MAX1286ETA+ [MAXIM]

暂无描述;
MAX1286ETA+
型号: MAX1286ETA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总15页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2231; Rev 0; 10/01  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1286–MAX1289 are low-cost, micropower, seri-  
al output 12-bit analog-to-digital converters (ADCs)  
available in a tiny 8-pin SOT23. The MAX1286/MAX1288  
op e ra te with a s ing le + 5V s up p ly. The MAX1287/  
MAX1289 op e ra te with a s ing le + 3V s up p ly. The  
devices feature a successive-approximation ADC, auto-  
matic shutdown, fast wakeup (1.4µs), and a high-speed  
3-wire interface. Power consumption is only 0.5mW  
Single-Supply Operation  
+3V (MAX1287/MAX1289)  
+5V (MAX1286/MAX1288)  
Autoshutdown Between Conversions  
Low Power  
245µA at 150ksps  
150µA at 100ksps  
15µA at 10ksps  
2µA at 1ksps  
(V  
= + 2.7V) a t the ma ximum s a mp ling ra te of  
DD  
150ksps. AutoShutdown™ (0.2µA) between conversions  
re s ults in re d uc e d p owe r c ons ump tion a t s lowe r  
throug hp ut ra te s . The MAX1286/MAX1287 p rovid e  
2-channel, single-ended operations and accept input  
0.2µA in Shutdown  
True-Differential Track/Hold, 150kHz Sampling Rate  
signals from 0 to V . The MAX1288/MAX1289 accept  
Software-Configurable Unipolar/Bipolar  
Conversion (MAX1288/MAX1289 Only)  
SPI/QSPI/MICROWIRE–Compatible Interface for  
DSPs and Processors  
REF  
true-differential inputs ranging from 0 to V  
. Data is  
REF  
accessed using an external clock through the 3-wire  
SPI™/QSPI™/MICROWIRE™–compatible serial inter-  
face. Excellent dynamic performance, low power, ease  
of use, and small package size make these converters  
ideal for portable battery-powered data-acquisition  
applications, and for other applications that demand low  
power consumption and minimal space.  
Internal Conversion Clock  
8-Pin SOT23 Package  
Ap p lic a t io n s  
Ord e rin g In fo rm a t io n  
Low-Power Data Acquisition  
TEMP.  
PIN-  
TOP  
PART  
Portable Temperature Monitors  
Flowmeters  
RANGE  
PACKAGE  
MARK  
MAX1286EKA-T  
MAX1287EKA-T  
MAX1288EKA-T  
MAX1289EKA-T  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
AAFA  
AAEW  
AAFC  
AAEY  
Touch Screens  
P in Co n fig u ra t io n  
TOP VIEW  
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CNVST  
REF  
DD  
AIN1 (AIN+)  
AIN2 (AIN-)  
GND  
MAX1286  
MAX1287  
MAX1288  
MAX1289  
SOT23  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI and QSPI are trademarks of Motorola, Inc.  
( ) ARE FOR THE MAX1288/MAX1289  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
CNVST, SCLK, DOUT to GND....................-0.3V to (V + 0.3V)  
REF, AIN1 (AIN+), AIN2 (AIN-) to GND......-0.3V to (V + 0.3V)  
DD  
DD  
Maximum Current into Any Pin............................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23 (derate 9.70mW/°C above T = +70°C) ...696mW  
A
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +3.6V, V  
= +2.5V for MAX1287/MAX1289, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1286/MAX1288,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1288/MAX1289. T = T  
to T  
unless otherwise  
SCLK  
A
MIN  
MAX,  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
±1.0  
±1.0  
±4  
DNL  
No missing codes over temperature  
LSB  
±2  
LSB  
Gain Error (Note 3)  
±2  
±4  
LSB  
Gain Temperature Coefficient  
Offset Temperature Coefficient  
Channel-to-Channel Offset Matching  
Channel-to-Channel Gain Matching  
Input Common-Mode Rejection  
±0.4  
±0.4  
±0.1  
±0.1  
±0.1  
ppm/°C  
ppm/°C  
LSB  
LSB  
CMR  
V
CM  
= 0V to V ; zero scale input  
mV  
DD  
DYNAMIC SPECIFICATIONS: (f (sine-wave) = 10kHz, V = 4.096Vp-p for MAX1086/MAX1088 or V = 2.5V  
IN  
IN  
IN  
p-p  
for MAX1087/MAX1089, 150ksps, f  
= 8MHz, (50% duty cycle) AIN- = GND for MAX1088/MAX1089)  
SCLK  
Signal to Noise Plus Distortion  
SINAD  
70  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time  
SFDR  
80  
1
dB  
MHz  
kHz  
-3dB point  
SINAD > 56dB  
100  
t
Does not include t  
3.7  
1.4  
µs  
µs  
CONV  
ACQ  
T/H Acquisition Time  
Aperture Delay  
t
ACQ  
30  
ns  
Aperture Jitter  
<50  
ps  
Maximum Serial Clock Frequency  
Duty Cycle  
f
8
MHz  
%
SCLK  
30  
70  
ANALOG INPUT  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 4)  
V
-V  
/2  
V
/2  
REF  
REF  
2
_______________________________________________________________________________________  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V, V  
= +2.5V for MAX1287/MAX1289, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1286/MAX1288,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1288/MAX1289. T = T  
to T  
unless otherwise  
SCLK  
A
MIN  
MAX,  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
Input Leakage Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±0.01  
34  
MAX  
UNITS  
µA  
Channel not selected or conversion stopped  
±1  
Input Capacitance  
pF  
EXTERNAL REFERENCE INPUT  
V
DD  
Input Voltage Range  
V
REF  
1.0  
V
+50mV  
V
= +2.5V at 150ksps  
16  
26  
30  
45  
±1  
REF  
Input Current  
I
V
REF  
= +4.096V at 150ksps  
µA  
REF  
Acquisition/Between conversions  
DIGITAL INPUTS/OUTPUTS (SCLK, CNVST, DOUT)  
±0.01  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
V
0.8  
V
V
IL  
V
IH  
V
-1  
DD  
I
L
±0.01  
15  
±1.0  
µA  
pF  
V
C
IN  
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
Output Low Voltage  
Output High Voltage  
V
OL  
I
V
SINK  
V
-0.5  
DD  
V
OH  
I
= 1.5mA  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
CNVST = GND  
CNVST = GND  
±0.05  
15  
±10  
µA  
pF  
C
OUT  
MAX1086/MAX1088  
MAX1087/MAX1089  
4.75  
2.7  
5.0  
3.0  
245  
150  
15  
5.25  
3.6  
Positive Supply Voltage  
Positive Supply Current  
Positive Supply Rejection  
V
V
DD  
f
=150ksps  
=100ksps  
=10ksps  
=1ksps  
350  
SAMPLE  
f
SAMPLE  
V
= +3V  
= +5V  
DD  
f
SAMPLE  
f
2
SAMPLE  
f
=150ksps  
=100ksps  
=10ksps  
=1ksps  
320  
215  
22  
400  
I
DD  
µA  
mV  
SAMPLE  
f
SAMPLE  
V
DD  
f
SAMPLE  
f
2.5  
0.2  
±0.3  
±0.4  
SAMPLE  
Shutdown  
5
V
DD  
= 5V ±5%; full-scale input  
±1.0  
±1.2  
PSR  
V
DD  
= +2.7V to +3.6V; full-scale input  
_______________________________________________________________________________________  
3
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
TIMING CHARACTERISTICS (Figures 1, 2, and 5)  
(V = +2.7V to +3.6V, V  
= +2.5V, 0.1µF capacitor at REF, or V = +4.75V to +5.25V for MAX1286/MAX1288, V = +4.096V,  
DD  
REF  
DD  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289. T = T  
to T unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETERS  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to DOUT Transition  
SCLK Rise to DOUT Disable  
CNVST Rise to DOUT Enable  
CNVST Fall to MSB Valid  
CNVST Pulse Width  
SYMBOL  
CONDITIONS  
MIN  
38  
TYP  
MAX  
UNITS  
ns  
t
CH  
t
38  
ns  
CL  
t
C
C
C
C
= 30pF  
= 30pF  
= 30pF  
= 30pF  
60  
500  
80  
ns  
DOT  
DOD  
LOAD  
LOAD  
LOAD  
LOAD  
t
100  
30  
ns  
t
ns  
DOE  
t
3.7  
µs  
CONV  
t
ns  
CSW  
Note 1: Unipolar mode.  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Offset nulled.  
Note 4: The absolute input voltage range for the analog inputs is from GND to V  
.
DD  
• • •  
CNVST  
SCLK  
t
CH  
t
CSW  
t
CL  
• • •  
t
t
DOT  
t
DOD  
DOE  
HIGH-Z  
HIGH-Z  
DOUT  
• • •  
Figure 1. Detailed Serial-Interface Timing Sequence  
V
DD  
6kΩ  
DOUT  
DOUT  
6kΩ  
C
L
C
L
GND  
a) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
GND  
b) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
OH OL  
OH  
OH  
OL OH  
OL  
OL  
Figure 2. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
4
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V  
DD  
= +3V, V  
= +2.5V for MAX1287/MAX1289. V  
= +5V, V  
= +4.096V for MAX1286/MAX1288; 0.1µF capacitor at REF,  
REF  
DD  
REF  
f
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289, T = +25°C, unless otherwise noted.)  
A
SCLK  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
MAX1286/MAX1288  
MAX1287/MAX1289  
MAX1287/MAX1289  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
0.8  
1000  
100  
10  
1
1000  
100  
10  
MAX1286/MAX1288  
MAX1287/MAX1289  
MAX1286/MAX1288  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
0
0.1  
100  
1
100  
1
0
0.1  
10  
1000  
0
0.1  
10  
1000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
SAMPLING RATE (ksps)  
SAMPLING RATE (ksps)  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
430  
380  
300  
MAX1286  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
250  
200  
150  
100  
50  
380  
330  
280  
230  
180  
0
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (°C)  
V
DD  
V
DD  
_______________________________________________________________________________________  
5
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +3V, V  
= +2.5V for MAX1287/MAX1284. V  
= +5V, V  
= +4.096V for MAX1286/MAX1288; 0.1µF capacitor at REF,  
REF  
DD  
REF  
f
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289, T = +25°C, unless otherwise noted.)  
A
SCLK  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
300  
1.00  
0.80  
1.0  
0.8  
250  
200  
150  
100  
50  
0.60  
0.6  
0.40  
0.4  
0.2  
0.20  
0.00  
0
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
DD  
GAIN ERROR  
GAIN ERROR  
vs. TEMPERATURE  
FFT PLOT (SINAD)  
vs. SUPPLY VOLTAGE  
2.0  
1.6  
2.0  
20  
0
1.6  
1.2  
1.2  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0.8  
0.8  
0.4  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0
15k  
30k  
45k  
60k  
TEMPERATURE (°C)  
V
DD  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
P in De s c rip t io n  
NAME  
PIN  
FUNCTION  
MAX1286 MAX1288  
MAX1287 MAX1289  
Positive Supply Voltage. +2.7V to +3.6V (MAX1287/MAX1289); +4.75V to +5.25V  
(MAX1286/MAX1288). Bypass with a 0.1µF capacitor to GND.  
1
2
3
4
5
V
V
DD  
DD  
AIN1  
AIN2  
GND  
REF  
AIN+  
AIN-  
GND  
REF  
Analog Input Channel 1 (MAX1286/MAX1287) or Positive Analog Input (MAX1288/MAX1289)  
Analog Input Channel 2 (MAX1286/MAX1287) or Negative Analog Input (MAX1288/MAX1289)  
Ground  
External Reference Voltage Input. Sets the analog voltage range. Bypass with a 0.1µF  
capacitor to GND.  
Conversion Start. A rising edge powers up the IC and places it in track mode. At the falling  
edge of CNVST, the device enters hold mode and begins conversion. CNVST also selects the  
input channel (MAX1286/MAX1287) or input polarity (MAX1288/MAX1289).  
6
CNVST  
CNVST  
Serial Data Output. DOUT transitions the falling edge of SCLK. DOUT goes low at the start of a  
conversion and presents the MSB at the completion of a conversion. DOUT goes high  
impedance once data has been fully clocked out.  
7
8
DOUT  
SCLK  
DOUT  
SCLK  
Serial Clock Input. Clocks out data at DOUT MSB first.  
The serial interface provides easy interfacing to micro-  
De t a ile d De s c rip t io n  
processors (µPs). Figure 3 shows the simplified internal  
structure for the MAX1286/MAX1287 (2 channels, sin-  
gle ended) and the MAX1288/MAX1289 (1 channel,  
true differential).  
The MAX1286MAX1289 ADCs us e a s uc c e s s ive -  
approximation conversion (SAR) technique and an on-  
c hip tra c k-a nd -hold (T/H) s truc ture to c onve rt a n  
analog signal into a 12-bit digital result.  
Tru e -Diffe re n t ia l An a lo g In p u t T/H  
The e q uiva le nt c irc uit of Fig ure 4 s hows the  
MAX1286MAX1289sinput architecture, which is com-  
posed of a T/H, input multiplexer, comparator, and  
switched-capacitor DAC. The T/H enters its tracking  
mode on the rising edge of CNVST. The positive input  
capacitor is connected to AIN1 or AIN2 (MAX1286/  
MAX1287) or AIN+ (MAX1288/MAX1289). The negative  
inp ut c a p a c itor is c onne c te d to GND (MAX1286/  
MAX1287) or AIN- (MAX1288/MAX1289). The T/H  
enters its hold mode on the falling edge of CNVST and  
the difference between the sampled positive and nega-  
tive input voltages is converted. The time required for  
the T/H to acquire an input signal is determined by how  
quickly its input capacitance is charged. If the input  
signals source impedance is high, the acquisition time  
lengthens, and CNVST must be held high for a longer  
MAX1286–MAX1289  
OSCILLATOR  
CNVST  
SCLK  
INPUT SHIFT  
REGISTER  
CONTROL  
AIN1  
(AIN+)  
12-BIT  
SAR  
ADC  
DOUT  
T/H  
AIN2  
(AIN-)  
REF  
period of time. The acquisition time, t  
, is the maxi-  
ACQ  
mum time needed for the signal to be acquired, plus  
the power-up time. It is calculated by the following  
equation:  
( ) ARE FOR MAX1288/MAX1289  
Figure 3. Simplified Functional Diagram  
t
= 9 x (R + R ) x 24pF + t  
S IN PWR  
ACQ  
_______________________________________________________________________________________  
7
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
If all 12 bits of data are not clocked out before CNVST  
is driven high, AIN2 is selected for the next conversion.  
REF  
GND  
DAC  
AIN2  
AIN1 (AIN+)  
S e le c t in g Un ip o la r o r Bip o la r Co n ve rs io n s  
(MAX1 2 8 8 /MAX1 2 8 9 )  
Initia te true -d iffe re ntia l c onve rs ions with the  
MAX1288/MAX1289s unip ola r a nd b ip ola r mod e s ,  
using the CNVST pin. AIN+ and AIN- are sampled at  
the falling edge of CNVST. In unipolar mode, AIN+ can  
CIN+  
CIN-  
COMPARATOR  
+
HOLD  
-
e xc e e d AIN- b y up to V  
. The outp ut forma t is  
REF  
RIN-  
RIN+  
HOLD  
GND (AIN-)  
s tra ig ht b ina ry. In b ip ola r mod e , e ithe r inp ut c a n  
exceed the other by up to V /2. The output format is  
REF  
HOLD  
/2  
twos complement.  
TRACK  
V
DD  
Note: In both modes, AIN+ and AIN- must not exceed  
( ) ARE FOR MAX1288/MAX1289  
V
DD  
by more than 50mV or be lower than GND by more  
than 50mV.  
Figure 4. Equivalent Input Circuit  
If unipolar mode is desired (Figure 5a), drive CNVST  
high to power up the ADC and place the T/H in track  
mod e with AIN+ a nd AIN- c onne c te d to the inp ut  
where R = 1.5k, R is the source impedance of the  
IN  
S
input signal, and t  
device.  
= 1µs is the power-up time of the  
PWR  
capacitors. Hold CNVST high for t  
to fully acquire  
ACQ  
the signal. Drive CNVST low to place the T/H in hold  
mode. The ADC then performs a conversion and shut-  
down automatically. The MSB is available at DOUT  
after 3.7µs. Data can then be clocked out using SCLK.  
Clock out all 12 bits of data before driving CNVST high  
for the next conversion. If all 12 bits of data are not  
clocked out before CNVST is driven high, bipolar mode  
is selected for the next conversion.  
Note: t  
is never less than 1.4µs and any source  
ACQ  
impedance below 300does not significantly affect the  
ADCs AC performance. A high-impedance source can  
be accommodated either by lengthening t  
or by  
ACQ  
placing a 1µF capacitor between the positive and neg-  
ative analog inputs.  
S e le c t in g AIN1 o r AIN2  
(MAX1 2 8 6 /MAX1 2 8 7 )  
Select one of the MAX1286/MAX1287stwo positive  
input channels using the CNVST pin. If AIN1 is desired  
(Figure 5a), drive CNVST high to power up the ADC  
and place the T/H in track mode with AIN1 connected  
to the positive input capacitor. Hold CNVST high for  
If bipolar mode is desired (Figure 5b), drive CNVST  
high for at least 30ns. Next, drive it low for at least 30ns  
and then high again. This places the T/H in track mode  
with AIN+ and AIN- connected to the input capacitors.  
Now hold CNVST high for t  
to fully acquire the sig-  
ACQ  
nal. Drive CNVST low to place the T/H in hold mode.  
The ADC then performs a conversion and shutdown  
a utoma tic a lly. The MSB is a va ila b le a t DOUT a fte r  
3.7µs. Data can then be clocked out using SCLK. If all  
12 bits of data are not clocked out before CNVST is dri-  
ven high, bipolar mode is selected for the next conver-  
sion.  
t
to fully acquire the signal. Drive CNVST low to  
ACQ  
place the T/H in hold mode. The ADC then performs a  
conversion and shutdown automatically. The MSB is  
a va ila b le a t DOUT a fte r 3.7µs . Da ta c a n the n b e  
clocked out using SCLK. Clock out all 12 bits of data  
before driving CNVST high for the next conversion. If all  
12 bits of data are not clocked out before CNVST is dri-  
ven high, AIN2 is selected for the next conversion.  
In p u t Ba n d w id t h  
The ADCs input tracking circuitry has a 1MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
If AIN2 is desired (Figure 5b), drive CNVST high for at  
least 30ns. Next, drive it low for at least 30ns, and then  
high again. This powers up the ADC and places the  
T/H in track mode with AIN2 connected to the positive  
input capacitor. Now hold CNVST high for t  
to fully  
ACQ  
acquire the signal. Drive CNVST low to place the T/H in  
hold mode. The ADC then performs a conversion and  
shutdown automatically. The MSB is available at DOUT  
after 3.7µs. Data can then be clocked out using SCLK.  
8
_______________________________________________________________________________________  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
HIGH-Z  
SAMPLING INSTANT  
Figure 5a. Single Conversion AIN1 vs. GND (MAX1286/MAX1287), Unipolar Mode AIN+ vs. AIN- (MAX1288/MAX1289)  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
HIGH-Z  
SAMPLING INSTANT  
Figure 5b. Single Conversion AIN2 vs. GND (MAX1286/MAX1287), Bipolar Mode AIN+ vs. AIN- (MAX1288/MAX1289)  
An a lo g In p u t P ro t e c t io n  
Internal protection diodes that clamp the analog input to  
and GND allow the analog input pins to swing from  
GND - 0.3V to V + 0.3V without damage. Both inputs  
In t e rn a l Clo c k  
The MAX1286MAX1289 operate from an internal oscilla-  
tor, which is accurate within 10% of the 4MHz specified  
clock rate. This results in a worst-case conversion time of  
3.7µs. The internal clock releases the system micro-  
processor from running the SAR conversion clock and  
allows the conversion results to be read back at the  
processors convenience, at any clock rate from 0 to  
8MHz.  
V
DD  
DD  
must not exceed V  
by more than 50mV or be lower  
DD  
than GND by more than 50mV for accurate conversions.  
If an off-channel analog input voltage exceeds the  
supplies, limit the input current to 2mA.  
_______________________________________________________________________________________  
9
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
Ou t p u t Da t a Fo rm a t  
Figures 5a and 5b illustrate the conversion timing for the  
MAX1286MAX1289. The 12-bit conversion result is out-  
p ut in MSB-firs t forma t. Da ta on DOUT tra ns itions  
on the falling edge of SCLK. All 12 bits must be clocked  
out before CNVST transitions again. For the MAX1288/  
MAX1289, data is straight binary for unipolar mode and  
twos complement for bipolar mode. For the MAX1286/  
MAX1287, data is always straight binary.  
Ex t e rn a l Re fe re n c e  
An external reference is required for the MAX1286–  
MAX1289. Use a 0.1µF bypass capacitor for best per-  
formance. The reference input structure allows a volt-  
age range of +1V to V + 50mV.  
DD  
Conne c tion to Sta nda rd Inte rfa c e s  
The MAX1286MAX1289 feature a serial interface that is  
fully compatible with SPI, QSPI, and MICROWIRE. If a  
serial interface is available, establish the CPUs serial  
interface as a master, so that the CPU generates the seri-  
al clock for the ADCs. Select a clock frequency up to  
8MHz.  
Tra n s fe r Fu n c t io n  
Figure 6 shows the unipolar transfer function for the  
MAX1286MAX1289. Figure 7 shows the bipolar transfer  
function for the MAX1288/MAX1289. Code transitions  
occur halfway between successive-integer LSB values.  
Ho w t o P e rfo rm a Co n ve rs io n  
1) Use a general-purpose I/O line on the CPU to hold  
CNVST low between conversions.  
Ap p lic a t io n s In fo rm a t io n  
2) Drive CNVST hig h to a c q uire AIN1(MAX1286/  
MAX1287) or unipolar mode (MAX1288/MAX1289).  
To acquire AIN2 (MAX1286/MAX1287) or bipolar  
mode (MAX1288/MAX1289), drive CNVST low and  
high again.  
Au t o m a t ic S h u t d o w n Mo d e  
With CNVST low, the MAX1286MAX1289 default to an  
AutoShutd own s ta te (< 0.2µA) a fte r p owe r-up a nd  
between conversions. After detecting a rising edge on  
CNVST, the part powers up, sets DOUT low, and enters  
track mode. After detecting a falling edge on CNVST, the  
device enters hold mode and begins the conversion. A  
maximum of 3.7µs later, the device completes conver-  
sion, enters shutdown, and MSB is available at DOUT.  
3) Hold CNVST high for 1.4µs.  
4) Drive CNVST low and wait approximately 3.7µs for  
conversion to complete. After 3.7µs, the MSB is  
available at DOUT.  
5) Activate SCLK for a minimum of 12 rising clock  
OUTPUT CODE  
MAX1288/MAX1289  
OUTPUT CODE  
MAX1286–  
MAX1289  
V
2
REF  
FS  
=
011 . . . 111  
011 . . . 110  
FULL-SCALE  
TRANSITION  
11 . . . 111  
ZS = 0  
-FS =  
11 . . . 110  
11 . . . 101  
-V  
2
REF  
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
4096  
REF  
1LSB =  
FS = V  
REF  
111 . . . 111  
111 . . . 110  
111 . . . 101  
ZS = GND  
V
REF  
1LSB =  
4096  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0
- FS  
+FS - 1LSB  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
*V  
COM  
V
/ 2 *V = (AIN+) - (AIN-)  
REF IN  
Figure 7. Bipolar Transfer Function  
10 ______________________________________________________________________________________  
Figure 6. Unipolar Transfer Function  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
edges. DOUT transitions on SCLKs falling edge  
and is available in MSB-first format. Observe the  
SCLK to DOUT valid timing characteristic. Clock  
data into the µP on SCLKs rising edge.  
SCLKs ris ing e d g e . The firs t 12 b its a re the d a ta .  
DOUT then goes high impedance (Figure 9b).  
P IC1 6 a n d S S P Mo d u le a n d  
P IC1 7 In t e rfa c e  
The MAX1286MAX1289 a re c omp a tib le with a  
PIC16/PIC17 µC, using the synchronous serial port  
(SSP) module  
S P I a n d MICROWIRE In t e rfa c e  
When using an SPI (Figure 8a) or MICROWIRE inter-  
face (Figures 8a and 8b), set CPOL = CPHA = 0. Two  
8-bit readings are necessary to obtain the entire 12-bit  
result from the ADC. DOUT data transitions on the seri-  
al clocks falling edge and is clocked into the µP on  
SCLKs rising edge. The first 8-bit data stream contains  
the first 8-bits of DOUT starting with the MSB. The sec-  
ond 8-bit data stream contains the remaining four result  
bits. DOUT then goes high impedance.  
To establish SPI communication, connect the controller  
as shown in Figure 10a and configure the PIC16/PIC17  
as system master. This is done by initializing its syn-  
chronous serial port control register (SSPCON) and  
synchronous serial port status register (SSPSTAT) to  
the bit patterns shown in Tables 1 and 2.  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data  
to be synchronously transmitted and received simulta-  
neously. Two consecutive 8-bit readings (Figure 10b)  
are necessary to obtain the entire 12-bit result from the  
ADC. DOUT data transitions on the serial clocks falling  
edge and is clocked into the µC on SCLKs rising edge.  
The first 8-bit data stream contains the first 8 data bits  
starting with the MSB. The second data stream con-  
tains the remaining bits, D3 through D0.  
QS P I In t e rfa c e  
Using the high-speed QSPI interface (Figure 9a) with  
CPOL = 0 and CPHA = 0, the MAX1286MAX1289  
support a maximum f  
of 8MHz. One 12- to 16-bit  
SCLK  
reading is necessary to obtain the entire 12-bit result  
from the ADC. DOUT da ta tra nsitions on the se ria l  
c loc ks fa lling e d g e a nd is c loc ke d into the µP on  
I/O  
SCK  
CNVST  
SCLK  
DOUT  
I/O  
SK  
SI  
CNVST  
SCLK  
DOUT  
MISO  
V
DD  
SPI  
MICROWIRE  
MAX1286–  
MAX1289  
MAX1286–  
MAX1289  
SS  
Figure 8a. SPI Connections  
Figure 8b. MICROWIRE Connections  
Table 1. Detailed SSPCON Register Content  
MAX1286MAX1289  
CONTROL BIT  
SYNCHRONOUS SERIAL PORT CONTROL REGISTER (SSPCON)  
SETTINGS  
WCOL  
Bit 7  
Bit 6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detect Bit  
Synchronous Serial Port Enable Bit:  
SSPEN  
Bit 5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial port pins.  
CKP  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial Port Mode Select Bit. Sets SPI master mode and selects  
F
CLK  
= f  
/ 16.  
OSC  
______________________________________________________________________________________ 11  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
CNVST  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
8
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
LSB  
SAMPLING INSTANT  
Figure 8c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
one starpoint (Figure 11), connecting the two ground  
systems (analog and digital). For lowest-noise opera-  
tion, ensure the ground return to the star grounds  
power supply is low impedance and as short as possi-  
ble. Route digital signals far away from sensitive analog  
and reference inputs.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For best performance, use printed circuit (PC) boards.  
Wire-wrap configurations are not recommended since  
the layout should ensure proper separation of analog  
and digital traces. Do not run analog and digital lines  
parallel to each other, and do not lay out digital signal  
paths underneath the ADC package. Use separate  
analog and digital PC board ground sections with only  
High-frequency noise in the power supply (V ) may  
DD  
degrade the performance of the ADCs fast comparator.  
Bypass V  
to the star ground with a 0.1µF capacitor,  
DD  
located as close as possible to the MAX1286MAX1289s’  
power-supply pin. Minimize capacitor lead length for best  
supply-noise rejection. Add an attenuation resistor (5) if  
the power supply is extremely noisy.  
CS  
SCK  
CNVST  
SCLK  
DOUT  
MISO  
V
DD  
QSPI  
MAX1286–  
MAX1289  
SS  
Figure 9a. QSPI Connections  
Table 2. Detailed SSPSTAT Register Content  
MAX1286MAX1289  
CONTROL BIT  
SYNCHRONOUS SERIAL STATUS REGISTER (SSPSTAT)  
SETTINGS  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data  
output time.  
SMP  
CKE  
Bit 7  
Bit 6  
0
SPI Clock Edge Select Bit. Data is transmitted on the rising edge of the serial  
clock.  
1
D/A  
P
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
12 ______________________________________________________________________________________  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
CNVST  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SAMPLING INSTANT  
Figure 9b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
De fin it io n s  
V
DD  
V
DD  
In t e g ra l No n lin e a rit y  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The sta-  
tic linearity parameters for the MAX1286MAX1289 are  
measured using the end-point method.  
SCLK  
DOUT  
SCK  
SDI  
I/O  
CNVST  
PIC16/PIC17  
MAX1286–  
MAX1289  
Diffe re n t ia l No n lin e a rit y  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
GND  
GND  
Figure 10a. SPI Interface Connection for a PIC16/PIC17 Controller  
CNVST  
1ST BYTE READ  
2ND BYTE READ  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SAMPLING INSTANT  
Figure 10b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
______________________________________________________________________________________ 13  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
S ig n a l-t o -No is e P lu s Dis t o rt io n  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to RMS  
equivalent of all other ADC output signals.  
SUPPLIES  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
+5V OR  
+3V  
V
LOGIC  
= +5V  
OR +3V  
GND  
Effe c t ive Nu m b e r o f Bit s  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
R* = 5Ω  
0.1µF  
ENOB = (SINAD - 1.76) / 6.02  
GND  
V
DD  
+5V OR DGND  
+3V  
To t a l Ha rm o n ic Dis t o rt io n  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DIGITAL  
CIRCUITRY  
MAX1286–  
MAX1289  
*OPTIONAL  
V22 + V32 + V42 + V52  
THD = 20 × log  
V
1
Figure 11. Power-Supply and Grounding Connections  
where V is the fundamental amplitude, and V through  
1
2
Ap e rt u re De fin it io n s  
Aperture jitter (t ) is the sample-to-sample variation in  
V are the amplitudes of the 2nd- through 5th-order har-  
5
AJ  
monics.  
the time between the samples. Aperture delay (t ) is  
AD  
S p u rio u s -Fre e Dyn a m ic Ra n g e  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
the time between the rising edge of the sampling clock  
and the instant when an actual sample is taken.  
S ig n a l-t o -No is e Ra t io  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-to-  
digital noise is caused by quantization error only and  
results directly from the ADCs resolution (N bits):  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 6922  
PROCESS: BiCMOS  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
14 ______________________________________________________________________________________  
1 5 0 k s p s , 1 2 -Bit , 2 -Ch a n n e l S in g le -En d e d , a n d  
1 -Ch a n n e l Tru e -Diffe re n t ia l ADCs in S OT2 3  
P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ____________________ 15  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1286ETA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX1286EVKIT

Evaluation Kit and Evaluation System for the MAX1286/MAX1288/MAX1086/MAX1088
MAXIM

MAX1287

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1287EKA

PLASTIC ENCAPSULATED DEVICES
MAXIM

MAX1287EKA+

ADC Single SAR 150ksps 12-bit Serial 8-Pin SOT-23
MAXIM

MAX1287EKA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX1287EKA-T

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1287ETA+T

暂无描述
MAXIM

MAX1288

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1288EKA

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8
MAXIM

MAX1288EKA-T

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1288ETA+

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8,
MAXIM