MAX16010TAA+T [MAXIM]

暂无描述;
MAX16010TAA+T
型号: MAX16010TAA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总12页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3693; Rev 2; 1/07  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
General Description  
Features  
Wide 5.5V to 72V Supply Voltage Range  
The MAX16010–MAX16014 is a family of ultra-small, low-  
power, overvoltage protection circuits for high-voltage,  
high-transient systems such as those found in automotive,  
telecom, and industrial applications. These devices oper-  
ate over a wide 5.5V to 72V supply voltage range, making  
them also suitable for other applications such as battery  
stacks, notebook computers, and servers.  
Open-Drain Outputs Up to 72V  
(MAX16010/MAX16011/MAX16012)  
Fast 2µs (max) Propagation Delay  
Internal Undervoltage Lockout  
p-Channel MOSFET Latches Off After an  
The MAX16010 and MAX16011 offer two independent  
comparators for monitoring both undervoltage and  
overvoltage conditions. These comparators offer open-  
drain outputs capable of handling voltages up to 72V.  
The MAX16010 features complementary enable inputs  
(EN/EN), while the MAX16011 features an active-high  
enable input and a selectable active-high/low OUTB  
output.  
Overvoltage Condition (MAX16014)  
Adjustable Overvoltage Threshold  
-40°C to +125°C Operating Temperature Range  
Small 3mm x 3mm TDFN Package  
Ordering Information  
The MAX16012 offers a single comparator and an inde-  
pendent reference output. The reference output can be  
directly connected to either the inverting or noninverting  
input to select the comparator output logic.  
PIN-  
PKG  
PART*  
TEMP RANGE  
PACKAGE  
CODES  
8 TDFN-EP**  
8 TDFN-EP**  
6 TDFN-EP**  
6 TDFN-EP**  
6 TDFN-EP**  
MAX16010TA_-T -40°C to +125°C  
MAX16011TA_-T -40°C to +125°C  
T833-2  
T833-2  
T633-2  
T633-2  
T633-2  
The MAX16013 and MAX16014 are overvoltage protec-  
tion circuits that are capable of driving two p-channel  
MOSFETs to prevent reverse-battery and overvoltage  
conditions. One MOSFET (P1) eliminates the need for  
external diodes, thus minimizing the input voltage drop.  
The second MOSFET (P2) isolates the load or regulates  
the output voltage during an overvoltage condition. The  
MAX16014 keeps the MOSFET (P2) latched off until the  
input power is cycled.  
MAX16012TT-T  
MAX16013TT-T  
MAX16014TT-T  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
Note: Replace the “_” with “A” for 0.5% hysteresis, “B” for 5%  
hysteresis, and “C” for 7.5% hysteresis.  
*Replace -T with +T for lead-free packages.  
**EP = Exposed pad.  
The MAX16010 and MAX16011 are available in small  
8-pin TDFN packages, while the MAX16012/MAX16013/  
MAX16014 are available in small 6-pin TDFN packages.  
These devices are fully specified from -40°C to +125°C.  
Typical Operating Circuit  
P1  
P2  
Applications  
V
Automotive  
BATT  
Industrial  
48V Telecom/Server/Networking  
FireWire®  
2M*  
Notebook Computers  
Multicell Battery-Stack Powered Equipment  
V
CC  
GATE1  
GATE2  
R1  
R2  
MAX16013  
MAX16014  
SET  
FireWire is a registered trademark of Apple Computer, Inc.  
GND  
Pin Configurations appear at end of data sheet.  
*OPTIONAL  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
ABSOLUTE MAXIMUM RATINGS  
(All pins referenced to GND, unless otherwise noted.)  
Continuous Power Dissipation (T = +70°C)  
A
V
.........................................................................-0.3V to +80V  
6-Pin TDFN (derate 18.2mW/°C above +70°C) .........1455mW  
CC  
EN, EN, LOGIC...........................................-0.3V to (V  
INA+, INB-, IN+, IN-, REF, SET ..............................-0.3V to +12V  
OUTA, OUTB, OUT.................................................-0.3V to +80V  
GATE1, GATE2 to V ...........................................-12V to +0.3V  
+ 0.3V)  
8-Pin TDFN (derate 18.2mW/°C above +70°C) .........1455mW  
Operating Temperature Range .........................-40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
GATE1, GATE2...........................................-0.3V to (V  
+ 0.3V)  
CC  
Current Sink/Source (all pins) .............................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 14V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
72.0  
30  
UNITS  
Supply Voltage Range  
V
5.5  
V
CC  
V
V
= 12V  
20  
25  
CC  
CC  
Input Supply Current  
I
No load  
rising, part enabled, V  
µA  
V
CC  
= 48V  
40  
V
= 2V, OUTA  
INA+  
CC  
deasserted (MAX16010/MAX16011),  
V
Undervoltage Lockout  
V
V
V
= 2V, V deasserted (MAX16012),  
OUT  
4.75  
5
5.25  
CC  
UVLO  
IN  
= 0V, GATE2 = V  
(MAX16013/  
CLMP  
SET  
MAX16014)  
V
1.215  
1.21  
1.245  
1.223  
1.265  
1.26  
TH+  
0.5% hysteresis, MAX16010/MAX16011  
INA+/INB-/SET Threshold Voltage  
Threshold-Voltage Hysteresis  
V
5.0% hysteresis, MAX16010/MAX16011/  
MAX16013/MAX16014  
V
1.15  
1.12  
1.18  
1.21  
1.18  
TH-  
7.5% hysteresis MAX16010/MAX16011  
MAX16010TAA/MAX16011TAA  
1.15  
0.5  
MAX16010TAB/MAX16011TAB/  
MAX16013/MAX16014  
5.0  
7.5  
%
MAX16010TAC/MAX16011TAC  
SET/IN_ = 2V  
SET/IN_ Input Current  
-100  
0
+100  
4
nA  
V
IN_ Operating Voltage Range  
Startup Response Time  
t
V
rising from 0 to 5.5V  
CC  
100  
µs  
START  
IN_/SET rising from (V - 100mV) to  
TH  
IN_ to OUT/SET to GATE2  
Propagation Delay  
t
(V + 100mV) or falling from (V +  
TH  
2
µs  
PROP  
TH  
100mV) to (V - 100mV) (no load)  
TH  
V
V
5.5V, I  
2.8V, I  
= 3.2mA  
= 100µA  
0.4  
0.4  
500  
V
V
CC  
CC  
SINK  
OUT_ Output-Voltage Low  
OUT_ Leakage Current  
V
OL  
SINK  
I
OUT_ = 72V  
nA  
LEAK  
2
_______________________________________________________________________________________  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 14V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.4  
IL  
EN/EN, LOGIC Input Voltage  
V
V
1.4  
IH  
EN/EN, LOGIC Input Current  
EN/EN, LOGIC Pulse Width  
1
2
µA  
µs  
10  
7
V
to GATE_ Output Low  
I
V
_
= 75µA, I  
_
= 1µA,  
CC  
GATE SINK  
GATE SOURCE  
11  
18  
V
V
Voltage  
= 14V  
CC  
V
to GATE_ Clamp Voltage  
V
= 24V  
12  
CC  
CC  
MAX16012  
Reference Output Voltage  
Reference Short-Circuit Current  
V
No load  
1.275  
1.3  
100  
0.1  
0.1  
1.320  
V
REF  
I
REF = GND  
µA  
SHORT  
Sourcing, 0 I  
1µA  
REF  
Reference Load Regulation  
mV/µA  
Sinking, -1µA I  
0  
REF  
Input Offset Voltage  
V
= 0 to 2V  
-12.5  
0
+12.5  
2.0  
mV  
nA  
mV  
V
CM  
Input Offset Current  
3
8
Input Hysteresis  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
CMVR  
CMRR  
DC  
MAX16012, DC  
70  
70  
dB  
Comparator Power-Supply  
Rejection Ratio  
PSRR  
dB  
Note 1: 100% production tested at T = +25°C and T = +125°C. Specifications at T = -40°C are guaranteed by design.  
A
A
A
Typical Operating Characteristics  
(V = 14V, T = +25°C, unless otherwise noted.)  
IN  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
GATE VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
40  
35  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
26.50  
26.45  
26.40  
26.35  
26.30  
26.25  
26.20  
26.15  
26.10  
26.05  
26.00  
MAX16013/MAX16014  
SET = GND, EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
CC  
CC  
CC  
V
GATE  
MAX16010/MAX16011  
INA+ = INB- = GND  
OUTPUTS ENABLED  
V
- V  
GATE  
CC  
MAX16012  
IN+ = IN- = GND  
5
15  
25  
35  
45  
55  
65  
75  
5
15  
25  
35  
45  
55  
65  
75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Typical Operating Characteristics (continued)  
(V = 14V, T = +25°C, unless otherwise noted.)  
IN  
A
UVLO THRESHOLD  
vs. TEMPERATURE  
INA+/INB-/SET THRESHOLD  
vs. TEMPERATURE  
GATE VOLTAGE  
vs. TEMPERATURE  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
INA+/INB-/SET = GND  
EN = V  
INA+/INB-/SET RISING  
EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
CC  
CC  
CC  
RISING  
FALLING  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
= 100, C = 10µF, C = 10nF)  
OUT  
MAX16010 toc08  
(R  
= 100, C = 10µF, C  
= 10nF)  
(R  
OUT  
IN  
OUT  
OUT  
IN  
MAX16010 toc07  
V
CC  
1V/div  
V
CC  
10V/div  
V
GATE  
V
GATE  
10V/div  
5V/div  
V
V
OUT  
OUT  
10V/div  
10V/div  
V
= 0 TO 2V  
EN  
200µs/div  
20µs/div  
OVERVOLTAGE SWITCH FAULT  
= 100, C = 80µF, C = 10nF)  
OVERVOLTAGE LIMIT  
= 100, C = 80µF, C = 10nF)  
OUT  
MAX16010 toc10  
(R  
(R  
OUT  
OUT  
IN  
OUT  
IN  
MAX16010 toc09  
V
V
CC  
CC  
20V/div  
20V/div  
V
V
GATE  
GATE  
20V/div  
20V/div  
V
OUT  
V
OUT  
20V/div  
20V/div  
V
= 12V TO 40V  
IN  
TRIP THRESHOLD = 28V  
V
= 12V TO 40V, TRIP THRESHOLD = 28V  
1ms/div  
IN  
1ms/div  
4
_______________________________________________________________________________________  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Pin Description  
PIN  
NAME  
FUNCTION  
1
2
1
2
1
2
1
2
V
Positive-Supply Input Voltage. Connect V  
to a 5.5V to 72V supply.  
CC  
CC  
GND Ground  
Active-Low Enable Input. Drive EN low to turn on the voltage detectors. Drive EN high to force the  
OUTA and OUTB outputs low. EN is internally pulled up to V . Connect EN to GND if not used.  
3
EN  
CC  
Open-Drain Monitor B Output. Connect a pullup resistor from OUTB to V . OUTB goes low when  
CC  
INB- exceeds V  
and goes high when INB- drops below V  
(with LOGIC connected to GND for  
TH-  
TH+  
4
4
OUTB the MAX16011). Drive LOGIC high to reverse OUTB’s logic state. OUTB is usually used as an  
overvoltage output. OUTB goes low (LOGIC = low) or high (LOGIC = high) when V  
the UVLO threshold voltage.  
drops below  
CC  
5
6
5
6
5
INB- Adjustable Voltage Monitor Threshold Input  
Active-High ENABLE Input. For the MAX16010/MAX16011, drive EN high to turn on the voltage  
detectors. Drive EN low to force OUTA low and OUTB low (LOGIC = low) or high (LOGIC = high). For  
the MAX16013/MAX16014, drive EN high to enhance the p-channel MOSFET (P2), and drive EN low  
EN  
to turn off the MOSFET. EN is internally pulled down to GND. Connect EN to V  
if not used.  
CC  
Open-Drain Monitor A Output. Connect a pullup resistor from OUTA to V . OUTA goes low when  
CC  
INA+ drops below V  
and goes high when INA+ exceeds V  
. OUTA is usually used as an  
7
7
OUTA  
TH-  
TH+  
undervoltage output. OUTA also goes low when V  
drops below the UVLO threshold voltage.  
CC  
8
8
3
INA+ Adjustable Voltage Monitor Threshold Input  
OUTB Logic-Select Input. Connect LOGIC to GND or V to configure the OUTB logic. See the  
CC  
LOGIC  
MAX16011 output logic table.  
Open-Drain Comparator Output. Connect a pullup resistor from OUT to V . OUT goes low when  
CC  
IN+ drops below IN-. OUT goes high when IN+ exceeds IN-.  
3
4
OUT  
IN-  
Inverting Comparator Input  
Internal 1.30V Reference Output. Connect REF to IN+ for active-low output. Connect REF to IN- for  
active-high output. REF can source and sink up to 1µA. Leave REF floating if not used. REF output is  
stable with capacitive loads from 0 to 50pF.  
5
6
REF  
IN+  
Noninverting Comparator Input  
Gate-Driver Output. Connect GATE2 to the gate of an external p-channel MOSFET pass switch.  
GATE2 is driven low to the higher of V  
- 10V or GND during normal operations and quickly shorted  
CC  
to V  
during an overvoltage condition (SET above the internal threshold). GATE2 is shorted to V  
CC  
3
4
GATE2  
SET  
CC  
when the supply voltage goes below the UVLO threshold voltage. GATE2 is shorted to V  
is low.  
when EN  
CC  
Device Overvoltage Threshold Adjustment Input. Connect SET to an external resistive divider network  
to adjust the desired overvoltage disable or overvoltage limit threshold (see the Typical Application  
Circuit and Overvoltage Limiter section).  
Gate-Driver Output. Connect GATE1 to the gate of an external p-channel MOSFET to provide low  
drop reverse voltage protection.  
6
GATE1  
EP  
Exposed Pad. Connect EP to GND.  
_______________________________________________________________________________________  
5
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Voltage Monitoring  
The MAX16010/MAX16011 include undervoltage and  
overvoltage comparators for window detection (see  
Figure 1). OUT_ asserts high when the monitored volt-  
age is within the selected “window.” OUTB asserts low  
when the monitored voltage falls below the lower  
+48V  
EN  
V
CC  
R1  
R2  
R3  
IN  
INA+  
OUTA  
OUTB  
(V  
) limit of the window, or OUTA asserts low if  
TRIPLOW  
DC-DC  
REGULATOR  
EN  
the monitored voltage exceeds the upper limit  
(V ). The application in Figure 1 shows OUT_  
TRIPHIGH  
MAX16010  
enabling the DC-DC converter when the monitored volt-  
age is in the selected window.  
INB-  
The resistor values R1, R2, and R3 can be calculated  
as follows:  
GND EN  
R
TOTAL  
V
= V  
TH  
TRIPLOW  
R2 + R3  
Figure 1. MAX16010 Monitor Circuit  
R
TOTAL  
V
= V  
TH+  
TRIPHIGH  
R
3
Detailed Description  
where R  
= R1 + R2 + R3.  
TOTAL  
The MAX16010–MAX16014 is a family of ultra-small, low-  
power, overvoltage protection circuits for high-voltage,  
high-transient systems such as those found in automo-  
tive, telecom, and industrial applications. These devices  
operate over a wide 5.5V to 72V supply voltage range,  
making them also suitable for other applications such as  
battery stacks, notebook computers, and servers.  
Use the following steps to determine the values for R1,  
R2, and R3.  
1) Choose a value for R  
, the sum of R1, R2, and  
R3. Because the MAX16010/MAX16011 have very  
high input impedance, R can be up to 5M.  
TOTAL  
TOTAL  
2) Calculate R3 based on R  
upper trip point:  
and the desired  
TOTAL  
The MAX16010 and MAX16011 offer two independent  
comparators for monitoring both undervoltage and  
overvoltage conditions. These comparators offer open-  
drain outputs capable of handling voltages up to 72V.  
The MAX16010 features complementary enable inputs  
(EN/EN), while the MAX16011 features an active-high  
enable input and a selectable active-high/low OUTB  
output.  
V
× R  
TH+  
TOTAL  
R3 =  
V
TRIPHIGH  
3) Calculate R2 based on R  
lower trip point:  
, R3, and the desired  
TOTAL  
V
× R  
TOTAL  
TH−  
R2 =  
R3  
The MAX16012 offers a single comparator and an inde-  
pendent reference output. The reference output can be  
directly connected to either the inverting or noninvert-  
ing input to select the comparator output logic.  
V
TRIPLOW  
4) Calculate R1 based on R  
, R3, and R2:  
TOTAL  
R1 = R  
- R2 - R3  
TOTAL  
The MAX16013 and MAX16014 are overvoltage protec-  
tion circuits that are capable of driving two p-channel  
MOSFETs to prevent reverse battery and overvoltage  
conditions. One MOSFET (P1) eliminates the need for  
external diodes, thus minimizing the input voltage drop.  
While the second MOSFET (P2) isolates the load or reg-  
ulates the output voltage during an overvoltage condi-  
tion. The MAX16014 keeps the MOSFET (P2) latched  
off until the input power is cycled.  
The MAX16012 has both inputs of the comparator avail-  
able with an integrated 1.30V reference (REF). When the  
voltage at IN+ is greater than the voltage at IN- then OUT  
goes high. When the voltage at IN- is greater than the  
voltage at IN+ then OUT goes low. Connect REF to IN+  
or IN- to set the reference voltage value. Use an external  
resistive divider to set the monitored voltage threshold.  
6
_______________________________________________________________________________________  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
V
BATT  
P1  
P2  
V
CC  
V
BATT  
R1  
R
PULLUP  
IN+  
V
CC  
GATE1  
GATE2  
SET  
R2  
R1  
R2  
REF  
OUT  
OUT  
MAX16012  
MAX16013  
IN-  
GND  
GND  
Figure 2. Typical Operating Circuit for the MAX16012  
Figure 3. Overvoltage Limiter Protection  
The MAX16013/MAX16014 can be configured as an  
overvoltage switch controller to turn on/off a load (see  
the Typical Application Circuit). When the programmed  
overvoltage threshold is tripped, the internal fast com-  
parator turns off the external p-channel MOSFET (P2),  
Hysteresis  
Hysteresis adds noise immunity to the voltage monitors  
and prevents oscillation due to repeated triggering  
when the monitored voltage is near the threshold trip  
voltage. The hysteresis in a comparator creates two trip  
pulling GATE2 to V  
to disconnect the power source  
points: one for the rising input voltage (V  
) and one  
CC  
TH+  
from the load. When the monitored voltage goes below  
the adjusted overvoltage threshold, the MAX16013  
enhances GATE2, reconnecting the load to the power  
source (toggle ENABLE on the MAX16014 to reconnect  
the load). The MAX16013 can be configured as an  
overvoltage limiter switch by connecting the resistive  
for the falling input voltage (V ). These thresholds are  
TH-  
shown in Figure 4.  
Enable Inputs (EN or EN)  
The MAX16011 offers an active-high enable input (EN),  
while the MAX16010 offers both an active-high enable  
input (EN) and active-low enable input (EN). For the  
MAX16010, drive EN low or EN high to force the output  
low. When the device is enabled (EN = high and EN =  
low) the state of OUTA and OUTB depends on INA+  
and INB- logic states.  
divider to the load instead of V  
Overvoltage Limiter section.  
(Figure 3). See the  
CC  
Supply Voltage  
Connect a 5.5V to 72V supply to V  
tion. For noisy environments, bypass V  
for proper opera-  
CC  
to GND with a  
CC  
0.1µF or greater capacitor. When V  
falls below the  
CC  
UVLO voltage the following states are present (Table 1).  
V
HYST  
Table 1. UVLO State (V  
< V  
)
UVLO  
CC  
V
TH+  
V
IN+  
PART  
OUTA  
OUTB  
OUT GATE2  
V
TH-  
MAX16010  
Low  
Low  
Low, LOGIC = low  
High, LOGIC = high  
V
CC  
MAX16011  
Low  
V
OUT  
t
t
t
PROP  
MAX16012  
Low  
PROP  
PROP  
0V  
MAX16013  
MAX16014  
High  
Figure 4. Input and Output Waveforms  
_______________________________________________________________________________________  
7
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Input Transients Clamping  
Table 2. MAX16011 Output Logic  
When the external MOSFET is turned off during an  
overvoltage occurrence, stray inductance in the power  
path may cause voltage ringing to exceed the  
LOGIC  
INA+  
INB-  
OUTA  
OUTB  
High  
Impedance  
Low  
> V  
> V  
Low  
TH+  
TH+  
MAX16013/MAX16014 absolute maximum input (V  
)
CC  
supply rating. The following techniques are recom-  
mended to reduce the effect of transients:  
High  
Impedance  
Low  
< V  
< V  
Low  
TH-  
TH-  
Minimize stray inductance in the power path using  
wide traces, and minimize loop area including the  
power traces and the return ground path.  
High  
Impedance  
High  
Impedance  
High  
High  
> V  
> V  
TH+  
TH+  
< V  
< V  
Low  
Low  
TH-  
TH-  
Add a zener diode or transient voltage suppresser  
(TVS) rated below V  
(Figure 3).  
absolute maximum rating  
CC  
For the MAX16011, drive EN low to force OUTA low,  
OUTB low when LOGIC = low, and OUTB high when  
LOGIC = high. When the device is enabled (EN = high)  
the state of OUTA and OUTB depends on the INA+,  
INB-, and LOGIC input (see Table 2).  
Overvoltage Limiter  
When operating in overvoltage-limiter mode, the  
MAX16013 drives the external p-channel MOSFET (P2),  
resulting in the external MOSFET operating as a voltage  
regulator.  
For the MAX16013/MAX16014, drive EN low to pull  
GATE2 to V , turning off the p-channel MOSFET (P2).  
CC  
During normal operation, GATE2 is pulled to the greater  
When the device is enabled (EN = high), GATE2 is  
of (V  
- 10V) or GND. The external MOSFET’s drain  
CC  
pulled to the greater of (V  
the external MOSFET (P2).  
- 10V) or GND turning on  
CC  
voltage is monitored through a resistor-divider between  
the P2 output and SET. When the output voltage rises  
above the adjusted overvoltage threshold, an internal  
Applications Information  
comparator pulls GATE2 to V . When the monitored  
CC  
Load Dump  
Most automotive applications are powered by a multi-  
cell, 12V lead-acid battery with a voltage between 9V  
and 16V (depending on load current, charging status,  
temperature, battery age, etc.). The battery voltage is  
distributed throughout the automobile and is locally  
regulated down to voltages required by the different  
system modules. Load dump occurs when the alterna-  
tor is charging the battery and the battery becomes  
disconnected. Power in the alternator inductance flows  
into the distributed power system and elevates the volt-  
age seen at each module. The voltage spikes have rise  
times typically greater than 5ms and decays within sev-  
eral hundred milliseconds but can extend out to 1s or  
more depending on the characteristics of the charging  
system. These transients are capable of destroying  
sensitive electronic equipment on the first fault event.  
voltage goes below the overvoltage threshold, the  
p-channel MOSFET (P2) is turned on again. This  
process continues to keep the voltage at the output reg-  
ulated to within approximately a 5% window. The output  
voltage is regulated during the overvoltage transients  
and the MOSFET (P2) continues to conduct during the  
overvoltage event, operating in switched-linear mode.  
Caution must be exercised when operating the  
MAX16013 in voltage-limiting mode for long durations  
due to the MOSFET’s power dissipation consideration  
(see the MOSFET Selection and Operation section).  
MOSFET Selection and Operation  
(MAX16013 and MAX16014)  
Most battery-powered applications must include reverse  
voltage protection. Many times this is implemented with a  
diode in series with the battery. The disadvantage in  
using a diode is the forward voltage drop of the diode,  
which reduces the operating voltage available to down-  
The MAX16013/MAX16014 provide the ability to dis-  
connect the load from the charging system during an  
overvoltage condition to protect the module. In addi-  
tion, the MAX16013 can be configured in a voltage-lim-  
iting mode. This allows continuous operation while  
providing overvoltage protection. See the Overvoltage  
Limiter section.  
stream circuits (V  
= V  
- V  
). The  
DIODE  
LOAD  
BATTERY  
MAX16013 and MAX16014 include high-voltage GATE1  
drive circuitry allowing users to replace the high-voltage-  
drop series diode with a low-voltage-drop MOSFET  
device (as shown in the Typical Operating Circuit and  
Figure 3). The forward voltage drop is reduced to I  
LOAD  
x R  
of P1. With a suitably chosen MOSFET, the  
DS-ON  
voltage drop can be reduced to millivolts.  
8
_______________________________________________________________________________________  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
In normal operating mode, internal GATE1 output cir-  
cuitry enhances P1 to a 10V gate-to-source (V ) for  
During overvoltage conditions, P2 is either turned com-  
pletely off (overvoltage-switch mode) or cycled off-on-  
off (voltage-limiter mode). Care should be taken to  
place P2 (and its internal drain-to-source diode) in the  
correct orientation for proper overvoltage protection  
operation. During voltage-limiter mode, the drain of P2  
is limited to the adjusted overvoltage threshold, while  
GS  
11V < V  
< 72V. The constant 10V enhancement  
CC  
ensures P1 operates in a low R  
mode, but the  
DS-ON  
gate-source junction is not overstressed during high-  
battery-voltage application or transients (many MOSFET  
devices specify a 20V V  
absolute maximum). As  
GS  
V
drops below 10V GATE1 is limited to GND, reduc-  
the battery (V ) voltage rises. During prolonged over-  
CC  
CC  
ing P1 V  
to V  
- GND. In normal operation the P1  
voltage events, P2 temperature can increase rapidly  
due to the high power dissipation. The power dissipat-  
ed by P2 is:  
GS  
CC  
power dissipation is very low:  
P1 = I  
2 x R  
LOAD  
DS-ON  
P2 = V  
x I  
DS-P2 LOAD  
During reverse-battery applications, GATE1 is limited to  
GND and the P1 gate-source junction is reverse  
biased. P1 is turned off and neither the MAX16013/  
MAX16014 nor the load circuitry is exposed to the  
reverse-battery voltage. Care should be taken to place  
P1 (and its internal drain-to-source diode) in the correct  
orientation for proper reverse battery operation.  
= (V  
- V  
) x I  
CC  
OV-ADJUSTED LOAD  
where V ~ V  
and V  
is the desired  
CC  
BATTERY  
OV-ADJUSTED  
load limit voltage. For prolonged overvoltage events with  
high P2 power dissipation, proper heatsinking is required.  
Adding External Pullup Resistors  
It may be necessary to add an external resistor from  
P2 protects the load from input overvoltage conditions.  
During normal operating modes (the monitored voltage  
is below the adjusted overvoltage threshold), internal  
GATE2 output circuitry enhances P2 to a 10V gate-to-  
V
to GATE1 to provide enough additional pullup  
CC  
capability when the GATE1 input goes high. The  
GATE_ output can only source up to 1µA current. If the  
source current is less than 1µA, no external resistor  
may be necessary. However, to improve the pullup  
capability of the GATE_ output when it goes high, con-  
source (V ) for 11V < V  
< 72V. The constant 10V  
GS  
CC  
enhancement ensures P2 operates in a low R  
DS-ON  
mode but the gate-to-source junction is not over-  
stressed during high-battery-voltage applications  
nect an external resistor between V  
and the GATE_.  
CC  
The application shows a 2Mresistor, which is large  
enough not to impact the sinking capability of the  
GATE_ (during normal operation) while providing  
enough pullup during an overvoltage event. With an  
(many pFET devices specify a 20V V absolute max-  
GS  
imum). As V  
drops below 10V, GATE2 is limited to  
CC  
GND, reducing P2 V  
to V  
- GND. In normal opera-  
CC  
GS  
tion, the P2 power dissipation is very low:  
P2 = I  
2 x R  
11V (worst case) V -to-gate clamp voltage and a  
CC  
sinking current of 75µA, the smallest resistor should be  
11V/75µA, or about 147k. However, since the GATE_  
is typically low most of the time, a higher value should  
be used to reduce overall power consumption.  
LOAD  
DS-ON  
_______________________________________________________________________________________  
9
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Functional Diagrams  
V
V
CC  
CC  
REGULATOR  
REGULATOR  
~4V  
~4V  
MAX16010  
MAX16011  
OUTA  
OUTA  
INA+  
INA+  
HYST  
HYST  
OUTB  
OUTB  
INB-  
INB-  
HYST  
HYST  
1.23V  
1.23V  
ENABLE  
CIRCUITRY  
OUTB  
LOGIC  
ENABLE CIRCUITRY  
EN  
EN  
LOGIC  
GND  
GND  
EN  
Figure 5. MAX16010 Functional Diagram  
Figure 6. MAX16011 Functional Diagram  
V
CC  
V
CC  
REGULATOR  
~4V  
SET  
MAX16012  
GATE2  
OUT  
IN-  
HYST  
1.23V  
IN+  
REF  
GATE1  
MAX16013  
MAX16014  
1.30V  
ENABLE  
CIRCUITRY  
LATCH  
CLEAR  
GND  
GND  
EN  
Figure 7. MAX16012 Functional Diagram  
Figure 8. MAX16013/MAX16014 Functional Diagram  
10 ______________________________________________________________________________________  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Pin Configurations  
TOP VIEW  
INA+ OUTA EN  
INB-  
5
INA+ OUTA EN  
INB-  
5
8
7
6
8
7
6
MAX16010  
MAX16011  
1
2
3
4
1
2
3
4
V
CC  
GND  
EN  
OUTB  
V
CC  
GND LOGIC OUTB  
TDFN (3mm x 3mm)  
TDFN (3mm x 3mm)  
IN+  
6
REF  
5
IN-  
4
GATE1  
6
EN  
5
SET  
4
MAX16012  
MAX16013  
MAX16014  
1
2
3
1
2
3
V
CC  
GND  
OUT  
V
CC  
GND  
GATE2  
TDFN (3mm x 3mm)  
TDFN (3mm x 3mm)  
Chip Information  
PROCESS: BiCMOS  
______________________________________________________________________________________ 11  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
H
21-0137  
2
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
MIN. MAX.  
SYMBOL  
PKG. CODE  
T633-1  
N
6
D2  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
A
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T633-2  
6
D
E
0.95 BSC  
T833-1  
8
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
T833-2  
8
A1  
L
T833-3  
8
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
k
0.25 MIN.  
0.20 REF.  
1.50±0.10 2.30±0.10  
0.25±0.05  
0.20±0.05  
0.20±0.05  
A2  
0.50 BSC MO229 / WEED-3  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
H
21-0137  
2
Revision History  
Pages changed at Rev 2: 1, 10, 12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16010TAA-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16010TAB

Power Management Circuit, BICMOS, PDSO8
MAXIM

MAX16010TAB+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, TDFN-8
MAXIM

MAX16010TAB+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX16010TAB-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16010TAC

Power Management Circuit, BICMOS, PDSO8
MAXIM

MAX16010TAC+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, TDFN-8
MAXIM

MAX16010TAC+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX16010TAC-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16010_08

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011TA-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM