MAX16010TAB+T [MAXIM]

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8;
MAX16010TAB+T
型号: MAX16010TAB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8

信息通信管理
文件: 总12页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
General Description  
Features  
Wide 5.5V to 72V Supply Voltage Range  
The MAX16010–MAX16014 is a family of ultra-small, low-  
power, overvoltage-protection circuits for high-voltage,  
high-transient systems such as those found in telecom  
and industrial applications. These devices operate over  
a wide 5.5V to 72V supply voltage range, making them  
also suitable for other applications such as battery stacks,  
notebook computers, and servers.  
Open-Drain Outputs Up to 72V  
(MAX16010/MAX16011/MAX16012)  
● Fast 2μs (max) Propagation Delay  
Internal Undervoltage Lockout  
p-Channel MOSFET Latches Off After an  
Overvoltage Condition (MAX16014)  
The MAX16010 and MAX16011 offer two independent  
comparators for monitoring both undervoltage and over-  
voltage conditions. These comparators offer open-drain  
outputs capable of handling voltages up to 72V. The  
MAX16010 features complementary enable inputs (EN/  
EN), while the MAX16011 features an active-high enable  
input and a selectable active-high/low OUTB output.  
Adjustable Overvoltage Threshold  
-40°C to +125°C Operating Temperature Range  
Small 3mm x 3mm TDFN Package  
Ordering Information  
PART*  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 TDFN-EP**  
8 TDFN-EP**  
6 TDFN-EP**  
6 TDFN-EP**  
6 TDFN-EP**  
MAX16010TA_-T  
MAX16011TA_-T  
MAX16012TT-T  
MAX16013TT-T  
MAX16014TT-T  
The MAX16012 offers a single comparator and an  
independent reference output. The reference output can  
be directly connected to either the inverting or noninvert-  
ing input to select the comparator output logic.  
The MAX16013 and MAX16014 are overvoltage-  
protection circuits that are capable of driving two  
p-channel MOSFETs to prevent reverse-battery and  
overvoltage conditions. One MOSFET (P1) eliminates the  
need for external diodes, thus minimizing the input volt-  
age drop. The second MOSFET (P2) isolates the load or  
regulates the output voltage during an overvoltage condi-  
tion. The MAX16014 keeps the MOSFET (P2) latched off  
until the input power is cycled.  
Note: Replace the “_” with “A” for 0.5% hysteresis, “B” for 5%  
hysteresis, and “C” for 7.5% hysteresis.  
*Replace -T with +T for lead(Pb)-free/RoHS-compliant  
packages.  
**EP = Exposed pad.  
Typical Operating Circuit  
P1  
P2  
The MAX16010 and MAX16011 are available in small  
8-pin TDFN packages, while the MAX16012–MAX16014  
are available in small 6-pin TDFN packages. These  
devices are fully specified from -40°C to +125°C.  
V
BATT  
2M*  
Applications  
Industrial  
V
CC  
48V Telecom/Server/Networking  
GATE1  
GATE2  
®
FireWire  
R1  
R2  
MAX16013  
MAX16014  
Notebook Computers  
Multicell Battery-Stack-Powered Equipment  
SET  
GND  
FireWire is a registered trademark of Apple, Inc.  
*OPTIONAL  
Pin Configurations appear at end of data sheet  
19-3693; Rev 5; 2/15  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Absolute Maximum Ratings  
(All pins referenced to GND, unless otherwise noted.)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................-0.3V to +80V  
6-Pin TDFN (derate 18.2mW/°C above +70°C) ........1455mW  
8-Pin TDFN (derate 18.2mW/°C above +70°C) ........1455mW  
Operating Temperature Range......................... -40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EN, EN, LOGIC........................................ -0.3V to (V  
INA+, INB-, IN+, IN-, REF, SET.............................-0.3V to +12V  
OUTA, OUTB, OUT...............................................-0.3V to +80V  
GATE1, GATE2 to V .........................................-12V to +0.3V  
GATE1, GATE2 ........................................-0.3V to (VCC + 0.3V)  
Current Sink/Source (all pins) ............................................50mA  
+ 0.3V)  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= 14V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
72.0  
30  
UNITS  
Supply Voltage Range  
V
5.5  
V
CC  
V
V
= 12V  
= 48V  
20  
25  
CC  
Input Supply Current  
I
No load  
µA  
V
CC  
40  
CC  
V
rising, part enabled, V  
= 2V, OUTA  
INA+  
CC  
deasserted (MAX16010/MAX16011),  
V
CC  
Undervoltage Lockout  
V
V
V
= 2V, V deasserted (MAX16012),  
4.75  
5
5.25  
UVLO  
IN  
OUT  
= 0V, GATE2 = V  
(MAX16013/  
SET  
CLMP  
MAX16014)  
V
1.215  
1.21  
1.245  
1.223  
1.265  
1.26  
TH+  
0.5% hysteresis, MAX16010/MAX16011  
INA+/INB-/SET Threshold Voltage  
Threshold-Voltage Hysteresis  
V
5.0% hysteresis, MAX16010/MAX16011/  
MAX16013/MAX16014  
V
1.15  
1.12  
1.18  
1.21  
1.18  
TH-  
7.5% hysteresis MAX16010/MAX16011  
MAX16010TAA/MAX16011TAA  
1.15  
0.5  
MAX16010TAB/MAX16011TAB/  
MAX16013/MAX16014  
5.0  
7.5  
%
MAX16010TAC/MAX16011TAC  
SET/IN_ = 2V  
SET/IN_ Input Current  
-100  
0
+100  
4
nA  
V
IN_ Operating Voltage Range  
Startup Response Time  
t
V
rising from 0 to 5.5V  
100  
µs  
START  
CC  
IN_/SET rising from (V  
- 100mV) to  
(V + 100mV) or falling from (V  
TH  
IN_-to-OUT/SET-to-GATE2  
Propagation Delay  
t
+
TH  
2
µs  
PROP  
TH  
100mV) to (V - 100mV) (no load)  
TH  
V
V
≥ 5.5V, I  
≥ 2.8V, I  
= 3.2mA  
= 100µA  
0.4  
0.4  
V
V
CC  
SINK  
OUT_ Output-Voltage Low  
OUT_ Leakage Current  
V
OL  
CC  
SINK  
I
OUT_ = 72V  
500  
nA  
LEAK  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Electrical Characteristics (continued)  
(V  
= 14V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.4  
IL  
EN/EN, LOGIC Input Voltage  
V
V
1.4  
IH  
EN/EN, LOGIC Input Current  
EN/EN, LOGIC Pulse Width  
1
2
µA  
µs  
10  
7
V
-to-GATE_ Output Low  
I
V
_
= 75µA, I  
_
= 1µA,  
CC  
Voltage  
GATE SINK  
GATE SOURCE  
11  
18  
V
V
= 14V  
CC  
V
CC  
-to-GATE_ Clamp Voltage  
V
= 24V  
12  
CC  
MAX16012  
Reference Output Voltage  
Reference Short-Circuit Current  
V
No load  
1.275  
1.3  
100  
0.1  
0.1  
1.320  
V
REF  
I
REF = GND  
µA  
SHORT  
Sourcing, 0 ≤ I  
≤ 1µA  
REF  
Reference Load Regulation  
mV/µA  
Sinking, -1µA P I  
≤ 0  
REF  
Input Offset Voltage  
V
= 0 to 2V  
-12.5  
0
+12.5  
2.0  
mV  
nA  
mV  
V
CM  
Input Offset Current  
3
8
Input Hysteresis  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
CMVR  
CMRR  
MAX16012, DC  
MAX16012, DC  
70  
70  
dB  
Comparator Power-Supply  
Rejection Ratio  
PSRR  
dB  
Note 1: 100% production tested at T = +25°C and T = +125°C. Specifications at T = -40°C are guaranteed by design.  
A
A
A
Typical Operating Characteristics  
(V = 14V, T = +25°C, unless otherwise noted.)  
IN  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
GATE VOLTAGE  
vs. SUPPLY VOLTAGE  
26.50  
26.45  
26.40  
26.35  
26.30  
26.25  
26.20  
26.15  
26.10  
26.05  
26.00  
40  
35  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
MAX16013/MAX16014  
SET = GND, EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
CC  
CC  
CC  
V
GATE  
MAX16010/MAX16011  
INA+ = INB- = GND  
OUTPUTS ENABLED  
V
CC  
- V  
GATE  
MAX16012  
IN+ = IN- = GND  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
5
15  
25  
35  
45  
55  
65  
75  
5
15  
25  
35  
45  
55  
65  
75  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Typical Operating Characteristics (continued)  
(V = 14V, T = +25°C, unless otherwise noted.)  
IN  
A
UVLO THRESHOLD  
vs. TEMPERATURE  
INA+/INB-/SET THRESHOLD  
vs. TEMPERATURE  
GATE VOLTAGE  
vs. TEMPERATURE  
5.5  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
INA+/INB-/SET = GND  
EN = V  
INA+/INB-/SET RISING  
EN = V  
MAX16013/MAX16014  
SET = GND, EN = V  
CC  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
CC  
CC  
RISING  
FALLING  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
(R  
OUT  
= 100, C = 10mF, C  
= 10nF)  
(R  
OUT  
= 100, C = 10mF, C = 10nF)  
OUT  
MAX16010 toc08  
IN  
OUT  
IN  
MAX16010 toc07  
V
CC  
1V/div  
V
CC  
10V/div  
V
GATE  
V
GATE  
10V/div  
5V/div  
V
OUT  
V
OUT  
10V/div  
10V/div  
V
EN  
= 0 TO 2V  
200µs/div  
20µs/div  
OVERVOLTAGE SWITCH FAULT  
= 100, C = 80mF, C = 10nF)  
OVERVOLTAGE LIMIT  
= 100, C = 80mF, C = 10nF)  
OUT  
MAX16010 toc10  
(R  
(R  
OUT  
OUT  
IN  
OUT  
IN  
MAX16010 toc09  
V
CC  
V
CC  
20V/div  
20V/div  
V
GATE  
V
GATE  
20V/div  
20V/div  
V
OUT  
V
OUT  
20V/div  
20V/div  
V
IN  
= 12V TO 40V  
TRIP THRESHOLD = 28V  
V
IN  
= 12V TO 40V, TRIP THRESHOLD = 28V  
1ms/div  
1ms/div  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Pin Description  
PIN  
NAME  
FUNCTION  
1
2
1
2
1
2
1
2
V
Positive-Supply Input Voltage. Connect V  
to a 5.5V to 72V supply.  
CC  
CC  
GND Ground  
Active-Low Enable Input. Drive EN low to turn on the voltage detectors. Drive EN high to force the  
3
EN  
OUTA and OUTB outputs low. EN is internally pulled up to V . Connect EN to GND if not used.  
CC  
Open-Drain Monitor B Output. Connect a pullup resistor from OUTB to V . OUTB goes low when  
CC  
INB- exceeds V  
and goes high when INB- drops below V  
(with LOGIC connected to GND  
TH+  
TH-  
4
4
OUTB for the MAX16011). Drive LOGIC high to reverse OUTB’s logic state. OUTB is usually used as an  
overvoltage output. OUTB goes low (LOGIC = low) or high (LOGIC = high) when V  
the UVLO threshold voltage.  
drops below  
CC  
5
6
5
6
5
INB- Adjustable Voltage Monitor Threshold Input  
Active-High ENABLE Input. For the MAX16010/MAX16011, drive EN high to turn on the voltage  
detectors. Drive EN low to force OUTA low and OUTB low (LOGIC = low) or high (LOGIC = high). For  
the MAX16013/MAX16014, drive EN high to enhance the p-channel MOSFET (P2), and drive EN low  
EN  
to turn off the MOSFET. EN is internally pulled down to GND. Connect EN to V  
if not used.  
CC  
Open-Drain Monitor A Output. Connect a pullup resistor from OUTA to V . OUTA goes low when  
CC  
7
7
OUTA INA+ drops below V  
and goes high when INA+ exceeds V  
. OUTA is usually used as an  
TH-  
TH+  
undervoltage output. OUTA also goes low when V  
drops below the UVLO threshold voltage.  
CC  
8
8
3
INA+ Adjustable Voltage Monitor Threshold Input  
OUTB Logic-Select Input. Connect LOGIC to GND or V  
MAX16011 output logic table.  
to configure the OUTB logic. See the  
CC  
LOGIC  
Open-Drain Comparator Output. Connect a pullup resistor from OUT to V . OUT goes low when  
CC  
IN+ drops below IN-. OUT goes high when IN+ exceeds IN-.  
3
4
OUT  
IN-  
Inverting Comparator Input  
Internal 1.30V Reference Output. Connect REF to IN+ for active-low output. Connect REF to IN- for  
5
6
REF active-high output. REF can source and sink up to 1µA. Leave REF floating if not used. REF output  
is stable with capacitive loads from 0 to 50pF.  
IN+  
Noninverting Comparator Input  
Gate-Driver Output. Connect GATE2 to the gate of an external p-channel MOSFET pass switch.  
GATE2 is driven low to the higher of V  
- 10V or GND during normal operations and quickly  
CC  
3
4
GATE2 shorted to V  
shorted to V  
during an overvoltage condition (SET above the internal threshold). GATE2 is  
when the supply voltage goes below the UVLO threshold voltage. GATE2 is shorted  
CC  
CC  
to V  
when EN is low.  
CC  
Device Overvoltage-Threshold-Adjustment Input. Connect SET to an external resistive divider  
SET network to adjust the desired overvoltage disable or overvoltage limit threshold (see the Typical  
Application Circuit and Overvoltage Limiter section).  
Gate-Driver Output. Connect GATE1 to the gate of an external p-channel MOSFET to provide low  
drop reverse voltage protection.  
6
GATE1  
EP  
Exposed Pad. Connect EP to GND.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Voltage Monitoring  
The MAX16010/MAX16011 include undervoltage and over-  
voltage comparators for window detection (see Figure  
1). OUT_ asserts high when the monitored voltage is  
within the selected “window.” OUTA asserts low when the  
+48V  
EN  
V
CC  
R1  
R2  
R3  
IN  
INA+  
OUTA  
OUTB  
monitored voltage falls below the lower (V  
) limit of  
TRIPLOW  
DC-DC  
REGULATOR  
EN  
the window, or OUTB asserts low if the monitored voltage  
exceeds the upper limit (V ). The application in  
TRIPHIGH  
MAX16010  
Figure 1 shows OUT_ enabling the DC-DC converter when  
the monitored voltage is in the selected window.  
INB-  
The resistor values (R1–R3) can be calculated as follows:  
GND EN  
R
TOTAL  
V
= V  
= V  
TRIPLOW  
TH−  
TH+  
R2 + R3  
R
TOTAL  
R3  
Figure 1. MAX16010 Monitor Circuit  
V
TRIPHIGH  
Detailed Description  
where R  
= R1 + R2 + R3.  
TOTAL  
The MAX16010–MAX16014 is a family of ultra-small,  
low-power, overvoltage-protection circuits for high-  
voltage, high-transient systems such as those found in  
automotive, telecom, and industrial applications. These  
devices operate over a wide 5.5V to 72V supply voltage  
range, making them also suitable for other applications  
such as battery stacks, notebook computers, and servers.  
Use the following steps to determine the values for  
R1–R3.  
1) Choose a value for R , the sum of R1, R2, and  
TOTAL  
R3. Because the MAX16010/MAX16011 have very  
high input impedance, R  
can be up to 5MΩ.  
TOTAL  
2) Calculate R3 based on R  
trip point:  
and the desired upper  
TOTAL  
The MAX16010 and MAX16011 offer two independent  
comparators for monitoring both undervoltage and over-  
voltage conditions. These comparators offer open-drain  
outputs capable of handling voltages up to 72V. The  
MAX16010 features complementary enable inputs (EN/  
EN), while the MAX16011 features an active-high enable  
input and a selectable active-high/low OUTB output.  
V
×R  
TH+  
V
TOTAL  
R3 =  
TRIPHIGH  
3) Calculate R2 based on R  
lower trip point:  
, R3, and the desired  
TOTAL  
V
×R  
TH+  
V
TOTAL  
The MAX16012 offers a single comparator and an inde-  
pendent reference output. The reference output can be  
directly connected to either the inverting or noninverting  
input to select the comparator output logic.  
R3 =  
TRIPHIGH  
4) Calculate R1 based on R  
, R3, and R2:  
TOTAL  
R1 = R  
- R2 - R3  
TOTAL  
The MAX16013 and MAX16014 are overvoltage-  
protection circuits capable of driving two p-channel  
MOSFETs to prevent reverse-battery and overvoltage  
conditions. One MOSFET (P1) eliminates the need for  
external diodes, thus minimizing the input voltage drop.  
While the second MOSFET (P2) isolates the load or  
regulates the output voltage during an overvoltage condi-  
tion. The MAX16014 keeps the MOSFET (P2) latched off  
until the input power is cycled.  
The MAX16012 has both inputs of the comparator avail-  
able with an integrated 1.30V reference (REF). When  
the voltage at IN+ is greater than the voltage at IN-, OUT  
goes high. When the voltage at IN- is greater than the  
voltage at IN+, OUT goes low. Connect REF to IN+ or  
IN- to set the reference-voltage value. Use an external  
resistive divider to set the monitored voltage threshold.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
V
BATT  
P1  
P2  
V
BATT  
V
CC  
R1  
R
PULLUP  
OUT  
IN+  
V
CC  
GATE1  
GATE2  
SET  
R2  
MAX16012  
REF  
OUT  
R1  
R2  
MAX16013  
IN-  
GND  
GND  
Figure 2. Typical Operating Circuit for the MAX16012  
Figure 3. Overvoltage Limiter Protection  
The MAX16013/MAX16014 can be configured as an  
overvoltage switch controller to turn on/off a load (see  
the Typical Application Circuit). When the programmed  
overvoltage threshold is tripped, the internal fast compara-  
tor turns off the external p-channel MOSFET (P2), pulling  
Hysteresis  
Hysteresis adds noise immunity to the voltage monitors  
and prevents oscillation due to repeated triggering when  
the monitored voltage is near the threshold trip voltage.  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage (V  
falling input voltage (V ). These thresholds are shown  
GATE2 to V  
to disconnect the power source from the  
CC  
) and one for the  
TH+  
load. When the monitored voltage goes below the adjusted  
overvoltage threshold, the MAX16013 enhances GATE2,  
reconnecting the load to the power source (toggle ENABLE  
on the MAX16014 to reconnect the load). The MAX16013  
can be configured as an overvoltage-limiter switch by  
TH-  
in Figure 4.  
Enable Inputs (EN or EN)  
The MAX16011 offers an active-high enable input (EN),  
while the MAX16010 offers both an active-high enable  
input (EN) and an active-low enable input (EN). For the  
MAX16010, drive EN low or EN high to force the output  
low. When the device is enabled (EN = high and EN =  
low) the state of OUTA and OUTB depends on the INA+  
and INB- logic states.  
connecting the resistive divider to the load instead of V  
CC  
(Figure 3). See the Overvoltage Limiter section.  
Supply Voltage  
Connect a 5.5V to 72V supply to V  
for proper opera-  
CC  
tion. For noisy environments, bypass V  
to GND with  
CC  
a 0.1μF or greater capacitor. When V  
falls below the  
CC  
UVLO voltage, the following states are present (Table 1).  
V
HYST  
V
TH+  
Table 1. UVLO State (V  
< V  
)
CC  
UVLO  
V
IN+  
V
TH-  
PART  
OUTA  
OUTB  
OUT GATE2  
MAX16010  
Low  
Low  
V
CC  
Low, LOGIC = low  
High, LOGIC = high  
MAX16011  
MAX16012  
Low  
V
OUT  
t
t
t
PROP  
PROP  
PROP  
Low  
0V  
MAX16013  
MAX16014  
High  
Figure 4. Input and Output Waveforms  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
voltage goes below the overvoltage threshold, the  
p-channel MOSFET (P2) is turned on again. This process  
continues to keep the voltage at the output regulated to  
within approximately a 5% window. The output voltage  
is regulated during the overvoltage transients and the  
MOSFET (P2) continues to conduct during the overvolt-  
age event, operating in switched-linear mode.  
Table 2. MAX16011 Output Logic  
LOGIC  
INA+  
INB-  
OUTA  
OUTB  
High  
Impedance  
Low  
> V  
> V  
Low  
TH+  
TH+  
High  
Impedance  
Low  
< V  
< V  
Low  
TH-  
TH-  
Caution must be exercised when operating the MAX16013  
in voltage-limiting mode for long durations due to the  
MOSFET’s power-dissipation consideration (see the  
MOSFET Selection and Operation section).  
High  
Impedance  
High  
Impedance  
High  
High  
> V  
< V  
> V  
TH+  
TH+  
< V  
Low  
Low  
TH-  
TH-  
MOSFET Selection and Operation  
(MAX16013 and MAX16014)  
Most battery-powered applications must include reverse-  
voltage protection. Many times this is implemented with a  
diode in series with the battery. The disadvantage in using  
a diode is the forward-voltage drop of the diode, which  
reduces the operating voltage available to downstream  
For the MAX16011, drive EN low to force OUTA low,  
OUTB low when LOGIC = low, and OUTB high when  
LOGIC = high. When the device is enabled (EN = high),  
the state of OUTA and OUTB depends on the INA+, INB-,  
and LOGIC input (see Table 2).  
For the MAX16013/MAX16014, drive EN low to pull  
GATE2 to V , turning off the p-channel MOSFET (P2).  
CC  
circuits (V  
= V  
- V ). The MAX16013  
DIODE  
When the device is enabled (EN = high), GATE2 is pulled  
LOAD  
BATTERY  
and MAX16014 include high-voltage GATE1 drive circuitry,  
allowing users to replace the high-voltage-drop series diode  
with a low-voltage-drop MOSFET device (as shown in the  
Typical Operating Circuit and Figure 3). The forward-voltage  
to the greater of (V  
external MOSFET (P2).  
- 10V) or GND turning on the  
CC  
Applications Information  
drop is reduced to I  
x R  
of P1. With a suitably  
LOAD  
DS-ON  
Input Transients Clamping  
chosen MOSFET, the voltage drop can be reduced to  
millivolts.  
When the external MOSFET is turned off during an over-  
voltage occurrence, stray inductance in the power path  
may cause voltage ringing to exceed the MAX16013/  
MAX16014 absolute maximum input (V ) supply rating.  
The following techniques are recommended to reduce the  
effect of transients:  
In normal operating mode, internal GATE1 output  
circuitry enhances P1 to a 10V gate-to-source (V ) for 11V  
GS  
CC  
< V  
< 72V. The constant 10V enhancement ensures P1  
CC  
operates in a low R  
mode, but the gate-source  
DS-ON  
junction is not overstressed during high-battery-voltage  
applications or transients (many MOSFET devices specify  
● Minimize stray inductance in the power path using  
wide traces, and minimize loop area including the  
power traces and the return ground path.  
a ±20V V  
absolute maximum). As V  
drops below  
GS  
CC  
10V, GATE1 is limited to GND, reducing P1 V  
to V  
CC  
GS  
- GND. In normal operation, the P1 power dissipation is  
● Add a zener diode or transient voltage suppresser  
very low:  
(TVS) rated below V  
(Figure 3).  
absolute maximum rating  
CC  
2
P1 = I  
x R  
DS-ON  
LOAD  
During reverse-battery applications, GATE1 is limited to  
GND and the P1 gate-source junction is reverse biased.  
P1 is turned off and neither the MAX16013/MAX16014  
nor the load circuitry is exposed to the reverse-battery  
voltage. Care should be taken to place P1 (and its internal  
drain-to-source diode) in the correct orientation for proper  
reverse-battery operation.  
Overvoltage Limiter  
When operating in overvoltage-limiter mode, the MAX16013  
drives the external p-channel MOSFET (P2), resulting in  
the external MOSFET operating as a voltage regulator.  
During normal operation, GATE2 is pulled to the greater  
of (V  
- 10V) or GND. The external MOSFET’s drain  
CC  
voltage is monitored through a resistor-divider between  
the P2 output and SET. When the output voltage rises  
above the adjusted overvoltage threshold, an internal  
P2 protects the load from input overvoltage conditions.  
During normal operating modes (the monitored voltage  
is below the adjusted overvoltage threshold), internal  
comparator pulls GATE2 to V . When the monitored  
CC  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
GATE2 output circuitry enhances P2 to a 10V gate-to-  
Adding External Pullup Resistors  
It may be necessary to add an external resistor from V  
source (V ) for 11V < V  
< 72V. The constant 10V  
GS  
CC  
CC  
enhancement ensures P2 operates in a low R  
DS-ON  
to GATE1 to provide enough additional pullup capability  
when the GATE1 input goes high. The GATE_ output  
can only source up to 1μA current. If the source current  
is less than 1μA, no external resistor may be necessary.  
However, to improve the pullup capability of the GATE_  
output when it goes high, connect an external resistor  
mode, but the gate-to-source junction is not overstressed  
during high-battery-voltage applications (many pFET  
devices specify a ±20V V  
absolute maximum). As V  
GS  
CC  
drops below 10V, GATE2 is limited to GND, reducing P2  
to V - GND. In normal operation, the P2 power  
V
GS  
CC  
dissipation is very low:  
between V  
and the GATE_. The application shows a  
CC  
2MΩ resistor, which is large enough not to impact the  
sinking capability of the GATE_ (during normal opera-  
tion), while providing enough pullup during an overvoltage  
P2 = I  
2 x R  
LOAD  
DS-ON  
During overvoltage conditions, P2 is either turned com-  
pletely off (overvoltage-switch mode) or cycled off-on-off  
(voltage-limiter mode). Care should be taken to place  
P2 (and its internal drain-to-source diode) in the correct  
orientation for proper overvoltage-protection opera-  
tion. During voltage-limiter mode, the drain of P2 is  
limited to the adjusted overvoltage threshold, while the  
event. With an 11V (worst case) V -to-gate clamp volt-  
CC  
age and a sinking current of 75μA, the smallest resistor  
should be 11V/75μA, or about 147kΩ. However, since the  
GATE_ is typically low most of the time, a higher value  
should be used to reduce overall power consumption.  
battery (V ) voltage rises. During prolonged overvoltage  
CC  
events, P2 temperature can increase rapidly due to the  
high power dissipation. The power dissipated by P2 is:  
P2 = V  
x I  
LOAD  
DS-P2  
= (V  
- V ) x I  
OV-ADJUSTED LOAD  
CC  
where V  
~ V  
and V  
is the  
CC  
BATTERY  
OV-ADJUSTED  
desired load-limit voltage. For prolonged overvoltage  
events with high P2 power dissipation, proper heatsinking  
is required.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Functional Diagrams  
V
CC  
V
CC  
REGULATOR  
REGULATOR  
~4V  
~4V  
MAX16010  
MAX16011  
OUTA  
OUTA  
INA+  
INA+  
HYST  
HYST  
OUTB  
OUTB  
INB-  
INB-  
HYST  
HYST  
1.23V  
1.23V  
ENABLE  
CIRCUITRY  
OUTB  
LOGIC  
ENABLE CIRCUITRY  
EN  
LOGIC  
GND  
EN  
GND  
EN  
Figure 5. MAX16010 Functional Diagram  
Figure 6. MAX16011 Functional Diagram  
V
CC  
V
CC  
REGULATOR  
~4V  
SET  
MAX16012  
GATE2  
OUT  
IN-  
HYST  
1.23V  
IN+  
REF  
GATE1  
MAX16013  
MAX16014  
1.30V  
ENABLE  
CIRCUITRY  
LATCH  
CLEAR  
GND  
GND  
EN  
Figure 7. MAX16012 Functional Diagram  
Figure 8. MAX16013/MAX16014 Functional Diagram  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Pin Configurations  
TOP VIEW  
INA+ OUTA EN  
INB-  
5
INA+ OUTA EN  
INB-  
5
8
7
6
8
7
6
MAX16010  
MAX16011  
1
2
3
4
1
2
3
4
V
GND EN OUTB  
V
GND LOGIC OUTB  
CC  
CC  
TDFN (3mm x 3mm)  
TDFN (3mm x 3mm)  
IN+  
REF  
5
IN-  
GATE1  
6
EN  
5
SET  
4
6
4
MAX16013  
MAX16014  
MAX16012  
1
2
3
1
2
3
V
CC  
GND  
OUT  
V
CC  
GND  
GATE2  
TDFN (3mm x 3mm)  
TDFN (3mm x 3mm)  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
6 TDFN  
PACKAGE CODE  
T633-2  
DOCUMENT NO.  
21-0137  
8 TDFN  
T833-2  
21-0137  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX16010–MAX16014  
Ultra-Small, Overvoltage Protection/  
Detection Circuits  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
4
6/05  
12/05  
1/07  
Initial release  
Removed future product designation for MAX16010/MAX16011  
Edited Figure 7  
1, 12  
1, 10, 12  
6, 12  
12/07  
9/08  
Fixed text in Voltage Monitoring section and updated Package Outline  
Revised Figures 6 and 8.  
10  
No /V OPNs in Ordering Information; deleted automotive reference from  
General Description and Applications sections; deleted Load Dump section  
5
2/15  
1, 8  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
12  

相关型号:

MAX16010TAB-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16010TAC

Power Management Circuit, BICMOS, PDSO8
MAXIM

MAX16010TAC+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, TDFN-8
MAXIM

MAX16010TAC+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX16010TAC-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16010_08

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011TA-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011TAA+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX16011TAA-T

Ultra-Small, Overvoltage Protection/Detection Circuits
MAXIM

MAX16011TAB

Power Management Circuit, BICMOS, PDSO8
MAXIM

MAX16011TAB+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, TDFN-8
MAXIM