
0
CCI  
1.25V  
CCI  
CCI  
0.75V  
0.25V  
CCI  
CCI  
CCV  
CCS  
0.75V  
BATTERY REMOVED  
BATTERY INSERTED  
400µs/div  
5
10  
15  
20  
(V)  
25  
30  
2ms/div  
ChargingCurrent() = 3.0A  
0 TO 2A LOAD STEP, V  
SOURCE  
V
DCIN  
ChargingVoltage() = 16000mV  
ChargingCurrent() = 1000mA  
= 20V  
BATT  
I
LIMIT = 2.5A  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
REFERENCE VOLTAGE LOAD REGULATION  
LDO LOAD REGULATION  
4.100  
4.098  
4.096  
4.094  
4.092  
4.090  
5.60  
5.55  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
4.110  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10 12 14 16 18 20  
-40 -20  
0
20  
40  
60  
80 100  
LOAD CURRENT (µA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
EFFICIENCY vs. BATTERY CURRENT  
(VOLTAGE-CONTROL LOOP)  
EFFICIENCY vs. BATTERY CURRENT  
(CURRENT-CONTROL LOOP)  
OUTPUT VI CHARACTERISTICS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0.001  
0.01  
0.1  
A
B
A
B
1.0  
ChargingVoltage() = 16800mV  
ChargingCurrent() = 3008mA  
A: V  
B: V  
= 20V, ChargingVoltage() = 16.8V  
= 16V, ChargingVoltage() = 8.4V  
A: V  
B: V  
= 20V, V  
= 16V, V  
= 16.8V  
= 8.4V  
DCIN  
DCIN  
DCIN  
DCIN  
BATT  
BATT  
10  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0
500 1000 1500 2000 2500 3000  
BATTERY CURRENT (mA)  
0
500 1000 1500 2000 2500 3000  
ChargingCurrent() (CODE)  
BATT VOLTAGE ERROR  
vs. ChargingVoltage() CODE  
0.3  
CURRENT-SETTING ERROR  
vs. ChargingCurrent() CODE  
5
4
0.2  
0.1  
0
3
2
1
0
-1  
-2  
-3  
-4  
-0.1  
-0.2  
I
= 0  
V
= 12.6V  
BATT  
BATT  
MEASURED AT AVAILABLE CODES  
4000 8000 12,000 16,000 20,000  
ChargingVoltage() (CODE)  
MEASURED AT AVAILABLE CODES  
-0.3  
-5  
0
0
500 1000 1500 2000 2500 3000  
ChargingCurrent() (CODE)  
SOURCE/BATT CURRENT vs. LOAD CURRENT  
WITH SOURCE CURRENT LIMIT  
SOURCE/BATT CURRENT vs. V  
WITH SOURCE CURRENT LIMIT  
BATT  
3.5  
3.5  
3.0  
2.5  
2.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
I
IN  
IN  
1.5  
I
V
R
V
= 2V  
= 2A  
= 2V  
CLS  
CSS  
LOAD  
= 40mΩ  
= 16.8V  
V
R
CLS  
CSS  
1.0  
0.5  
0
I
I
BATT  
BATT  
= 40mΩ  
BATT  
SOURCE CURRENT LIMIT = 2.5A  
ChargingCurrent() = 3008mA  
ChargingVoltage() = 18432mV  
ChargingVoltage() = 18432mV  
ChargingCurrent() = 3008mA  
SOURCE CURRENT LIMIT = 2.5A  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
2
4
6
8
10 12 14 16 18 20  
(V)  
LOAD CURRENT (A)  
V
BATT  
_______________________________________________________________________________________  
9
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Pin Description  
PIN  
1
NAME  
DCIN  
LDO  
CLS  
FUNCTION  
DC Supply Voltage Input  
2
5.4V Linear-Regulator Voltage Output. Bypass with a 1µF capacitor to GND.  
Source Current-Limit Input  
3
4
REF  
4.096V Reference Voltage Output  
5
CCS  
CCI  
Charging Source Compensation Capacitor Connection. Connect a 0.01µF capacitor from CCS to GND.  
Battery Current-Loop Compensation Capacitor Connection. Connect a 0.01µF capacitor from CCI to GND.  
6
Battery Voltage-Loop Compensation Capacitor Connection. Connect a 10kresistor in series with a 0.01µF  
capacitor to GND.  
7
CCV  
8
GND  
BATT  
DAC  
Ground  
9
Battery Voltage Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DAC Voltage Output  
V
Logic Circuitry Supply Voltage Input (2.8V to 5.65V)  
Thermistor Voltage Input  
DD  
THM  
SCL  
SDA  
INT  
SMB Clock Input  
SMB Data Input/Output. Open-drain output. Needs external pullup.  
Interrupt Output. Open-drain output. Needs external pullup.  
PMOS Load Switch Driver Output  
Battery Current-Sense Negative Input  
Battery Current-Sense Positive Input  
PDL  
CSIN  
CSIP  
PGND Power Ground  
DLO  
DLOV  
LX  
Low-Side NMOS Driver Output  
Low-Side NMOS Driver Supply Voltage. Bypass with 0.1µF capacitor to GND.  
Inductor Voltage Sense Input  
DHI  
High-Side NMOS Driver Output  
BST  
High-Side Driver Bootstrap Voltage Input. Bypass with 0.1µF capacitor to LX.  
Charging Source Current-Sense Negative Input  
Charging Source Current-Sense Positive Input  
Charging Source PMOS Switch Driver Output  
Charging Source Voltage Input  
CSSN  
CSSP  
PDS  
CVS  
10 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Input Current Limiting  
Detailed Description  
The MAX1645B limits the current drawn by the charger  
The MAX1645B consists of current-sense amplifiers, an  
when the load current becomes high. The device limits  
SMBus interface, transconductance amplifiers, reference  
the charging current so the AC adapter voltage is not  
circuitry, and a DC-DC converter (Figure 2). The DC-DC  
loaded down. An internal amplifier, CSS, compares the  
converter generates the control signals for the external  
voltage between CSSP and CSSN to the voltage at  
MOSFETs to maintain the voltage and the current set by  
CLS/20. V  
and GND.  
is set by a resistor-divider between REF  
CLS  
the SMBus interface. The MAX1645B features a voltage-  
regulation loop and two current-regulation loops. The  
loops operate independently of each other. The voltage-  
regulation loop monitors BATT to ensure that its voltage  
never exceeds the voltage set point (V0). The battery cur-  
rent-regulation loop monitors current delivered to BATT to  
ensure that it never exceeds the current-limit set point  
(I0). The battery current-regulation loop is in control as  
long as BATT voltage is below V0. When BATT voltage  
reaches V0, the current loop no longer regulates. A third  
loop reduces the battery-charging current when the sum  
of the system (the main load) and the battery charger  
input current exceeds the charging source current limit.  
The input source current is the sum of the device cur-  
rent, the charge input current, and the load current. The  
device current is minimal (6mA max) in comparison to  
the charge and load currents. The charger input cur-  
rent is generated by the DC-DC converter; therefore, the  
actual source current required is determined as follows:  
I
= I  
+ [(I V  
CHARGE BATT)  
/ (V η)]  
IN  
SOURCE  
LOAD  
where η is the efficiency of the DC-DC converter (typi-  
cally 85% to 95%).  
V
CLS  
determines the threshold voltage of the CSS com-  
parator. R3 and R4 (Figure 1) set the voltage at CLS.  
Sense resistor R1 sets the maximum allowable source  
current. Calculate the maximum current as follows:  
Setting Output Voltage  
The MAX1645B voltage DAC has a 16mV LSB and an  
18.432V full scale. The SMBus specification allows for a  
16-bit ChargingVoltage() command that translates to a  
1mV LSB and a 65.535V full-scale voltage; therefore,  
the ChargingVoltage() value corresponds to the output  
voltage in millivolts. The MAX1645B ignores the first 4  
LSBs and uses the next 11 LSBs to control the voltage  
DAC. All codes greater than or equal to 0x4800  
(18432mV) result in a voltage overrange, limiting the  
charger voltage to 18.432V. All codes below 0x0400  
(1024mV) terminate charging.  
I
= V  
/ (20 R )  
MAX  
CLS  
1
(Limit V  
- V  
to between 102.4mV and  
CSSN  
CSSP  
204.8mV.)  
The configuration in Figure 1 provides an input current  
limit of:  
I
= (2.048V / 20) / 0.04= 2.56A  
MAX  
LDO Regulator  
Setting the Charge Current  
The MAX1645B charge-current DAC has a 3.2mV to  
150.4mV range. The SMBus specification allows for a  
16-bit ChargingCurrent() command that translates to a  
0.05mV LSB and a 3.376V full-scale current-sense volt-  
age. The MAX1645B drops the first 6 LSBs and uses  
the remaining 6 MSBs to control the charge-current  
DAC. All codes above 0x0BC0 result in an overrange  
condition, limiting the charge current-sense voltage to  
150.4mV. All codes below 0x0080 turn off the charging  
An integrated LDO regulator provides a +5.4V supply  
derived from DCIN, which can deliver up to 15mA of  
current. The LDO sets the gate-drive level of the NMOS  
switches in the DC-DC converter. The drivers are actu-  
ally powered by DLOV and BST, which must be con-  
nected to LDO through a lowpass filter and a diode as  
shown in Figure 1. Also see the MOSFET Drivers sec-  
tion. The LDO also supplies the 4.096V reference and  
most of the control circuitry. Bypass LDO with a 1µF  
capacitor.  
current. Therefore, the charging current (I  
determined by:  
) is  
CHARGE  
V
Supply  
DD  
This input provides power to the SMBus interface and  
the thermistor comparators. Typically connect V to  
I
= V  
/ R  
CHARGE  
DACI CSI  
DD  
where V  
is the current-sense voltage set by  
DACI  
LDO or, to keep the SMBus interface of the MAX1645B  
active while the supply to DCIN is removed, connect an  
ChargingCurrent(), and R  
is the battery current-  
CSI  
sense resistor (R2 in Figure 1). When using a 50mΩ  
current-sense resistor, the ChargingCurrent() value cor-  
responds directly to the charging current in milliamps  
(0x0400 = 1024mA = 52.2mV/50m).  
external supply to V  
.
DD  
______________________________________________________________________________________ 11  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
ADAPTER IN  
R13  
D4  
P1  
FDS6675  
1k  
1N4148  
D1  
1N5821  
PDS  
CVS  
R14  
DCIN  
4.7Ω  
C23  
0.1µF  
CSSP  
C5  
C2  
22µF  
C1  
22µF  
1µF  
C20, 1µF  
C19, 1µF  
R1  
0.04Ω  
MAX1645B  
REF  
CSSN  
LDO  
R15  
4.7Ω  
R3  
100kΩ  
C7  
1µF  
LOAD  
C6  
1µF  
CLS  
R12  
33Ω  
D3  
CMPSH3  
R4  
100kΩ  
BST  
GND  
DLOV  
DAC  
CCV  
C16  
0.22µF  
C8  
0.1µF  
R17  
10kΩ  
C14  
0.1µF  
R5  
10kΩ  
DHI  
LX  
N1  
FDS6680  
CCI  
C10  
1nF  
C9  
0.01µF  
R18  
10kΩ  
CCS  
DLO  
C11  
1nF  
L1  
22µH  
N2  
FDS6612A  
D2  
1N5821  
PGND  
R11  
1Ω  
CSIP  
C18  
0.1µF  
R2  
0.05Ω  
C24  
0.1µF  
R16  
1Ω  
CSIN  
PDL  
P2  
FDS6675  
C3  
22µF  
C4  
22µF  
BATT  
R7  
BATTERY  
HOST  
R6  
10kΩ  
10kΩ  
THM  
C13  
1.5nF  
V
DD  
C12  
1µF  
R8  
R10  
10kΩ  
10kΩ  
R9  
10kΩ  
SCL  
SDA  
INT  
Figure 1. Typical Application Circuit  
12 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
BST  
MAX1645B  
DHI  
LX  
CSSP  
CSSN  
CLS  
DHI  
CSS  
GMS  
DC-DC  
LVC  
DLOV  
DLO  
DLO  
CSIP  
CSIN  
CSI  
PGND  
GMI  
BATT  
CCS  
CCI  
CCV  
GMV  
CVS  
BATT  
PDL  
PDS  
PDS  
PDL  
DCIN  
LDO  
V
DD  
VL  
SCL  
SDA  
INT  
DACI  
SMB  
REF  
REF  
DACV  
GND  
DAC  
TEMP  
THM  
Figure 2. Functional Diagram  
______________________________________________________________________________________ 13  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
The MAX1645B uses the SMBus read-word and write-  
word protocols to communicate with the battery being  
charged, as well as with any host system that monitors  
the battery-to-charger communications as a Level 2  
SMBus charger. The MAX1645B is an SMBus slave  
device and does not initiate communication on the bus.  
It receives commands and responds to queries for sta-  
tus information. Figure 3 shows examples of the SMBus  
write-word and read-word protocols, and Figures 4 and  
5 show the SMBus serial-interface timing.  
Operating Conditions  
The MAX1645B changes its operation depending on  
the voltages at DCIN, BATT, V  
and THM. Several  
DD,  
important operating states follow:  
AC Present. When DCIN is >7.5V, the battery is con-  
sidered to be in an AC present state. In this condi-  
tion, both the LDO and REF function properly and  
battery charging is allowed. When AC is present, the  
AC_PRESENT bit (bit 15) in the ChargerStatus() reg-  
ister is set to 1.  
Each communication with this part begins with the  
MASTER issuing a START condition that is defined as a  
falling edge on SDA with SCL high and ends with a  
STOP condition defined as a rising edge on SDA with  
SCL high. Between the START and STOP conditions,  
the device address, the command byte, and the data  
bytes are sent. The MAX1645Bs device address is  
0x12 and supports the charger commands as  
described in Tables 16.  
Power Fail. When DCIN is <BATT + 0.3V, the part is  
in the power-fail state, since the charger does not  
have enough input voltage to charge the battery. In  
power fail, the PDS input PMOS switch is turned off  
and the POWER_FAIL bit (bit 13) in the  
ChargerStatus() register is set to 1.  
Battery Present. When THM is <91% of V , the  
DD  
battery is considered to be present. The MAX1645B  
uses the THM pin to detect when a battery is con-  
nected to the charger. When the battery is present,  
the BATTERY_PRESENT bit (bit 14) in the  
ChargerStatus() register is set to 1 and charging can  
proceed. When the battery is not present, all of the  
registers are reset. With no battery present, the  
charger performs a floatcharge to minimize con-  
tact arcing on battery connection. The floatcharge  
still tries to regulate the BATT pin voltage at 18.32V  
with 128mA of current compliance.  
Battery Charger Commands  
ChargerSpecInfo()  
The ChargerSpecInfo() command uses the read-word  
protocol (Figure 3b). The command code for  
ChargerSpecInfo() is 0x11 (0b00010001). Table 1 lists  
the functions of the data bits (D0D15). Bit 0 refers to the  
D0 bit in the read-word protocol. The MAX1645B com-  
plies with Level 2 Smart Battery Charger Specification  
Revision 1.0; therefore, the ChargerSpecInfo() command  
returns 0x09.  
Battery Undervoltage. When BATT <2.5V, the bat-  
tery is in an undervoltage state. This causes the  
charger to reduce its current compliance to 128mA.  
The content of the ChargingCurrent() register is unaf-  
fected and, when the BATT voltage exceeds 2.7V,  
normal charging resumes. ChargingVoltage() is unaf-  
fected and can be set as low as 1.024V.  
ChargerMode()  
The ChargerMode() command uses the write-word  
protocol (Figure 3a). The command code for  
ChargerMode() is 0x12 (0b00010010). Table 2 lists the  
functions of the data bits (D0D15). Bit 0 refers to the  
D0 bit in the write-word protocol.  
V  
Undervoltage. When V  
<2.5V, the V  
sup-  
DD  
DD  
DD  
To charge a battery that has a thermistor impedance in  
the HOT range (i.e., THERMISTOR_HOT = 1 and  
THERMISTOR_UR = 0), the host must use the  
ChargerMode() command to clear HOT_STOP after the  
battery is inserted. The HOT_STOP bit returns to its  
default power-up condition (1) whenever the battery is  
removed.  
ply is in an undervoltage state, and the SMBus inter-  
face does not respond to commands. Coming out of  
the undervoltage condition, the part is in its Power-  
On Reset state. No charging occurs when V  
under voltage.  
is  
DD  
SMBus Interface  
The MAX1645B receives control inputs from the SMBus  
interface. The serial interface complies with the SMBus  
specification (refer to the System Management Bus  
Specification from Intel Corporation). Charger function-  
ality complies with the Intel/Duracell Smart Charger  
Specification for a Level 2 charger.  
ChargerStatus()  
The ChargerStatus() command uses the read-word  
protocol (Figure 3b). The command code for  
ChargerStatus() is 0x13 (0b00010011). Table 3  
describes the functions of the data bits (D0D15). Bit 0  
refers to the D0 bit in the read-word protocol.  
14 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
The ChargerStatus() command returns information  
about thermistor impedance and the MAX1645Bs inter-  
nal state. The latched bits, THERMISTOR_HOT and  
ALARM_INHIBITED, are cleared whenever BATTERY_  
PRESENT = 0 or ChargerMode() is written with  
POR_RESET = 1. The ALARM_INHIBITED status bit can  
also be cleared by writing a new charging current OR  
charging voltage.  
a) Write-Word Format  
LOW  
DATA  
BYTE  
HIGH  
DATA  
BYTE  
SLAVE  
ADDRESS  
COMMAND  
BYTE  
S
W
ACK  
ACK  
ACK  
ACK  
P
7 bits  
1b  
0
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
ChargerMode() = 0x12  
ChargingCurrent() = 0x14  
ChargerVoltage() = 0x15  
AlarmWarning() = 0x16  
Preset to  
0b0001001  
D7  
D0  
D15  
D8  
b) Read-Word Format  
SLAVE  
LOW  
DATA  
BYTE  
HIGH  
DATA  
BYTE  
COMMAND  
ACK  
SLAVE  
ADDRESS  
S
W
ACK  
S
R
ACK  
ACK  
NACK P  
ADDRESS  
BYTE  
7 bits  
1b 1b  
8 bits  
1b  
0
7 bits  
1b 1b  
8 bits  
1b  
0
8 bits  
1b  
1
MSB LSB  
0
0
MSB LSB  
MSB LSB  
1
0
MSB LSB  
MSB LSB  
Preset to  
0b0001001  
Preset to  
0b0001001  
D7  
D0  
D15  
D8  
ChargerSpecInfo() =  
0x11  
ChargerStatus() =  
0x13  
Legend:  
S = Start Condition or Repeated Start Condition  
ACK = Acknowledge (logic low)  
W = Write Bit (logic low)  
P = Stop Condition  
NACK = NOT Acknowledge (logic high)  
R = Read Bit (logic high)  
MASTER TO SLAVE  
SLAVE TO MASTER  
Figure 3. SMBus Write-Word and Read-Word Protocols  
______________________________________________________________________________________ 15  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
MOST SIGNIFICANT  
ADDRESS BIT (A6)  
CLOCKED INTO SLAVE  
A5 CLOCKED  
INTO SLAVE  
A4 CLOCKED  
INTO SLAVE  
A3 CLOCKED  
INTO SLAVE  
START  
CONDITION  
SCL  
SDA  
t
t
t
HIGH  
LOW  
HD:STA  
t
t
t
HD:DAT  
t
t
SU:DAT  
SU:STA  
HD:DAT  
SU:DAT  
Figure 4. SMBus Serial Interface Timing—Address  
MOST SIGNIFICANT BIT  
OF DATA CLOCKED  
INTO MASTER  
ACKNOWLEDGE  
BIT CLOCKED  
INTO MASTER  
R/W BIT  
CLOCKED  
INTO SLAVE  
SCL  
SDA  
SLAVE PULLING  
SDA LOW  
t
t
DV  
DV  
Figure 5. SMBus Serial Interface Timing—Acknowledgment  
16 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 1. ChargerSpecInfo()*  
BIT  
0
NAME  
CHARGER_SPEC  
CHARGER_SPEC  
CHARGER_SPEC  
CHARGER_SPEC  
SELECTOR_SUPPORT  
Reserved  
DESCRIPTION  
Returns a 1 for version 1.0  
Returns a zero for version 1.0  
Returns a zero for version 1.0  
Returns a 1 for version 1.0  
1
2
3
4
Returns a zero, indicating no smart battery selector functionality  
5
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
Returns a zero  
6
Reserved  
7
Reserved  
8
Reserved  
9
Reserved  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
*Command: 0x11  
______________________________________________________________________________________ 17  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 2. ChargerMode()*  
BIT  
0
NAME  
FUNCTION  
0* = Allow normal operation; clear the CHG_INHIBITED flip-flop.  
1 = Turn off the charger; set the CHG_INHIBITED flip-flop.  
The CHG_INHIBITED flip-flop is not affected by any other commands.  
INHIBIT_CHARGE  
ENABLE_POLLING  
POR_RESET  
1
Not implemented.  
0 = No change.  
2
1 = Change the ChargingVoltage() to 0xFFFF and the ChargingCurrent()  
to 0x00C0; clear the THERMISTOR_HOT and ALARM_INHIBITED flip-flops.  
3
4
RESET_TO_ZERO  
Not implemented.  
0* = Interrupt on either edge of the AC_PRESENT status bit.  
1 = Do not interrupt because of an AC_PRESENT bit change.  
AC_PRESENT_MASK  
0* = Interrupt on either edge of the BATTERY_PRESENT status bit.  
1 = Do not interrupt because of a BATTERY_PRESENT bit change.  
5
6
BATTERY_PRESENT_ MASK  
POWER_FAIL_MASK  
0* = Interrupt on either edge of the POWER_FAIL status bit.  
1 = Do not interrupt because of a POWER_FAIL bit change.  
7
8
9
Not implemented.  
Not implemented.  
Not implemented.  
0 = The THERMISTOR_HOT status bit does not turn off the charger.  
1* = The THERMISTOR_HOT status bit does turn off the charger.  
THERMISTOR_HOT is reset by either POR_RESET or  
BATTERY_PRESENT = 0 status bit.  
10  
HOT_STOP  
11  
12  
13  
14  
15  
Not implemented.  
Not implemented.  
Not implemented.  
Not implemented.  
Not implemented.  
*Command: 0x12  
*State at chip initial power-on (i.e., V  
from 0 to +3.3V).  
DD  
18 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 3. ChargerStatus()*  
BIT  
NAME  
FUNCTION  
0** = Ready to charge smart battery.  
0
CHARGE_INHIBITED  
1 = Charger is inhibited, I(chg) = 0mA.  
This status bit returns the value of the CHG_INHIBITED flip-flop.  
1
2
3
4
5
MASTER_MODE  
VOLTAGE_NOT_REG  
CURRENT_NOT_REG  
LEVEL_2  
Always returns zero.  
Function disabled. Always returns zero.  
Function disabled. Always returns zero.  
Always returns a 1.  
LEVEL_3  
Always returns a zero.  
0** = The ChargingCurrent() value is valid for the MAX1645B.  
1 = The ChargingCurrent() value exceeds the MAX1645B output range,  
i.e., programmed ChargingCurrent() exceeds 3008mA.  
6
7
CURRENT_OR  
VOLTAGE_OR  
0 = The ChargingVoltage() value is valid for the MAX1645B.  
1** = The ChargingVoltage() value exceeds the MAX1645B output range,  
i.e., programmed ChargingVoltage() exceeds 1843mV.  
0 = THM is <91% of the reference voltage.  
1 = THM is >91% of the reference voltage.  
8
9
THERMISTOR_OR  
0 = THM is <75.5% of the reference voltage.  
1 = THM is >75.5% of the reference voltage.  
THERMISTOR_COLD  
0 = THM has not dropped to <23.5% of the reference voltage.  
1 = THM has dropped to <23.5% of the reference voltage.  
THERMISTOR_HOT flip-flop cleared by BATTERY_PRESENT = 0 or writing a 1 into the  
POR_RESET bit in the ChargerMode() command.  
10  
11  
THERMISTOR_HOT  
THERMISTOR_UR  
0 = THM is >7.5% of the reference voltage.  
1 = THM is <7.5% of the reference voltage.  
Returns the state of the ALARM_INHIBITED flip-flop. This flip-flop is set by either a  
watchdog timeout or by writing an AlarmWarning() command with bits 11, 12, 13, 14,  
or 15 set. This flip-flop is cleared by BATTERY_PRESENT = 0, writing a 1 into the  
POR_RESET bit in the ChargerMode() command, or by receiving successive  
ChargingVoltage() and ChargingCurrent() commands. POR: 0.  
12  
ALARM_INHIBITED  
0 = The charging source voltage CVS is above the BATT voltage.  
1 = The charging source voltage CVS is below the BATT voltage.  
13  
14  
POWER_FAIL  
BATTERY_PRESENT  
AC_PRESENT  
0 = No battery is present (based on THM input).  
1 = Battery is present (based on THM input).  
0 = DCIN is below the 7.5V undervoltage threshold.  
1 = DCIN is above the 7.5V undervoltage threshold.  
15  
*Command: 0x13  
**State at chip initial power-on.  
______________________________________________________________________________________ 19  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 4. ChargingCurrent()*  
BIT  
0
NAME  
FUNCTION  
Not used. Normally a 0.05mV (1mA x 50m) weight.  
Not used. Normally a 0.1mV (2mA x 50m) weight.  
Not used. Normally a 0.2mV (4mA x 50m) weight.  
Not used. Normally a 0.4mV (8mA x 50m) weight.  
Not used. Normally a 0.8mV (16mA x 50m) weight.  
Not used. Normally a 1.6mV (32mA x 50m) weight.  
1
2
3
4
5
0 = Adds 0mV of charge current-sense voltage.  
1 = Adds 3.2mV (64mA x 50m) charge current-sense voltage.  
6.4mV (min) (128mA x 50mA) sense voltage.  
6
Charge Current, DACI 0  
0 = Adds 0mV of charge current-sense voltage.  
1 = Adds 6.4mV (128mA x 50m) charge current-sense voltage.  
7
8
Charge Current, DACI 1  
Charge Current, DACI 2  
Charge Current, DACI 3  
Charge Current, DACI 4  
0 = Adds 0mV of charge current-sense voltage.  
1 = Adds 12.8mV (256mA x 50m) charge current-sense voltage.  
0 = Adds 0mV of charge current-sense voltage.  
1 = Adds 25.6mV (512mA x 50m) charge current-sense voltage.  
9
0 = Adds 0mV of charge current-sense voltage.  
1 = Adds 51.2mV (1024mA x 50m) charge current-sense voltage.  
10  
0 = Adds 0mV of charge current-sense voltage.  
11  
Charge Current, DACI 5  
1 = Adds 102.4mV (2048mA x 50m) charge current-sense voltage.  
150.4mV (max) (3008mA x 50mA) sense voltage.  
0 = Adds 0mV of charge current-sense voltage.  
1 = Sets charge current-sense voltage into overrange.  
150.4mV (max) (3008mA x 50mA) sense voltage.  
1215  
*Command: 0x14  
ChargingCurrent() (POR: 0x0080)  
150.4  
102.4  
The ChargingCurrent() command uses the write-word  
protocol (Figure 3a). The command code for  
ChargingCurrent() is 0x14 (0b00010100). The 16-bit  
binary number formed by D15D0 represents the cur-  
rent-limit set point (I0) in milliamps. However, since the  
MAX1645B has 64mA resolution in setting I0, the D0D5  
bits are ignored as shown in Table 4. Figure 6 shows the  
mapping between I0 (the current-regulation-loop set  
point) and the ChargingCurrent() code. All codes above  
0b00 1011 1100 0000 (3008mA) result in a current over-  
range, limiting the charger current to 3.008A. All codes  
below 0b0000 0000 1000 0000 (128mA) turn the charg-  
ing current off. A 50msense resistor (R2 in Figure 1) is  
required to achieve the correct CODE/current scaling.  
51.2  
6.4  
The power-on reset value for the ChargingCurrent() reg-  
ister is 0x0080; thus, the first time a MAX1645B is pow-  
ered on, the BATT current regulates to 128mA. Any time  
0x0400  
0XFFFF  
0x0080  
0x0800  
0x0BC0  
Figure 6. Average Voltage Between CSIP and CSIN vs.  
ChargingCurrent() Code  
20 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 5. ChargingVoltage()*  
PIN  
0
BIT NAME  
FUNCTION  
Not used. Normally a 1mV weight.  
Not used. Normally a 2mV weight.  
Not used. Normally a 4mV weight.  
Not used. Normally an 8mV weight.  
1
2
3
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 16mV of charger-voltage compliance, 1.024V (min).  
4
5
Charge Voltage, DACV 0  
Charge Voltage, DACV 1  
Charge Voltage, DACV 2  
Charge Voltage, DACV 3  
Charge Voltage, DACV 4  
Charge Voltage, DACV 5  
Charge Voltage, DACV 6  
Charge Voltage, DACV 7  
Charge Voltage, DACV 8  
Charge Voltage, DACV 9  
Charge Voltage, DACV 10  
Charge Voltage, Overrange  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 32mV of charger-voltage compliance, 1.024V (min).  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 64mV of charger-voltage compliance, 1.024V (min).  
6
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 128mV of charger-voltage compliance, 1.024V (min).  
7
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 256mV of charger-voltage compliance, 1.024V (min).  
8
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 512mV of charger-voltage compliance, 1.024V (min).  
9
0 = Adds 0mA of charger-voltage compliance.  
1 = Adds 1024mV of charger-voltage compliance.  
10  
11  
12  
13  
14  
15  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 2048mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 4096mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 8192mV of charger-voltage compliance.  
0 = Adds 0mV of charger-voltage compliance.  
1 = Adds 16384mV of charger-voltage compliance, 18432mV (max).  
0 = Adds 0mV of charger-voltage compliance.  
1 = Sets charger compliance into overrange, 18432mV.  
*Command: 0x15  
the battery is removed, the ChargingCurrent() register  
returns to its power-on reset state.  
MAX1645B has 16mV resolution in setting V0, the D0,  
D1, D2, and D3 bits are ignored as shown in Table 5.  
The ChargingVoltage() command is used to set the bat-  
tery charging voltage compliance from 1.024V to  
18.432V. All codes greater than or equal to 0b0100  
1000 0000 0000 (18432mV) result in a voltage over-  
range, limiting the charger voltage to 18.432V. All codes  
below 0b0000 0100 0000 0000 (1024mV) terminate  
charge. Figure 7 shows the mapping between V0  
ChargingVoltage() (POR: 0x4800)  
The ChargingVoltage() command uses the write-word  
protocol (Figure 3a). The command code for  
ChargingVoltage() is 0x15 (0b00010101). The 16-bit  
binary number formed by D15D0 represents the volt-  
age set point (V0) in millivolts; however, since the  
______________________________________________________________________________________ 21  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
18.432V  
16.800V  
V
= 4.096V  
REF  
VDCIN > 20V  
12.592V  
8.400V  
4.192V  
1.024V  
0
0
0x0400  
0xFFFF  
0x106x  
0x20Dx  
0x313x  
0x41A0 0x4800  
ChargingVoltage() D15–D0 DATA  
Figure 7. ChargingVoltage() Code to Voltage Mapping  
(the voltage-regulation-loop set point) and the  
ChargingVoltage() code.  
AlarmWarning() is 0x16 (0b00010110). AlarmWarning()  
sets the ALARM_INHIBITED status bit in the MAX1645B  
if D15, D14, D13, D12, or D11 of the write-word protocol  
data equals 1. Table 6 summarizes the Alarm-Warning()  
commands function. The ALARM_INHIBITED status bit  
remains set until the battery is removed, a  
ChargerMode() command is written with the  
POR_RESET bit set, or new ChargingCurrent() AND  
ChargingVoltage() values are written. As long as  
ALARM_INHIBITED = 1, the MAX1645B switching regu-  
lators remain off.  
The power-on reset value for the ChargingVoltage() reg-  
ister is 0x4880; thus, the first time a MAX1645B is pow-  
ered on, the BATT voltage regulates to 18.432V. Any  
time the battery is removed, the ChargingVoltage() reg-  
ister returns to its power-on reset state. The voltage at  
DAC corresponds to the set compliance voltage divided  
by 4.5.  
AlarmWarning() (POR: Not Alarm)  
The AlarmWarning() command uses the write-word  
protocol (Figure 3a). The command code for  
22 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 6. AlarmWarning()*  
BIT  
0
BIT NAME  
Error Code  
FUNCTION  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
1
Error Code  
2
Error Code  
3
Error Code  
4
FULLY_DISCHARGED  
FULLY_CHARGED  
DISCHARGING  
5
6
7
INITIALIZING  
8
REMAINING_TIME_ ALARM  
REMAINING_CAPACITY_ ALARM  
Reserved  
9
10  
0 = Charge normally  
1 = Terminate charging  
11  
12  
13  
14  
15  
TERMINATE_ DISCHARGE_ALARM  
OVER_TEMP_ALARM  
0 = Charge normally  
1 = Terminate charging  
0 = Charge normally  
1 = Terminate charging  
OTHER_ALARM  
0 = Charge normally  
1 = Terminate charging  
TERMINATE_CHARGE_ ALARM  
OVER_CHARGE_ALARM  
0 = Charge normally  
1 = Terminate charging  
*Command: 0x16  
______________________________________________________________________________________ 23  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
MOSFET Drivers  
Interrupts and Alert Response Address  
The MAX1645B requests an interrupt by pulling the INT  
pin low. An interrupt is normally requested when there is  
a change in the state of the ChargerStatus() bits  
POWER_FAIL (bit 13), BATTERY_PRESENT (bit 14), or  
AC_PRESENT (bit 15). Therefore, the INT pin pulls low  
whenever the AC adapter is connected or disconnect-  
ed, the battery is inserted or removed, or the charger  
goes in or out of dropout. The interrupts from each of  
the ChargerStatus() bits can be masked by an associat-  
ed ChargerMode() bit POWER_FAIL_MASK (bit 6), BAT-  
TERY_PRESENT_MASK (bit 5), or AC_PRESENT_MASK  
(bit 4).  
The low-side driver output DLO swings from 0V to DLOV.  
DLOV is usually connected through a filter to LDO. The  
high-side driver output DHI is bootstrapped off LX and  
swings from V to V  
. When the low-side driver turns  
on, BST rises to one diode voltage below DLOV.  
LX  
BST  
Filter DLOV with an RC circuit whose cutoff frequency  
is about 50kHz. The configuration in Figure 1 intro-  
duces a cutoff frequency of around 48kHz:  
f = 1 / 2πRC = 1 / (2 π 330.1µF) = 48kHz  
Thermistor Comparators  
Four thermistor comparators evaluate the voltage at the  
THM input to determine the battery temperature. This  
input is meant to be used with the internal thermistor  
connected to ground inside the battery pack. Connect  
the output of the battery thermistor to THM. Connect a  
All interrupts are cleared by sending any command to  
the MAX1645B, or by sending a command to the  
AlertResponse() address, 0x19, using a modified  
receive-byte protocol. In this protocol, all devices that  
set an interrupt try to respond by transmitting their  
address, and the device with the highest priority, or  
most leading zeros, are recognized and cleared. The  
process repeats until all devices requesting interrupts  
are addressed and cleared. The MAX1645B responds  
to the AlertResponse() address with 0x13, which is its  
address and a trailing 1.  
resistor from THM to V . The resistor-divider sets the  
DD  
voltage at THM. When the charger is not powered up,  
the battery temperature can still be determined if V  
powered from an external voltage source.  
is  
DD  
Thermistor Bits  
Figure 9 shows the expected electrical behavior of a  
103ETB-type thermistor (nominally 10kat +25°C 5%  
or better) to be used with the MAX1645B:  
Charger Timeout  
The MAX1645B includes a timer that terminates charge  
if the charger has not received a ChargingVoltage() or  
ChargingCurrent() command in 175s. During charging,  
the timer is reset each time a ChargingVoltage() or  
ChargingCurrent() command is received; this ensures  
that the charging cycle is not terminated.  
THERMISTOR_OR bit is set when the thermistor  
value is >100k. This indicates that the thermistor is  
open or a battery is not present. The charger is set to  
POR, and the BATTERY_PRESENT bit is cleared.  
THERMISTOR_COLD bit is set when the thermistor  
value is >30k. The thermistor indicates a cold bat-  
tery. This bit does not affect the charge.  
If timeout occurs, charging terminates and both  
ChargingVoltage() and ChargingCurrent() commands  
are required to restart charging. A power-on reset also  
restarts charging at 128mA.  
THERMISTOR_HOT bit is set when the thermistor  
value is <3k. This is a latched bit and is cleared by  
removing the battery or sending a POR with the  
ChargerMode() command. The MAX1645B charger  
is stopped unless the HOT_STOP bit is cleared in the  
ChargerMode() command or the RES_UR bit is set.  
See Table 7.  
DC-to-DC Converter  
The MAX1645B employs a buck regulator with a boot-  
strapped NMOS high-side switch and a low-side NMOS  
synchronous rectifier.  
THERMISTOR_UR bit is set when the thermistor  
value is <500(i.e., THM is grounded).  
DC-to-DC Controller  
The control scheme is a constant off-time, variable-fre-  
quency, cycle-by-cycle current mode. The off-time is  
Multiple bits can be set depending on the value of the  
thermistor (e.g., a thermistor that is 450causes both  
the THERMISTOR_HOT and the THERMISTOR_UR bits  
to be set). The thermistor can be replaced by fixed-  
value resistors in battery packs that do not require the  
thermistor as a secondary fail-safe indicator. In this  
case, it is the responsibility of the battery pack to manip-  
ulate the resistance to obtain correct charger behavior.  
constant for a given BATT voltage; it varies with V  
BATT  
to keep the ripple current constant. During low-dropout  
operation, a maximum on-time of 10ms allows the con-  
troller to achieve >99% duty cycle with continuous con-  
duction. Figure 8 shows the controller functional  
diagram.  
24 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
10ms  
S
CSSP  
ADAPTER IN  
LDO  
RESET  
3.0V  
BST  
R1  
CSS  
IMAX  
CCMP  
IMIN  
MAX1645B  
CSSN  
BST  
R
Q
DHI  
LX  
R
S
Q
C
DHI  
BST  
CHG  
Q
L1  
R2  
0.25V  
0.1V  
DLO  
DLO  
1µs  
CSIP  
ZCMP  
CSI  
CSIN  
BATT  
GMS  
GMI  
LVC  
C
OUT  
BATTERY  
R
FC  
70kΩ  
GMV  
R
FI  
20kΩ  
DACV  
DACI  
CLS  
CONTROL  
ON  
CCS  
CCI  
CCV  
*
*
*OPTIONAL  
Figure 8. DC-to-DC Converter Functional Diagram  
______________________________________________________________________________________ 25  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Load and Source Switch Drivers  
1000  
The MAX1645B can drive two P-channel MOSFETs to  
eliminate voltage drops across the Schottky diodes,  
which are normally used to switch the load current from  
the battery to the main DC source:  
100  
10  
1
The source switch P1 is controlled by PDS. This P-  
channel MOSFET is turned on when CVS rises to  
300mV above BATT and turns off when CVS falls to  
100mV above BATT. The same signal that controls  
the PDS also sets the POWER_FAIL bit in the  
Charger Status() register. See Operating Conditions.  
0.1  
Load switch P2 is controlled by PDL. This P-channel  
MOSFET is turned off when the CVS rises to 100mV  
below BATT and turns on when CVS falls to 300mV  
below BATT.  
-40  
-50  
-30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
TEMPERATURE (°C)  
Figure 9. Typical Thermistor Characteristics  
Dropout Operation  
The MAX1645B has a 99.99% duty-cycle capability  
with a 10ms maximum on-time and 1µs off-time. This  
allows the charger to achieve dropout performance lim-  
ited only by resistive losses in the DC-DC converter  
components (P1, R1, N1, R2; see Figure 1). The actual  
dropout voltage is limited to 300mV between CVS and  
BATT by the power-fail comparator (see Operating  
Conditions).  
typically found in notebook computers, video cameras,  
cellular phones, or other portable electronic equipment.  
Another configuration uses two or more smart batteries  
(Figure 11). The smart battery selector is used either to  
connect batteries to the smart battery charger or the  
system, or to disconnect them, as appropriate. For  
each battery, three connections must be made: power  
(the batterys positive and negative terminals), the  
SMBus (clock and data), and the safety signal (resis-  
tance, typically temperature dependent). Additionally,  
the system host must be able to query any battery so it  
can display the state of all batteries present in the system.  
Applications Information  
Smart Battery Charging  
System/Background Information  
A smart battery charging system, at a minimum, con-  
sists of a smart battery and smart battery charger com-  
patible with the Smart Battery System Specifications  
using the SMBus.  
Figure 11 shows a two-battery system where battery 2 is  
being charged while battery 1 is powering the system.  
This configuration can be used to conditionbattery 1,  
allowing it to be fully discharged prior to recharge.  
A system can use one or more smart batteries. Figure 10  
shows a single-battery system. This configuration is  
Table 7. Thermistor Bit Settings  
THERMISTOR  
DESCRIPTION  
STATUS BIT  
CONTROLLED  
WAKE-UP CHARGE  
CHARGE  
RES_UR and RES_HOT  
RES_HOT  
Underrange  
Hot  
Allowed for timeout period  
Not allowed  
Allowed  
Not allowed  
Allowed  
(None)  
Normal  
Allowed for timeout period  
Allowed for timeout  
period  
RES_COLD  
Cold  
Allowed  
RES_OR and RES_COLD  
Overrange  
Float charge*  
Not allowed  
*See Battery Present in the Operating Conditions section for more information.  
26 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
V
CC  
SYSTEM  
POWER  
CONTROL  
SYSTEM  
POWER  
SUPPLY  
DC (UNREGULATED) / V  
+12V, -12V  
BATTERY  
AC  
AC-DC  
V
DC (UNREGULATED)  
BATTERY  
CONVERTER  
(UNREGULATED)  
SAFETY  
SIGNAL  
SMART  
BATTERY  
MAX1645B  
SYSTEM HOST  
(SMBus HOST)  
SMART BATTERY  
CHARGER  
CRITICAL EVENTS  
CHARGING VOLTAGE/CURRENT  
REQUESTS  
SMBus  
BATTERY DATA/STATUS REQUESTS  
CRITICAL EVENTS  
Figure 10. Typical Single Smart Battery System  
The smart battery is in the best position to tell the smart  
battery charger how it needs to be charged. The charg-  
ing algorithm in the battery may request a static charge  
condition or may choose to periodically adjust the  
smart battery chargers output to meet its present  
needs. A Level 2 smart battery charger is truly chem-  
istry independent and, since it is defined as an SMBus  
slave device only, the smart battery charger is relatively  
inexpensive and easy to implement.  
Smart Battery Charger Types  
Two types of smart battery chargers are defined: Level  
2 and Level 3. All smart battery chargers communicate  
with the smart battery using the SMBus; the two types  
differ in their SMBus communication mode and whether  
they modify the charging algorithm of the smart battery  
(Table 8). Level 3 smart battery chargers are supersets  
of Level 2 chargers and, as such, support all Level 2  
charger commands.  
Selecting External Components  
Table 9 lists the supplierscontacts; Table 10 lists the  
recommended components and refers to the circuit of  
Figure 1. The following sections describe how to select  
these components.  
Level 2 Smart Battery Charger  
The Level 2 or smart battery-controlled smart battery  
charger interprets the smart batterys critical warning  
messages and operates as an SMBus slave device to  
respond to the smart batterys ChargingVoltage() and  
ChargingCurrent() messages. The charger is obliged to  
adjust its output characteristics in direct response to  
the ChargingVoltage() and ChargingCurrent() mes-  
sages it receives from the battery. In Level 2 charging,  
the smart battery is completely responsible for initiating  
the communication and providing the charging algo-  
rithm to the charger.  
MOSFETs and Schottky Diodes  
Schottky diode D1 provides power to the load when the  
AC adapter is inserted. Choose a 3A Schottky diode or  
higher. This diode may not be necessary if P1 is used.  
The P-channel MOSFET P1 turns on when V  
BATT  
>
CVS  
V
. This eliminates the voltage drop and power con-  
______________________________________________________________________________________ 27  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
AC  
V
CC  
SYSTEM  
POWER  
SUPPLY  
+12V, -12V  
DC (UNREGULATED) / V  
BATTERY  
NOTE: SB 1 POWERING SYSTEM  
SB 2 CHARGING  
AC-DC  
CONVERTER  
(UNREGULATED)  
SMART BATTERY 1  
SMART BATTERY 2  
SMBus  
MAX1645B  
SYSTEM HOST  
(SMBus HOST)  
SAFETY SIGNAL  
SMART BATTERY  
SELECTOR  
SMART  
BATTERY  
CHARGER  
V
CHARGE  
CRITICAL EVENTS  
SMBus  
BATTERY DATA/STATUS REQUESTS  
Figure 11. Typical System Using Multiple Smart Batteries  
sumption of the Schottky diode. To minimize power loss,  
select a MOSFET with an R  
MOSFET must be able to deliver the maximum current  
as set by R1. D1 and P1 provide protection from  
reversed voltage at the adapter input.  
Table 8. Smart Battery Charger Type  
by SMBus Mode and Charge Algorithm  
Source  
of 50mor less. This  
DS(ON)  
CHARGE ALGORITHM SOURCE  
N-channel MOSFETs N1 and N2 are the switching  
devices for the buck controller. High-side switch N1  
should have a current rating of at least 6A and have an  
SMBus MODE  
MODIFIED FROM  
BATTERY  
BATTERY  
R
of 50mor less. The driver for N1 is powered  
Slave only  
Level 2  
Level 3  
Level 3  
Level 3  
DS(ON)  
by BST; its current should be less than 10mA. Select a  
MOSFET with a low total gate charge and determine the  
Slave/master  
Note: Level 1 smart battery chargers were defined in the ver-  
sion 0.95a specification. While they can correctly interpret  
smart battery end-of-charge messages, minimizing over-  
charge, they do not provide truly chemistry-independent  
charging. They are no longer defined by the Smart Battery  
Charger Specification and are explicitly not compliant with this  
and subsequent smart battery charger specifications.  
required drive current by I  
= Q  
f (where f is  
GATE  
GATE  
the DC-to-DC converter maximum switching frequency  
of 400kHz).  
The low-side switch N2 should also have a current rating  
of at least 3A, have an R  
of 100mor less, and a  
DS(ON)  
total gate charge less than 10nC. N2 is used to provide  
the starting charge to the BST capacitor C14. During nor-  
mal operation, the current is carried by Schottky diode  
D2. Choose a 3A or higher Schottky diode.  
28 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
D3 is a signal-level diode, such as the 1N4148. This  
diode provides the supply current to the high-side  
MOSFET driver.  
Other Components  
CCV, CCI, and CCS are the compensation points for the  
three regulation loops. Bypass CCV with a 10kresistor  
in series with a 0.01µF capacitor to GND. Bypass CCI  
and CCS with 0.01µF capacitors to GND. R7 and R13  
serve as protection resistors to THM and CVS, respec-  
tively. To achieve acceptable accuracy, R6 should be  
10kand 1% to match the internal battery thermistor.  
The P-channel MOSFET P2 delivers the current to the  
load when the AC adapter is removed. Select a  
MOSFET with an R  
of 50mor less to minimize  
DS(ON)  
power loss and voltage drop.  
Inductor Selection  
Current-Sense Input Filtering  
In normal circuit operation with typical components, the  
current-sense signals can have high-frequency tran-  
sients that exceed 0.5V due to large current changes  
and parasitic component inductance. To achieve prop-  
er battery and input current compliance, the current-  
sense input signals should be filtered to remove large  
common-mode transients. The input current-limit sens-  
ing circuitry is the most sensitive case due to large cur-  
rent steps in the input filter capacitors (C1 and C2) in  
Figure 1. Use 1µF ceramic capacitors from CSSP and  
CSSN to GND. Smaller 0.1µF ceramic capacitors can  
be used on the CSIP and CSIN inputs to GND since the  
current into the battery is continuous. Place these  
capacitors next to the single-point ground directly  
under the MAX1645B.  
Inductor L1 provides power to the battery while it is  
being charged. It must have a saturation current of at  
least 3A plus one-half of the current ripple (I ):  
L
1
I
= 3A + /2 I  
SAT  
L
The controller determines the constant off-time period,  
which is dependent on BATT voltage. This makes the  
ripple current independent of input and battery voltage  
and should be kept to less than 1A. Calculate the I  
L
with the following equation:  
I = 21Vµs / L  
L
Higher inductor values decrease the ripple current.  
Smaller inductor values require higher saturation cur-  
rent capabilities and degrade efficiency. Typically, a  
22µH inductor is ideal for all operating conditions.  
Layout and Bypassing  
Bypass DCIN with a 1µF to GND (Figure 1). D4 protects  
the device when the DC power source input is  
reversed. A signal diode for D4 is adequate as DCIN  
only powers the LDO and the internal reference.  
Bypass LDO, BST, DLOV, and other pins as shown in  
Figure 1.  
Table 9. Component Suppliers  
COMPONENT  
MANUFACTURER  
Sumida  
PART  
CDRH127 series  
D03316P series  
UP2 series  
Good PC board layout is required to achieve specified  
noise, efficiency, and stable performance. The PC  
board layout artist must be given explicit instructions,  
preferably a pencil sketch showing the placement of  
power-switching components and high-current routing.  
A ground plane is essential for optimum performance.  
In most applications, the circuit is located on a multilay-  
er board, and full use of the four or more copper layers  
is recommended. Use the top layer for high-current  
connections, the bottom layer for quiet connections  
Inductor  
Coilcraft  
Coiltronics  
Internal Rectifier  
Fairchild  
IRF7309  
MOSFET  
FDS series  
Vishay-Siliconix  
Dale  
Si4435/6  
WSL series  
Sense resistor  
Capacitor  
IRC  
LR2010-01 series  
(REF, CCV, CCI, CCS, DAC, DCIN, V , and GND),  
DD  
and the inner layers for an uninterrupted ground plane.  
TPS series,  
TAJ series  
AVX  
Use the following step-by-step guide:  
Sprague  
Motorola  
Nihon  
595D series  
1) Place the high-power connections first, with their  
grounds adjacent:  
1N58171N5822  
NSQ03A04  
Diode  
Minimize current-sense resistor trace lengths and  
ensure accurate current sensing with Kelvin con-  
nections.  
Central  
Semiconductor  
CMSH series  
______________________________________________________________________________________ 29  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Table 10. Component Selection  
DESIGNATION  
C1, C2 input capacitors  
DESCRIPTION  
22µF, 35V low-ESR tantalum capacitors  
AVX TPSE226M035R0300  
22µF, 25V low-ESR tantalum capacitors  
AVX TPSD226M025R0200  
C3, C4 output capacitors  
C5, C19, C20  
1µF, >30V ceramic capacitors  
1µF ceramic capacitors  
C6, C7, C12  
C8, C14, C16  
0.1µF ceramic capacitors  
0.01µF ceramic capacitor  
1nF ceramic capacitors  
C9 compensation capacitor  
C10, C11 compensation capacitors  
C13  
1500pF ceramic capacitor  
0.1µF, >20V ceramic capacitors  
0.1µF, >30V ceramic capacitor  
C18, C24  
C23  
40V, 2A Schottky diodes  
Central Semiconductor CMSH2-40  
D1, D2  
D3, D4  
L1  
Small-signal diodes  
Central Semiconductor CMPSH-3  
22µH, 3.6A buck inductor  
Sumida CDRH127-220  
30V, 11.5A, high-side N-channel MOSFET (8-pin SO)  
Fairchild FDS6680  
30V, 8.4A, low-side N-channel MOSFET  
N1 high-side MOSFET  
N2 low-side MOSFET  
Fairchild FDS6612A or  
30V, signal-level N-channel MOSFET  
2N7002  
30V, 11A P-channel MOSFETs load and source switches  
Fairchild FDS6675  
P1, P2  
R1  
40m1%, 0.5W battery current-sense resistor  
Dale WSL-2010/40m/ 1%  
50m1%, 0.5W source current-sense resistor  
Dale WSL-2010/50m/ 1%  
R2  
R3, R4  
R3 + R4 >100kinput current-limit setting resistors  
10k5% resistors  
R5, R7R10, R17, R18  
R6  
10k1% temperature sensor network resistor  
15% resistors  
R11, R16  
R12  
335% resistor  
R13  
1k5% resistor  
R14, R15  
4.75% resistors  
Note: See Figure 1 for circuit configuration.  
30 ______________________________________________________________________________________  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Minimize ground trace lengths in the high-current  
2) Place the IC and signal components. Keep the main  
switching nodes (LX nodes) away from sensitive ana-  
log components (current-sense traces and REF  
capacitor). Important: The IC must be no further  
than 10mm from the current-sense resistors.  
paths.  
Minimize other trace lengths in the high-current  
paths:  
Use >5mm-wide traces.  
Keep the gate drive traces (DHI, DLO, and BST)  
shorter than 20mm and route them away from the  
current-sense lines and REF. Place ceramic bypass  
capacitors close to the IC. The bulk capacitors can  
be placed further away. Place the current-sense  
input filter capacitors under the part, connected  
directly to the GND pin.  
Connect C1 and C2 to high-side MOSFET  
(10mm (max) length).  
Connect rectifier diode cathode to low-side  
MOSFET (5mm (max) length).  
LX node (MOSFETs, rectifier cathode, inductor:  
15mm (max) length). Ideally, surface-mount  
power components are flush against one another  
with their ground terminals almost touching.  
These high-current grounds are then connected  
to each other with a wide, filled zone of top-  
layer copper so they do not go through vias.  
The resulting top-layer subground plane is con-  
nected to the normal inner-layer ground plane  
at the output ground terminals, which ensures  
that the ICs analog ground is sensing at the  
supplys output terminals without interference  
from IR drops and ground noise. Other high-  
current paths should also be minimized, but  
focusing primarily on short ground and current-  
sense connections eliminates about 90% of all  
PC board layout problems.  
3) Use a single-point star ground placed directly below  
the part. Connect the input ground trace, power  
ground (subground plane), and normal ground to  
this node.  
Chip Information  
TRANSISTOR COUNT: 6996  
______________________________________________________________________________________ 31  
Advanced Chemistry-Independent, Level 2  
Battery Charger with Input Current Limiting  
Typical Operating Circuit  
ADAPTER IN  
PDS  
CVS  
DCIN  
CSSP  
MAX1645B  
REF  
CLS  
GND  
CSSN  
LDO  
LOAD  
BST  
DLOV  
DAC  
CCV  
DHI  
LX  
CCI  
CCS  
DLO  
PGND  
CSIP  
CSIN  
PDL  
BATT  
BATTERY  
HOST  
THM  
V
DD  
SCL  
SDA  
INT  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1645BEEI

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
MAXIM

MAX1645BEEI+

暂无描述
MAXIM

MAX1645BEEI+T

暂无描述
MAXIM

MAX1645EEI

Advanced Chemistry-Independent, Level 2 Battery Charger with Input Current Limiting
MAXIM

MAX1645EVKIT

Evaluation Kit for the MAX1645
MAXIM

MAX1645EVSYSTEM

Evaluation System for the MAX1645/MAXSMBus
MAXIM

MAX1647

Chemistry-Independent Battery Chargers
MAXIM

MAX1647-MAX1648

Chemistry-Independent Battery Chargers
MAXIM

MAX1647EAP

Chemistry-Independent Battery Chargers
MAXIM

MAX1647EAP+

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO20, 5.30 MM, MO-150, SSOP-20
MAXIM

MAX1647EAP+T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO20, 5.30 MM, MO-150, SSOP-20
MAXIM

MAX1647EAP-T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO20, 5.30 MM, MO-150, SSOP-20
MAXIM