MAX1288EKA [MAXIM]

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8;
MAX1288EKA
型号: MAX1288EKA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8

信息通信管理 光电二极管 转换器
文件: 总16页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2231; Rev 2; 12/05  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
General Description  
Features  
The MAX1286–MAX1289 are low-cost, micropower, seri-  
al output 12-bit analog-to-digital converters (ADCs)  
available in a tiny 8-pin SOT23 and an 8-pin TDFN. The  
MAX1286/MAX1288 operate with a single +5V supply.  
The MAX1287/MAX1289 operate with a single +3V sup-  
ply. The devices feature a successive-approximation  
ADC, automatic shutdown, fast wakeup (1.4µs), and a  
high-speed 3-wire interface. Power consumption is only  
Single-Supply Operation  
+3V (MAX1287/MAX1289)  
+5V (MAX1286/MAX1288)  
Autoshutdown Between Conversions  
Low Power  
245µA at 150ksps  
150µA at 100ksps  
15µA at 10ksps  
2µA at 1ksps  
0.5mW (V  
= +2.7V) at the maximum sampling rate of  
DD  
150ksps. AutoShutdown™ (0.2µA) between conversions  
results in reduced power consumption at slower  
throughput rates. The MAX1286/MAX1287 provide  
2-channel, single-ended operations and accept input  
0.2µA in Shutdown  
True-Differential Track/Hold, 150kHz Sampling Rate  
Software-Configurable Unipolar/Bipolar  
Conversion (MAX1288/MAX1289 Only)  
SPI-/QSPI-/MICROWIRE-Compatible Interface for  
signals from 0 to V  
. The MAX1288/MAX1289 accept  
REF  
true-differential inputs ranging from 0 to V  
. Data is  
REF  
accessed using an external clock through the 3-wire  
SPI™-/QSPI™-/MICROWIRE™-compatible serial inter-  
face. Excellent dynamic performance, low power, ease  
of use, and small package size make these converters  
ideal for portable battery-powered data-acquisition  
applications, and for other applications that demand low  
power consumption and minimal space.  
DSPs and Processors  
Internal Conversion Clock  
8-Pin SOT23 and 8-Pin TDFN Packages  
Ordering Information  
PKG  
CODE  
PART  
PIN-PACKAGE TOP MARK  
Applications  
MAX1286EKA-T 8 SOT23-8  
MAX1286ETA+T 8 TDFN-8  
MAX1287EKA-T 8 SOT23-8  
MAX1287ETA+T 8 TDFN-8  
MAX1288EKA-T 8 SOT23-8  
MAX1288ETA+T 8 TDFN-8  
MAX1289EKA-T 8 SOT23-8  
MAX1289ETA+T 8 TDFN-8  
+Indicates lead-free packaging.  
AAFA  
+AFR  
AAEW  
+AFN  
AAFC  
+AFT  
AAEY  
+AFP  
K8F-4  
T833-1  
K8F-4  
T833-1  
K8F-4  
T833-1  
K8F-4  
T833-1  
Low-Power Data Acquisition  
Portable Temperature Monitors  
Flowmeters  
Touch Screens  
Note: All devices specified over the -40°C to +85°C operating  
range.  
Pin Configurations  
TOP VIEW  
8
7
6
5
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CNVST  
REF  
DD  
AIN1 (AIN+)  
AIN2 (AIN-)  
GND  
MAX1286–  
MAX1289  
MAX1286–  
MAX1289  
1
2
3
4
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
SOT23  
( ) ARE FOR THE MAX1288/MAX1289  
TDFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
CNVST, SCLK, DOUT to GND....................-0.3V to (V  
REF, AIN1 (AIN+), AIN2 (AIN-) to GND......-0.3V to (V  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
Maximum Current into Any Pin............................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23 (derate 9.70mW/°C above T = +70°C) ...696mW  
A
8-Pin TDFN (derate 18.5mW/°C above T = +70°C)...1481mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V, V  
= +2.5V for MAX1287/MAX1289, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1286/MAX1288,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1288/MAX1289. T = T  
to T  
unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
1.0  
1.0  
4
DNL  
No missing codes over temperature  
LSB  
2
LSB  
Gain Error (Note 3)  
2
4
LSB  
Gain Temperature Coefficient  
Offset Temperature Coefficient  
Channel-to-Channel Offset Matching  
Channel-to-Channel Gain Matching  
Input Common-Mode Rejection  
0.4  
0.4  
0.1  
0.1  
0.1  
ppm/°C  
ppm/°C  
LSB  
LSB  
CMR  
V
= 0V to V ; zero scale input  
mV  
CM  
DD  
DYNAMIC SPECIFICATIONS: (f (sine-wave) = 10kHz, V = 4.096Vp-p for MAX1286/MAX1288 or V = 2.5V  
IN  
IN  
IN  
p-p  
for MAX1287/MAX1289, 150ksps, f  
= 8MHz, (50% duty cycle) AIN- = GND for MAX1288/MAX1289)  
SCLK  
Signal to Noise Plus Distortion  
SINAD  
70  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-82  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time  
SFDR  
86  
1
dB  
MHz  
kHz  
-3dB point  
SINAD > 68dB  
100  
t
Does not include t  
3.7  
1.4  
µs  
µs  
CONV  
ACQ  
T/H Acquisition Time  
Aperture Delay  
t
ACQ  
30  
ns  
Aperture Jitter  
<50  
ps  
Maximum Serial Clock Frequency  
Duty Cycle  
f
8
MHz  
%
SCLK  
30  
70  
ANALOG INPUT  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 4)  
V
-V  
/2  
V
/2  
REF  
REF  
2
_______________________________________________________________________________________  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V, V  
= +2.5V for MAX1287/MAX1289, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1286/MAX1288,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1288/MAX1289. T = T  
to T  
unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
Input Leakage Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.01  
34  
MAX  
UNITS  
µA  
Channel not selected or conversion stopped  
1
Input Capacitance  
pF  
EXTERNAL REFERENCE INPUT  
V
DD  
Input Voltage Range  
V
1.0  
V
REF  
+50mV  
V
V
= +2.5V at 150ksps  
16  
30  
45  
1
REF  
REF  
Input Current  
I
= +4.096V at 150ksps  
26  
µA  
REF  
Acquisition/Between conversions  
DIGITAL INPUTS/OUTPUTS (SCLK, CNVST, DOUT)  
0.01  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
V
0.8  
1.0  
V
V
IL  
V
V
-1  
DD  
IH  
I
0.01  
15  
µA  
pF  
V
L
C
IN  
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
Output Low Voltage  
Output High Voltage  
V
OL  
V
SINK  
V
DD  
-0.5  
V
I
= 1.5mA  
V
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
CNVST = GND  
CNVST = GND  
0.05  
15  
10  
µA  
pF  
C
OUT  
MAX1286/MAX1288  
4.75  
2.7  
5.0  
3.0  
245  
150  
15  
5.25  
3.6  
Positive Supply Voltage  
Positive Supply Current  
Positive Supply Rejection  
V
V
DD  
MAX1287/MAX1289  
f
f
=150ksps  
=100ksps  
=10ksps  
=1ksps  
350  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
V
V
= +3V  
= +5V  
DD  
DD  
f
f
f
f
f
f
2
=150ksps  
=100ksps  
=10ksps  
=1ksps  
320  
215  
22  
400  
I
µA  
mV  
DD  
2.5  
0.2  
0.3  
0.4  
Shutdown  
5
V
V
= 5V 5%; full-scale input  
1.0  
1.2  
DD  
DD  
PSR  
= +2.7V to +3.6V; full-scale input  
_______________________________________________________________________________________  
3
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
TIMING CHARACTERISTICS (Figures 1, 2, and 5)  
(V  
= +2.7V to +3.6V, V  
= +2.5V, 0.1µF capacitor at REF, or V  
= +4.75V to +5.25V for MAX1286/MAX1288, V  
= +4.096V,  
DD  
REF  
DD  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289. T = T  
to T  
unless otherwise  
SCLK  
A
MIN  
MAX,  
noted. Typical values at T = +25°C.)  
A
PARAMETERS  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SYMBOL  
CONDITIONS  
MIN  
38  
TYP  
MAX  
UNITS  
ns  
t
CH  
t
CL  
38  
ns  
SCLK Fall to DOUT Transition  
SCLK Rise to DOUT Disable  
CNVST Rise to DOUT Enable  
CNVST Fall to MSB Valid  
CNVST Pulse Width  
t
C
C
C
C
= 30pF  
= 30pF  
= 30pF  
= 30pF  
60  
500  
80  
ns  
DOT  
DOD  
LOAD  
LOAD  
LOAD  
LOAD  
t
100  
30  
ns  
t
ns  
DOE  
t
3.7  
µs  
CONV  
t
ns  
CSW  
Note 1: Unipolar mode.  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Offset nulled.  
Note 4: The absolute input voltage range for the analog inputs is from GND to V  
.
DD  
• • •  
CNVST  
SCLK  
t
CH  
t
CSW  
t
CL  
• • •  
• • •  
t
t
DOT  
t
DOD  
DOE  
HIGH-Z  
HIGH-Z  
DOUT  
Figure 1. Detailed Serial-Interface Timing Sequence  
V
DD  
6kΩ  
DOUT  
DOUT  
6kΩ  
C
C
L
L
GND  
a) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
GND  
b) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
OH OL  
OH  
OH  
OL OH  
OL  
OL  
Figure 2. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
4
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Typical Operating Characteristics  
(V  
= +3V, V  
= +2.5V for MAX1287/MAX1289. V  
= +5V, V  
= +4.096V for MAX1286/MAX1288; 0.1µF capacitor at REF,  
DD  
REF  
DD  
REF  
f
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289, T = +25°C, unless otherwise noted.)  
SCLK  
A
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
MAX1286/MAX1288  
MAX1287/MAX1289  
MAX1287/MAX1289  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
0.8  
1000  
100  
10  
1000  
100  
10  
MAX1286/MAX1288  
MAX1287/MAX1289  
MAX1286/MAX1288  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
1
0
0.1  
100  
1
100  
1
0
0.1  
10  
1000  
0
0.1  
10  
1000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
OUTPUT CODE  
SAMPLING RATE (ksps)  
SAMPLING RATE (ksps)  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
430  
380  
300  
MAX1286  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
250  
200  
150  
100  
50  
380  
330  
280  
230  
180  
0
-40  
-20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (°C)  
V
V
DD  
DD  
_______________________________________________________________________________________  
5
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Typical Operating Characteristics (continued)  
(V  
= +3V, V  
= +2.5V for MAX1287/MAX1284. V  
= +5V, V  
= +4.096V for MAX1286/MAX1288; 0.1µF capacitor at REF,  
DD  
REF  
DD  
REF  
f
= 8MHz (50% duty cycle); AIN- = GND for MAX1288/MAX1289, T = +25°C, unless otherwise noted.)  
SCLK  
A
SHUTDOWN CURRENT  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
300  
1.00  
0.80  
1.0  
0.8  
250  
200  
150  
100  
50  
0.60  
0.6  
0.40  
0.4  
0.2  
0.20  
0.00  
0
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
-40  
-20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
DD  
GAIN ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. SUPPLY VOLTAGE  
FFT PLOT (SINAD)  
2.0  
1.6  
2.0  
20  
0
1.6  
1.2  
1.2  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0.8  
0.8  
0.4  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0
15k  
30k  
45k  
60k  
TEMPERATURE (°C)  
V
FREQUENCY (Hz)  
DD  
6
_______________________________________________________________________________________  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Pin Description  
NAME  
PIN  
FUNCTION  
MAX1286 MAX1288  
MAX1287 MAX1289  
Positive Supply Voltage. +2.7V to +3.6V (MAX1287/MAX1289); +4.75V to +5.25V  
(MAX1286/MAX1288). Bypass with a 0.1µF capacitor to GND.  
1
2
3
4
5
V
V
DD  
DD  
AIN1  
AIN2  
GND  
REF  
AIN+  
AIN-  
GND  
REF  
Analog Input Channel 1 (MAX1286/MAX1287) or Positive Analog Input (MAX1288/MAX1289)  
Analog Input Channel 2 (MAX1286/MAX1287) or Negative Analog Input (MAX1288/MAX1289)  
Ground  
External Reference Voltage Input. Sets the analog voltage range. Bypass with a 0.1µF  
capacitor to GND.  
Conversion Start. A rising edge powers up the IC and places it in track mode. At the falling  
edge of CNVST, the device enters hold mode and begins conversion. CNVST also selects the  
input channel (MAX1286/MAX1287) or input polarity (MAX1288/MAX1289).  
6
CNVST  
CNVST  
Serial Data Output. DOUT transitions the falling edge of SCLK. DOUT goes low at the start of a  
conversion and presents the MSB at the completion of a conversion. DOUT goes high  
impedance once data has been fully clocked out.  
7
8
DOUT  
SCLK  
DOUT  
SCLK  
Serial Clock Input. Clocks out data at DOUT MSB first.  
The serial interface provides easy interfacing to micro-  
Detailed Description  
processors (µPs). Figure 3 shows the simplified internal  
structure for the MAX1286/MAX1287 (2 channels, sin-  
gle ended) and the MAX1288/MAX1289 (1 channel,  
true differential).  
The MAX1286–MAX1289 ADCs use a successive-  
approximation conversion (SAR) technique and an on-  
chip track-and-hold (T/H) structure to convert an  
analog signal into a 12-bit digital result.  
True-Differential Analog Input T/H  
The equivalent circuit of Figure 4 shows the  
MAX1286–MAX1289s’ input architecture, which is com-  
posed of a T/H, input multiplexer, comparator, and  
switched-capacitor DAC. The T/H enters its tracking  
mode on the rising edge of CNVST. The positive input  
capacitor is connected to AIN1 or AIN2 (MAX1286/  
MAX1287) or AIN+ (MAX1288/MAX1289). The negative  
input capacitor is connected to GND (MAX1286/  
MAX1287) or AIN- (MAX1288/MAX1289). The T/H  
enters its hold mode on the falling edge of CNVST and  
the difference between the sampled positive and nega-  
tive input voltages is converted. The time required for  
the T/H to acquire an input signal is determined by how  
quickly its input capacitance is charged. If the input  
signal’s source impedance is high, the acquisition time  
lengthens, and CNVST must be held high for a longer  
MAX1286–MAX1289  
OSCILLATOR  
CNVST  
SCLK  
INPUT SHIFT  
REGISTER  
CONTROL  
AIN1  
(AIN+)  
12-BIT  
SAR  
ADC  
DOUT  
T/H  
AIN2  
(AIN-)  
REF  
period of time. The acquisition time, t  
, is the maxi-  
ACQ  
mum time needed for the signal to be acquired, plus  
the power-up time. It is calculated by the following  
equation:  
( ) ARE FOR MAX1288/MAX1289  
Figure 3. Simplified Functional Diagram  
t
= 9 x (R + R ) x 24pF + t  
S IN PWR  
ACQ  
_______________________________________________________________________________________  
7
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
If all 12 bits of data are not clocked out before CNVST  
is driven high, AIN2 is selected for the next conversion.  
REF  
GND  
DAC  
AIN2  
AIN1 (AIN+)  
Selecting Unipolar or Bipolar Conversions  
(MAX1288/MAX1289)  
Initiate true-differential conversions with the  
MAX1288/MAX1289s’ unipolar and bipolar modes,  
using the CNVST pin. AIN+ and AIN- are sampled at  
the falling edge of CNVST. In unipolar mode, AIN+ can  
CIN+  
COMPARATOR  
+
HOLD  
-
CIN-  
exceed AIN- by up to V  
. The output format is  
REF  
RIN-  
RIN+  
GND (AIN-)  
straight binary. In bipolar mode, either input can  
exceed the other by up to V  
two’s complement.  
/2. The output format is  
REF  
HOLD  
HOLD  
TRACK  
V
/2  
DD  
Note: In both modes, AIN+ and AIN- must not exceed  
( ) ARE FOR MAX1288/MAX1289  
V
by more than 50mV or be lower than GND by more  
DD  
than 50mV.  
Figure 4. Equivalent Input Circuit  
If unipolar mode is desired (Figure 5a), drive CNVST  
high to power up the ADC and place the T/H in track  
mode with AIN+ and AIN- connected to the input  
where R = 1.5k, R is the source impedance of the  
IN  
S
input signal, and t  
= 1µs is the power-up time of the  
PWR  
capacitors. Hold CNVST high for t  
to fully acquire  
ACQ  
device.  
the signal. Drive CNVST low to place the T/H in hold  
mode. The ADC then performs a conversion and shut-  
down automatically. The MSB is available at DOUT  
after 3.7µs. Data can then be clocked out using SCLK.  
Clock out all 12 bits of data before driving CNVST high  
for the next conversion. If all 12 bits of data are not  
clocked out before CNVST is driven high, bipolar mode  
is selected for the next conversion.  
Note: t  
is never less than 1.4µs and any source  
ACQ  
impedance below 300does not significantly affect the  
ADC’s AC performance. A high-impedance source can  
be accommodated either by lengthening t  
or by  
ACQ  
placing a 1µF capacitor between the positive and neg-  
ative analog inputs.  
Selecting AIN1 or AIN2  
(MAX1286/MAX1287)  
If bipolar mode is desired (Figure 5b), drive CNVST  
high for at least 30ns. Next, drive it low for at least 30ns  
and then high again. This places the T/H in track mode  
with AIN+ and AIN- connected to the input capacitors.  
Select one of the MAX1286/MAX1287s’ two positive  
input channels using the CNVST pin. If AIN1 is desired  
(Figure 5a), drive CNVST high to power up the ADC  
and place the T/H in track mode with AIN1 connected  
to the positive input capacitor. Hold CNVST high for  
Now hold CNVST high for t  
to fully acquire the sig-  
ACQ  
nal. Drive CNVST low to place the T/H in hold mode.  
The ADC then performs a conversion and shutdown  
automatically. The MSB is available at DOUT after  
3.7µs. Data can then be clocked out using SCLK. If all  
12 bits of data are not clocked out before CNVST is dri-  
ven high, bipolar mode is selected for the next conver-  
sion.  
t
to fully acquire the signal. Drive CNVST low to  
ACQ  
place the T/H in hold mode. The ADC then performs a  
conversion and shutdown automatically. The MSB is  
available at DOUT after 3.7µs. Data can then be  
clocked out using SCLK. Clock out all 12 bits of data  
before driving CNVST high for the next conversion. If all  
12 bits of data are not clocked out before CNVST is dri-  
ven high, AIN2 is selected for the next conversion.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 1MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
If AIN2 is desired (Figure 5b), drive CNVST high for at  
least 30ns. Next, drive it low for at least 30ns, and then  
high again. This powers up the ADC and places the  
T/H in track mode with AIN2 connected to the positive  
input capacitor. Now hold CNVST high for t  
to fully  
ACQ  
acquire the signal. Drive CNVST low to place the T/H in  
hold mode. The ADC then performs a conversion and  
shutdown automatically. The MSB is available at DOUT  
after 3.7µs. Data can then be clocked out using SCLK.  
8
_______________________________________________________________________________________  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
HIGH-Z  
SAMPLING INSTANT  
Figure 5a. Single Conversion AIN1 vs. GND (MAX1286/MAX1287), Unipolar Mode AIN+ vs. AIN- (MAX1288/MAX1289)  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
HIGH-Z  
SAMPLING INSTANT  
Figure 5b. Single Conversion AIN2 vs. GND (MAX1286/MAX1287), Bipolar Mode AIN+ vs. AIN- (MAX1288/MAX1289)  
Analog Input Protection  
Internal Clock  
The MAX1286–MAX1289 operate from an internal oscilla-  
tor, which is accurate within 10% of the 4MHz specified  
clock rate. This results in a worst-case conversion time of  
3.7µs. The internal clock releases the system micro-  
processor from running the SAR conversion clock and  
allows the conversion results to be read back at the  
processor’s convenience, at any clock rate from 0 to  
8MHz.  
Internal protection diodes that clamp the analog input to  
DD  
V
and GND allow the analog input pins to swing from  
GND - 0.3V to V  
+ 0.3V without damage. Both inputs  
DD  
must not exceed V  
by more than 50mV or be lower  
DD  
than GND by more than 50mV for accurate conversions.  
If an off-channel analog input voltage exceeds the  
supplies, limit the input current to 2mA.  
_______________________________________________________________________________________  
9
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Output Data Format  
Figures 5a and 5b illustrate the conversion timing for the  
MAX1286–MAX1289. The 12-bit conversion result is out-  
put in MSB-first format. Data on DOUT transitions  
on the falling edge of SCLK. All 12 bits must be clocked  
out before CNVST transitions again. For the MAX1288/  
MAX1289, data is straight binary for unipolar mode and  
two’s complement for bipolar mode. For the MAX1286/  
MAX1287, data is always straight binary.  
External Reference  
An external reference is required for the MAX1286–  
MAX1289. Use a 0.1µF bypass capacitor for best per-  
formance. The reference input structure allows a volt-  
age range of +1V to V  
+ 50mV.  
DD  
Connection to Standard Interfaces  
The MAX1286–MAX1289 feature a serial interface that is  
fully compatible with SPI, QSPI, and MICROWIRE. If a  
serial interface is available, establish the CPU’s serial  
interface as a master, so that the CPU generates the seri-  
al clock for the ADCs. Select a clock frequency up to  
8MHz.  
Transfer Function  
Figure 6 shows the unipolar transfer function for the  
MAX1286–MAX1289. Figure 7 shows the bipolar transfer  
function for the MAX1288/MAX1289. Code transitions  
occur halfway between successive-integer LSB values.  
How to Perform a Conversion  
1) Use a general-purpose I/O line on the CPU to hold  
CNVST low between conversions.  
Applications Information  
2) Drive CNVST high to acquire AIN1(MAX1286/  
MAX1287) or unipolar mode (MAX1288/MAX1289).  
To acquire AIN2 (MAX1286/MAX1287) or bipolar  
mode (MAX1288/MAX1289), drive CNVST low and  
high again.  
Automatic Shutdown Mode  
With CNVST low, the MAX1286–MAX1289 default to an  
AutoShutdown state (< 0.2µA) after power-up and  
between conversions. After detecting a rising edge on  
CNVST, the part powers up, sets DOUT low, and enters  
track mode. After detecting a falling edge on CNVST, the  
device enters hold mode and begins the conversion. A  
maximum of 3.7µs later, the device completes conver-  
sion, enters shutdown, and MSB is available at DOUT.  
3) Hold CNVST high for 1.4µs.  
4) Drive CNVST low and wait approximately 3.7µs for  
conversion to complete. After 3.7µs, the MSB is  
available at DOUT.  
5) Activate SCLK for a minimum of 12 rising clock  
OUTPUT CODE  
MAX1288/MAX1289  
OUTPUT CODE  
MAX1286–  
MAX1289  
V
REF  
2
FS  
=
011 . . . 111  
011 . . . 110  
FULL-SCALE  
TRANSITION  
11 . . . 111  
ZS = 0  
-FS =  
11 . . . 110  
11 . . . 101  
-V  
REF  
2
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
REF  
1 LSB =  
4096  
FS = V  
REF  
111 . . . 111  
111 . . . 110  
111 . . . 101  
ZS = GND  
V
REF  
1 LSB =  
4096  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0
- FS  
+FS - 1 LSB  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
*V  
V
/ 2 *V = (AIN+) - (AIN-)  
COM  
REF IN  
Figure 7. Bipolar Transfer Function  
10 ______________________________________________________________________________________  
Figure 6. Unipolar Transfer Function  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
edges. DOUT transitions on SCLK’s falling edge  
and is available in MSB-first format. Observe the  
SCLK to DOUT valid timing characteristic. Clock  
data into the µP on SCLK’s rising edge.  
SCLK’s rising edge. The first 12 bits are the data.  
DOUT then goes high impedance (Figure 9b).  
PIC16 and SSP Module and  
PIC17 Interface  
The MAX1286–MAX1289 are compatible with a  
PIC16/PIC17 µC, using the synchronous serial port  
(SSP) module  
SPI and MICROWIRE Interface  
When using an SPI (Figure 8a) or MICROWIRE inter-  
face (Figures 8a and 8b), set CPOL = CPHA = 0. Two  
8-bit readings are necessary to obtain the entire 12-bit  
result from the ADC. DOUT data transitions on the seri-  
al clock’s falling edge and is clocked into the µP on  
SCLK’s rising edge. The first 8-bit data stream contains  
the first 8-bits of DOUT starting with the MSB. The sec-  
ond 8-bit data stream contains the remaining four result  
bits. DOUT then goes high impedance.  
To establish SPI communication, connect the controller  
as shown in Figure 10a and configure the PIC16/PIC17  
as system master. This is done by initializing its syn-  
chronous serial port control register (SSPCON) and  
synchronous serial port status register (SSPSTAT) to  
the bit patterns shown in Tables 1 and 2.  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data  
to be synchronously transmitted and received simulta-  
neously. Two consecutive 8-bit readings (Figure 10b)  
are necessary to obtain the entire 12-bit result from the  
ADC. DOUT data transitions on the serial clock’s falling  
edge and is clocked into the µC on SCLK’s rising edge.  
The first 8-bit data stream contains the first 8 data bits  
starting with the MSB. The second data stream con-  
tains the remaining bits, D3 through D0.  
QSPI Interface  
Using the high-speed QSPI interface (Figure 9a) with  
CPOL = 0 and CPHA = 0, the MAX1286–MAX1289  
support a maximum f  
of 8MHz. One 12- to 16-bit  
SCLK  
reading is necessary to obtain the entire 12-bit result  
from the ADC. DOUT data transitions on the serial  
clock’s falling edge and is clocked into the µP on  
I/O  
SCK  
CNVST  
SCLK  
I/O  
SK  
SI  
CNVST  
SCLK  
MISO  
DOUT  
DOUT  
V
DD  
SPI  
MICROWIRE  
MAX1286–  
MAX1289  
MAX1286–  
MAX1289  
SS  
Figure 8a. SPI Connections  
Figure 8b. MICROWIRE Connections  
Table 1. Detailed SSPCON Register Content  
MAX1286–MAX1289  
CONTROL BIT  
SYNCHRONOUS SERIAL PORT CONTROL REGISTER (SSPCON)  
SETTINGS  
WCOL  
Bit 7  
Bit 6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detect Bit  
Synchronous Serial Port Enable Bit:  
SSPEN  
Bit 5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial port pins.  
CKP  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial Port Mode Select Bit. Sets SPI master mode and selects  
F
CLK  
= f  
/ 16.  
OSC  
______________________________________________________________________________________ 11  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
CNVST  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
8
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
LSB  
SAMPLING INSTANT  
Figure 8c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
one starpoint (Figure 11), connecting the two ground  
systems (analog and digital). For lowest-noise opera-  
tion, ensure the ground return to the star ground’s  
power supply is low impedance and as short as possi-  
ble. Route digital signals far away from sensitive analog  
and reference inputs.  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit (PC) boards.  
Wire-wrap configurations are not recommended since  
the layout should ensure proper separation of analog  
and digital traces. Do not run analog and digital lines  
parallel to each other, and do not lay out digital signal  
paths underneath the ADC package. Use separate  
analog and digital PC board ground sections with only  
High-frequency noise in the power supply (V ) may  
DD  
degrade the performance of the ADC’s fast comparator.  
Bypass V  
to the star ground with a 0.1µF capacitor,  
DD  
located as close as possible to the MAX1286–MAX1289s’  
power-supply pin. Minimize capacitor lead length for best  
supply-noise rejection. Add an attenuation resistor (5) if  
the power supply is extremely noisy.  
CS  
SCK  
CNVST  
SCLK  
MISO  
DOUT  
V
DD  
QSPI  
MAX1286–  
MAX1289  
SS  
Figure 9a. QSPI Connections  
Table 2. Detailed SSPSTAT Register Content  
MAX1286–MAX1289  
CONTROL BIT  
SYNCHRONOUS SERIAL STATUS REGISTER (SSPSTAT)  
SETTINGS  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data  
output time.  
SMP  
CKE  
Bit 7  
Bit 6  
0
SPI Clock Edge Select Bit. Data is transmitted on the rising edge of the serial  
clock.  
1
D/A  
P
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
12 ______________________________________________________________________________________  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
CNVST  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SAMPLING INSTANT  
Figure 9b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
Definitions  
V
V
DD  
DD  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The sta-  
tic linearity parameters for the MAX1286–MAX1289 are  
measured using the end-point method.  
SCLK  
DOUT  
SCK  
SDI  
I/O  
CNVST  
PIC16/PIC17  
MAX1286–  
MAX1289  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
GND  
GND  
Figure 10a. SPI Interface Connection for a PIC16/PIC17 Controller  
CNVST  
1ST BYTE READ  
2ND BYTE READ  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B11  
MSB  
B0  
LSB  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SAMPLING INSTANT  
Figure 10b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
______________________________________________________________________________________ 13  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to RMS  
equivalent of all other ADC output signals.  
SUPPLIES  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
+5V OR  
+3V  
V
LOGIC  
= +5V  
OR +3V  
GND  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
R* = 5Ω  
0.1µF  
ENOB = (SINAD - 1.76) / 6.02  
GND  
V
DD  
+5V OR DGND  
+3V  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DIGITAL  
CIRCUITRY  
MAX1286–  
MAX1289  
*OPTIONAL  
V22 + V32 + V42 + V52  
THD = 20 × log  
V
1
Figure 11. Power-Supply and Grounding Connections  
where V is the fundamental amplitude, and V through  
5
monics.  
1
2
Aperture Definitions  
V are the amplitudes of the 2nd- through 5th-order har-  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples. Aperture delay (t ) is  
AD  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
the time between the rising edge of the sampling clock  
and the instant when an actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-to-  
digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Chip Information  
TRANSISTOR COUNT: 6922  
PROCESS: BiCMOS  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
14 ______________________________________________________________________________________  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
0  
e1  
0
8∞  
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM ÿ MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
8. MEETS JEDEC MO178.  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
______________________________________________________________________________________ 15  
150ksps, 12-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1288EKA-T

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1288ETA+

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8,
MAXIM

MAX1288ETA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX1288EVKIT

Evaluation Kit and Evaluation System for the MAX1286/MAX1288/MAX1086/MAX1088
MAXIM

MAX1289

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1289EKA

A/D Converter, 12-Bit, 1 Func, BICMOS, PDSO8
MAXIM

MAX1289EKA-T

150ksps, 12-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX128ACAI

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX128ACAI+

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX128ACAI+T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX128ACAI-T

暂无描述
MAXIM

MAX128ACNG

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM