DS32502 [MAXIM]

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144;
DS32502
型号: DS32502
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144

PC 电信 电信集成电路
文件: 总124页 (文件大小:1255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
a
DS32501/DS32502/DS32503/DS32504  
Single-/Dual-/Triple-/Quad-Port  
DS3/E3/STS-1 LIUs  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
Pin-Compatible Family of Products  
The DS32501 (single), DS32502 (dual), DS32503  
(triple), and DS32504 (quad) line interface units Each Port Independently Configurable  
(LIUs) are highly integrated, low-power, feature-rich  
Receive Clock and Data Recovery for Up to  
457 meters (1500 feet) of 75Ω Coaxial Cable  
Standards-Compliant Transmit Waveshaping  
Uses 1:1 Transformers on Both Tx and Rx  
LIUs for DS3, E3, and STS-1 applications. Each LIU  
port in these devices has independent receive and  
transmit paths, a jitter attenuator, a full-featured  
pattern generator and detector, performance  
Three Control Interface Options: 8/16-Bit  
Parallel, SPI, and Hardware Mode  
monitoring counters, and  
a
complete set of  
loopbacks. An on-chip clock adapter generates all  
line-rate clocks from a single input clock. Ports are  
independently software configurable for DS3, E3, and  
STS-1 and can be individually powered down.  
Control interface options include 8-bit parallel, SPI,  
and hardware mode.  
Jitter Attenuators (One Per Port) Can be  
Placed in the Receive Path or the Transmit  
Path  
Jitter Attenuators Have Provisionable Buffer  
Depth: 16, 32, 64, or 128 Bits  
Built-In Clock Adapter Generates All Line-  
Rate Clocks from a Single Input Clock (DS3,  
E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz,  
77.76MHz)  
APPLICATIONS  
SONET/SDH and PDH  
Multiplexers  
Digital Cross-Connects  
Access Concentrators  
PBXs  
ATM and Frame Relay  
Equipment  
Per-Port Programmable Internal Line  
Termination Requiring Only External  
Transformers  
DSLAMs  
WAN Routers and  
Switches  
CSU/DSUs  
High-Impedance Tx and Rx, Even When  
VDD = 0, Enables Hot-Swappable, 1:1, and 1+1  
Board Redundancy Without Relays  
ORDERING INFORMATION  
Per-Port BERT for PRBS and Repetitive  
Pattern Generation and Detection  
PART  
LIUs TEMP RANGE PIN-PACKAGE  
DS32501*  
DS32501N*  
DS32502*  
DS32502N*  
DS32503*  
DS32503N*  
DS32504*  
DS32504N*  
1
1
2
2
3
3
4
4
0°C to +70°C  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
144 TE-CSBGA  
Tx and Rx Open- and Short-Detection  
Circuitry  
Transmit Driver Monitor Circuitry  
Receive Loss-of-Signal (LOS) Monitoring  
Compliant with ANSI T1.231 and ITU G.775  
Automatic Data Squelching on Receive LOS  
Large Line Code Performance Monitoring  
Counters for Accumulation Intervals Up to 1s  
Note: Add “+” for the lead-free package option.  
*Future product—contact factory for availability.  
Local and Remote Loopbacks  
Transmit Common Clock Option  
Power-Down Capability for Unused Ports  
Functional Diagram appears in Section 3 (see  
Figure 3-1).  
Low-Power 1.8V/3.3V Operation (5V Tolerant  
I/O)  
Industrial Temperature Range: -40°C to +85°C  
Small Package: (13mm)2 144-Pin TE-CSBGA  
IEEE 1149.1 JTAG Support  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 124  
REV: 042007  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
TABLE OF CONTENTS  
1. ACRONYMS .........................................................................................................................6  
2. STANDARDS COMPLIANCE...............................................................................................7  
3. DETAILED DESCRIPTION...................................................................................................8  
4. APPLICATION EXAMPLE..................................................................................................10  
5. BLOCK DIAGRAM .............................................................................................................11  
6. FEATURE DETAILS...........................................................................................................12  
6.1 GLOBAL FEATURES .......................................................................................................................12  
6.2 RECEIVER FEATURES....................................................................................................................12  
6.3 TRANSMITTER FEATURES ..............................................................................................................12  
6.4 JITTER ATTENUATOR FEATURES ....................................................................................................12  
6.5 BIT ERROR RATE TESTER (BERT) FEATURES................................................................................13  
6.6 CLOCK ADAPTER FEATURES..........................................................................................................13  
6.7 PARALLEL MICROPROCESSOR INTERFACE FEATURES.....................................................................13  
6.8 SPI SERIAL MICROPROCESSOR INTERFACE FEATURES ..................................................................13  
6.9 MISCELLANEOUS FEATURES..........................................................................................................13  
6.10 TEST FEATURES............................................................................................................................13  
6.11 LOOPBACK FEATURES...................................................................................................................13  
7. CONTROL INTERFACE MODES.......................................................................................14  
8. PIN DESCRIPTIONS ..........................................................................................................15  
8.1 SHORT PIN DESCRIPTIONS ............................................................................................................15  
8.2 DETAILED PIN DESCRIPTIONS ........................................................................................................17  
9. FUNCTIONAL DESCRIPTION............................................................................................23  
9.1 LIU MODE ....................................................................................................................................23  
9.2 TRANSMITTER ...............................................................................................................................23  
9.2.1 Transmit Clock .................................................................................................................................... 23  
9.2.2 Framer Interface Format and the B3ZS/HDB3 Encoder..................................................................... 23  
9.2.3 Error Insertion ..................................................................................................................................... 24  
9.2.4 AIS Generation.................................................................................................................................... 24  
9.2.5 Waveshaping ...................................................................................................................................... 24  
9.2.6 Line Build-Out ..................................................................................................................................... 27  
9.2.7 Line Driver........................................................................................................................................... 28  
9.2.8 Interfacing to the Line ......................................................................................................................... 28  
9.2.9 Driver Monitor and Output Failure Detection ...................................................................................... 28  
9.2.10 Power-Down........................................................................................................................................ 28  
9.2.11 Jitter Generation (Intrinsic).................................................................................................................. 28  
9.2.12 Jitter Transfer...................................................................................................................................... 29  
9.3 RECEIVER.....................................................................................................................................29  
9.3.1 Interfacing to the Line ......................................................................................................................... 29  
9.3.2 Optional Preamp ................................................................................................................................. 29  
9.3.3 Automatic Gain Control (AGC) and Adaptive Equalizer ..................................................................... 30  
9.3.4 Clock and Data Recovery (CDR)........................................................................................................ 30  
9.3.5 Loss-of-Signal (LOS) Detector............................................................................................................ 30  
9.3.6 Framer Interface Format and the B3ZS/HDB3 Decoder .................................................................... 31  
9.3.7 Power-Down........................................................................................................................................ 32  
9.3.8 Input Failure Detection........................................................................................................................ 32  
9.3.9 Jitter and Wander Tolerance............................................................................................................... 33  
9.3.10 Jitter Transfer...................................................................................................................................... 34  
9.4 JITTER ATTENUATOR.....................................................................................................................35  
2 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.5 BERT...........................................................................................................................................36  
9.5.1 Configuration and Monitoring.............................................................................................................. 36  
9.5.2 Receive Pattern Detection .................................................................................................................. 37  
9.5.3 Transmit Pattern Generation............................................................................................................... 39  
9.6 LOOPBACKS..................................................................................................................................40  
9.7 GLOBAL RESOURCES ....................................................................................................................40  
9.7.1 Clock Rate Adapter (CLAD)................................................................................................................ 40  
9.7.2 One-Second Reference Generator..................................................................................................... 42  
9.7.3 General-Purpose I/O Pins................................................................................................................... 42  
9.7.4 Performance Monitor Register Update ............................................................................................... 43  
9.7.5 Transmit Manual Error Insertion ......................................................................................................... 43  
9.8 8-/16-BIT PARALLEL MICROPROCESSOR INTERFACE ......................................................................44  
9.8.1 8-Bit and 16-Bit Bus Widths................................................................................................................ 44  
9.8.2 Byte Swap Mode................................................................................................................................. 44  
9.8.3 Read-Write and Data Strobe Modes................................................................................................... 44  
9.8.4 Multiplexed and Nonmultiplexed Operation........................................................................................ 44  
9.8.5 Clear-On-Read and Clear-On-Write Modes ....................................................................................... 44  
9.8.6 Global Write Mode .............................................................................................................................. 44  
9.9 SPI SERIAL MICROPROCESSOR INTERFACE ...................................................................................45  
9.10 INTERRUPT STRUCTURE ................................................................................................................47  
9.11 RESET AND POWER-DOWN............................................................................................................48  
10. REGISTER MAPS AND DESCRIPTIONS..........................................................................50  
10.1 OVERVIEW ....................................................................................................................................50  
10.1.1 Status Bits........................................................................................................................................... 50  
10.1.2 Configuration Fields............................................................................................................................ 50  
10.1.3 Counters.............................................................................................................................................. 50  
10.2 OVERALL REGISTER MAP ..............................................................................................................51  
10.3 GLOBAL REGISTERS......................................................................................................................52  
10.4 PORT COMMON REGISTERS ..........................................................................................................60  
10.5 LIU REGISTERS ............................................................................................................................68  
10.6 B3ZS/HDB3 ENCODER REGISTERS ..............................................................................................77  
10.7 B3ZS/HDB3 DECODER REGISTERS ..............................................................................................79  
10.8 BERT REGISTERS ........................................................................................................................84  
11. JTAG INFORMATION ........................................................................................................93  
12. ELECTRICAL CHARACTERISTICS ..................................................................................94  
13. PIN ASSIGNMENTS.........................................................................................................108  
14. PACKAGE INFORMATION ..............................................................................................121  
14.1 13MM X13MM 144-LEAD TE-CSBGA (56-G6016-001)................................................................121  
15. THERMAL INFORMATION...............................................................................................122  
16. TRADEMARK ACKNOWLEDGEMENTS.........................................................................123  
17. DATA SHEET REVISION HISTORY ................................................................................124  
3 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
LIST OF FIGURES  
Figure 3-1. Functional Diagram ................................................................................................................................... 8  
Figure 3-2. External Connections, Internal Termination Enabled................................................................................ 8  
Figure 3-3. External Connections, Internal Termination Disabled............................................................................... 9  
Figure 4-1. 3-Port Unchannelized DS3/E3 Card ....................................................................................................... 10  
Figure 5-1. Block Diagram......................................................................................................................................... 11  
Figure 9-1. DS3 Waveform Template........................................................................................................................ 25  
Figure 9-2. STS-1 Waveform Template..................................................................................................................... 26  
Figure 9-3. E3 Waveform Template........................................................................................................................... 27  
Figure 9-4. STS-1 and E3 Jitter Tolerance................................................................................................................ 33  
Figure 9-5. DS3 Jitter Tolerance................................................................................................................................ 34  
Figure 9-6. DS3 and E3 Wander Tolerance .............................................................................................................. 34  
Figure 9-7. Jitter Attenuation/Jitter Transfer.............................................................................................................. 35  
Figure 9-8. PRBS Synchronization State Diagram.................................................................................................... 38  
Figure 9-9. Repetitive Pattern Synchronization State Diagram................................................................................. 39  
Figure 9-10. SPI Clock Polarity and Phase Options.................................................................................................. 46  
Figure 9-11. SPI Bus Transactions............................................................................................................................ 46  
Figure 9-12. Interrupt Signal Flow ............................................................................................................................. 47  
Figure 12-1. Transmitter Framer Interface Timing Diagram...................................................................................... 97  
Figure 12-2. Receiver Framer Interface Timing Diagram.......................................................................................... 97  
Figure 12-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed) ................................................ 101  
Figure 12-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed) ................................................ 101  
Figure 12-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed)......................................... 102  
Figure 12-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed) ......................................... 102  
Figure 12-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed)....................................................... 103  
Figure 12-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed)....................................................... 103  
Figure 12-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)................................................ 104  
Figure 12-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed).............................................. 104  
Figure 12-11. SPI Interface Timing Diagram........................................................................................................... 106  
Figure 12-12. JTAG Timing Diagram....................................................................................................................... 107  
Figure 13-1. DS32504 Pin Assignment—Microprocessor Interface Mode.............................................................. 109  
Figure 13-2. DS32504 Pin Assignment—SPI Interface Mode................................................................................. 110  
Figure 13-3. DS32504 Pin Assignment—Hardware Mode...................................................................................... 111  
Figure 13-4. DS32503 Pin Assignment—Microprocessor Interface Mode.............................................................. 112  
Figure 13-5. DS32503 Pin Assignment—SPI Interface Mode................................................................................. 113  
Figure 13-6. DS32503 Pin Assignment—Hardware Mode...................................................................................... 114  
Figure 13-7. DS32502 Pin Assignment—Microprocessor Interface Mode.............................................................. 115  
Figure 13-8. DS32502 Pin Assignment—SPI Interface Mode................................................................................. 116  
Figure 13-9. DS32502 Pin Assignment—Hardware Mode...................................................................................... 117  
Figure 13-10. DS32501 Pin Assignment—Microprocessor Interface Mode............................................................ 118  
Figure 13-11. DS32501 Pin Assignment—SPI Interface Mode............................................................................... 119  
Figure 13-12. DS32501 Pin Assignment—Hardware Mode.................................................................................... 120  
4 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
LIST OF TABLES  
Table 2-1. Applicable Telecommunications Standards ............................................................................................... 7  
Table 8-1. Short Pin Descriptions.............................................................................................................................. 15  
Table 8-2. Analog Line Interface Pin Descriptions .................................................................................................... 17  
Table 8-3. Digital Framer Interface Pin Descriptions................................................................................................. 17  
Table 8-4. Global Pin Descriptions ............................................................................................................................ 18  
Table 8-5. Hardware Interface Pin Descriptions........................................................................................................ 18  
Table 8-6. Parallel Interface Pin Descriptions ........................................................................................................... 20  
Table 8-7. SPI Serial Interface Pin Descriptions ....................................................................................................... 21  
Table 8-8. CLAD Pin Descriptions............................................................................................................................. 21  
Table 8-9. JTAG Pin Descriptions ............................................................................................................................. 22  
Table 8-10. Power-Supply Pin Descriptions.............................................................................................................. 22  
Table 8-11. Manufacturing Test Pin Descriptions...................................................................................................... 22  
Table 9-1. DS3 Waveform Equations ........................................................................................................................ 25  
Table 9-2. DS3 Waveform Test Parameters and Limits............................................................................................ 25  
Table 9-3. STS-1 Waveform Equations..................................................................................................................... 26  
Table 9-4. STS-1 Waveform Test Parameters and Limits......................................................................................... 26  
Table 9-5. E3 Waveform Test Parameters and Limits............................................................................................... 27  
Table 9-6. Jitter Generation....................................................................................................................................... 28  
Table 9-7. Transformer Characteristics..................................................................................................................... 29  
Table 9-8. Recommended Transformers................................................................................................................... 29  
Table 9-9. Pseudorandom Pattern Generation.......................................................................................................... 36  
Table 9-10. Repetitive Pattern Generation................................................................................................................ 36  
Table 9-11. CLAD Clock Source Settings ................................................................................................................. 41  
Table 9-12. CLAD Clock Pin Output Settings............................................................................................................ 41  
Table 9-13. Global One-Second Reference Source.................................................................................................. 42  
Table 9-14. GPIO Pin Global Signal Assignments .................................................................................................... 42  
Table 9-15. GPIO Pin Control.................................................................................................................................... 43  
Table 9-16. Reset and Power-Down Sources ........................................................................................................... 48  
Table 10-1. Overall Register Map.............................................................................................................................. 51  
Table 10-2. Port Registers......................................................................................................................................... 51  
Table 10-3. Global Register Map............................................................................................................................... 52  
Table 10-4. Port Common Register Map................................................................................................................... 60  
Table 10-5. LIU Register Map.................................................................................................................................... 68  
Table 10-6. B3ZS/HDB3 Encoder Register Map....................................................................................................... 77  
Table 10-7. B3ZS/HDB3 Decoder Register Map....................................................................................................... 79  
Table 10-8. BERT Register Map................................................................................................................................ 84  
Table 11-1. JTAG ID Code ........................................................................................................................................ 93  
Table 12-1. Recommended DC Operating Conditions.............................................................................................. 94  
Table 12-2. DC Characteristics.................................................................................................................................. 95  
Table 12-3. Framer Interface Timing ......................................................................................................................... 96  
Table 12-4. Receiver Input Characteristics—DS3 and STS-1 Modes....................................................................... 98  
Table 12-5. Receiver Input Characteristics—E3 Mode ............................................................................................. 98  
Table 12-6. Transmitter Output Characteristics—DS3 and STS-1 Modes................................................................ 99  
Table 12-7. Transmitter Output Characteristics—E3 Mode....................................................................................... 99  
Table 12-8. Parallel CPU Interface Timing.............................................................................................................. 100  
Table 12-9. SPI Interface Timing............................................................................................................................. 105  
Table 12-10. JTAG Interface Timing........................................................................................................................ 107  
Table 13-1. Pin Assignments Sorted by Signal Name for DS32504 (Microprocessor Interface Mode).................. 108  
Table 15-1. Thermal Properties—Natural Convection............................................................................................. 122  
Table 15-2. Theta-JA (θJA) vs. Airflow...................................................................................................................... 122  
5 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
1. ACRONYMS  
AIS  
AMI  
B3ZS  
BER  
BPV  
CV  
DS3  
EXZ  
HDB3  
IO, I/O  
JA  
Alarm Indication Signal  
Alternate Mark Inversion  
Bipolar with Three-Zero Substitution  
Bit Error Rate, Bit Error Ratio  
Bipolar Violation  
Code Violation  
Digital Signal, Level 3  
Excessive Zeros  
High-Density Bipolar of Order 3  
Input/Output  
Jitter Attenuator  
Line Interface Unit  
Loss of Lock  
LIU  
LOL  
LOS  
LSB  
Loss of Signal  
Least Significant Bit  
Most Significant Bit  
MSB  
PDH  
PRBS  
Rx, RX  
SONET  
SDH  
STS  
STS-1  
Tx, TX  
UI  
Plesiochronous Digital Hierarchy  
Pseudorandom Bit Sequence  
Receive  
Synchronous Optical Network  
Synchronous Digital Hierarchy  
Synchronous Transmission Signal  
Synchronous Transmission Signal at Level 1  
Transmit  
Unit Interval  
Unit Interval Peak-to-Peak  
Unit Intervals Root Mean Squared  
UIP-P  
UIRMS  
6 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
2. STANDARDS COMPLIANCE  
Table 2-1. Applicable Telecommunications Standards  
SPECIFICATION  
SPECIFICATION TITLE  
ANSI  
T1.102-1993  
T1.231-2003  
T1.404-2002  
Digital Hierarchy—Electrical Interfaces  
Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring  
Network-to-Customer Installation—DS3 Metallic Interface Specification  
AT&T  
TR54014  
ACCUNET® T45 Service Description and Interface Specification, 05/92  
ETSI  
Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U,  
D34S, D140U, and D140S); Network Interface Presentation, v1.2.1 February 2001  
Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S);  
Connection Characteristics, v1.2.1 February 2001  
Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal  
equipment interface, v1.2.1July 2001  
Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines;  
Attachment Requirements for Terminal Equipment Interface, July 1997  
ITU  
EN 300 686  
EN 300 687  
EN 300 689  
TBR 24  
G.703  
G.751  
Physical/Electrical Characteristics of Hierarchical Digital Interfaces, November 2001  
Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the  
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, November 1988  
Digital Multiplex Equipment Operating at 139,264kbps and Multiplexing Three Tributaries  
at 44,736kbps, November 1988  
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance  
Criteria, November 1994  
The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps  
Hierarchy, March, 2000  
G.755  
G.775  
G.823  
G.824  
The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps  
Hierarchy, March, 2000  
Error Performance Measuring Equipment Operating at the Primary Rate and Above,  
October 1992  
In-Service Code Violation Monitors for Digital Systems, November 1988  
Equipment To Perform In-Service Monitoring on 2048, 8448, 34,368 and 139,264kbps  
Signals, October 1992  
O.151  
O.161  
O.152  
TELCORDIA  
GR-253-CORE  
GR-499-CORE  
GR-820-CORE  
SONET Transport Systems: Common Generic Criteria, Issue 3, September 2000  
Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 2,  
December 1998  
Generic Digital Transmission Surveillance, Issue 2, December 1997  
7 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
3. DETAILED DESCRIPTION  
The DS32501 (single), DS32502 (dual), DS3203 (triple), and DS32504 (quad) LIUs perform the functions  
necessary for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and  
transmit paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or  
HDB3-coded alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver  
optionally performs B3ZS/HDB3 decoding and outputs the recovered data in either binary (NRZ) or digital bipolar  
format. The transmitter accepts data in either binary (NRZ) or digital bipolar format, optionally performs  
B3ZS/HDB3 encoding, and drives standard pulse-shape waveforms onto 75Ω coaxial cable. Both transmitter and  
receiver are high impedance when VDD is out of spec to enable hot-swappable 1:1 and 1+1 board redundancy  
without relays. The jitter attenuator can be mapped into the receiver data path, mapped into the transmitter data  
path, or can be disabled. An on-chip clock adapter generates all line-rate clocks from a single input clock. Control  
interface options include 8- or 16-bit parallel, SPI, and hardware mode. The DS3250x LIUs conform to the  
telecommunications standards listed in Table 2-1. The external components required for proper operation are  
shown in Figure 3-2 and Figure 3-3.  
Figure 3-1. Functional Diagram  
EACH LIU  
LINE IN  
DS3, E3,  
OR STS-1  
RECEIVE  
CLOCK  
AND DATA  
RXP  
RXN  
CLK  
DATA  
CONTROL  
AND  
STATUS  
Dallas  
Semiconductor  
DS3250x  
LINE OUT  
DS3, E3,  
OR STS-1  
TRANSMIT  
CLOCK  
AND DATA  
TXP  
TXN  
CLK  
DATA  
Figure 3-2. External Connections, Internal Termination Enabled  
TXP  
TVDD  
RVDD  
JVDD  
0.1uF  
0.1uF  
0.01uF  
0.01uF  
1uF  
1uF  
1.8V  
Power  
Plane  
TXN  
RXP  
0.1uF  
0.01uF  
1uF  
1:1  
TVSS  
Ground  
Plane  
RVSS  
JVSS  
RXN  
1:1  
8 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 3-3. External Connections, Internal Termination Disabled  
TXP  
TVDD  
RVDD  
JVDD  
0.1uF  
0.1uF  
0.01uF  
0.01uF  
1uF  
1uF  
42.2 W  
(1%)  
1.8V  
0.05 uF  
Power  
Plane  
42.2 W  
(1%)  
TXN  
RXP  
0.1uF  
0.01uF  
1uF  
1:1  
TVSS  
38.3 W  
(1%)  
0.05 uF  
Ground  
Plane  
RVSS  
JVSS  
38.3 W  
(1%)  
RXN  
1:1  
Shorthand Notations. The notation “DS3250x” throughout this data sheet refers to either the DS32501, DS32502,  
DS3203, or DS32504. This data sheet is the specification for all four devices. The LIUs on the DS3250x devices  
are identical. For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n”  
stands in place of the LIU port number. For example, on the DS32504, TCLKn is shorthand notation for pins  
TCLK1, TCLK2, TCLK3, and TCLK4 on LIU ports 1, 2, 3 and 4, respectively. This document also uses generic pin  
and register names such as TCLK (without a number suffix) when describing LIU operation. When working with a  
specific LIU on the DS3250x devices, generic names like TCLK should be converted to actual pin names, such as  
TCLK1.  
9 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
4. APPLICATION EXAMPLE  
Figure 4-1. 3-Port Unchannelized DS3/E3 Card  
DS32503  
Three Port  
DS3/E3/STS-1  
LIU  
DS3193  
Three Port  
DS3/E3/STS-1  
Mapper  
77.76/19.44 MHz  
Telecom Bus  
10 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
5. BLOCK DIAGRAM  
Figure 5-1. Block Diagram  
CLAD  
JTAG  
Port n (1 of 4)  
AGC,  
Equalizer,  
and CDR  
B3ZS/  
HDB3  
Decoder  
RXPn  
RXNn  
Pre-Amp  
RCLKn  
RPOSn / RDATn  
RNEGn / RLCVn  
Pattern  
Detector  
ARES  
Driver  
Monitor  
ALB  
JA  
LLB  
DLB  
RCLKI  
TCLKI  
TCC  
Pattern  
Generator  
TDMn  
B3ZS/  
HDB3  
Encoder  
TXPn  
TXNn  
Line  
Driver  
Wave-  
shaping  
TCLKn  
TPOSn / TDATn  
TNEGn  
AIS Generator  
TAISn  
AIST  
Parallel and SPI Bus Interfaces  
Dallas  
Semiconductor  
DS3250x  
11 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
6. FEATURE DETAILS  
6.1 Global Features  
Three interface modes: hardware, 8-/16-bit parallel bus, and SPI serial bus  
Independent per port operation (e.g., line rate, jitter attenuator placement, or loopback type)  
Clock, data, and control signals can be inverted to allow a glueless interface to other devices  
Manual or automatic one-second update of performance monitoring counters  
Each port can be put into a low-power standby mode when not being used  
Requires only a single reference clock for all three LIU data rates using internal clock rate adapter  
Jitter attenuators can be used in either transmit or receive path  
Detection of loss of transmit clock  
Two programmable I/O pins per port  
Optional global write mode configures all LIUs at the same time  
Glueless interface to neighboring framer and mapper components  
6.2 Receiver Features  
AGC/equalizer block handles from 0 to 22dB of cable loss  
Programmable internal termination resistor  
Loss-of-lock (LOL) PLL status indication  
Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp  
Digital and analog loss-of-signal (LOS) detectors (compliant with ANSI T1.231 and ITU-T G.775)  
Software programmable B3ZS/HDB3 or AMI decoding  
Detection and accumulation of bipolar violations (BPV), code violations (CV), and excessive zeroes  
occurrences (EXZ)  
Detection of receipt of B3ZS/HDB3 codewords  
Binary or bipolar framer interface  
On-board programmable PRBS detector  
Per-channel power-down control  
6.3 Transmitter Features  
Standards-compliant waveshaping  
Programmable waveshaping  
Programmable internal termination resistor  
Binary or bipolar framer interface  
Gapped clock capable up to 78MHz with jitter attenuator in transmit path  
Wide 50 ±20% transmit clock duty cycle  
Transmit common clock option  
Software programmable B3ZS/HDB3 or AMI decoding  
Programmable insertion of bipolar violations (BPV), code violations (CV), and excessive zeros (EXZ)  
AIS generator: unframed all ones, framed DS3 AIS, and STS-1 AIS-L  
Line build-out (LBO) control  
High-impedance line driver output mode to support protection switching applications  
Per-channel power-down control  
Output driver monitor  
6.4 Jitter Attenuator Features  
One jitter attenuator per port  
Fully integrated, requires no external components  
Meets all applicable ANSI, ITU, ETSI, and Telcordia jitter transfer and output jitter requirements  
Can be placed in the transmit path, receive path, or disabled  
Programmable FIFO depth: 16, 32, 64, or 128 bits  
Overflow and underflow status indications  
12 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
6.5 Bit Error Rate Tester (BERT) Features  
One BERT per port  
Software programmable for insertion toward the transmit line interface or the receive system interface  
Generates and detects pseudorandom patterns of length 2n - 1 (n = 1-32) and repetitive patterns from 1 to 32  
bits in length  
Large 24-bit error counter and 32-bit bit counter allows testing to proceed for long periods without host  
intervention  
Errors can be inserted in the generated BERT patterns for diagnostic purposes (single bit errors or specific bit-  
error rates)  
Pattern synchronization even in the presence of 10-3 bit error rate  
6.6 Clock Adapter Features  
Creates DS3, E3, STS-1, and/or telecom bus clocks from single input reference clock  
Input reference clock can be DS3, E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz, or 77.76MHz  
Use of common system timing frequencies such as 19.44MHz eliminates the need for any local oscillators,  
reduces cost and board space  
Very small jitter gain and intrinsic jitter generation  
Derived clocks can be output for external system use  
Transmit signals using CLAD clocks meet Telcordia (DS3) and ITU (E3) jitter and wander requirements  
6.7 Parallel Microprocessor Interface Features  
Multiplexed or nonmultiplexed 8- or 16-bit interface  
Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W)  
6.8 SPI Serial Microprocessor Interface Features  
Operation up to 10Mbps  
Burst mode for multibyte read and write accesses  
Programmable clock polarity and phase  
Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count  
6.9 Miscellaneous Features  
Global reset input pin  
Global interrupt output pin  
Two programmable I/O pins per port  
6.10 Test Features  
5-pin JTAG port  
All functional pins are in-out pins in JTAG mode  
Standard JTAG instructions: SAMPLE/PRELOAD, BYPASS, EXTEST, CLAMP, HIGHZ, IDCODE  
HIZ pin to force all digital output and I/O pins into a high-impedance state  
TEST pin for manufacturing test modes  
6.11 Loopback Features  
Analog local loopback—ALB (transmit line output to receive line input)  
Diagnostic local loopback—DLB (transmit framer interface to receive framer interface)  
Line loopback—LLB (receive clock and data recover to transmit waveshaping)  
Optional AIS generation on the line side of the loopback during diagnostic loopback  
13 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
7. CONTROL INTERFACE MODES  
The DS3250x devices can be controlled by hardware interface or by microprocessor interface.  
When the hardware interface is enabled (IFSEL = 00X), device configuration can be controlled by input pins, while  
device status can be sensed on output pins. In this mode pins TOEn, RMON, TAIS, TLBO, TBIN, TCLKI, TPD,  
RBIN, RCLKI, RPD, LMn[1:0], JAS[1:0], JAD[1:0], and LBn[1:0] are used to control the device and status can be  
sensed on RLOSn pin.  
The microprocessor interface (8-bit parallel, 16-bit parallel, or SPI) provides access to features, configuration  
options, and device status information that the hardware interface does not support. The microprocessor interface  
is enabled and configured by the IFSEL pins. When IFSEL = 01X, the SPI serial interface is enabled. When  
IFSEL = 10X, the 8-bit parallel interface is enabled. When IFSEL = 11X, the 16-bit parallel interface is enabled. For  
both the 8- and 16-bit parallel interfaces, IFSEL[0] = 0 specifies an Intel-style bus (CS, RD, and WR control signals)  
while IFSEL[0] = 1 specifies a Motorola-style bus (CS, R/W, and DS control signals). Through the microprocessor  
interface an external microprocessor can access a set of internal configuration and status registers inside the  
device. Pins that are not used by the selected microprocessor interface type but are used in other microprocessor  
interface modes are disabled (inputs are ignored and considered to be low and can be left floating or wired low or  
high; outputs are placed in a high-impedance state and can be left unconnected or wired low or high). When no  
microprocessor interface is selected (IFSEL = 00X) all microprocessor interface inputs are ignored, and all  
microprocessor interface outputs are put in a high-impedance state.  
14 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
8. PIN DESCRIPTIONS  
Note: All digital pins are I/O pins in JTAG mode. This feature is to increase the effectiveness of board level ATPG  
patterns to isolate interconnect failures.  
8.1 Short Pin Descriptions  
n = port number (1–4 for DS32504, 1–3 for DS32503, 1–2 for DS32502, 1 for DS32501); I = input; Ipu = input with internal pullup resistor; Ipd =  
input with internal pulldown resistor; Ia = analog input; I/O = bidirectional in/out; I/Opd = bidirectional in/out with internal pulldown resistor; O =  
output; Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating); Oa = analog output (high  
impedance); P = power supply or ground. All unused input pins without pullup should be tied low.  
Note: All internal pullup resistors are 50kΩ tied to approximately 2.2VDC. See Section 13 for pin assignments.  
Table 8-1. Short Pin Descriptions  
NAME  
TYPE  
ANALOG LINE INTERFACE  
FUNCTION  
TXPn  
TXNn  
RXPn  
RXNn  
Oa  
Oa  
Ia  
Transmit Positive Analog (Port n)  
Transmit Negative Analog (Port n)  
Receive Positive Analog (Port n)  
Receive Negative Analog (Port n)  
Ia  
DIGITAL FRAMER INTERFACE  
I
I
TCLKn  
TPOSn/  
TDATn  
Transmit Clock (Port n)  
Transmit Positive AMI/Transmit NRZ Data (Port n)  
TNEGn  
RCLKn  
RPOSn/  
RDATn  
I
Transmit Negative AMI (Port n)  
Receive Clock (Port n)  
Oz  
Oz  
Receive Positive AMI/Receive NRZ Data (Port n)  
RNEGn/RLCVn  
Oz  
Receive Negative AMI/Receive Line Code Violation (Port n)  
GLOBAL I/O  
IFSEL[2:0]  
TEST  
HIZ  
RST  
RESREF  
I
I
I
Microprocessor Interface Select  
Factory Test enable (Active Low)  
High impedance test enable (Active Low)  
Reset (Active Low)  
Ipu  
Oa  
Reference Resistor  
HARDWARE INTERFACE  
I
Microprocessor Interface Select  
LIU Mode Control (DS3, E3 or STS-1) (Port n)  
Transmit AIS Control (Port n)  
IFSEL[2:0]  
LMn[1:0]  
TAISn  
Ipd  
I
I
I
I
Transmit Binary Interface Control (All Ports)  
Transmit Clock Invert Control (All Ports)  
Transmit Line Build-Out Control (Port n)  
Transmit Output Enable Control (Port n)  
Transmit Power-Down (All Ports)  
Receive Binary Interface Control (All Ports)  
Receive Clock Invert Control (All Ports)  
Receive Loss of Signal Status (Port n)  
Receive Monitor Preamp Control (Port n)  
Receive Power-Down (All Ports)  
TBIN  
TCLKI  
TLBOn  
TOEn  
TPD  
Ipd  
I
I
I
O
I
RBIN  
RCLKI  
RLOSn  
RMONn  
RPD  
I
I
I
I
I
Jitter Attenuator Depth (All Ports)  
Jitter Attenuator Select (Tx, Rx or Disabled) (All Ports)  
Loopback Control (Port n)  
JAD[1:0]  
JAS[1:0]  
LBn[1:0]  
CLADBYP  
CLAD Bypass  
15 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
NAME  
TYPE  
FUNCTION  
8-/16-BIT PARALLEL INTERFACE  
I
I
I
I
I
Chip Select (Active Low)  
CS  
RD/DS  
WR/R/W  
ALE  
Read Enable (Active Low)/Data Strobe (Active Low)  
Write Enable (Active Low)/Read/Write Select  
Address Latch Enable  
Address Bus (Excluding LSB)  
Address Bus LSB/Byte Swap  
Data Bus [15:0]  
Interrupt (Active Low)  
General-Purpose I/O A (Port n)  
General-Purpose I/O B (Port n)  
A[9:1]  
A[0]/BSWAP  
D[15:0]  
INT  
GPIOAn  
GPIOBn  
I
I/O  
Oz  
I/Opd  
I/Opd  
SPI SERIAL INTERFACE  
I
I
I
Chip Select (Active Low)  
Address Latch Enable  
Serial Clock  
CS  
ALE  
SCLK  
SDI  
I
Serial Data Input  
SDO  
O
I
I
Serial Data Output  
Clock Phase  
Clock Polarity  
CPHA  
CPOL  
INT  
Oz  
Interrupt Output (Active Low)  
GPIOAn  
GPIOBn  
I/Opd  
I/Opd  
General-Purpose I/O A (Port n)  
General-Purpose I/O B (Port n)  
CLAD  
REFCLK  
CLKA  
CLKB  
CLKC  
CLKD  
I
Reference Clock  
Clock A DS3 44.736MHz  
Clock B E3 34.368MHz  
Clock C STS-1 51.84MHz  
Clock D Telecom Bus 77.76MHz or 19.44MHz  
I/O  
I/O  
I/O  
O
JTAG  
JTCLK  
JTMS  
JTDI  
JTDO  
JTRST  
I
JTAG Clock  
Ipu  
Ipu  
Oz  
Ipu  
JTAG Mode Select  
JTAG Data Input  
JTAG Data Output  
JTAG Reset (Active Low)  
POWER SUPPLY AND GROUND PINS  
P
P
VDD18  
VDD33  
VSS  
RVDDn  
RVSSn  
TPVSSn  
TVDDn  
TVSSn  
CVDD  
Digital Core 1.8V Power, 1.8V ±10%  
I/O 3.3V Power, 3.3V ±5%  
Ground for VDD18 and VDD33  
Receive 1.8V Power, 1.8V ±10% (Port n)  
Receive Ground (Port n)  
Transmit 1.8V Power, 1.8V ±10% (Port n)  
Transmit 1.8V Power, 1.8V ±10% (Port n)  
Transmit Ground (Port n)  
CLAD 1.8V ±10%  
CLAD Ground  
P
P
P
P
P
P
P
P
P
P
CVSS  
JTVDDn  
JTVSSn  
Jitter Attenuator 1.8V Power, 1.8V ±10% (Port n)  
Jitter Attenuator Ground (Port n)  
MANUFACTURING TEST  
MT  
Test  
Manufacturing Test Pins. Leave unconnected.  
16 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
8.2 Detailed Pin Descriptions  
n = port number (1–4 for DS32504, 1–3 for DS32503, 1–2 for DS32502, 1 for DS32501); I = input; Ipu = input with internal pullup resistor; Ipd =  
input with internal pulldown resistor; Ia = analog input; I/O = bidirectional in/out; I/Opd = bidirectional in/out with internal pulldown resistor; O =  
output; Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating); Oa = analog output (high  
impedance); P= power supply or ground. All unused input pins without pullup should be tied low.  
Note: All internal pullup resistors are 50kΩ tied to 2.2VDC.  
Table 8-2. Analog Line Interface Pin Descriptions  
PIN NAME TYPE  
FUNCTION  
Transmitter Analog Outputs. These differential AMI outputs are coupled to the  
outbound 75Ω coaxial cable through a 1:1 transformer (Figure 3-2). These outputs can  
be disabled (high impedance) using the TOEn pin or the TOE or TPD configuration bits.  
See Section 9.2.8.  
TXPn,  
Oa  
TXNn  
RXPn,  
Ia  
Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75Ω  
coaxial cable through a 1:1 transformer (Figure 3-2). See Section 9.3.1.  
RXNn  
Table 8-3. Digital Framer Interface Pin Descriptions  
PIN NAME TYPE  
FUNCTION  
Transmit Clock. A DS3 (44.736MHz ±20ppm), E3 (34.368MHz ±20ppm), or STS  
(51.840MHz ±20ppm) clock should be applied at this pin. Data to be transmitted is  
clocked into the device at TPOS/TDAT and TNEG either on the rising edge of TCLK  
(TCLKI = 0) or the falling edge of TCLK (TCLKI = 1). When the PORT.CR2:TCC = 1, all  
ports are clocked by TCLK1, and TCLKx (x 1) are ignored. See Section 9.2.1 for  
additional details.  
Transmit Positive AMI/Transmit NRZ Data. This pin is sampled either on the rising  
edge of TCLK (TCLKI = 0) or on the falling edge of TCLK (TCLKI = 1). See Section 9.2.2.  
TPOSn: When the transmitter is configured to have a bipolar interface (TBIN = 0), a  
positive pulse is transmitted on the line when TPOS is high.  
TCLKn  
I
I
TPOSn/  
TDATn  
TDATn: When the transmitter is configured to have a binary interface (TBIN = 1), the  
data on TDAT is transmitted after B3ZS or HDB3 encoding.  
Transmit Negative AMI. When the transmitter is configured to have a bipolar interface  
(TBIN = 0), a negative pulse is transmitted on the line when TNEG is high. When the  
transmitter is configured to have a binary interface TBIN = 1), TNEG is ignored and  
should be wired either high or low. TNEG is sampled either on the rising edge of TCLK  
(TCLKI = 0) or the falling edge of TCLK (TCLKI = 1). See Section 9.2.2.  
Receive Clock. The clock recovered from the receive signal is output on the RCLK pin.  
Recovered data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge  
of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). During an LOS condition  
(RLOSn = 0), the RCLK output signal is derived from the LIU’s reference clock. See  
Section 9.3.6.  
TNEGn  
RCLKn  
I
Oz  
Receive Positive AMI/Receive NRZ Data. This pin is updated either on the falling edge  
of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 9.3.6.  
RPOSn: When the receiver is configured to have a bipolar interface (RBIN = 0), RPOS  
pulses high for each positive AMI pulse received.  
RDATn: When the receiver is configured to have a binary interface (RBIN = 1), RDAT  
outputs decoded binary data.  
Receive Negative AMI/Receive Line-Code Violation. This pin is updated either on the  
falling edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section  
9.3.6 for further details on code violations.  
RNEGn: When the receiver is configured to have a bipolar interface (RBIN = 0), RNEG  
pulses high for each negative AMI pulse received.  
RPOSn/  
RDATn  
Oz  
Oz  
RNEGn/  
RLCVn  
RLCVn: When the receiver is configured to have a binary interface (RBIN = 1), RLCV  
pulses high to flag code violations.  
17 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 8-4. Global Pin Descriptions  
PIN NAME TYPE  
FUNCTION  
Interface Select  
000 = Hardware interface mode (external LIU termination)  
001 = Hardware interface mode (internal LIU termination)  
010 = SPI serial interface, address and data MSB first  
011 = SPI serial interface, address and data LSB first  
100 = 8-bit parallel interface, Intel style (CS, RD, WR control signals)  
101 = 8-bit parallel interface, Motorola style (CS, R/W, DS control signals)  
110 = 16-bit parallel interface, Intel style (CS, RD, WR control signals)  
111 = 16- bit parallel interface, Motorola style (CS, R/W, DS control signals)  
Note: The device should be reset (RST low) when the device is first placed in hardware  
mode.  
IFSEL[2:0]  
I
Factory Test Enable (Active Low). This pin enables the internal scan test mode when  
low. For normal operation tie high. This is an asynchronous input.  
High-Impedance Test Enable (Active Low). This signal is used to enable testing. When  
this signal is low while JTRST is low, all of the digital output and bi-directional pins are  
placed in the high impedance state. For normal operation this signal is high. This is an  
asynchronous input.  
I
I
TEST  
HIZ  
Reset (Active Low, Open Drain, Internal 10kΩ Pullup to VDD33). When this global  
asynchronous reset is pulled low, all internal circuitry is reset and all internal registers are  
forced to their default values. The device is held in reset as long as RST is low. RST should  
be held low for at least two reference clock cycles. See Section 9.11.  
Reference Resistor. This pin is tied to VSS through a 10kΩ ±1% resistor. This accurate  
resistor is used to calibrate on-chip resistor values including internal transmit and receive  
termination resistors.  
Ipu  
Oa  
RST  
RESREF  
Table 8-5. Hardware Interface Pin Descriptions  
PIN NAME TYPE  
Termination Select  
FUNCTION  
IFSEL[2:0]  
I
000 = External LIU termination  
001 = Internal LIU termination  
LIU Mode Control (Port n). When the hardware interface is enabled (IFSEL = 00X), these  
pins set the LIU mode for port n.  
00 = DS3  
01 = E3  
LMn[1:0]  
Ipd  
10 = STS-1  
11 = reserved  
Transmit AIS Control (Port n). When the hardware interface is enabled (IFSEL = 00X),  
these pins control the AIS insertion port n.  
TAISn  
I
0 = transmit normal data  
1 = transmit AIS  
The type of AIS signal is specified by the LMn[1:0] pins. See Section 9.2.4.  
Transmit Binary Interface Control (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the TPOS/TNEG interface for all ports. See Section 9.2.2.  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins, and the  
B3ZS/HDB3 encoder is disabled.  
1 = Transmitter framer interface is binary on the TDAT pin, and the B3ZS/HDB3 encoder is  
enabled.  
Transmit Clock Invert Control (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the TCLK inversion for all ports. See Section 9.2.1.  
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
TBIN  
I
I
TCLKI  
18 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
PIN NAME TYPE  
FUNCTION  
Transmit Line Build-Out Control (Port n). When the hardware interface is enabled  
(IFSEL = 00X), this pin specifies cable length for waveform shaping in DS3 and STS-1  
modes. In E3 mode it is ignored and should be wired high or low. See Section 9.2.6.  
0 = Cable length 225ft  
TLBOn  
I
1 = Cable length < 225ft  
Transmitter Output Enable Control (Port n). This pin enables and disables the  
transmitter outputs. The transmitter continues to operate internally when the outputs are  
disabled; only the line driver and driver monitor are disabled. See Section 9.2.7. These  
pins are available in both hardware and microprocessor interface modes.  
0 = TXPn/TXNn output drivers disabled (high impedance)  
1 = TXPn/TXNn output drivers enabled  
Transmit Power-Down (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the power-down feature for all ports. See Section 9.2.10.  
0 = Enable all transmitters  
1 = Power down all transmitters (drivers become high impedance)  
Receive Binary Interface Control (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the RPOS/RNEG interface for all ports. See Section 9.3.6.  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins, and the  
B3ZS/HDB3 encoder is disabled.  
TOEn  
TPD  
Ipd  
I
I
RBIN  
1 = Receiver framer interface is binary on the RDAT pin, and the B3ZS/HDB3 encoder is  
enabled.  
Receive Clock Invert Control (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the RCLK inversion for all ports. See Section 9.3.6.3.  
0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK.  
Receive Loss of Signal Status (Port n). This pin is asserted upon detection of 192  
consecutive zeros in the receive data stream. It is deasserted when there are no excessive  
zero occurrences over a span of 192 clock periods. An excessive zero occurrence is  
defined as three or more consecutive zeros in DS3 and STS-1 modes or four or more  
zeros in E3 mode. These pins are available in both hardware and microprocessor interface  
modes. See Section 9.3.5.  
RCLKI  
RLOSn  
I
O
Receive Monitor Preamp Control (Port n). When the hardware interface is enabled  
(IFSEL = 00X), these pins control the LIU preamp for port n. This pin determines whether  
the receiver preamp is enabled in port n to provide flat gain to the incoming signal before  
the AGC/equalizer block processes it. This feature should be enabled when the device is  
being used to monitor signals that have been resistively attenuated by a monitor jack. See  
Section 9.3.2 for more information.  
RMONn  
I
0 = Disable the monitor preamp  
1 = Enable the monitor preamp  
Receive Power-Down (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), this pin controls the power-down feature for all ports. See Section 9.3.7.  
0 = Enable all receivers  
1 = Power down all receivers (RXPn/RXNn high impedance; RCLKn, RPOS/RDAT and  
RNEGn/RLCVn high impedance)  
Jitter Attenuator Depth (All Ports). When the hardware interface is enabled  
(IFSEL = 00X), these pins control the jitter attenuator for all ports.  
00 = 16 bits  
RPD  
I
I
I
JAD[1:0]  
JAS[1:0]  
01 = 32 bits  
10 = 64 bits  
11 = 128 bits  
Jitter Attenuator Select (All Ports). These pins select the location of the jitter attenuator  
when hardware interface is enabled (IFSEL = 00X). See Section 9.4.  
00 = Disabled  
01 = Receive path  
1X = Transmit path  
19 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
PIN NAME TYPE  
FUNCTION  
Loopback Control (Port n). When the hardware interface is enabled (IFSEL = 00X),  
these pins set the loopback mode for port n. See Section 9.6.  
00 = No loopback  
01 = Diagnostic Loopback (DLB)  
10 = Line Loopback (LLB)  
LBn[1:0]  
I
I
11 = Analog Loopback (ALB)  
CLAD Bypass Control. When the hardware interface is enabled (IFSEL = 00X), this pin  
controls whether the CLAD is used or bypassed. See Section 9.7.1.  
0 = Synthesize the DS3, E3, and STS-1 clocks from the clock on the REFCLK pin  
1 = Source the DS3, E3, and STS-1 clocks from the CLKA, CLKB and CLKC pins  
CLADBYP  
Table 8-6. Parallel Interface Pin Descriptions  
PIN NAME  
TYPE  
FUNCTION  
Chip Select (Active Low). This pin must be asserted to read or write internal registers.  
See Section 9.8.3.  
I
CS  
Read Enable (Active Low)/Data Strobe (Active Low)  
RD: For the Intel-style bus (IFSEL = 1X0), RD is asserted to read internal registers.  
DS: For the Motorola-style bus (IFSEL = 1X1), DS is asserted to access internal  
registers while the R/W pin specifies whether the access is a read or a write. See  
Section 9.8.3.  
I
I
RD/DS  
Write Enable (Active Low)/Read/Write Select  
WR: For the Intel-style bus (IFSEL = 1X0), WR is asserted to write internal registers.  
R/W: For the Motorola-style bus (IFSEL = 1X1), R/W determines the type of bus  
transaction, with R/W = 1 indicating a read and R/W = 0 indicating a write. See  
Section 9.8.3.  
WR/R/W  
Address Latch Enable. This pin controls a latch on the A[9:0] inputs. For a  
nonmultiplexed parallel bus, ALE is wired high to make the latch transparent. For a  
multiplexed parallel bus, the falling edge of ALE latches the address. See Section 9.8.3.  
Address Bus (excluding LSB). These inputs specify the address of the internal 16-bit  
register to be accessed. A[9] is not present on the DS32502 and DS32503; A[9:8] are  
not present on the DS32501. See Section 9.8.  
ALE  
I
I
A[9:1]  
Address Bus LSB/Byte Swap. See Section 9.8.2.  
A[0]: This pin is connected to the lower address bit in 8-bit bus modes (IFSEL = 10X).  
0 = Output register bits 7:0 on D[7:0]; D[15:8] high impedance  
1 = Output register bits 15:8 on D[7:0]; D[15:8] high impedance  
BSWAP: This pin is tied high or low in 16-bit bus modes ( = 11X).  
0 = Output register bits 15:8 on D[15:8] and bits 7:0 on D[7:0]  
A[0]/  
BSWAP  
I
1 = Output register bits 7:0 on D[15:8] and bits 15:8 on D[7:0]  
Data Bus. A 8-bit or 16-bit bidirectional data bus. These pins are inputs during writes to  
internal registers and outputs during reads. D[15:8] are disabled (high impedance) in  
8-bit bus modes (IFSEL = 10X). D[15:0] are disabled (high impedance) when CS = 1 or  
RST = 0. In 16-bit bus modes (IFSEL = 11X) the upper and lower bytes can be swapped  
by pulling the BSWAP pin high. See Section 9.8.  
Interrupt Output (Active Low, Open Drain or Push-Pull). This pin is driven low in  
response to one or more unmasked, active interrupt sources within the device. INT  
remains low until the interrupt is serviced or masked. When GLOBAL.CR2:INTM = 0,  
INT is high impedance when inactive (default). When INTM = 1, INT is driven high when  
inactive. INT is high impedance when RST = 0. See Section 9.10.  
General-Purpose I/O A. When a microprocessor interface is enabled (IFSEL 00X),  
this pin is the general-purpose I/O pin for port n. See Section 9.7.3.  
General-Purpose I/O B. When a microprocessor interface is enabled (IFSEL 00X),  
this pin is the general-purpose I/O pin for port n. See Section 9.7.3. Note: GPIOB1,  
GPIOB2, and GPIOB3 can also be programmed as global control/status pins.  
D[15:0]  
I/O  
Oz  
INT  
GPIOAn  
GPIOBn  
I/Opd  
I/Opd  
20 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 8-7. SPI Serial Interface Pin Descriptions  
Note: Pins in the following table are muxed with pins in Table 8-6, and are valid only when the SPI serial interface  
is enabled (IFSEL = 01X).  
PIN NAME  
TYPE  
FUNCTION  
Chip Select (Active Low). This pin must be asserted to read or write internal registers.  
See Section 9.9.  
I
CS  
ALE  
SCLK  
I
I
Address Latch Enable. For SPI serial interface operation, ALE must be wired high.  
Serial Clock. SCLK is always driven by the SPI bus master. See Section 9.9.  
Serial Data Input. The SPI bus master transmits data to the device on this pin. See  
Section 9.9.  
SDI  
I
Serial Data Output. The device transmits data to the SPI bus master on this pin. See  
Section 9.9.  
SDO  
O
Clock Phase. See Section 9.9.  
CPHA  
CPOL  
I
0 = Data is latched on the leading edge of the SCLK pulse.  
1 = Data is latched on the trailing edge of the SCLK pulse.  
Clock Polarity. See Section 9.9.  
0 = SCLK is normally low and pulses high during bus transactions.  
1 = SCLK is normally high and pulses low during bus transactions.  
Interrupt Output (Active Low, Open Drain). See INT pin description in Table 8-6.  
I
Oz  
INT  
GPIOAn  
I/Opd General-Purpose I/O. See GPIOAn pin description in Table 8-6.  
GPIOBn  
I/Opd General-Purpose I/O. See GPIOBn pin description in Table 8-6.  
Table 8-8. CLAD Pin Descriptions  
PIN NAME  
TYPE  
FUNCTION  
Reference Clock. The signal on this pin is the input reference clock to the CLAD and  
must be transmission quality (±20ppm, low jitter). In hardware mode REFCLK must be  
19.44MHz. In microprocessor interface modes REFCLK can be any of several  
frequencies. See Section 9.7.1.  
REFCLK  
I
Clock A DS3 44.736MHz. When the CLAD is bypassed a transmission-quality DS3  
clock (44.736MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs  
are to operate in DS3 mode. When the CLAD is enabled this pin can be configured to  
output the DS3 clock synthesized by PLL-A. See Section 9.7.1.  
Clock B E3 34.368MHz. When the CLAD is bypassed a transmission-quality E3 clock  
(34.368MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to  
operate in E3 mode. When the CLAD is enabled this pin can be configured to output the  
E3 clock synthesized by PLL-B. See Section 9.7.1.  
CLKA  
CLKB  
I/O  
I/O  
Clock C STS-1 51.84MHz. When the CLAD is bypassed a transmission-quality STS-1  
clock (51.84MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are  
to operate in STS-1 mode. When the CLAD is enabled this pin can be configured to  
output the STS-1 clock synthesized by PLL-C. See Section 9.7.1.  
Clock D Telecom Bus 77.76MHz or 19.44MHz. When the CLAD is bypassed this pin is  
driven low. When the CLAD is enabled this pin can output a 77.76MHz or 19.44MHz  
clock synthesized by PLL-D. See Section 9.7.1.  
CLKC  
CLKD  
I/O  
O
21 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 8-9. JTAG Pin Descriptions  
PIN NAME  
TYPE  
FUNCTION  
JTAG Clock. This pin shifts data into JTDI on the rising edge and out of JTDO on the  
falling edge. JTCLK is typically a low frequency (less than 10MHz) 50% duty cycle clock  
signal. If boundary scan is not used, JTCLK should be pulled high. See Section 11.  
JTAG Mode Select (Internal 10kΩ Pullup to VDD33). This pin is used to control the  
JTAG controller state machine. JTMS is sampled on the rising edge of JTCLK. If  
boundary scan is not used, JTMS should be left unconnected or pulled high. See  
Section 11.  
JTAG Data Input (Internal 10kΩ Pullup to VDD33). This pin is used to input data into  
the register that is enabled by the JTAG controller state machine. JTDI is sampled on  
the rising edge of JTCLK. If boundary scan is not used, JTDI should be left unconnected  
or pulled high. See Section 11.  
JTCLK  
I
JTMS  
JTDI  
Ipu  
Ipu  
JTAG Data Output. This pin is the output of an internal scan shift register enabled by  
the JTAG controller state machine. JTDO is updated on the falling edge of JTCLK.  
JTDO is in high impedance mode when a register is not selected or when the JTRST pin  
is low. JTDO goes into and out of high*impedance mode after the falling edge of  
JTCLK. See Section 11.  
JTAG Reset (Internal 10kΩ Pullup to VDD33). When active this pin forces the JTAG  
controller logic into the reset state and forces the JTDO pin into high impedance mode.  
The JTAG controller is also reset when power is first applied via a power-on reset  
circuit. JTRST can be driven high or low for normal operation, but must be high for JTAG  
operation. See Section 11.  
JTDO  
Oz  
Ipu  
JTRST  
Table 8-10. Power-Supply Pin Descriptions  
PIN NAME  
TYPE  
FUNCTION  
VDD18  
VDD33  
P
P
P
P
P
P
P
P
P
Digital Core 1.8V Power, 1.8V ±10%  
I/O 3.3V Power, 3.3V ±5%  
Ground for VDD18 and VDD33  
Receive 1.8V Power, 1.8V ±10%  
Receive Ground  
VSS  
RVDDn  
RVSSn  
TVDDn  
TVSSn  
CVDD  
CVSS  
Transmit 1.8V Power, 1.8V ±10%  
Transmit Ground  
CLAD 1.8V ±10%  
CLAD Ground  
Table 8-11. Manufacturing Test Pin Descriptions  
PIN NAME  
TYPE  
FUNCTION  
MT  
Test Manufacturing Test Pin. Leave unconnected.  
22 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9. FUNCTIONAL DESCRIPTION  
9.1 LIU Mode  
Each port is independently configurable for DS3, E3 or STS-1 operation. When the hardware interface is enabled  
(IFSEL = 00X), the LMn[1:0] pins specify the LIU mode. When a microprocessor interface is enabled (IFSEL 00X)  
the PORT.CR2:LM[1:0] control bits specify the LIU mode.  
9.2 Transmitter  
9.2.1 Transmit Clock  
If the jitter attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be  
transmission quality (i.e., ±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the  
transmit path, the signal on TCLK can be jittery and/or periodically gapped, but must still have an average  
frequency within ±20ppm of the nominal line rate. When enabled in the transmit path, the jitter attenuator generates  
the transmit line clock. See Section 9.4 for more information about the jitter attenuator.  
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.  
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample these pins on  
the falling edge of TCLK, pull the TCLKI (hardware interface mode) pin high or set the PORT.INV:TCLKI  
(microprocessor interface mode) configuration bit.  
9.2.1.1 Transmit Common Clock Mode  
In microprocessor interface mode the PORT.CR2:TCC register bit specifies whether the transmit clock for port n  
comes from TCLKn or TCLK1. In designs where the transmit paths of all ports can be clocked synchronously with  
one another, common transmit clocking reduces wiring complexity between the LIU and the neighboring framer or  
mapper component.  
9.2.2 Framer Interface Format and the B3ZS/HDB3 Encoder  
Data to be transmitted can be input in either bipolar or binary format.  
9.2.2.1 Bipolar Interface Format  
To select the bipolar interface format, pull the TBIN (hardware interface mode) pin low or clear the  
PORT.CR2:TBIN (microprocessor interface mode) configuration bit. In bipolar format, the B3ZS/HDB3 encoder is  
disabled and the data to be transmitted is sampled on the TPOS and TNEG pins. Positive-polarity pulses are  
indicated by TPOS = 1, while negative-polarity pulses are indicated by TNEG = 1. If TPOS and TNEG are high at  
the same time the transmitter generates an AMI pulse that is the opposite state of the pulse previously transmitted.  
9.2.2.2 Binary Interface Format  
To select the binary interface format, pull the TBIN pin high (hardware interface mode for all ports) or set the  
PORT.CR2:TBIN configuration bit (microprocessor interface mode for each port). In binary format, the B3ZS/HBD3  
encoder is enabled, and the NRZ data to be transmitted is sampled on the TDAT pin. The TNEG pin is ignored in  
binary interface mode and should be wired low. In DS3 and STS-1 modes, B3ZS encoding is performed. In these  
modes whenever three consecutive zeros are found in the transmit data stream they are replaced with a B3ZS  
codeword. In E3 mode HDB3 encoding is performed. In this mode, whenever four consecutive zeros are found in  
the transmit data stream they are replaced with an HDB3 codeword. In all three modes, the B3ZS or HDB3  
codeword is constructed such that the last bit is a BPV with the opposite polarity of the most recently transmitted  
BPV.  
23 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.2.3 Error Insertion  
Bipolar violation (BPV) errors and excessive zeros (EXZ) errors can be inserted into the transmit data stream using  
the transmit manual error insert (TMEI) logic (see Section 9.7.5). Configuration bit LINE.TCR:BPVI enables the  
insertion of bipolar violations, while LINE.TCR:EXZI enables the insertion of excessive zero events. Note: BPV  
errors and EXZ errors can only be inserted in the binary interface format.  
If the transmitter is configured for binary interface format (Section 9.2.2.2) and BPVI = 1 then when the configured  
manual error insert control goes from 0 to 1 the transmitter waits for the next occurrence of two consecutive 1s  
where the polarity of the first 1 is opposite the polarity of the BPV in the last B3ZS/HDB3 codeword. The first 1 is  
transmitted according to the normal AMI rule, but the second 1 is transmitted with the same polarity as the first 1,  
thus making the second 1 a bipolar violation.  
If the transmitter is configured for binary interface format (Section 9.2.2.2) and EXZI = 1 then when the configured  
manual error insert control goes from 0 to 1 the transmitter waits for the next occurrence of three (four) consecutive  
zeros in the transmit data stream and inhibits the replacement of those zeros with a B3ZS (HDB3) codeword.  
The transmitter ensures that there is at least one intervening 1 between consecutive BPV or EXZ errors. If a  
second error insertion request of a given type (BPV or EXZ) is initiated before a previous request has been  
completed, the second request is ignored.  
9.2.4 AIS Generation  
The transmitter can be configured to transmit an AIS signal by asserting the TAIS pin (hardware interface mode) or  
the PORT.CR3:TAIS (microprocessor interface mode) configuration bit. In hardware mode, the type of AIS signal to  
be generated is specified by the LMn[1:0] pins. In microprocessor interface mode the type of AIS signal to be  
generated is specified by PORT.CR2:LM[1:0] configuration bits and the PORT.CR3:AIST configuration bit. When  
AIST = 1, the AIS signal is the framed DS3 AIS signal in DS3 mode, unframed all ones in E3 mode, and the AIS-L  
signal in STS-1 mode. The AIS-L signal is normally scrambled, but scrambling can be disabled by setting  
PORT.CR3:SCRD = 1. When AIST = 0, the AIS signal is unframed all ones in all modes when AIS insertion is  
requested (TAIS = 1).  
9.2.5 Waveshaping  
9.2.5.1 Standards-Compliant Waveshaping  
Waveshaping converts the transmit clock, positive data, and negative data signals into a single analog AMI signal  
with the waveshape required for interfacing to DS3/E3/STS-1 lines. Figure 9-1 and Table 9-1 show the DS3  
waveform equations and template. Figure 9-2 and Table 9-3 show the STS-1 waveform equations and template.  
Figure 9-3 shows the E3 waveform template.  
9.2.5.2 Programmable Waveshaping  
The transmit waveshape can be adjusted with the TWSC[19:0] bits in the LIU.TWSCR1 and LIU.TWSCR2  
registers. These signals control the amplitude, slew rates and various other aspects of the waveform template. See  
the register descriptions for further details.  
24 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-1. DS3 Waveform Template  
2nd Rise  
1st Fall  
DS3250x WAVESHAPE SEGMENTS.  
SEE THE LIU.TWSCR REGISTER  
DESCRIPTIONS.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1st Rise  
2nd Fall  
-0.2  
-1.0  
0.25  
-0.75  
-0.5  
0
0.5  
0.75  
1.0  
1.25  
1.5  
-0.25  
Time (UI)  
Table 9-1. DS3 Waveform Equations  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATION  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.36  
0.36 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.08 + 0.407e-1.84(T - 0.36)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Table 9-2. DS3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
44.736Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75Ω (±1%) resistive  
Pulse Amplitude  
Between 0.36V and 0.85V  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
curves listed in Table 9-1  
Pulse Shape  
Unframed All-Ones Power Level at 22.368MHz  
Unframed All-Ones Power Level at 44.736MHz  
Between -1.8dBm and +5.7dBm  
At least 20dB less than the power at 22.368MHz  
Ratio of positive and negative pulses must be  
between 0.90 and 1.10  
Pulse Imbalance of Isolated Pulses  
25 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-2. STS-1 Waveform Template  
2nd Rise  
1st Fall  
DS3250x WAVESHAPE SEGMENTS.  
SEE THE LIU.TWSCR REGISTER  
DESCRIPTIONS.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1st Rise  
2nd Fall  
-0.2  
-1.0  
-0.75  
-0.5  
-0.25  
0
0.5  
1.0  
1.25  
1.5  
0.25  
0.75  
Time (UI)  
Table 9-3. STS-1 Waveform Equations  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATIONS  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.26  
0.26 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.1 + 0.61e-2.4(T - 0.26)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Table 9-4. STS-1 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
51.840Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75Ω (±1%) resistive  
Pulse Amplitude  
0.800V nominal (not covered in specs)  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
curved listed in Table 9-3  
Pulse Shape  
Unframed All-Ones Power Level at 25.92MHz  
Unframed All-Ones Power Level at 51.84MHz  
Between -1.8dBm and +5.7dBm  
At least 20dB less than the power at 25.92MHz  
26 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-3. E3 Waveform Template  
DS3250x WAVESHAPE  
Zero Level  
Overshoot  
One Level  
17.0 (14.55 + 2.45)  
Undershoot  
Zero Level  
SEGMENTS. SEE THE  
LIU.TWSCR REGISTER  
DESCRIPTIONS.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.1  
0.9  
8.65 (14.55 - 5.90)  
12.1 (14.55 - 2.45)  
Nominal Pulse  
0.5  
14.55  
24.5 (14.55 + 9.95)  
0.1  
-0.1  
-0.2  
29.1 (14.55 +  
14.55)  
-15  
-10  
-5  
0
5
10  
15  
Time (ns)  
Table 9-5. E3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
34.368Mbps (±20ppm)  
Rate  
Line Code  
HDB3  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the transmitter  
75Ω (±1%) resistive  
Pulse Amplitude  
1.0V (nominal)  
An isolated pulse (preceded by two zeros and  
Pulse Shape  
followed by one or more zeros) falls within the  
template shown in Figure 9-3  
Ratio of the Amplitudes of Positive and Negative  
Pulses at the Center of the Pulse Interval  
Ratio of the Widths of Positive and Negative  
Pulses at the Nominal Half Amplitude  
0.95 to 1.05  
0.95 to 1.05  
9.2.6 Line Build-Out  
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length  
from 0 to 450 feet, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225 feet or  
greater, both the TLBO pin (hardware interface mode) and the LIU.CR1:TLBO configuration bit (microprocessor  
interface mode) should be low to disable the LBO circuitry. When the LBO circuitry is disabled, output pulses are  
driven onto the coaxial cable without any preattenuation. For cable lengths less than 225 feet, either the TLBO pin  
(hardware interface mode) or the LIU.CR1:TLBO configuration bit (microprocessor interface mode) should be high  
to enable the LBO circuitry. When the LBO circuitry is enabled, pulses are preattenuated by the LBO circuitry  
before being driven onto the coaxial cable to provide attenuation that mimics the attenuation of 225 feet of coaxial  
cable.  
27 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.2.7 Line Driver  
The transmit line driver can be disabled (TXP and TXN outputs high impedance) by deasserting the TOE pin  
(hardware interface mode) and deasserting the LIU.CR1:TOE (microprocessor interface mode) configuration bit.  
Powering down the transmitter through the TPD pin (hardware interface mode) or the PORT.CR1:TPD  
(microprocessor interface mode) configuration bit also disables the transmit line driver.  
9.2.8 Interfacing to the Line  
The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75Ω) through a 1:1 isolation transformer  
connected to the TXP and TXN pins. The transmit line termination can be internal to the device, external to the  
device, or a combination of both. Figure 3-2 shows the arrangement of the transformer when the internal  
termination is enabled (LIU.CR1:TTRE = 1) and no external termination resistors are used. Figure 3-3 shows the  
arrangement of the transformer and external termination resistors when the internal termination is disabled  
(LIU.CR1:TTRE = 0). Note that internal termination is only available when a microprocessor interface is enabled.  
The internal termination resistor value for the transmitter is specified in LIU.CR1:TRESADJ. Table 9-7 and Table  
9-8 specify the required characteristics of the transformer and provide a list of recommended transformers.  
9.2.9 Driver Monitor and Output Failure Detection  
The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If  
the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 reference clock cycles, then the  
monitor sets the LIU.SR:TDM status bit. The setting of LIU.SR:TDM can cause an interrupt if enabled by  
LIU.SRIE:TDMIE. When the transmitter is disabled, the transmit driver monitor is also disabled. The transmit driver  
monitor is clocked by the LIU’s reference clock.  
Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short  
circuit at a distance less than a few inches (~11 inches for FR4 material) can introduce inverted reflections that  
reduce the outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM status bit. Similarly  
an open circuit a similar distance away can introduce noninverted reflections that increase the outgoing amplitude  
above the VTXMAX threshold and thereby activate the TDM status bit. Shorts and opens at larger distances away  
from TXP/TXN can also activate the TDM status bit, but this effect is data-pattern dependent.  
If either TXP or RXP is not connected (open), shorted to VDD, or shorted to VSS, then a transmit failure alarm is  
declared by setting the LIU.SR:TFAIL status bit. A change of state of the TFAIL status bit can cause an interrupt if  
enabled by LIU.SRIE:TFAILIE. TFAIL is cleared when activity is detected on both TXP and RXP.  
9.2.10 Power-Down  
To minimize power consumption when the transmitter is not being used, the TPD pin (hardware interface mode for  
all ports) or the PORT.CR1:TPD configuration bit (microprocessor interface mode for each port) can be asserted.  
When the transmitter is powered down, the TXP and TXN pins are put in a high-impedance state and the transmit  
drivers are powered down.  
9.2.11 Jitter Generation (Intrinsic)  
The transmitter meets the jitter generation requirements of all applicable standards in Table 9-6, with or without the  
jitter attenuator enabled. Generated jitter is measured with a jitter-free, 0ppm input clock.  
Table 9-6. Jitter Generation  
SIGNAL  
STANDARD  
REQUIREMENT  
BANDWIDTH  
DS3250x JITTER  
DS3  
DS3  
DS3  
DS3  
DS3  
E3  
GR-499  
T1.404  
T1.404  
PUB 54014  
PUB 54014  
G.751  
GR-253  
GR-253  
0.3 UIRMS  
0.5 UIP-P  
10Hz to 400kHz  
10Hz to 400kHz  
30kHz to 400kHz  
10Hz to 400kHz  
30kHz to 400kHz  
100Hz to 800kHz  
12kHz to 400kHz  
12kHz to 400kHz  
< 0.1 UIRMS  
< 0.2 UIP-P  
< 0.02 UIP-P  
< 0.025 UIP-P  
< 0.02 UIP-P  
< 0.1 UIP-P  
0.05 UIP-P  
0.05 UIP-P  
0.025 UIP-P  
0.05 UIP-P  
0.01 UIRMS  
0.10 UIP-P  
STS-1  
STS-1  
< 0.005 UIRMS  
< 0.05 UIP-P  
28 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.2.12 Jitter Transfer  
Without the jitter attenuator on the transmit side, the transmitter passes jitter through unchanged. With the jitter  
attenuator enabled on the transmit side, the transmitter meets the jitter transfer requirements of all applicable  
telecommunication standards in Table 2-1. See Figure 9-7.  
9.3 Receiver  
9.3.1 Interfacing to the Line  
The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the  
incoming coaxial cable (75Ω) through a 1:1 isolation transformer. The receive line termination can be internal to the  
device, external to the device, or a combination of both. Figure 3-2 shows the arrangement of the transformer when  
the internal termination is enabled (LIU.CR2:RTRE = 1) and no external termination resistors are used. Figure 3-3  
shows the arrangement of the transformer and external termination resistors when the internal termination is  
disabled (LIU.CR2:RTRE = 0). Note that internal termination is only available when a microprocessor interface is  
enabled. The internal termination resistor value is specified in LIU.CR2:RRESADJ[3:0]. Table 9-7 and Table 9-8  
specify the required characteristics of the transformer and provide a list of recommended transformers. The  
receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format.  
Table 9-7. Transformer Characteristics  
PARAMETER  
Turns Ratio  
VALUE  
1:1 ±2%  
0.200MHz to 340MHz (typ)  
Bandwidth 75Ω  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
Isolation Voltage  
40μH (min)  
0.12μH (max)  
10pF (max)  
1500VRMS (min)  
Table 9-8. Recommended Transformers  
OCL  
PRIMARY  
(μH) (min)  
40  
LL  
BANDWIDTH  
75Ω (MHz)  
PIN-PACKAGE/  
SCHEMATIC  
MANUFACTURER  
PART  
TEMP RANGE  
(μH) (max)  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Halo Electronics  
Halo Electronics  
Halo Electronics  
Halo Electronics  
PE-65967  
PE-65966  
T3001  
TX3025  
TX3036  
TX3047  
TX3051  
TG01-0406NS  
TD01-0406NS  
TG01-0456NS  
TD01-0456NE  
0°C to +70°C  
0°C to +70°C  
6 SMT LS-1/E  
6 THT LC-1/E  
6 SMT LS-2/E  
16 SMT BH/3  
24 SMT  
32 SMT YB/1  
48 SMT  
6 SMT SMD/A  
6 DIP DIP/A  
6 SMT SMD/A  
6 DIP DIP/A  
0.10  
0.10  
0.11  
0.120  
0.110  
0.150  
0.120  
0.10  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
40  
40  
100  
100  
100  
60  
40  
40  
45  
45  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0.10  
0.12  
0.12  
Note: Table subject to change. Multiport transformers are also available. Contact the manufacturer for details at www.pulseeng.com and  
www.haloelectronics.com.  
9.3.2 Optional Preamp  
The receiver can be used in monitoring applications, which typically have series resistors with a resistive loss of  
approximately 20dB. When the RMON pin (hardware interface mode) is high or the LIU.CR2:RMON  
(microprocessor interface mode) configuration bit is set, the receiver can compensate for this resistive loss by  
applying 14dB of additional flat gain to the incoming signal before sending the signal to the AGC/equalizer block  
(an additional 6dB of flat gain is applied in the AGC circuitry for a total gain of 20dB). When the preamp is enabled  
the receiver automatically determines whether or not to make use of the preamp’s additional gain. Status bit  
LIU.SR:RPAS indicates whether or not the preamp is in use. A change of state of LIU.SR:RPAS can cause an  
interrupt if enabled by LIU.SRIE:RPASIE.  
29 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.3.3 Automatic Gain Control (AGC) and Adaptive Equalizer  
The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in  
the transmission channel and variations in transmission power. Since the incoming signal also experiences  
frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies  
frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically  
adapts to coaxial cable losses from 0 to 22dB, which translates into 0 to 457 meters (1500 feet) of coaxial cable  
(AT&T 734A or equivalent). The AGC and the equalizer work simultaneously but independently to supply a signal  
of nominal amplitude and pulse shape to the clock and data recovery block. The AGC/equalizer block automatically  
handles direct (0 meters) monitoring of the transmitter output signal. The real-time receiver gain level can be read  
from the LIU.RGLR register.  
9.3.4 Clock and Data Recovery (CDR)  
The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock,  
positive data, and negative data signals. The CDR operates from the LIU’s reference clock. See Section 9.7.1 for  
more information about reference clocks and clock selection.  
The receiver locks onto the incoming signal using a clock recovery PLL. The PLL lock status is indicated in the  
LIU.SR:RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and reference  
clock frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state  
of the RLOL status bit can cause an interrupt if enabled by LIU.SRIE:RLOLIE. Note that if the reference clock is not  
present, RLOL is not set.  
9.3.5 Loss-of-Signal (LOS) Detector  
The receiver contains analog and digital LOS detectors. The analog LOS (ALOS) detector resides in the  
AGC/equalizer block. At approximately 23dB below nominal pulse amplitude ALOS is declared by setting the  
LIU.SR:ALOS status bit. A change of state of the ALOS status bit can cause an interrupt if enabled by  
LIU.SRIE:ALOSIE. When ALOS is declared the CDR block forces all zeros out of the data recovery circuit, causing  
digital LOS (DLOS), which is indicated by the RLOS pin and the LINE.RSR:RLOS status bit. During ALOS the  
RCLK pin follows the LIU’s reference clock, since no clock information is being received on RXP/RXN. ALOS is  
cleared at approximately 22dB below nominal pulse amplitude. When the preamp is enabled (section 9.3.2) ALOS  
is declared at approximately 37dB below nominal and cleared at approximately 36dB below nominal.  
The digital LOS detector declares DLOS when it detects 192 consecutive zeros in the recovered data stream.  
When DLOS occurs, the receiver asserts the RLOS pin (if the hardware interface is enabled) and the  
LINE.RSR:RLOS status bit. DLOS is cleared when there are no EXZ occurrences over a span of 192 clock periods.  
An EXZ occurrence is defined as three or more consecutive zeros in DS3 and STS-1 modes and four or more  
consecutive zeros in E3 mode. The RLOS pin and the RLOS status bit are deasserted when the DLOS condition is  
cleared. A change of state of the LINE.RSR:RLOS status bit can cause an interrupt if enabled by  
LINE.RSRIE:RLOSIE. DLOS is only declared when B3ZS/HDB3 decoding is enabled (LINE.RCR:RZSD = 0).  
When B3ZS/HDB3 decoding is disabled in the LIU, decoding should be enabled in the neighboring DS3/E3 framer,  
and DLOS should be detected and report by the framer.  
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which  
asserts RLOS when it counts 192 consecutive zeros coming out of the CDR block and clears RLOS when it counts  
192 consecutive pulse intervals without excessive zero occurrences.  
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the  
DLOS detector, as follows:  
For E3 RLOS Assertion:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal  
level approximately 23 dB below nominal, and mutes the data coming out of the clock and data recovery block.  
(23 dB below nominal is in the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 192 consecutive zeros coming out of the CDR block and asserts RLOS. (192 meets  
the 10 N 255 pulse-interval duration requirement of G.775.)  
30 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
For E3 RLOS Clear:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a  
signal level approximately 22 dB below nominal, and enables data to come out of the CDR block. (22 dB is in  
the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 192 consecutive pulse intervals without EXZ occurrences and deasserts RLOS.  
(192 meets the 10 N 255 pulse-interval duration requirement of G.775.)  
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At the STS-1 rate, the time  
required for the DLOS detector to count 192 consecutive zeros falls in the range of 2.3 T 100μs required by  
ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 192  
consecutive pulse intervals with no excessive zeros is less than the 125 μs to 250 μs period required by ANSI  
T1.231 for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.  
During LOS, the RCLK output pin is derived from the LIU’s reference clock. The ALOS detector has a longer time  
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first  
(asserting the RLOS pin and RLOS status bit), followed by the ALOS detector. When a signal is restored, the  
DLOS detector does not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has  
seen the signal rise above a signal level approximately 22dB below nominal.  
9.3.6 Framer Interface Format and the B3ZS/HDB3 Decoder  
The recovered data can be output in either bipolar or binary format. Reception of a B3ZS or HDB3 codeword is  
flagged by the LINE.RSRL:ZSCDL latched status bit.  
9.3.6.1 Bipolar Interface Format  
To select the bipolar interface format, pull the RBIN pin (hardware interface mode) low and clear the  
PORT.CR2:RBIN configuration bit (microprocessor interface mode). In bipolar format, the B3ZS/HDB3 decoder is  
disabled and the recovered data is buffered and output on the RPOS and RNEG outputs for subsequent decoding  
by a downstream framer or mapper. Received positive-polarity pulses are indicated by RPOS = 1, while negative-  
polarity pulses are indicated by RNEG = 1.  
In DS3 and STS-1 modes an excessive zeros error (EXZ) is declared whenever there is an occurrence of 3 or  
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an  
occurrence of 4 or more zeros. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits and  
accumulated in the LINE.REXZCR register.  
In all three modes (DS3, E3, and STS-1) a bipolar violation is declared if two positive pulses are received without  
an intervening negative pulse or if two negative pulses are received without an intervening positive pulse. Bipolar  
violations (BPVs) are flagged by the LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the  
LINE.RBPVCR register.  
9.3.6.2 Binary Interface Format  
To select the binary interface format, pull the RBIN pin high (hardware interface mode for all ports) or set the  
PORT.CR2:RBIN configuration bit (microprocessor interface mode for each port). In binary format, the B3ZS/HBD3  
decoder is enabled, and the recovered data is decoded and output as a binary (NRZ) value on the RDAT pin, while  
bipolar violations, code violations, and excessive zero errors are detected and flagged on the RLCV pin.  
In DS3 and STS-1 modes, B3ZS decoding is performed. In these modes, whenever a B3ZS codeword is found in  
the receive data stream it is replaced with three zeros. In E3 mode HDB3 decoding is performed. In this mode,  
whenever an HDB3 codeword is found in the receive data stream it is replaced with four zeros. The decoding  
search criteria for a B3ZS/HDB3 codeword is programmable using the LINE.RCR:RDZSF control bit.  
An excessive zeros error (EXZ) is declared in DS3 and STS-1 modes whenever there is an occurrence of 3 or  
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an  
occurrence of 4 or more zeros in a row. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits  
and accumulated in the LINE.REXZCR register.  
A bipolar violation error (BPV error) is declared in DS3 and STS-1 modes if a BPV is detected that is not part of a  
valid B3ZS codeword. In E3 mode, a bipolar violation error is declared whenever a BPV is detected that is not part  
of a valid HDB3 codeword. In E3 mode if LINE.RCR:E3CVE = 1, code violations are detected rather than bipolar  
violation errors. A code violation is declared whenever consecutive BPVs (not BPV errors) have the same polarity  
(ITU O.161 definition). The error detection search criteria for a B3ZS/HDB3 codeword is programmable using the  
31 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
LINE.RCR:REZSF control bit. Bipolar violations (or code violations if LINE.RCR:E3CVE = 1) are flagged by the  
LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the LINE.RBPVCR register.  
In the discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates  
the AMI rule is denoted as V.  
In DS3 and STS-1 modes, B3ZS decoding is performed, and RLCV is asserted during any RCLK cycle where the  
data on RDAT causes ones of the following code violations:  
When LINE.RCR:E3CVE = 0:  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
The third zero in an EXZ.  
When LINE.RCR:E3CVE = 1:  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
In E3 mode, HDB3 decoding is performed, and RLCV is asserted during any RCLK cycle where the data on RDAT  
causes one of the following code violations:  
When LINE.RCR:E3CVE = 0:  
A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).  
A BPV with the same polarity as the last BPV.  
The fourth zero in an EXZ.  
When LINE.RCR:E3CVE = 1:  
A BPV with the same polarity as the last BPV.  
In any cycle where RLCV is asserted to flag a BPV, the RDAT pin outputs a one. In any cycle where RLCV is  
asserted to flag an EXZ, the RDAT pin outputs a zero. The state bit that tracks the polarity of the last BPV is  
toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.  
9.3.6.3 RCLK Inversion  
The polarity of RCLK can be inverted to support a glueless interface to a variety of neighboring components.  
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on  
these pins on the rising edge of RCLK, pull the RCLKI pin (hardware interface mode) high or set the  
PORT.INV:RCLKI configuration bit (microprocessor interface mode).  
9.3.6.4 Receiver Output Disable  
The RCLK, RPOS/RDAT and RNEG/RLCV pins can be disabled (put in a high-impedance state) to support  
protection switching and redundant-LIU applications. This capability supports system configurations where two or  
more LIUs are wire-ORed together and a system processor selects one to be active. To disable these pins, set the  
PORT.CR2:ROD configuration bit.  
9.3.7 Power-Down  
To minimize power consumption when the receiver is not being used, assert the RPD pin (hardware interface mode  
for all ports) or the PORT.CR1:RPD configuration bit (microprocessor interface mode per port). When the receiver  
is powered down, the RCLK, RPOS/RDAT and RNEG/RLCV pins are disabled (high impedance). In addition, the  
RXP and RXN pins become high impedance.  
9.3.8 Input Failure Detection  
The LIU receiver can detect opens and shorts on the RXP and RXN differential inputs. By default, the receiver  
detects the following problems, collectively labeled type 1 failures: open RXP connection, open RXN connection,  
common-mode RXP/RXN short to VDD, and common-mode RXP/RXN short to VSS. Type 1 failures are reported  
on LIU.SR:RFAIL1. RFAIL1 is cleared when activity is detected on both RXP and RXN.  
If LIU.CR2:RFL2E = 1, the receiver also detects a type 2 failure, which is an open or high-impedance path between  
RXP and RXN. On a board with the external components shown in Figure 3-2 or Figure 3-3, the receive  
transformer normally presents a low-impedance path between RXP and RXN. To detect a type 2 failure, the  
receiver connects an 40 µA DC current source to RXP and measures the impedance between RXP and RXN.  
32 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
When this impedance is greater than about 5 kΩ the receiver declares a type 2 failure on LIU.SR:RFAIL2. When  
the type 2 failure-detection circuitry is enabled, internal termination must be disabled (LIU.CR2:RTRE = 0) and  
external termination must not be present or a type 2 failure will not be detected because the impedance of the  
termination is below the type 2 failure threshold.  
9.3.9 Jitter and Wander Tolerance  
The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in  
Table 2-1. See Figure 9-4 for STS-1 and E3 jitter tolerance characteristics. See Figure 9-5 for DS3 jitter tolerance  
characteristics. See Figure 9-6 for DS3 and E3 wander tolerance characteristics. Note: Only G.823 and G.824  
have wander tolerance requirements.  
Figure 9-4. STS-1 and E3 Jitter Tolerance  
100  
34.4  
15  
GR-253 (STS-1)  
G.823 (E3)  
10  
DS3250x  
Jitter Tolerance  
1.5  
1.0  
0.15  
0.1  
30  
1.675  
4.4  
300  
2k  
20k  
10k  
800k  
1M  
1
10  
100  
1k  
100k  
Frequency (Hz)  
33 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-5. DS3 Jitter Tolerance  
100  
G.824 (DS3)  
GR-499 Cat I (DS3)  
GR-499 Cat II (DS3)  
67  
10  
5
DS3250x  
Jitter Tolerance  
1.0  
0.3  
0.1  
1.675  
21.9  
600  
669  
2.3k  
22.3k30k  
60k  
300k  
400k  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 9-6. DS3 and E3 Wander Tolerance  
1000  
805  
DS3250x  
Wander Tolerance  
G.824 (DS3)  
G.823 (E3)  
137.5  
100  
67  
34.4  
10  
1.2  
10-5  
6.12  
0.032  
0.13  
10-1  
1.675  
4.4  
10-4  
10-3  
10-2  
1
10  
Frequency (Hz)  
9.3.10 Jitter Transfer  
Without the jitter attenuator on the receive side, the receiver attenuates jitter at frequencies above its corner  
frequency (approximately 300kHz) and passes jitter at lower frequencies. With the jitter attenuator enabled on the  
receive side, the receiver meets the jitter transfer requirements of all applicable telecommunication standards in  
Table 2-1. See Figure 9-7.  
34 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.4 Jitter Attenuator  
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can  
be disabled. When the hardware interface is enabled (IFSEL = 00X), the JAS[1:0] and JAD[1:0] pins specify the  
jitter attenuator location and buffer depth for all ports. When a microprocessor interface is enabled (IFSEL 00X),  
the LIU.CR1:JAS[1:0] and JAD[1:0] configuration bits specify the JA location and buffer depth for each port  
individually. The JA buffer depth can be set to 16, 32, 64 or 128 bits. Figure 9-7 shows the minimum jitter  
attenuation for the device when the jitter attenuator is enabled. Figure 9-7 also shows the receive jitter transfer  
when the jitter attenuator is disabled.  
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated  
data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter  
amplitudes. The JA has a loop bandwidth of reference_clock ÷ 2,058,874 (see corner frequencies in Figure 9-7).  
The JA attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower  
frequencies to pass through relatively unaffected.  
The jitter attenuator requires a transmission-quality reference clock (i.e., ±20ppm frequency accuracy and low  
jitter). See Section 9.7.1 for more information about reference clocks and clock selection.  
When the microprocessor interface is enabled, the jitter attenuator indicates the fill status of its FIFO buffer in the  
LIU.SRL:JAFL (JA full) and LIU.SRL:JAEL (JA empty) status bits. When the buffer becomes full, the JA  
momentarily increases the frequency of the read clock by 6250ppm to avoid buffer overflow and consequent data  
errors. When the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by 6250  
ppm to avoid buffer underflow and consequent data errors. During these momentary frequency adjustments, jitter is  
passed through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is large  
enough to cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to indicate that  
data errors have occurred. JAFL and JAEL can cause an interrupt if enabled by the corresponding enable bits in  
the LIU.SRIE register.  
As shown in Figure 9-7, the jitter attenuator meets the jitter transfer requirements of all applicable standards listed  
in Table 2-1.  
Figure 9-7. Jitter Attenuation/Jitter Transfer  
21.7 Hz (DS3)  
16.7 Hz (E3)  
25.2 Hz (STS-1)  
27Hz  
1k  
>150k  
40Hz  
40k 59.6k  
0
DS3 [GR - 499 (1995)]  
CATEGORY I  
DS3 [GR -253 (1999)]  
CATEGORY I  
DS3250x TYPICAL  
RECEIVER JITTER  
TRANSFER WITH  
JITTER ATTENUATOR  
DISABLED  
STS-1 [GR-253 (1999)]  
CATEGORY II  
-10  
-20  
E3 [TBR24 (1997)]  
DS3250x  
DS3/E3/STS-1  
MINIMUM  
DS3 [GR- 499 (1999)]  
CATEGORY II  
JITTER  
ATTENUATION  
WITH JITTER  
ATTENUATOR  
ENABLED  
-30  
10k  
10  
100  
1k  
100k  
1M  
FREQUENCY (Hz)  
35 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.5 BERT  
Each LIU port has a built-in bit error rate tester (BERT). The BERT is a software-programmable test-pattern  
generator and monitor capable of meeting most error performance requirements for digital transmission equipment.  
It can generate and synchronize to pseudo-random patterns with a generation polynomial of the form xn + xy + 1,  
(where n and y can take on values from 1 to 32 with y < n) and to repetitive patterns of any length up to 32 bits.  
The pattern generator generates the programmable test pattern, and inserts the test pattern into the data stream.  
The pattern detector extracts the test pattern from the receive data stream and monitors it. Figure 5-1 shows the  
location of the BERT Block within the DS3250x devices.  
9.5.1 Configuration and Monitoring  
The pattern detector is always enabled. The pattern generator is enabled by setting the PORT.CR3:BERTE  
configuration bit. When the BERT is enabled and PORT.CR3:BERTD = 0, the pattern is transmitted and received in  
the line direction, i.e., the pattern generator is the data source for the transmitter, and the receiver is the data  
source for the pattern detector. When the BERT is enabled and PORT.CR3:BERTD = 1, the pattern is transmitted  
and received in the system direction, i.e., the pattern generator is the data source for the RPOS/RDAT and  
RNEG/RLCV pins, and the TPOS/TDAT and TNEG pins are the data source for the pattern detector. See Figure  
5-1.  
The I/O of the BERT are binary (NRZ) format. Thus while the BERT is enabled, both PORT.CR2:RBIN and  
PORT.CR2:TBIN must be set to 1 for proper operation. In addition, while transmitting/receiving BERT patterns in  
the system direction (PORT.CR3:BERTD = 1), the neighboring framer or mapper component must also be  
configured for binary interface mode to match the LIU. If the LIU interface is normally bipolar, the interface can be  
changed back to bipolar mode when the system is done using the BERT function (PORT.CR3:BERTE = 0).  
The following tables show how to configure the BERT to send and receive common patterns.  
Table 9-9. Pseudorandom Pattern Generation  
BERT.PCR REGISTER  
BERT.CR  
PATTERN TYPE  
BERT.SPR2  
BERT.SPR1  
PTF[4:0]  
(hex)  
PLF[4:0]  
(hex)  
TPIC,  
RPIC  
PTS QRSS  
29-1 O.153 (511 type)  
04  
08  
0
0
0
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0
211-1 O.152 and O.153  
(2047 type)  
08  
0A  
0
215-1 O.151  
220-1 O.153  
0D  
10  
02  
11  
0E  
13  
13  
16  
0
0
0
0
0
0
1
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
1
0
0
1
220-1 O.151 QRSS  
223-1 O.151  
Table 9-10. Repetitive Pattern Generation  
BERT.PCR REGISTER  
PATTERN TYPE  
BERT.SPR2  
BERT.SPR1  
PTF[4:0]  
(hex)  
PLF[4:0]  
(hex)  
PTS QRSS  
all 1s  
NA  
00  
00  
01  
03  
17  
0F  
07  
03  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF20  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFE  
0xFFFE  
0xFFFC  
0x0022  
0x0001  
0xFF01  
0xFFF1  
all 0s  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
alternating 1s and 0s  
11001100...  
3 in 24  
1 in 16  
1 in 8  
1 in 4  
36 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
After configuring these bits, the pattern must be loaded into the BERT. This is accomplished via a zero-to-one  
transition on BERT.CR.TNPL for the pattern generator and BERT.CR.RNPL for the pattern detector. The BERT  
must be enabled (PORT.CR3:BERTE = 1) before the pattern is loaded for the pattern load operation to take effect.  
Monitoring the BERT requires reading the BERT.SR register, which contains the Bit Error Count (BEC) bit and the  
Out of Synchronization (OOS) bit. The BEC bit is set to one when the bit error counter is one or more. The OOS bit  
is set to one when the pattern detector is not synchronized to the incoming pattern, which occurs when it receives 6  
or more bit errors within a 64-bit window. The Receive BERT Bit Count Register (BERT.RBCR) and the Receive  
BERT Bit Error Count Register (BERT.RBECR) are updated upon the reception of a Performance Monitor Update  
signal (e.g., BERT.CR.LPMU). This signal updates the registers with the bit and bit-error counts since the last  
update and then resets the counters. See Section 9.7.4 for more details about performance monitor updates.  
9.5.2 Receive Pattern Detection  
The pattern detector synchronizes the receive pattern generator to the incoming pattern. The receive pattern  
generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant  
bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the  
feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and  
y are individually programmable (1 to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the  
receive pattern generator is the feedback. If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be  
an XOR of bits 17 and 20, and the output is forced to one if the next 14 bits are all zeros. For PRBS and QRSS  
patterns, the feedback is forced to one if bits 1 through 31 are all zeros. Depending on the type of pattern  
programmed, pattern detection performs either PRBS synchronization or repetitive pattern synchronization.  
9.5.2.1 Receive PRBS Synchronization  
PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The  
receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and  
then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If  
at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern  
resynchronization is initiated. Automatic pattern resynchronization can be disabled by setting BERT.CR:APRD = 1.  
Pattern resynchronization can also be initiated manually by a zero-to-one transition of the Manual Pattern  
Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted before comparison with the  
receive pattern generator by setting BERT.CR:RPIC. Refer to Figure 9-8 for the PRBS synchronization state  
diagram.  
37 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-8. PRBS Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Load  
32 bits loaded  
9.5.2.2 Receive Repetitive Pattern Synchronization  
Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern.  
The receive pattern generator is synchronized by searching each incoming data stream bit position for the  
repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match  
the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS  
pattern generator, automatic pattern resynchronization is initiated. Automatic pattern resynchronization can be  
disabled by setting BERT.CR:APRD = 1. Pattern resynchronization can also be initiated manually by a zero-to-one  
transition of the Manual Pattern Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted  
before comparison with the receive pattern generator by setting BERT.CR:RPIC.  
See Figure 9-9 for the repetitive pattern synchronization state diagram.  
38 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-9. Repetitive Pattern Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Match  
Pattern Matches  
9.5.2.3 Receive Pattern Monitoring  
Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts  
the incoming bits. An out-of-synchronization (BERT.SR:OOS = 1) condition is declared when the synchronization  
state machine is not in the “Sync” state. An OOS condition is terminated when the synchronization state machine is  
in the “Sync” state. A change of state of the OOS status bit sets the BERT.SRL:OOSL latched status bit and can  
cause an interrupt if enabled by BERT.SRIE:OOSIE.  
Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If the  
two bits do not match, a bit error is declared (BERT.SRL:BEL = 1), and the bit error and bit counts are incremented  
(BERT.RBECR and BERT.RBCR, respectively). If the two bits do match, only the bit count is incremented. The bit  
count and bit error count are not incremented when an OOS condition exists. The setting of the BEL status bit can  
cause an interrupt if enabled by BERT.SRIE:BEIE.  
9.5.3 Transmit Pattern Generation  
The pattern generator generates the outgoing test pattern. The transmit pattern generator is a 32-bit shift register  
that shifts data from the least significant bit (LSB) or bit 1 to the most significant bit (MSB) or bit 32. The input to bit  
1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the feedback is an XOR of bit n and bit  
y. For a repetitive pattern (length n), the feedback is bit n. The values for n and y are individually programmable (1  
to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the receive pattern generator is the feedback.  
If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be an XOR of bits 17 and 20, and the output  
is forced to one if the next 14 bits are all zeros. For PRBS and QRSS patterns, the feedback is forced to one if bits  
1 through 31 are all zeros. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value  
before pattern generation starts. The seed/pattern value is programmable (0 – 2n - 1) in the BERT.SPR registers.  
The generated pattern can be inverted by setting BERT.CR:TPIC.  
9.5.3.1 Transmit Error Insertion  
Errors can be inserted into the generated pattern one at a time or at a rate of one out of every 10n bits. The value of  
n is programmable (1 to 7 or off) in the BERT.TEICR:TEIR[2:0] configuration field. Single bit error insertion is  
39 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
enabled by setting BERT.TEICR:BEI and can be initiated from the microprocessor interface or by the manual error  
insertion pin (GPIOB2). See Section 9.7.5 for more information about manual error insertion.  
9.6 Loopbacks  
Each LIU has three internal loopbacks. See Figure 5-1. When the hardware interface is enabled (IFSEL = 00X),  
loopbacks are controlled by the LBn[1:0]. When a microprocessor interface is enabled (IFSEL00X), loopbacks are  
controlled by the LB[1:0] and LBS fields in the PORT.CR3 register.  
Analog loopback (ALB) connects the outgoing transmit signal back to the receiver’s analog front end. During ALB  
the transmit signal is output normally on TXP/TXN, but the received signal on RXP/RXN is ignored.  
Line loopback (LLB) connects the output of the receiver to the input of the transmitter. The LLB path does not  
include the B3ZS/HDB3 decoder and encoder so that the signal looped back is exactly the same as the signal  
received, including bipolar violations and code violations. During LLB, recovered clock and data are output on  
RCLK, RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored.  
Diagnostic loopback (DLB) connects the TCLK, TPOS/TDAT and TNEG pins to the RCLK, RPOS/RDAT, and  
RNEG/RLCV pins. During DLB (with LLB disabled), the signal on TXP/TXN can be the normal transmit signal or an  
AIS signal from the AIS generator. In microprocessor interface mode DLB and LLB can be enabled simultaneously  
to provide simultaneous remote and local loopbacks.  
9.7 Global Resources  
9.7.1 Clock Rate Adapter (CLAD)  
The CLAD is used to create multiple transmission-quality reference clocks from a single transmission-quality  
(±20ppm, low jitter) clock input on the REFCLK pin. The LIUs in the device need up to three different reference  
clocks (DS3, E3, and STS-1) for use by the CDRs and jitter attenuators. Given one of these clock rates or any of  
several other clock frequencies on the REFCLK pin, the CLAD can generate all three LIU reference clocks. The  
internally generated reference clock signals can optionally be driven out on pins CLKA, CLKB, and CLKC for  
external use. In addition a fourth frequency, either 77.76 MHz or 19.44 MHz, can be generated and driven out on  
the CLKD pin for use in Telecom Bus applications.  
When the hardware interface is enabled (IFSEL = 00X), the CLAD is controlled by the CLADBYP pin, and the  
REFCLK frequency is fixed at 19.44 MHz. When the CLADBYP pin is high all PLLs in the CLAD are bypassed and  
powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins become inputs, and  
the DS3, E3 and STS-1 reference clocks, respectively, are sourced from these pins. Transmission-quality clocks  
(±20ppm, low jitter) must be provided to these pins for each line rate required by the LIUs. When CLADBYP is low,  
all four PLLs in the CLAD are enabled, and the generated DS3, E3, STS-1, and 77.76/19.44MHz clocks are always  
output on CLKA, CLKB, CLKC and CLKD, respectively.  
When a microprocessor interface is enabled (IFSEL00X), the CLAD clock mode and the REFCLK frequency are  
set by the GLOBAL.CR2:CLAD[6:4] bits, as shown in Table 9-11. When CLAD[6:4] = 000, all PLLs in the CLAD are  
bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins  
become inputs, and the DS3, E3 and STS-1 reference clocks, respectively, are sourced from these pins.  
Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the  
LIUs. CLAD[6:4] = 000 is equivalent to pulling the CLADBYP pin high in hardware interface mode. When  
CLAD[6:4] 000, the PLL circuits are enabled as needed to generate the required clocks, as determined by the  
CLAD[6:0] bits and the LIU mode bits (PORT.CR2:LM[1:0]). If a clock rate is not required as a reference clock, then  
the PLL used to generate that clock is automatically disabled and powered down. The CLAD[3:0] bits are output  
enable controls for CLKA, CLKB, CLKC and CLKD, respectively. Configuration bit GLOBAL.CR2:CLKD19 specifies  
the frequency to be output on the CLKD pin (77.76MHz or 19.44MHz). Status register GLOBAL.SRL provides  
activity status for the REFCLK, CLKA, CLKB and CLKC pins and lock status for the CLAD.  
Each LIU block indicates the absence of the reference clock it requires by setting its LIU.SR:LOMC bit.  
40 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 9-11. CLAD Clock Source Settings  
CLAD[6:4]*  
REFCLK  
CLKA  
CLKB  
E3 input  
CLKC  
STS-1 input  
CLKD  
Low output  
000  
001  
010  
011  
100  
101  
110  
111  
Don't Care  
DS3 input  
E3 input  
DS3 input  
DS3 output  
DS3 output  
DS3 output  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 output 77.76 or 19.44MHz output  
STS-1 input  
77.76MHz input DS3 output  
19.44MHz input DS3 output  
38.88MHz input DS3 output  
12.80MHz input DS3 output  
Table 9-12. CLAD Clock Pin Output Settings  
CLAD[3:0]*  
CLKA PIN  
Low output  
PLL-A output  
CLKB PIN  
CLKC PIN  
CLKD PIN  
XXX0  
XXX1  
XX0X  
XX1X  
X0XX  
X1XX  
0XXX  
1XXX  
Low output  
PLL-B output  
Low output  
PLL-C output  
Low output  
PLL-D output  
*When CLAD[6:4] = 000, CLKA, CLKB, and CLKC are inputs and CLKD is held low.  
41 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.7.2 One-Second Reference Generator  
The one-second reference signal can be used to update performance monitoring registers on a precise one-  
second interval. The generated internal signal is a 50% duty cycle signal that is divided down from the indicated  
reference signal. The low to high edge on this signal sets the GLOBAL.SRL:1SREFL latched one-second bit, which  
can generate an interrupt if enabled. The low to high edge is used to initiate a performance monitor register update  
when GLOBAL.CR1:GPM[1:0] = 1X. The internal one-second reference can be output on the GPIOB3 pin by  
setting GLOBAL.CR1:G1SROE. The source for the one-second reference is set by GLOBAL.CR1:G1SRS[2:0].  
The DS3, E3 and STS-1 reference clocks are sourced from the CLAD, if the CLAD is configured to generate them,  
or from the CLKA, CLKB and CLKC pins, respectively.  
Table 9-13. Global One-Second Reference Source  
G1SRS[2:0]  
SOURCE  
000  
001  
010  
011  
100  
101  
110  
111  
Disabled  
DS3 reference clock  
E3 reference clock  
STS-1 reference clock  
Port 1 TCLK  
Port 2 TCLK  
Port 3 TCLK  
Port 4 TCLK  
9.7.3 General-Purpose I/O Pins  
When a microprocessor interface is enabled (IFSEL 00X), there are two general-purpose I/O (GPIO) pins  
available per port, each of which can be used as a general-purpose input, general-purpose output, or loss-of-signal  
output. In addition, GPIOB1, GPIOB2, and GPIOB3 can be used as a global I/O signal. The GPIO pins are  
independently configurable using the GPIOynS fields of the GLOBAL.GIOCR register. When a GPIO pin is  
configured as an input, its value can be read from the GLOBAL.GIORR register. When a GPIO pin is configured as  
a loss-of-signal (LOS) status output, its state mimics the state of the LINE.RSR:RLOS status bit. When a port is  
powered down and a GPIO pin has been programmed as an associated loss-of-signal output, the pin is held low.  
Programming a GPIO pin as a global signal as shown in Table 9-14 overrides the I/O settings specified by the  
GPIOynS field for that pin and configures the pin as an input or an output as shown in the Function column of  
Table 9-14.  
Table 9-14. GPIO Pin Global Signal Assignments  
GLOBAL SIGNAL  
PIN  
FUNCTION  
None  
Global PMU input  
Global TMEI input  
G1SREF output  
None  
CONTROL BIT  
GLOBAL.CR1.GPM[1:0]  
GLOBAL.CR1.MEIMS  
GLOBAL.CR1.G1SROE  
GPIOAn  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
Note: n = 1 to 4.  
42 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 9-15. GPIO Pin Control  
GPIOynS[1:0]  
FUNCTION  
00  
01  
10  
11  
Input  
Output LOS status for port n  
Output logic 0  
Output logic 1  
Note: n = 1 to 4, y = A or B.  
9.7.4 Performance Monitor Register Update  
Each performance monitor counter can count at least one second of events before saturating at the maximum  
count. Each counter has an associated status bit that is set when the counter value is not zero, a latched status bit  
that is set when the counter value changes from zero to one, and a latched status bit that is set each time the  
counter is incremented.  
There is a holding register for each performance monitor counter that is updated when a performance monitoring  
update is performed. A performance monitoring update causes the counter value to be loaded into the holding  
register and the counter to be cleared. If a counter increment occurs at the exact same time as the counter reset,  
the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set.  
The Performance Monitor Update (PMU) signal initiates a performance monitoring update. The PMU signal can be  
sourced from a general-purpose I/O pin (GPIOB1), the internal one-second reference, a global register bit  
(GLOBAL.CR1:GPMU), or a port register bit (PORT.CR1:PMU). Note: The BERT PMU can be sourced from a  
block level register bit (BERT.CR:LPMU). To use GPIOB1, GLOBAL.CR1.GPM[1:0] is set to 01, the appropriate  
PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the internal one-  
second reference, GLOBAL.CR1:GPM[1:0] is set to 1X, the appropriate PORT.CR1:PMUM bits are set to 1, and  
the appropriate BERT.CR:PMUM bits are set to 1. To use the global PMU register bit, GLOBAL.CR1:GPM[1:0] is  
set to 00, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to  
1. To use the port PMU register bit, the associated PORT.CR1:PMUM bit is set to 0, and the appropriate  
BERT.CR:PMUM bits are set to 1. To use the BERT.CR:LPMU register bit, the appropriate BERT.CR:PMUM bit is  
set to 0.  
When using the global or port PMU register bits, the PMU bit should be set to initiate the process and cleared when  
the associated PMS status bit (GLOBAL.SR:GPMS or PORT.SR:PMS) is set. When using the GPIO pin or internal  
one-second reference, the PMS bit is set shortly after the signal goes high, and cleared shortly after the signal  
goes low. The PMS has an associated latched status bit that can generate an interrupt if enabled. The port PMS  
signal does not go high until an update of all the appropriately configured block-level performance monitoring  
counters in the port has been completed. The global PMS signal does not go high until an update of all the  
appropriately configured port-level performance monitoring counters in the entire chip has been completed.  
9.7.5 Transmit Manual Error Insertion  
Various types of errors can be inserted in the transmit data stream using the Transmit Manual Error Insertion  
(TMEI) signal, which can be sourced from a block-level register bit, a port register bit (PORT.CR1:TMEI), a global  
register bit (GLOBAL.CR1:TMEI), or a general-purpose I/O pin (GPIOB2). To use GPIOB2 as the TMEI signal,  
GLOBAL.CR1.MEIMS is set to 1, the appropriate PORT.CR1.MEIMS bits are set to 1, and the appropriate block-  
level MEIMS bits are set to 1. To use the global TMEI register bit, GLOBAL.CR1.MEIMS is set to 0, the appropriate  
PORT.CR1.MEIMS bits are set to 1, and the appropriate block-level MEIMS bits are set to 1. To use the port TMEI  
register bit, the associated PORT.CR1.MEIMS is set to 0 and the appropriate block-level MEIMS bits are set to 1.  
To use the block-level TSEI register bit, the associated block-level MEIMS bit is set to 0.  
In order for an error of a particular type to be inserted, the error type must be enabled by setting the associated  
error insertion enable bit in the associated block's error insertion register. Once enabled, a single error is inserted  
at the next opportunity when the TMEI signal transitions from zero to one. Note: If the TMEI signal has multiple  
zero to one transitions between error insertion opportunities, only a single error is inserted.  
43 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.8 8-/16-Bit Parallel Microprocessor Interface  
See Table 12-6 and Figure 12-3 through Figure 12-10 for parallel interface timing diagrams and parameters.  
9.8.1 8-Bit and 16-Bit Bus Widths  
When the IFSEL pins are set to 1XX the device presents a parallel microprocessor interface. In 8-bit modes (IFSEL  
= 10X), the address is composed of all the address bits including A[0], the lower 8 data lines D[7:0] are used, and  
the upper 8 data lines D[15:8] are disabled (high impedance). In 16-bit modes (IFSEL = 11X), the address does not  
include A[0], and all 16 data lines D[15:0] are used.  
9.8.2 Byte Swap Mode  
In 16-bit modes (IFSEL = 11X) the microprocessor interface can operate in byte swap mode. The BSWAP pin is  
used to determine whether byte swapping is enabled. This pin should be static and not change during operation.  
When the BSWAP pin is low the upper register bits REG[15:8] are mapped to the upper external data bus lines  
D[15:8], and the lower register bits REG[7:0] are mapped to the lower external data bus lines D[7:0]. When the  
BSWAP pin is high the upper register bits REG[15:8] are mapped to the lower external data bus lines D[7:0], and  
the lower register bits REG[7:0] are mapped to the upper external data bus lines D[15:8].  
9.8.3 Read-Write and Data Strobe Modes  
The processor interface can operate in either read-write strobe mode (also known as "Intel" mode) or data strobe  
mode (also known as "Motorola" mode). When IFSEL = 1X0 the read-write strobe mode is enabled. In this mode a  
negative pulse on RD performs a read cycle, and a negative pulse on WR performs a write cycle.  
When IFSEL = 1X1 the data strobe mode is enabled. In this mode a negative pulse on DS when R/W is high  
performs a read cycle, a negative pulse on DS when R/W is low performs a write cycle..  
9.8.4 Multiplexed and Nonmultiplexed Operation  
In all parallel interface modes the interface supports both multiplexed and nonmultiplexed operation. For  
multiplexed operation in 8-bit modes, wire A[9:8] to the processor’s A[9:8] pins, wire A[7:0] to D[7:0] and to the  
processor’s multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the processor. For  
nonmultiplexed 8-bit operation, wire ALE high and wire A[9:0] and D[7:0] to the appropriate pins on the processor.  
For multiplexed operation in 16-bit modes, wire A[9:0] to D[9:0], wire D[15:0] to the CPU’s multiplexed address/data  
bus, and connect the ALE pin to the appropriate pin on the processor. For nonmultiplexed 16-bit operation, wire  
ALE high and wire A[9:0] and D[15:0] to the appropriate pins on the processor.  
9.8.5 Clear-On-Read and Clear-On-Write Modes  
The latched status register bits can be programmed to clear on a read access or clear on a write access. The  
global control register bit GLOBAL.CR2.LSBCRE specifies the method used to clear all of the latched status  
registers. When LSBCRE = 0, latched status register bits are cleared when written with a 1. When LSBCRE = 1,  
latched status register bits are cleared when read.  
The clear-on-write mode expects the user to use the following method: read the latched status register then write a  
1 to the register bits to be cleared. This method is useful when multiple software tasks use the same latched status  
register. Each task can clear the bits it uses without affecting any of the latched status bits used by other tasks.  
The clear-on-read mode clears all latched status bits in a register automatically when the latched status register is  
read. This method works well when no more than one software task uses any single latched status register. An  
event that occurs while the associated latched status register is being read results in the associated latched status  
bit being set after the read is completed.  
9.8.6 Global Write Mode  
When GLOBAL.CR2:GWRM = 1, a write to a register of any port, including a port not present on the device,  
causes the data to be written to the same register in all the ports on the device. (On the DS32501 ports 2 through 4  
are not present. On the DS32502 ports 3 through 4 are not present. On DS32503 port 4 is not present.) In this  
mode register reads are not supported and result in undefined data.  
44 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.9 SPI Serial Microprocessor Interface  
When the IFSEL pins are set to 01X the device presents an SPI interface on the CS, SCLK, SDI, and SDO pins.  
SPI is a widely-used master/slave bus protocol that allows a master device and one or more slave devices to  
communicate over a serial bus. The DS3250x is always a slave device. Masters are typically microprocessors,  
ASICs or FPGAs. Data transfers are always initiated by the master device, which also generates the SCLK signal.  
The DS3250x receives serial data on the SDI pin and transmits serial data on the SDO pin. SDO is high-  
impedance except when the DS3250x is transmitting data to the bus master. Note that the ALE pin must be wired  
high for proper operation of the SPI interface.  
Bit Order. When IFSEL[2:0] = 010 the register address and all data bytes are transmitted MSB first on both SDI  
and SDO. When IFSEL[2:0] = 011, the register address and all data bytes are transmitted LSB first on both SDI  
and SDO. The Motorola SPI convention is MSB first.  
Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low  
and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus  
transactions. The CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on  
the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in  
on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge. See Figure  
9-10.  
Device Selection. Each SPI device has its own chip-select line. To select the DS3250x, pull its CS pin low.  
Control Word. After CS is pulled low, the bus master transmits the control word during the first 16 SCLK cycles. In  
MSB-first mode the control word has the form:  
R/W A13 A12 A11 A10 A9 A8 A7  
A6 A5 A4 A3 A2 A1 A0 BURST  
where A[13:0] is the register address, R/W is the data direction bit (1 = read, 0 = write), and BURST is the burst bit  
(1 = burst access, 0 = single-byte access). In LSB-first mode the order of the 14 address bits is reversed. In the  
discussion that follows, a control word with R/W = 1 is a read control word, while a control word with R/W = 0 is a  
write control word. Note: The address range of the DS32504 is 000h–3FFh, therefore, A[13:10] are ignored.  
Single-Byte Writes. See Figure 9-11. After CS goes low, the bus master transmits a write control word with  
BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS  
high.  
Single-Byte Reads. See Figure 9-11. After CS goes low, the bus master transmits a read control word with  
BURST = 0. The DS3250x then responds with the requested data byte. The bus master then terminates the  
transaction by pulling CS high.  
Burst Writes. See Figure 9-11. After CS goes low, the bus master transmits a write control word with BURST = 1  
followed by the first data byte to be written. The DS3250x receives the first data byte on SDI, writes it to the  
specified register, increments its internal address register, and prepares to receive the next data byte. If the master  
continues to transmit, the DS3250x continues to write the data received and increment its address counter. After  
the address counter reaches 3FFh it rolls over to address 000h and continues to increment.  
Burst Reads. See Figure 9-11. After CS goes low, the bus master transmits a read control word with BURST = 1.  
The DS3250x then responds with the requested data byte on SDO, increments its address counter, and prefetches  
the next data byte. If the bus master continues to demand data, the DS3250x continues to provide the data on  
SDO, increment its address counter, and prefetch the following byte. After the address counter reaches 3FFh it  
rolls over to address 000h and continues to increment.  
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by  
pulling CS high. In response to early terminations, the DS3250x resets its SPI interface logic and waits for the start  
of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data  
byte, the current data byte is not written.  
Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the  
DS3250x is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support  
this option, the bus master must not drive the SDI/SDO line when the DS3250x is transmitting.  
AC Timing. See Table 12-9 and Figure 12-11 for AC timing specifications for the SPI interface.  
45 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 9-10. SPI Clock Polarity and Phase Options  
CS  
SCK  
CPOL = 0, CPHA = 0  
SCK  
CPOL = 0, CPHA = 1  
SCK  
CPOL = 1, CPHA = 0  
SCK  
CPOL = 1, CPHA = 1  
SDI/SDO  
MSB  
6
5
4
3
2
1
LSB  
CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES)  
Figure 9-11. SPI Bus Transactions  
Single-Byte Write  
CS  
W
R/  
Register Address Burst Data Byte  
SDI  
0 (Write)  
0 (single-byte)  
SDO  
Single-Byte Read  
CS  
W
R/  
Register Address Burst  
SDI  
1 (Read)  
0 (single-byte)  
SDO  
Data Byte  
Burst Write  
CS  
W
R/  
Register Address Burst Data Byte 1  
Data Byte N  
SDI  
0 (Write)  
1 (burst)  
SDO  
Burst Read  
CS  
W
R/  
Register Address Burst  
SDI  
1 (Read)  
1 (burst)  
Data Byte 1  
Data Byte N  
SDO  
46 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.10 Interrupt Structure  
The interrupt structure is designed to efficiently guide the user to the source of an interrupt. The status bits in the  
global interrupt status register (GLOBAL.ISR) are read to determine if the interrupt source comes from a global  
event, such as a one-second timer interrupt, or one of the ports. If the interrupt source is a global event, the global  
status register is read (GLOBAL.SRL) to determine the source. If the interrupt source is a port, the port interrupt  
status register (PORT.ISR) is read to determine if the interrupt source comes from a port event, such as a  
performance monitor update interrupt, or one of the functional blocks inside the port. If the interrupt source is a port  
event, the port status register is read (PORT.SRL) to determine the source. If the interrupt source is from a  
functional block inside the port, the associated block's status register is read to determine the source. The source  
of an interrupt can be determined by reading no more than three 16-bit registers.  
Once the interrupt source has been determined, the interrupt can be cleared by either reading or writing the latched  
status register (see Section 9.8.5). An alternate method for clearing an interrupt is to disable the interrupt at the bit,  
block, port, or global level by writing a zero to the associated interrupt enable bit. Note: Disabling the interrupt at  
the block, port, or global level disables all interrupts sources at or below that level.  
Figure 9-12. Interrupt Signal Flow  
PORT LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
GLOBAL LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
PORT.SRL bit  
PORT.SRIE bit  
GLOBAL.SRL bit  
GLOBAL.SRIE bit  
GLOBAL INTERRUPT  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
PORT.SRL bit  
PORT.SRIE bit  
GLOBAL.SRL bit  
GLOBAL.SRIE bit  
GLOBAL.ISR bit  
GLOBAL.ISRIE bit  
GLOBAL.ISRIE bit  
GLOBAL.ISR bit  
INT*  
PORT.ISR bit  
block SRL bit  
block SRIE bit  
PORT.ISRIE bit  
PORT.ISRIE bit  
PORT.ISR bit  
block SRL bit  
block SRIE bit  
PORT INTERRUPT  
STATUS REGISTER  
AND INTERRUPT  
BLOCK LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
ENABLE REGISTER  
47 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
9.11 Reset and Power-Down  
When the hardware interface is enabled (IFSEL = 00X), the device can be reset via the RST pin. The transmitters  
of all ports can be powered down using the TPD pin, while the receivers of all ports can be powered down using  
the RPD pin.  
When a microprocessor interface is enabled (IFSEL 00X), the device presents a number of reset and power-  
down options. The device can be reset at a global level via the GLOBAL.CR1:RST bit or the RST pin, and at the  
port level via the PORT.CR1:RST bit. Each port can be powered down via the PORT.CR1:TPD and RPD bits. The  
JTAG logic is reset by the JTRST pin.  
The external RST pin and the global reset bit (GLOBAL.CR1:RST) are combined to create an internal global reset  
signal. The global reset signal resets all the status and control registers on the chip (except the GLOBAL.CR1:RST  
bit), to their default values. It also resets all flip-flops in the global logic (including the CLAD block) and port logic to  
their reset values. The GLOBAL.CR1:RST bit stays set after a one is written to it. It is reset to zero when a zero is  
written to it or when the external RST pin is active.  
At the port level, the global reset signal combines with the port reset bit (PORT.CR1:RST) to create a port reset  
signal. The port reset signal resets all the status and control registers in the port (except PORT.CR1:RST bit) to  
their default values. It also resets all flip-flops in the port logic to their reset values. The port reset bit  
(PORT.CR1:RST) stays set after a one is written to it. It is reset to zero when a zero is written to it or when the  
global reset signal is active.  
The data path reset (RSTDP) resets all of the same registers and flip-flops as the “general” reset (RST), except for  
the control registers. This allows the device to be programmed while the data path logic is in reset. It is  
recommended that a port be placed in data path reset during configuration changes.  
The global data path reset bit (GLOBAL.CR1:RSTDP) is set to one when the global reset signal is active. This bit is  
cleared when a zero is written to it while the global reset signal is inactive. The global data path reset resets all of  
the data path registers and flip-flops on the chip.  
The port data path reset bit (PORT.CR1:RSTDP) is set to one when the port reset signal is active. It is cleared  
when a zero is written to it while the port reset signal is inactive. The port data path reset resets all of the port logic  
data path registers and flip-flops.  
Table 9-16. Reset and Power-Down Sources  
REGISTER BITS  
PIN  
INTERNAL SIGNALS  
Tx  
GLOBAL.CR1  
PORT.CR1  
GLOBAL  
Rx  
PORT  
PORT  
DATA  
GLOBAL DATA  
PORT  
PORT  
RST  
RSTDP  
RST  
TPD RPD  
RSTDP  
RST  
RESET  
PATH  
RESET POWER- POWER- PATH  
DOWN DOWN RESET  
RESET  
0
1
1
1
1
1
1
1
1
F0  
1
F1  
F1  
1
F0  
F0  
0
F1  
F1  
F1  
F1  
0
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
1
1
0
1
0
0
1
1
1
1
1
0
0
1
0
F1  
0
F1  
0
0
0
0
1
F1  
1
F1  
1
F1  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
Register bit states: F0 = forced to 0, F1 = forced to 1, 0 = set to 0, 1 = set to 1.  
The reset signals in the device are asserted asynchronously and do not require a clock to put the logic into the  
reset state. The control registers do not require a clock to come out of the reset state, but all other logic does  
require a clock to come out of the reset state.  
48 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
The port transmit power-down function (PORT.CR1:TPD) disables all of the transmit clocks and powers down the  
transmit LIU to minimize power consumption. The port receive power-down function (PORT.CR1:RPD) disables all  
of the receive clocks and powers down the receive LIU to minimize power consumption. The one-second timer  
circuit can be powered down by disabling its reference clock. The CLAD can be powered down by disabling it  
(setting GLOBAL.CR2:CLAD[6:0] = 0). The global logic cannot be powered down.  
After a global reset, all of the control and status registers in all ports are set to their default values and all the other  
flip-flops are reset to their reset values. The global data path reset (GLOBAL.CR1:RSTDP), all the port data path  
resets (PORT.CR1:RSTDP), and all the port power-down (PORT.CR1:TPD and RPD) bits are set after the global  
reset. A valid initialization sequence is to clear the port power-down bits in the ports that are to be active, write to all  
of the configuration registers to set them in the desired modes, then clear the GLOBAL.CR1:RSTDP and  
PORT.CR1:RSTDP bits. This causes all the logic to start up in a predictable manner. The device can also be  
initialized by clearing the GLOBAL.CR1:RSTDP, PORT.CR1:RSTDP, and PORT.CR1:TPD and RPD bits, then  
writing to all of the configuration registers to set them in the desired modes, and then clearing all of the latched  
status bits. This second initialization scheme can cause the device to operate unpredictably for a brief period of  
time.  
Some of the I/O pins are put into a known state at reset. At the global level, the microprocessor interface output  
and I/O pins (D[15:0]) are forced into the high impedance state when the RST pin is active, but not when the  
GLOBAL.CR1:RST bit is active. The CLAD clock pins CLKA, CLKB, and CLKC are forced to be the LIU reference  
clock inputs. The general-purpose I/O pins (GPIOAn & GPIOBn) are forced to be inputs until after the RST pin is  
deasserted. At the port level, the LIU transmitter outputs TXP and TXN are forced into a high impedance state.  
Note: Setting any of the reset (RST), data path reset (RSTDP), or power-down (TPD, RPD) bits for less than 100ns  
can result in the associated circuits coming up in a random state. When a power-down bit is cleared, it takes  
approximately 1ms for all the associated circuits to power-up.  
49 of 124  
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10. REGISTER MAPS AND DESCRIPTIONS  
10.1 Overview  
When a microprocessor interface is enabled (IFSEL[2:0] 00X), the registers described in this section are  
accessible. The overall memory map is shown in Table 10-1. The DS32504 register map covers the address range  
of 000 to 3FFh. Address line A[9] is not present on the DS32503 and DS32502. On the DS32502, writes into the  
address space for LIU3 are ignored, and reads from these addresses return 00h. On the DS32501, address lines  
A[9:8] are not present, and writes into the address space for LIU[2:4] are ignored, and reads from these addresses  
return 00h. The address LSB A[0] is used to address the upper and lower bytes of a register in 8-bit mode, and to  
swap the upper and lower bytes in 16-bit mode.  
In each register, bit 15 is the MSB and bit 0 is the LSB. Register addresses not listed and bits marked “—“ are  
reserved and must be written with 0 and ignored when read. Writing other values to these registers may put the  
device in a factory test mode resulting in undefined operation. Bits labeled “0” or “1” must be written with that value  
for proper operation. Register fields with underlined names are read-only fields; writes to these fields have no  
effect. All other fields are read-write. Register fields are described in detail in the register descriptions in Sections  
10.3 through 10.8.  
10.1.1 Status Bits  
The device has two types of status bits. Real-time status bits are read-only and indicate the state of a signal at the  
time it is read. Latched status bit are set when the associated event occurs and remain set until cleared. Once  
cleared, a latched status bit is not set again until the associated event recurs (goes away and comes back). A  
latched-on-change bit is a latched status bit that is set when the event occurs and when it goes away. A latched  
status bit can be cleared using either a clear-on-read or clear-on-write method (see Section 9.8.5). For clear-on-  
read, all latched status bits in a latched status register are cleared when the register is read. In 16-bit mode, all 16  
latched status bits are cleared. In 8-bit mode, only the eight bits read are cleared. For clear-on-write, a latched bit in  
a latched status register is cleared when a logic 1 is written to that bit. For example, writing FFFFh to a 16-bit  
latched status register clears all latched status bits in the register, whereas writing 0001h only clears bit 0 of the  
register. When set, some latched status bits can cause an interrupt request if enabled to do so by corresponding  
interrupt enable bits.  
10.1.2 Configuration Fields  
Configuration fields are read-write. During reset, each configuration field reverts to the default value shown in the  
register definition. Configuration register bits marked “—“ are reserved and must be written with 0. Configuration  
registers and bits can be written to and read from during a data path reset, however, all changes to these bits are  
ignored during the data path reset. As a result, all bits requiring a 0 to 1 transition to initiate an action must have the  
transition occur after the data path reset has been removed. See Section 9.11 for more information about resets  
and data path resets.  
10.1.3 Counters  
All counters stop counting at their maximum count. A counter register is updated by asserting (low to high  
transition) the performance monitoring update signal (PMU). During a counter register update, the performance  
monitoring status signal (PMS) is deasserted. A counter register update consists of loading the counter register  
with the current count, resetting the counter, resetting the zero count status indication, and then asserting PMS. No  
events are missed during an update. See Section 9.7.4 for more information about performance monitor register  
updates.  
50 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.2 Overall Register Map  
Table 10-1. Overall Register Map  
BASE  
BLOCK  
ADDRESS  
000h  
080h  
100h  
180h  
200h  
Global Registers  
Port Registers for Port 1  
Port Registers for Port 2  
Port Registers for Port 3  
Port Registers for Port 4  
Table 10-2. Port Registers  
ADDRESS  
OFFSET  
REGISTER  
Port Common Registers  
LIU Registers  
BLOCK  
00h–1Fh  
20h–2Fh  
30h–3Fh  
40h–4Fh  
50h–6Fh  
70h–7Fh  
PORT  
LIU  
B3ZS/HDB3 Encoder Registers  
B3ZS/HDB3 Decoder Registers  
BERT Registers  
LINE Tx  
LINE Rx  
BERT  
Reserved  
Note: The address offsets given in this table are offsets from port base addresses shown in Table 10-1.  
51 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.3 Global Registers  
Table 10-3. Global Register Map  
ADDRESS  
REGISTER  
OFFSET  
DESCRIPTION  
000h  
002h  
004h  
GLOBAL.IDR  
GLOBAL.CR1  
GLOBAL.CR2  
GLOBAL.GIOCR  
GLOBAL.ISR  
GLOBAL.ISRIE  
GLOBAL.SR  
GLOBAL.SRL  
GLOBAL.SRIE  
ID Register  
Global Control Register 1  
Global Control Register 2  
Unused  
General-Purpose I/O Control Register  
Unused  
Global Interrupt Status Register  
Global Interrupt Enable Register  
Unused  
Global Status Register  
Global Status Register Latched  
Global Status Register Interrupt Enable  
Unused  
006h–00Eh  
010h  
012h–01Eh  
020h  
022h  
024h–026h  
028h  
02Ah  
02Ch  
02Eh–06h  
038h  
03Ah–07Eh  
GLOBAL.GIORR  
General-Purpose I/O Read Register  
Unused  
52 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.IDR  
ID Register  
000h  
Bit #  
15  
14  
13  
12  
11  
10  
9
8
Name  
ID15  
ID14  
ID13  
ID12  
ID11  
ID10  
ID9  
ID8  
Bit #  
7
6
5
4
3
2
1
0
Name  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bits 15 to 12: Device REV ID (ID[15:12]). These bits of the device ID register have the same information as the  
four bits of the JTAG REV ID portion of the JTAG ID register, JTAG ID[31:28]. See Section 11.  
Bits 11 to 0: Device CODE ID (ID[11:0]). These bits of the device ID register have the same information as the 12  
bits of the JTAG CODE ID portion of the JTAG ID register, JTAG ID[23:12]. See Section 11.  
53 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.CR1  
Global Control Register 1  
002h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
G1SRS[2:0]  
0
9
0
8
G1SROE  
0
Bit #  
Name  
Default  
7
TMEI  
0
6
MEIMS  
0
5
0
4
0
3
GPMU  
0
2
0
1
RSTDP  
1
0
RST  
0
GPM[1:0]  
Bits 11 to 9: Global One-Second Reference Source (G1SRS[2:0]). These bits determine the source for the internally  
generated one-second reference. The source is selected from one of the CLAD clocks or from one of the port transmit  
clocks. See Section 9.7.2.  
000 = Disabled  
100 = Port 1 TCLK  
101 = Port 2 TCLK  
110 = Port 3 TCLK  
111 = Port 4 TCLK  
001 = DS3 reference clock  
010 = E3 reference clock  
011 = STS-1 reference clock  
Bit 8: Global One-Second Reference Output Enable (G1SROE). This bit determines whether the GPIOB3 pin is used  
to output the global one-second reference signal. See Section 9.7.2.  
0 = GPIOB3 pin mode selected by GLOBAL.GIOCR:GIOB3S[1:0]  
1 = GPIOB3 outputs the global one-second reference signal specified by GLOBAL.CR1:G1SRS[2:0]  
Bit 7: Transmit Manual Error Insert (TMEI). When GLOBAL.CR1:MEIMS = 0, this bit is used to insert errors in all  
blocks in all ports where block level MEIMS = 1 and PORT.CR1:MEIMS = 1. Error(s) are inserted at the next opportunity  
after this bit transitions from low to high. See Section 9.7.5. Note: This bit should be set low immediately after each error  
insertion.  
Bit 6: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the manual error insertion signal for all  
block-level error generators that have block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. See Section 9.7.5.  
0 = Global error insertion using GLOBAL.CR1:TMEI bit  
1 = Global error insertion using the GPIOB2 pin  
Bits 5 and 4: Global Performance Monitor Update Mode (GPM[1:0]). These bits specify the source of the  
performance monitoring update signal for all blocks that have block-level PMUM = 1 and PORT.CR1:PMUM = 1. See  
Section 9.7.4.  
00 = Global PM update using the GLOBAL.CR1:GPMU bit  
01 = Global PM update using the GPIOB1 pin  
1X = One-second PM update using the internal one-second counter (see Section 9.7.2)  
Bit 3: Global Performance Monitor Register Update (GPMU). When GLOBAL.CR1:GPM[1:0] = 00, this bit is used to  
update all of the performance monitor registers where block-level PMUM = 1 and PORT.CR1:PMUM = 1. When this bit  
transitions from low to high, all configured performance monitoring registers are updated with the latest counter value,  
and all associated counters are reset. This bit should remain high until the performance monitor update status bit  
(GLOBAL.SR:GPMS) goes high, and then it should be brought back low, which clears the GPMS status bit. If a counter  
increment occurs at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter  
is non-zero” latched status bit is set. See Section 9.7.4.  
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the internal data path and status registers in all ports  
to their default state. This bit must be set high for a minimum of 100ns. See Section 9.11.  
0 = Normal operation  
1 = Force all data path registers to their default values  
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this RST bit),  
on all of the ports, are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is logically  
ORed with the inverted hardware signal RST. See Section 9.11.  
0 = Normal operation  
1 = Force all internal registers to their default values  
54 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.CR2  
Global Control Register 2  
004h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
CLAD[6:0]  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
CLKD19  
0
4
INTM  
0
3
0
2
0
1
LSBCRE  
0
0
GWRM  
0
Bits 14 to 8: CLAD I/O Mode (CLAD[6:0]). These bits control the CLAD clock I/O pins REFCLK, CLKA, CLKB, CLKC  
and CLKD. See Table 9-11 and Table 9-12 in Section 9.7.1.  
Bit 5: CLKD Frequency is 19.44MHz (CLKD19). This bit specifies the frequency to be output on CLKD when the  
CLAD[3] configuration bit is high.  
0 = 77.76MHz  
1 = 19.44MHz  
Bit 4: INT pin mode (INTM). This bit determines the inactive mode of the INT pin. The INT pin always drives low when  
an enabled interrupt source is active. See Section 9.10.  
0 = Pin is high impedance when no enabled interrupts are active  
1 = Pin drives high when no enabled interrupts are active  
Bit 1: Latched Status Bit Clear on Read Enable (LSBCRE). This bit determines when the latched status register bits  
are cleared. See Section 9.8.5.  
0 = Latched status register bits are cleared on a write  
1 = Latched status register bits are cleared on a read  
Bit 0: Global Write Mode (GWRM). This bit enables the global write mode. When this bit is set, a write to a register of  
any port causes a write to the same register in all the ports. In this mode register reads are not supported and result in  
undefined data. See Section 9.8.6.  
0 = Normal write mode  
1 = Global write mode  
55 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
GLOBAL.GIOCR  
Register Description:  
Register Address:  
General-Purpose I/O Control Register  
010h  
Bit #  
Name  
Default  
15  
14  
0
13  
12  
0
11  
10  
0
9
8
0
0
GIOA4S[1:0]  
GIOA3S[1:0]  
GIOA2S[1:0]  
GIOA1S[1:0]  
0
7
0
0
5
0
0
3
0
0
1
0
Bit #  
Name  
Default  
6
4
2
GIOB4S[1:0]  
GIOB3S[1:0]  
GIOB2S[1:0]  
GIOB1S[1:0]  
0
0
0
0
Note: See Section 9.7.3 for more information.  
Bits 15 and 14: General-Purpose I/O A4 Select (GIOA4S[1:0]). These bits specify the function of the GPIOA4 pin.  
00 = Input  
01 = Output LOS status from port 4  
10 = Output logic 0  
11 = Output logic 1  
Bits 13 and 12: General-Purpose I/O A3 Select (GIOA3S[1:0]). These bits specify the function of the GPIOA3 pin.  
00 = Input  
01 = Output LOS status from port 3  
10 = Output logic 0  
11 = Output logic 1  
Bits 11 and 10: General-Purpose I/O A2 Select (GIOA2S[1:0]). These bits specify the function of the GPIOA2 pin.  
00 = Input  
01 = Output LOS status from port 2  
10 = Output logic 0  
11 = Output logic 1  
Bits 9 and 8: General-Purpose I/O A1 Select (GIOA1S[1:0]). These bits specify the function of the GPIOA1 pin.  
00 = Input  
01 = Output LOS status from port 1  
10 = Output logic 0  
11 = Output logic 1  
Bits 7 and 6: General-Purpose I/O B4 Select (GIOB4S[1:0]). These bits specify the function of the GPIOB4 pin.  
00 = Input  
01 = Output LOS status from port 4  
10 = Output logic 0  
11 = Output logic 1  
Bits 5 and 4: General-Purpose I/O B3 Select (GIOB3S[1:0]). These bits specify the function of the GPIOB3 pin.  
Note: If GLOBAL.CR1:G1SROE is set to 1, GPIOB3 is the global one-second reference output signal.  
00 = Input  
01 = Output LOS status from port 3  
10 = Output logic 0  
11 = Output logic 1  
Bits 3 and 2: General-Purpose I/O B2 Select (GIOB2S[1:0]). These bits specify the function of the GPIOB2 pin.  
Note: If GLOBAL.CR1:MEIMS is set to 1, GPIOB2 is the global transmit manual error insertion (TMEI) input signal.  
00 = Input  
01 = Output LOS status from port 2  
10 = Output logic 0  
11 = Output logic 1  
Bits 1 and 0: General-Purpose I/O B1 Select (GIOB1S[1:0]). These bits specify the function of the GPIOB1 pin.  
Note: If GLOBAL.CR1:GPM[1:0] is set to 01, GPIOB1 is the global performance monitoring update input signal.  
00 = Input  
01 = Output LOS status from port 1  
10 = Output logic 0  
11 = Output logic 1  
56 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
GLOBAL.ISR  
Register Description:  
Register Address:  
Global Interrupt Status Register  
020h  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
7
6
5
4
3
2
1
0
Name  
P4ISR  
P3ISR  
P2ISR  
P1ISR  
GSR  
Bits 4 to 1: Port n Interrupt Status Register (PnISR). This bit is set when any of the bits in the port n interrupt status  
register (PORT.ISR) are set and enabled for interrupt. When set, this bit causes an interrupt if GLOBAL.ISRIE:PnISRIE is  
set. See Section 9.10.  
Bit 0: Global Status Register (GSR). This bit is set when any of the latched status register bits in the global latched  
status register (GLOBAL.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if  
GLOBAL.ISRIE:GSRIE is set. See Section 9.10.  
Register Name:  
GLOBAL.ISRIE  
Register Description:  
Register Address:  
Global Interrupt Status Register Interrupt Enable  
022h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
P4ISRIE  
0
3
P3ISRIE  
0
2
P2ISRIE  
0
1
P1ISRIE  
0
0
GSRIE  
0
Bits 4 to 1: Port n Interrupt Status Register Interrupt Enable (PnISRIE). This bit is the interrupt enable for the  
GLOBAL.ISR:PnISR status bit. See Section 9.10.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Global Status Register Interrupt Enable (GSRIE). This bit is the interrupt enable for the GLOBAL.ISR:GSR  
status bit. See Section 9.10.  
0 = mask the interrupt  
1 = enable the interrupt  
57 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.SR  
Global Status Register  
028h  
Bit #  
Name  
Default  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
Name  
Default  
7
6
5
4
3
2
CLOL  
0
1
0
GPMS  
0
Bit 2: CLAD Loss of Lock (CLOL). This bit is set when the CLAD is not locked to the reference frequency.  
Bit 0: Global Performance Monitoring Update Status (GPMS). This bit is set when the PORT.SR:PMS status bits are  
set in all of the ports that are enabled for global update control (i.e., all ports that have PORT.CR1:PMUM = 1). Ports that  
have PORT.CR1:PMUM = 0 have no effect on this bit. In global software update mode, the global update request bit  
(GLOBAL.CR1:GPMU) should be held high until this status bit goes high. See Section 9.7.4.  
0 = The associated update request signal is low or not all register updates are completed  
1 = The requested performance register updates are all completed  
Register Name:  
GLOBAL.SRL  
Register Description:  
Register Address:  
Global Status Register Latched  
02Ah  
Bit #  
Name  
Default  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
Name  
Default  
7
6
CLKCL  
5
CLKBL  
4
CLKAL  
3
CLADL  
2
CLOLL  
1
G1SREFL  
0
GPMSL  
Bit 6: CLAD C Clock Activity Latched (CLKCL). This bit is set when the signal on the CLKC pin is active. Note: This bit  
should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 9.7.1.  
Bit 5: CLAD B Clock Activity Latched (CLKBL). This bit is set when the signal on the CLKB pin is active. Note: This bit  
should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 9.7.1.  
Bit 4: CLAD A Clock Activity Latched (CLKAL). This bit is set when the signal on the CLKA pin is active. Note: This bit  
should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 9.7.1.  
Bit 3: CLAD Reference Clock Activity Status Latched (CLADL). This bit is set when the CLAD PLL reference clock  
signal on the REFCLK pin is active. Note: When GLOBAL.CR2:CLAD[6:4] = 000, the REFCLK pin is unused. See  
Section 9.7.1.  
Bit 2: CLAD Loss of Lock Latched (CLOLL). This bit is set when the GLOBAL.SR:CLOL status bit transitions from low  
to high.  
Bit 1: Global One-Second Reference Status Latched (G1SREFL). This bit is set once each second when the internal  
global one-second timer signal transitions low to high. When set, this bit causes an interrupt if interrupt enables  
GLOBAL.SRIE:G1SREFIE and GLOBAL.ISRIE:GSRIE are both set. See Section 9.7.1.  
Bit 0: Global Performance Monitoring Update Status Latched (GPMSL). This bit is set when the GLOBAL.SR:GPMS  
status bit changes from low to high. When set, this bit causes an interrupt if interrupt enables GLOBAL.SRIE:GPMSIE  
and GLOBAL.ISRIE:GSRIE are both set. See Section 9.7.1.  
58 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
GLOBAL.SRIE  
Register Description:  
Register Address:  
Global Status Register Interrupt Enable  
02Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
CLOLIE  
0
1
0
G1SREFIE GPMSIE  
0
0
Bit 2: CLAD Loss of Lock Interrupt Enable (CLOLIE). This bit is the interrupt enable for the GLOBAL.SRL:CLOLL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Global One-Second Reference Interrupt Enable (G1SREFIE). This bit is the interrupt enable for the  
GLOBAL.SRL:G1SREFL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Global Performance Monitoring Update Status Interrupt Enable (GPMSIE). This bit is the interrupt enable for  
the GLOBAL.SRL: GPMSL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Register Name:  
GLOBAL.GIORR  
Register Description:  
Register Address:  
General-Purpose I/O Read Register  
038h  
Bit #  
Name  
Default  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
Name  
Default  
7
GPIOA4  
6
GPIOA3  
5
GPIOA2  
4
GPIOA1  
3
GPIOB4  
2
GPIOB3  
1
GPIOB2  
0
GPIOB1  
Bits 7 to 4: General-Purpose I/O An Status (GPIOAn). Indicates the status of general-purpose I/O pin An (GPIOAn).  
See Section 9.7.3.  
Bits 3 to 0: General-Purpose I/O Bn Status (GPIOBn). Indicates the status of general-purpose I/O pin Bn (GPIOBn).  
See Section 9.7.3.  
59 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.4 Port Common Registers  
Table 10-4. Port Common Register Map  
ADDRESS  
REGISTER  
OFFSET  
DESCRIPTION  
Port Control Register 1  
Port Control Register 2  
Port Control Register 3  
Unused  
Unused  
Port I/O Invert Control Register  
Unused  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
PORT.CR1  
PORT.CR2  
PORT.CR3  
PORT.INV  
Unused  
Port Interrupt Status Register  
Unused  
PORT.ISR  
PORT.ISRIE Port Interrupt Status Register Interrupt Enable  
Unused  
Port Status Register  
Port Status Register Latched  
PORT.SR  
PORT.SRL  
PORT.SRIE Port Status Register Interrupt Enable  
Unused  
60 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.CR1  
Register Description:  
Register Address:  
Port Control Register 1  
n x 80h + 00h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
TMEI  
0
6
MEIMS  
0
5
PMUM  
0
4
PMU  
0
3
TPD  
1
2
RPD  
1
1
RSTDP  
1
0
RST  
0
Bit 7: Transmit Manual Error Insert (TMEI). When PORT.CR1:MEIMS = 0, this bit is used to insert errors in all blocks  
where block-level MEIMS = 1. Error(s) are inserted at the next opportunity after this bit transitions from low to high. See  
Section 9.7.5. Note: This bit should be set low immediately after each error insertion.  
Bit 6: Transmit Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for  
all block-level error generators that have block-level MEIMS = 1. See Section 9.7.5.  
0 = Port-level error insertion via PORT.CR1:TMEI  
1 = Global error insertion as specified by GLOBAL.CR1:MEIMS  
Bit 5: Port Performance Monitor Update Mode (PMUM). This bit specifies the source of the performance monitoring  
update signal for all blocks that have block-level PMUM = 1. See Section 9.7.4.  
0 = Port-level PM update via PORT.CR1:PMU  
1 = Global PM update as specified by GLOBAL.CR1:GPM[1:0]  
Bit 4: Port Performance Monitor Register Update (PMU). When PORT.CR1:PMUM = 0, this bit is used to update all of  
the performance monitor registers where block-level PMUM = 1. When this bit transitions from low to high, all configured  
performance monitoring registers are updated with the latest counter values, and all associated counters are reset. This  
bit should remain high until the performance monitor update status bit (PORT.SR:PMS) goes high, and then it should be  
brought back low, which clears the PMS status bit. If a counter increment occurs at the exact same time as the counter  
reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. See Section 9.7.4.  
Bit 3: Transmit Power-Down (TPD). When this bit is set, the transmit path of the port is powered down and considered  
“out of service”. The digital logic is powered down by stopping the clocks. See Section 9.11.  
0 = Normal operation  
1 = Power down the port transmit path (TXP and TXN become high impedance)  
Bit 2: Receive Power-Down (RPD). When this bit is set, the receive path of the port is powered down and considered  
“out of service”. The digital logic is powered down by stopping the clocks. See Section 9.11.  
0 = Normal operation  
1 = Power down the port receive path (RPOS/RDAT, RNEG/RLCV, and RCLK become high  
impedance)  
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the port’s internal data path and status registers to  
their default state. This bit must be set high for a minimum of 100ns and then set back low. See Section 9.11.  
0 = Normal operation  
1 = Force all data path registers to their default values  
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this RST bit)  
of this port are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is logically ORed with  
the inverted hardware signal RST and the GLOBAL.CR1:RST bit. See Section 9.11.  
0 = Normal operation  
1 = Force all internal registers to their default values  
61 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.CR2  
Register Description:  
Register Address:  
Port Control Register 2  
n x 80h + 02h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
ROD  
0
3
TBIN  
0
2
RBIN  
0
1
TCC  
0
0
0
LM[1:0]  
Bits 7 and 6: LIU Mode (LM[1:0]). These bits select the operating mode of the port. See Section 9.1.  
00 = DS3  
01 = E3  
10 = STS-1  
11 = reserved  
Bit 4: Receive Output Disable (ROD). See Section 9.3.6.4.  
0 = enable the receiver outputs  
1 = disable the receiver outputs (RCLK, RPOS/RDAT and RNEG/RLCV)  
Bit 3: Transmit Binary Interface Enable (TBIN). See Section 9.2.2.  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is  
disabled.  
1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled.  
Bit 2: Receive Binary Interface Enable (RBIN). See Section 9.3.6.  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is disabled.  
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations. The  
B3ZS/HDB3 encoder is enabled.  
Bit 1: Transmit Common Clock Mode (TCC). See Section 9.2.1.1.  
0 = Source transmit clock for port n from TCLKn  
1 = Source transmit clock for port n from TCLK1  
62 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.CR3  
Register Description:  
Register Address:  
Port Control Register 3  
n x 80h + 04h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
BERTE  
0
8
BERTD  
0
Bit #  
Name  
Default  
7
SCRD  
0
6
0
5
0
4
AIST  
0
3
TAIS  
0
2
LBS  
0
1
0
0
LB[1:0]  
0
Bit 9: BERT Enable (BERTE). See Section 9.5.  
0 = disable the BERT pattern generator (the pattern detector is always enabled)  
1 = enable the BERT pattern generator (the pattern detector is always enabled)  
Bit 8: BERT Direction (BERTD). See Section 9.5.  
0 = line direction (transmit to receive)  
1 = system direction (receive to transmit)  
Bit 7: STS-1 Scrambling Disable (SCRD). This bit controls STS-1 scrambling when AIS-L is generated in STS-1 mode.  
See Section 9.2.4.  
0 = Perform scrambling  
1 = Do not perform scrambling  
Bit 4: AIS Type (AIST). See Section 9.2.4.  
0 = Unframed all ones  
1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode)  
Bit 3: Transmit AIS (TAIS). The type of AIS signal depends on the LIU mode (DS3, E3 or STS-1) and the configured  
AIS type. See Section 9.2.4.  
0 = transmit normal data  
1 = transmit AIS signal  
Bit 2: Loopback Select (LBS). This bit affects the function of the Loopback Mode (LBM[1:0]) bits below.  
Bits 1 and 0: Loopback Mode (LB[1:0]). These bits enable loopbacks. The effect of the LB = 11 decode is controlled by  
the LBS configuration bit. See Section 9.6.  
00 = No loopback  
01 = Diagnostic Loopback (DLB)  
10 = Line Loopback (LLB)  
11 (LBS = 0) = Line Loopback (LLB) and Diagnostic Loopback (DLB) simultaneously  
11 (LBS = 1) = Analog Loopback (ALB)  
63 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.INV  
Register Description:  
Register Address:  
Port I/O Invert Control Register  
n x 80h + 0Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
TNEGI  
0
5
TPOSI  
0
4
TCLKI  
0
3
0
2
RNEGI  
0
1
RPOSI  
0
0
RCLKI  
0
Bit 6: TNEG Invert (TNEGI). This bit inverts the TNEG input pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 5: TPOS/TDAT Invert (TPOSI). This bit inverts the TPOS/TDAT input pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 4: TCLK Invert (TCLKI). This bit inverts the TCLK pin input pin when set. See Section 9.2.1.  
0 = Noninverted; TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = Inverted; TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Bit 2: RNEG/RLCV Invert (RNEGI). This bit inverts the RNEG/RLCV output pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 1: RPOS/RDAT Invert (RPOSI). This bit inverts the RPOS/RDAT output pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 0: RCLK Invert (RCLKI). This bit inverts the RCLKn output pin when set. See Section 9.3.6.3.  
0 = Noninverted; RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK.  
1 = Inverted; RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK.  
64 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.ISR  
Register Description:  
Register Address:  
Port Interrupt Status Register  
n x 80h + 10h  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
7
6
5
4
3
2
1
0
Name  
LDSR  
LIUSR  
BSR  
PSR  
Bit 3: Line Decoder Status Register Interrupt Status (LDSR). This bit is set when any of the latched status register  
bits in the B3ZS/HDB3 Line Decoder block are set and enabled for interrupt. When set, this bit causes an interrupt if  
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are both set. See Section 9.10.  
Bit 2: LIU Status Register Interrupt Status (LIUSR). This bit is set when any of the latched status register bits in the  
LIU block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:LIUSRIE and  
GLOBAL.ISRIE: PnISRIE are both set. See Section 9.10.  
Bit 1: BERT Status Register Interrupt Status (BSR). This bit is set when any of the latched status register bits in the  
BERT block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:BSRIE and  
GLOBAL.ISRIE: PnISRIE are both set. See Section 9.10.  
Bit 0: Port Status Register Interrupt Status (PSR). This bit is set when any of the latched status register bits in the port  
latched status register (PORT.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if  
PORT.ISRIE:PSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 9.10.  
Register Name:  
PORT.ISRIE  
Register Description:  
Register Address:  
Port Interrupt Status Register Interrupt Enable  
n x 80h + 14h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
LDSRIE  
0
2
LIUSRIE  
0
1
BSRIE  
0
0
PSRIE  
0
Bit 3: Line Decoder Status Register Interrupt Enable (LDSRIE). This bit is the interrupt enable for the  
PORT.ISR:LDSR status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: LIU Status Register Interrupt Enable (LIUSRIE). This bit is the interrupt enable for the PORT.ISR:LIUSR status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: BERT Status Register Interrupt Enable (BSRIE). This bit is the interrupt enable for the PORT.ISR:BSR status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Port Status Register Interrupt Enable (PSRIE). This bit is the interrupt enable for the PORT.ISR:PSR status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
65 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.SR  
Register Description:  
Register Address:  
Port Status Register  
n x 80h + 18h  
Bit #  
Name  
Default  
15  
SPR1  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
SPR2  
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PMS  
0
Bit 15: Spare 1 Status Bit (SPR1). This bit is a spare status bit reserved for future use. It indicates the current value of  
the PORT.CR1.SPARE1 bit. Note: The default value is the same as PORT.CR1.SPARE1.  
Bit 7: Spare 2 Status Bit (SPR2). This bit is a spare status bit reserved for future use. It indicates the current value of  
the PORT.CR2.SPARE2 bit. Note: The default value is the same as PORT.CR2.SPARE2.  
Bit 0: Performance Monitoring Update Status (PMS). This bit is set when the PMS bits are set in all of the port  
functional blocks that are configured for port-level update control (i.e., all blocks that have PMUM = 1). Blocks that have  
PMUM = 0 have no effect on this bit. In port-level software update mode, the port update request bit (PORT.CR1:PMU)  
should be held high until this status bit goes high. See Section 9.7.4.  
0 = The associated update request signal is low or not all register updates are completed  
1 = The requested performance register updates are all completed  
Register Name:  
PORT.SRL  
Register Description:  
Register Address:  
Port Status Register Latched  
n x 80h + 1Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
TCLKL  
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PMSL  
0
Bit 8: Transmit Clock Activity Status Latched (TCLKL). This bit is set when the signal on the TCLK pin for this port is  
active. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:TCLKIE, PORT.ISRIE:PSRIE and  
GLOBAL.ISRIE: PnISRIE are all set.  
Bit 0: Performance Monitoring Update Status Latched (PMSL). This bit is set when the PORT.SR:PMS status bit  
changes from low to high. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:PMSIE,  
PORT.ISRIE:PSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 9.7.4.  
66 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
PORT.SRIE  
Register Description:  
Register Address:  
Port Status Register Interrupt Enable  
n x 80h + 1Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
TCLKIE  
0
Bit #  
Name  
Default  
7
SPR2IE  
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PMSIE  
0
Bit 8: Transmit Clock Activity Latched Status Interrupt Enable (TCLKIE). This bit is the interrupt enable for the  
PORT.SRL:TCLKL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 7: Spare 2 Latched Status Interrupt Enable (SPR2IE). This bit is the interrupt enable for the PORT.SRL:SPR2L bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Performance Monitoring Update Latched Status Interrupt Enable (PMSIE). This bit is the interrupt enable for  
the PORT.SRL:PMSL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
67 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.5 LIU Registers  
Table 10-5. LIU Register Map  
ADDRESS  
REGISTER  
OFFSET  
DESCRIPTION  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
LIU.CR1  
LIU.CR2  
LIU Control Register 1  
LIU Control Register 2  
LIU.TWSCR1  
LIU.TWSCR2  
LIU.SR  
LIU Transmit Waveshaping Control Register 1  
LIU Transmit Waveshaping Control Register 2  
LIU Status Register  
LIU.SRL  
LIU Status Register Latched  
LIU.SRIE  
LIU Status Register Interrupt Enable  
LIU Receive Gain Level Register  
LIU.RGLR  
68 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.CR1  
Register Description:  
Register Address:  
LIU Control Register 1  
n x 80h + 20h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
8
0
0
0
JAD[1:0]  
JAS[1:0]  
Bit #  
Name  
Default  
7
0
6
0
5
TLBO  
0
4
TOE  
0
3
2
TTRE  
0
TRESADJ[2:0]  
0
0
Bits 11 and 10: Jitter Attenuator Depth (JAD[1:0]). These bits select the jitter attenuator buffer depth. See Section 9.4.  
00 = 16 bits  
01 = 32 bits  
10 = 64 bits  
11 = 128 bits  
Bits 9 and 8: Jitter Attenuator Select (JAS[1:0]). These bits select the location of the jitter attenuator. See Section 9.4.  
00 = Disabled  
01 = Receive Path  
10 = Transmit Path  
11 = Transmit Path  
Bit 5: Transmit LIU LBO (TLBO). This bit is used to enable the transmit LBO circuit which causes the transmit signal to  
be preattenuated to mimic the attenuation of approximately approximates about 225 feet of cable. This is used to reduce  
near end cross talk when the cable lengths are short. This signal is only valid in DS3 and STS-1 modes. See Section  
9.2.6.  
0 = Disabled  
1 = Enabled  
Bit 4: Transmit Output Enable (TOE). This bit enables the transmitter outputs (TXP and TXN). The transmitter  
continues to operate internally when the transmitter is tri-stated. Only the line driver and driver monitor are disabled. See  
Section 9.2.7. Note: This bit is ORed with the associated TOE input pin.  
0 = TXP and TXN are high impedance  
1 = TXP and TXN are driven  
Bit 3: Transmit Termination Resistor Enable (TTRE). This bit indicates when the transmitter internal termination is  
enabled. See Section 9.2.8.  
0 = Disabled, the transmitter is terminated externally  
1 = Enabled, the transmitter is terminated internally  
Bits 2 to 0: Transmit Resistor Adjustment (TRESADJ[2:0]). These bits are used to adjust the internal termination  
resistance of the transmitter. See Section 9.2.8.  
000 = 75Ω  
001 = 82Ω  
010 = 90Ω  
011 = 100Ω  
100 = 68Ω  
101 = 62Ω  
110 = 56Ω  
111 = 50Ω  
69 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.CR2  
Register Description:  
Register Address:  
LIU Control Register 2  
n x 80h + 22h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
RFL2E  
0
4
RMON  
0
3
RTRE  
0
2
0
1
0
0
RRESADJ[2:0]  
0
Bit 5: Receive Fail 2 Enable (RFL2E). This bit is used to enable the receive failure type 2 detection. See Section 9.3.8.  
0 = Disable receive failure type 2 detection  
1 = Enable receive failure type 2 detection  
Bit 4: Receive LIU Monitor Mode (RMON). This bit is used to enable the receive LIU monitor mode preamplifier.  
Enabling the preamplifier adds about 14dB of linear amplification for use in monitor applications where the signal has  
been reduced 20dB using resistive attenuator circuits. Note: When enabled, the preamp is turned on or off automatically  
depending upon the input signal level. See Section 9.3.2.  
0 = Disable the preamp  
1 = Enable the preamp  
Bit 3: Receive Termination Resistor Enable (RTRE). This bit indicates when the receiver internal termination is  
enabled. See Section 9.3.1.  
0 = Disabled, the receiver is terminated externally  
1 = Enabled, the receiver is terminated internally  
Bit 2-0: Receive Resistor Adjustment (RRESADJ[2:0]). These bits are used to adjust the internal termination  
resistance of the receiver. See Section 9.3.1.  
000 = 75Ω  
001 = 82Ω  
010 = 90Ω  
011 = 100 Ω  
100 = 68Ω  
101 = 62Ω  
110 = 56Ω  
111 = 50Ω  
70 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.TWSCR1  
Register Description:  
Register Address:  
LIU Transmit Waveshaping Control Register 1  
n x 80h + 24h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
11  
0
10  
0
9
0
1
0
8
0
0
0
TWSC[15:8]  
0
4
0
Bit #  
Name  
Default  
7
6
5
3
2
TWSC[7:0]  
0
0
0
0
0
See Figure 9-1, Figure 9-2, and Figure 9-3 for illustrations of the first and second rise/fall time segments of the DS3 and  
STS-1 waveforms and the overshoot, one level, undershoot, and zero level segments for the E3 waveform.  
Bits 15 and 14: Transmit Waveshaping Control (TWSC[15:14]). In DS3 and STS-1 modes, this field adjusts the width  
of the first of two rising-edge segments. In E3 mode this field adjusts the width of the leading edge overshoot.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first rise time  
normal overshoot width  
increase overshoot width  
decrease overshoot width  
decrease overshoot width  
01 - increase first rise time by 0.1ns  
10 - decrease first rise time by 0.1ns  
11 - decrease first rise time by 0.2ns  
Bits 13 and 12: Transmit Waveshaping Control (TWSC[13:12]). In DS3 and STS-1 modes, this field adjusts the width  
of the second of two rising-edge segments. In E3 mode this field adjusts the width of the pulse plateau.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal second rise time  
normal “one level” time  
01 - increase second rise time by 0.1ns  
10 - decrease second rise time by 0.1ns  
11 - decrease second rise time by 0.1ns  
increase “one level” time by 0.15ns  
decrease “one level” time by 0.15ns  
decrease “one level” time by 0.3ns  
Bits 11 and 10: Transmit Waveshaping Control (TWSC[11:10]). In DS3 and STS-1 modes, this field adjusts the width  
of the first of two falling-edge segments. In E3 mode this field adjusts the width of the trailing edge undershoot.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first fall time  
normal undershoot width  
01 - increase first fall time by 0.1ns  
10 - decrease first fall time by 0.1ns  
11 - decrease first fall time by 0.2ns  
increase undershoot width by 0.15ns  
decrease undershoot width by 0.15ns  
decrease undershoot width by 0.3ns  
Bits 9 and 8: Transmit Waveshaping Control (TWSC[9:8]). In DS3 and STS-1 modes, this field adjusts the width of  
the second of two falling-edge segments. In E3 mode this field adjusts the width of the zero after the trailing edge.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal second fall time  
normal “zero level” width  
01 - increase second fall time by 0.1ns  
10 - decrease second fall time by 0.1ns  
11 - decrease second fall time by 0.2ns  
increase “zero level” width by 0.15ns  
decrease “zero level” width by 0.15ns  
decrease “zero level” width by 0.3ns  
Bits 7 and 6: Transmit Waveshaping Control (TWSC[7:6]). In DS3 and STS-1 modes, this field adjusts the amplitude  
of the first of two rising-edge segments. In E3 mode this field adjusts the amplitude of the leading edge overshoot. The 11  
value is a special case in which the entire pulse is made narrower.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first rise amplitude  
normal overshoot  
01 - decrease first rise amplitude 15%  
10 - increase first rise amplitude 15%  
11 - decrease pulse width by 0.15ns  
decrease overshoot amplitude 2%  
increase overshoot amplitude 2%  
decrease pulse width by 0.15ns  
71 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Bits 5 and 4: Transmit Waveshaping Control (TWSC[5:4]). In DS3 and STS-1 modes, this field adjusts the amplitude  
of the second of two rising-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a special  
case in which the entire pulse is made wider.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal rise amplitude  
normal pulse  
01 - decrease second rise amplitude 15%  
10 - increase second rise amplitude 15%  
11 - increase pulse width by 0.15ns  
normal pulse  
normal pulse  
increase pulse width by 0.15ns  
Bits 3 and 2: Transmit Waveshaping Control (TWSC[3:2]). In DS3 and STS-1 modes, this field adjusts the amplitude  
of the first of two falling-edge segments. In E3 mode this field adjusts the amplitude of the trailing edge overshoot. The 11  
value is a special case in which the entire pulse is made wider.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first fall time  
normal undershoot  
01 - decrease first fall amplitude 15%  
10 - increase first fall amplitude 15%  
11 - increase pulse width by 0.15ns  
decrease undershoot 2%  
increase undershoot 2%  
increase pulse width by 0.15ns  
Bits 1 and 0: Transmit Waveshaping Control (TWSC[1:0]). In DS3 and STS-1 modes, this field adjusts the fall time of  
the second of two falling-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a special  
case in which the entire pulse is made narrower.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal second fall time  
normal pulse  
01 - decrease second fall amplitude 15%  
10 - increase second fall amplitude 15%  
11 - decrease pulse width by 0.15ns  
normal pulse  
normal pulse  
decrease pulse width by 0.15ns  
Register Name:  
LIU.TWSCR2  
Register Description:  
Register Address:  
LIU Transmit Waveshaping Control Register 2  
n x 80h + 26h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
TWSC[19:16]  
0
Bits 3 to 0: Transmit Waveshaping Control (TWSC[19:16]). This field adjusts overall amplitude of the transmit output  
pulse.  
0000 - nominal amplitude (see Table 12-6 and Table 12-7)  
0001 - increase amplitude by 3.75%  
0010 - increase amplitude by 7.5%  
0011 - increase amplitude by 11.25%  
0100 - increase amplitude by 15%  
0101 - increase amplitude by 20%  
0110 - increase amplitude by 25%  
0111 - increase amplitude by 30%  
1000 - decrease amplitude by 12.5%  
1001 - decrease amplitude by 9.375%  
1010 - decrease amplitude by 6.25%  
1011 - decrease amplitude by 3.125%  
110X - increase amplitude to internal current limit  
111X - increase amplitude to maximum, current limiting disabled  
72 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.SR  
Register Description:  
Register Address:  
LIU Status Register  
n x 80h + 28h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
TDM  
0
9
TFAIL  
0
8
LOMC  
0
Bit #  
Name  
Default  
7
1
6
1
5
0
4
RPAS  
0
3
RFAIL1  
0
2
RFAIL2  
0
1
RLOL  
0
0
ALOS  
0
Bit 10: Transmit Driver Monitor (TDM). This bit indicates when the transmit driver is faulty. See Section 9.2.9.  
0 = the transmit line driver is operating properly  
1 = the transmit line driver is faulty  
Bit 9: Transmit Output Failure (TFAIL). This bit indicates when there is a failure on the transmit differential outputs  
(TXP/TXN). See Section 9.2.9.  
0 = an open or short has not been detected on TXP or TXN  
1 = an open or short has been detected on TXP or TXN  
Bit 8: Loss of Master Clock (LOMC). This bit indicates whether or not the appropriate reference clock (DS3, E3 or STS-  
1, depending on PORT.CR2:LM[1:0] setting) is available from the CLAD block. See Section 9.7.1.  
0 = the master reference clock is present  
1 = that master reference clock is not present  
Bit 4: Receive Preamp Status (RPAS). See Section 9.3.2.  
0 = the receiver preamp is off  
1 = the receiver preamp is on  
Bit 3: Receive Failure Type 1 (RFAIL1). See Section 9.3.8.  
0 = a receive failure type 1 has not been detected on RXP or RXN  
1 = a receive failure type 1 has been detected on RXP or RXN  
Bit 2: Receive Failure Type 2 (RFAIL2). See Section 9.3.8.  
0 = a receive failure type 2 has not been detected on RXP or RXN  
1 = a receive failure type 2 has been detected on RXP or RXN  
Bit 1: Receive Loss of Lock (RLOL). See Section 9.3.4.  
0 = the incoming clock frequency on RXP/RXN is within ±7700ppm of the master reference clock  
(MCLK)  
1 = the incoming clock frequency on RXP/RXN is more than ±7900ppm away from the master reference  
clock (MCLK)  
Bit 0: Analog Loss of Signal (ALOS). See Section 9.3.5.  
0 = an analog LOS (ALOS) condition has not been detected  
1 = an ALOS condition has been detected  
73 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.SRL  
Register Description:  
Register Address:  
LIU Status Register Latched  
n x 80h + 2Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
JAFL  
0
11  
JAEL  
0
10  
TDML  
0
9
TFAILL  
0
8
LOMCL  
0
Bit #  
Name  
Default  
7
0
6
0
5
RGLCL  
0
4
RPASL  
0
3
RFAIL1L  
0
2
RFAIL2L  
0
1
RLOLL  
0
0
ALOSL  
0
Bit 12: Jitter Attenuator Full Latched (JAFL). This bit is set when the jitter attenuator buffer is full, or when data has  
been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if interrupt enables  
LIU.SRIE:JAFIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 9.4.  
Bit 11: Jitter Attenuator Empty Latched (JAEL). This bit is set when the jitter attenuator buffer is empty, or when data  
has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if interrupt  
enables LIU.SRIE:JAEIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 9.4.  
Bit 10: Transmit Driver Monitor Change Latched (TDML). This bit is set when the LIU.SR:TDM bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TDMIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 9: Transmit Output Failure Change Latched (TFAILL). This bit is set when the LIU.SR:TFAIL bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TFAILIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 8: Loss of Master Clock Latched (LOMCL). This bit is set when the LIU.SR:LOMC bit is set. When set, this bit  
causes an interrupt if interrupt enables LIU.SRIE:LOMCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all  
set.  
Bit 5: Receive Gain Level Change Latched (RGLCL). This bit is set when the receive gain level (LIU.RGLR: RGL[7:0])  
changes. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RGLCIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 4: Receive Preamp Status Change Latched (RPASL). This bit is set when the LIU.SR:RPAS bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RPASIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 3: Receive Failure Type 1 Change Latched (RFAIL1L). This bit is set when the LIU.SR:RFAIL1 bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL1IE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 2: Receive Failure Type 2 Change Latched (RFAIL2L). This bit is set when the LIU.SR:RFAIL2 bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL2IE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 1: Receive Loss of Lock Change Latched (RLOLL). This bit is set when the LIU.SR:RLOL bit changes state. When  
set, this bit causes an interrupt if interrupt enables LIU.SRIE:RLOLIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 0: Analog Loss of Signal Change Latched (ALOSL). This bit is set when the LIU.SR:ALOS bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:ALOSIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
74 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.SRIE  
Register Description:  
Register Address:  
LIU Status Register Interrupt Enable  
n x 80h + 2Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
JAFIE  
0
11  
JAEIE  
0
10  
TDMIE  
0
9
TFAILIE  
0
8
LOMCIE  
0
Bit #  
Name  
Default  
7
0
6
0
5
RGLCIE  
0
4
RPASIE  
0
3
2
1
RLOLIE  
0
0
ALOSIE  
0
RFAIL1IE RFAIL2IE  
0
0
Bit 12: Jitter Attenuator Full Interrupt Enable (JAFIE). This bit is the interrupt enable for the LIU.SRL:JAFL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 11: Jitter Attenuator Empty Interrupt Enable (JAEIE). This bit is the interrupt enable for the LIU.SRL:JAEL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 10: Transmit Driver Monitor Interrupt Enable (TDMIE). This bit is the interrupt enable for the LIU.SRL:TDML bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 9: Transmit Output Failure Interrupt Enable (TFAILIE). This bit is the interrupt enable for the LIU.SRL:TFAILL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 8: Loss of Master Clock Interrupt Enable (LOMCIE). This bit is the interrupt enable for the LIU.SRL:LOMCL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 5: Receive Gain Level Change Interrupt Enable (RGLCIE). This bit is the interrupt enable for the LIU.SRL:RGLCL  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 4: Receive Preamp Status Interrupt Enable (RPASIE). This bit is the interrupt enable for the LIU.SRL:RPASL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 3: Receive Failure Type 1 Interrupt Enable (RFAIL1IE). This bit is the interrupt enable for the LIU.SRL:RFAIL1L bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: Receive Failure Type 2 Interrupt Enable (RFAIL2IE). This bit is the interrupt enable for the LIU.SRL:RFAIL2L bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Receive Loss of Lock Interrupt Enable (RLOLIE). This bit is the interrupt enable for the LIU.SRL:RLOLL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Analog Loss of Signal Interrupt Enable (ALOSIE). This bit is the interrupt enable for the LIU.SRL:ALOSL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
75 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LIU.RGLR  
Register Description:  
Register Address:  
LIU Receive Gain Level Register  
n x 80h + 2Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
RGL[7:0]  
Bits 7 to 0: Receive Gain Level (RGL[7:0]). This field reports the real-time receiver gain level in 0.25dB increments.  
Values of 00–60h indicate receiver gain of 0dB to +24dB in 0.25dB increments. Values of F4–FFh indicate receiver gain  
of -3dB to -0.25dB in 0.25dB increments. See Section 9.3.3.  
76 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.6 B3ZS/HDB3 Encoder Registers  
Table 10-6. B3ZS/HDB3 Encoder Register Map  
ADDRESS  
OFFSET  
REGISTER  
DESCRIPTION  
30h  
LINE.TCR  
B3ZS/HDB3 Transmit Control Register  
Unused  
32h–3Eh  
77 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LINE.TCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Transmit Control Register  
n x 80h + 30h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
TZSD  
0
3
EXZI  
0
2
BPVI  
0
1
TSEI  
0
0
MEIMS  
0
Bit 4: Transmit Zero Suppression Encoding Disable (TZSD)  
0 = zero suppression (B3ZS or HDB3) encoding is enabled  
1 = zero suppression (B3ZS or HDB3) encoding is disabled, and only AMI encoding is performed  
Bit 3: Excessive Zero Insert Enable (EXZI). See Section 9.2.3.  
0 = excessive zero event (EXZ) insertion is disabled  
1 = excessive zero event insertion is enabled  
Bit 2: BiPolar Violation Insert Enable (BPVI). See Section 9.2.3.  
0 = bipolar violation (BPV) insertion is disabled  
1 = bipolar violation insertion is enabled.  
Bit 1: Transmit Single Error Insert (TSEI). When LINE.TCR:MEIMS = 0, this bit is used to insert errors of the type(s)  
specified by EXZI and BPVI in the transmit data stream. A 0 to 1 transition causes a single error to be inserted. For a  
second error to be inserted, this bit must be set to 0, and then back to 1. Note: If LINE.TCR:MEIMS is low, and this bit  
transitions more than once between error insertion opportunities, only one error is inserted. See Section 9.7.5.  
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the  
transmit encoder/decoder block. Note: If TMEI or TSEI is one, changing the state of this bit may cause an error to be  
inserted. See Section 9.7.5.  
0 = Block-level error insertion using the LINE.TCR:TSEI control bit  
1 = Port-level or global-level error insertion as specified by PORT.CR1:MEIMS  
78 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.7 B3ZS/HDB3 Decoder Registers  
Table 10-7. B3ZS/HDB3 Decoder Register Map  
ADDRESS  
REGISTER  
OFFSET  
DESCRIPTION  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
LINE.RCR  
B3ZS/HDB3 Receive Control Register  
Unused  
LINE.RSR  
LINE.RSRL  
LINE.RSRIE  
B3ZS/HDB3 Receive Status Register  
B3ZS/HDB3 Receive Status Register Latched  
B3ZS/HDB3 Receive Status Register Interrupt Enable  
Unused  
LINE.RBPVCR B3ZS/HDB3 Receive Bipolar Violation Count Register  
LINE.REXZCR B3ZS/HDB3 Receive Excessive Zero Count Register  
79 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LINE.RCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Control Register  
n x 80h + 40h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
E3CVE  
0
2
REZSF  
0
1
RDZSF  
0
0
RZSD  
0
Bit 3: E3 Code Violation Enable (E3CVE). In E3 mode (PORT.CR2:LM[1:0] = 01) this bit specifies whether the  
LINE.RBPVCR register counts bipolar violations or E3 coding violations. Note: E3 line coding violations are defined in  
ITU O.161 as consecutive bipolar violations of the same polarity. This bit is ignored in B3ZS mode. See Section 9.3.6.2.  
0 = bipolar violations.  
1 = E3 line coding violations  
Bit 2: Receive BPV Error Detection Zero Suppression Code Format (REZSF). When REZSF = 0, BPV error detection  
detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature if two zeros are  
followed by a BPV. When REZSF = 1, BPV error detection detects a B3ZS signature if a zero is followed by a BPV that  
has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if two zeros are followed by  
a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note: Immediately after a reset (RST or  
DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero followed by a BPV, and the first HDB3  
signature is defined as two zeros followed by a BPV. All subsequent B3ZS/HDB3 signatures are determined by the  
setting of this bit. Note: The default setting (REZSF = 0) conforms to ITU O.162. The default setting may falsely ignore  
actual BPVs that are not codewords. It is recommended that REZSF be set to one for most applications. This setting is  
more robust to accurately detect codewords. See Section 9.3.6.2.  
Bit 1: Receive Zero Suppression Decoding Zero Suppression Code Format (RDZSF). When RDZSF = 0, zero  
suppression decoding detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature  
if two zeros are followed by a BPV. When RDZSF = 1, zero suppression decoding detects a B3ZS signature if a zero is  
followed by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if  
two zeros are followed by a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note:  
Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero  
followed by a BPV, and the first HDB3 signature is defined as two zeros followed by a BPV. All subsequent B3ZS/HDB3  
signatures are determined by the setting of this bit. Note: The default setting (RDZSF = 0) may falsely decode actual  
BPVs that are not codewords. It is recommended that RDZSF be set to one for most applications. This setting is more  
robust to accurately detect codewords. See Section 9.3.6.2.  
Bit 0: Receive Zero Suppression Decoding Disable (RZSD)  
0 = zero suppression (B3ZS or HDB3) decoding is enabled  
1 = zero suppression (B3ZS or HDB3) decoding is disabled, and only AMI decoding is performed  
80 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LINE.RSR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register  
n x 80h + 44h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
EXZC  
0
2
0
1
BPVC  
0
0
LOS  
0
Bit 3: Excessive Zero Count (EXZC). See Section 9.3.6.  
0 = the excessive zero count is zero  
1 = the excessive zero count is one or more  
Bit 1: Bipolar Violation Count (BPVC). See Section 9.3.6.  
0 = the bipolar violation count is zero  
1 = the bipolar violation count is one or more  
Bit 0: Loss of Signal (LOS). See Section 9.3.5.  
0 = the receive line interface is not in an LOS condition  
1 = the receive line interface is in an LOS condition  
Register Name:  
LINE.RSRL  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register Latched  
n x 80h + 46h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
ZSCDL  
0
4
EXZL  
0
3
EXZCL  
0
2
BPVL  
0
1
BPVCL  
0
0
LOSL  
0
Bit 5: Zero Suppression Code Detect Latched (ZSCDL). This bit is set when a B3ZS or HDB3 signature is detected.  
When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:ZSCDIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 9.3.6.  
Bit 4: Excessive Zero Latched (EXZL). This bit is set when an excessive zero event is detected on the incoming bipolar  
data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 9.3.6.  
Bit 3: Excessive Zero Count Latched (EXZCL). This bit is set when LINE.RSR:EXZC transitions from zero to one.  
When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZCIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 9.3.6.  
Bit 2: Bipolar Violation Latched (BPVL). This bit is set when a bipolar violation (or E3 LCV if enabled) is detected on  
the incoming bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVIE,  
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 9.3.6.  
Bit 1: Bipolar Violation Count Latched (BPVCL). This bit is set when LINE.RSR:BPVC transitions from zero to one.  
When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVCIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 9.3.6.  
Bit 0: Loss of Signal Change Latched (LOSL). This bit is set when LINE.RSR:LOS changes state. When set, this bit  
causes an interrupt if interrupt enables LINE.RSRIE:LOSIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all  
set. See Section 9.3.5.  
81 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LINE.RSRIE  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register Interrupt Enable  
n x 80h + 48h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
ZSCDIE  
0
4
EXZIE  
0
3
EXZCIE  
0
2
BPVIE  
0
1
BPVCIE  
0
0
LOSIE  
0
Bit 5: Zero Suppression Code Detect Interrupt Enable (ZSCDIE). This bit is the interrupt enable for the  
LINE.RSRL:ZSCDL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 4: Excessive Zero Interrupt Enable (EXZIE). This bit is the interrupt enable for the LINE.RSRL:EXZL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 3: Excessive Zero Count Interrupt Enable (EXZCIE). This bit is the interrupt enable for the LINE.RSRL:EXZCL  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: Bipolar Violation Interrupt Enable (BPVIE). This bit is the interrupt enable for the LINE.RSRL:BPVL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Bipolar Violation Count Interrupt Enable (BPVCIE). This bit is the interrupt enable for the LINE.RSRL:BPVCL  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Loss of Signal Interrupt Enable (LOSIE). This bit is the interrupt enable for the LINE.RSRL:LOSL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
82 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
LINE.RBPVCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Bipolar Violation Count Register  
n x 80h + 4Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BPV[15:8]  
BPV[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: Bipolar Violation Count (BPV[15:0]). These 16 bits indicate the number of bipolar violations detected on  
the incoming bipolar data stream. See Section 9.3.6.  
Register Name:  
LINE.REXZCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Excessive Zero Count Register  
n x 80h + 4Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
EXZ[15:8]  
EXZ[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: Excessive Zero Count (EXZ[15:0]). These 16 bits indicate the number of excessive zero conditions  
detected on the incoming bipolar data stream. See Section 9.3.6.  
83 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
10.8 BERT Registers  
Table 10-8. BERT Register Map  
ADDRESS  
REGISTER  
OFFSET  
DESCRIPTION  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
BERT.CR  
BERT.PCR  
BERT.SPR1  
BERT.SPR2  
BERT.TEICR  
BERT Control Register  
BERT Pattern Configuration Register  
BERT Seed/Pattern Register 1  
BERT Seed/Pattern Register 2  
BERT Transmit Error Insertion Control Register  
Unused  
BERT.SR  
BERT.SRL  
BERT.SRIE  
BERT Status Register  
BERT Status Register Latched  
BERT Status Register Interrupt Enable  
Unused  
BERT.RBECR1 BERT Receive Bit Error Count Register 1  
BERT.RBECR2 BERT Receive Bit Error Count Register 2  
BERT.RBCR1  
BERT Receive Bit Count Register 1  
BERT Receive Bit Count Register 2  
Unused  
BERT.RBCR2  
Unused  
84 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.CR  
Register Description:  
Register Address:  
BERT Control Register  
n x 80h + 50h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
PMUM  
0
6
LPMU  
0
5
RNPL  
0
4
RPIC  
0
3
MPR  
0
2
APRD  
0
1
TNPL  
0
0
TPIC  
0
Bit 7: Performance Monitoring Update Mode (PMUM). This bit specifies the source of the performance monitoring  
update signal for the BERT block. See Section 9.7.4. Note: If RPMU or LPMU is one, changing the state of this bit may  
cause a performance monitoring update to occur.  
0 = Block-level update via BERT.CR:LPMU  
1 = Port-level or global update as specified by PORT.CR1:PMUM  
Bit 6: Local Performance Monitoring Update (LPMU). When BERT.CR:PMUM = 0, this bit updates the performance  
monitoring registers in the BERT block. When this bit transitions from low to high, the BERT.RBECR and BERT.RBCR  
registers are updated with the latest counter values and the counters are reset. This bit should remain high until the  
performance monitor update status bit (BERT.SR:PMS) goes high, and then it should be brought back low, which clears  
the PMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded with  
a value of one, and the “counter is non-zero” latched status bit is set. See Section 9.7.4.  
Bit 5: Receive New Pattern Load (RNPL). A zero to one transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be loaded into  
the receive pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded.  
Loading a new pattern forces the receive pattern generator out of the “Sync” state which causes a resynchronization to  
be initiated. Note: The test pattern fields mentioned above must not change for four RCLK cycles after this bit transitions  
from 0 to 1. See Section 9.5.1.  
Bit 4: Receive Pattern Inversion Control (RPIC). See Section 9.5.1.  
0 = do not invert the incoming data stream  
1 = invert the incoming data stream  
Bit 3: Manual Pattern Resynchronization (MPR). A zero to one transition of this bit causes the receive pattern  
generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another  
resynchronization to be initiated. Note: A manual resynchronization forces the pattern detector out of the “Sync” state.  
See Section 9.5.2.  
Bit 2: Automatic Pattern Resynchronization Disable (APRD). When APRD = 0, the receive pattern generator  
automatically resynchronizes to the incoming pattern if six or more times during the current 64-bit window the incoming  
data stream bit and the receive pattern generator output bit did not match. When APRD = 1, the receive pattern  
generator does not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is prevented by  
not allowing the receive pattern generator to automatically exit the “Sync” state. See Section 9.5.2.  
Bit 1: Transmit New Pattern Load (TNPL). A zero to one transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be loaded into  
the transmit pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded. Note:  
The test pattern fields mentioned above must not change for four TCLK cycles after this bit transitions from 0 to 1. See  
Section 9.5.1.  
Bit 0: Transmit Pattern Inversion Control (TPIC). See Section 9.5.1.  
0 = do not invert the outgoing data stream  
1 = invert the outgoing data stream  
85 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.PCR  
Register Description:  
Register Address:  
BERT Pattern Configuration Register  
n x 80h + 52h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
PTF[4:0]  
0
9
0
1
0
8
0
0
0
Bit #  
Name  
Default  
7
0
6
QRSS  
0
5
PTS  
0
4
3
2
PLF[4:0]  
0
0
0
Bits 12 to 8: Pattern Tap Feedback (PTF[4:0]). These five bits control the PRBS “tap” feedback of the pattern  
generator. The “tap” feedback is from bit y of the pattern generator (y = PTF[4:0] +1). These bits are ignored when the  
BERT block is programmed for a repetitive pattern (PTS = 1). For a PRBS signal, the feedback is an XOR of bit n and bit  
y. See Section 9.5.1.  
Bit 6: QRSS Enable (QRSS). See Section 9.5.1.  
0 = Disabled: the pattern generator configuration is controlled by PTS, PLF[4:0], PTF[4:0], and  
BSP[31:0]  
1 = Enabled: the pattern generator configuration is forced to a PRBS pattern with a generating  
polynomial of x20 + x17 + 1, and the output of the pattern generator is forced to one if the next 14  
output bits are all zero.  
Bit 5: Pattern Type Select (PTS). See Section 9.5.1.  
0 = PRBS pattern  
1 = repetitive pattern.  
Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). This field controls the “length” feedback of the pattern generator. The  
“length” feedback is from bit n of the pattern generator (n = PLF[4:0] +1). For a PRBS signal, the feedback is an XOR of  
bit n and bit y. For a repetitive pattern the feedback is bit n. See Section 9.5.1.  
86 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.SPR1  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 1  
n x 80h + 54h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BSP[15:8]  
BSP[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Register Name:  
BERT.SPR2  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 2  
n x 80h + 56h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
0
1
0
8
0
0
0
BSP[31:24]  
0
3
0
Bit #  
Name  
Default  
7
6
5
4
2
BSP[23:16]  
0
0
0
0
0
BERT Seed/Pattern (BSP[31:0]). This 32-bit field is the programmable seed for a transmit PRBS pattern, or the  
programmable pattern for a transmit or receive repetitive pattern. BSP[31] is the first bit output on the transmit side for a  
32-bit repetitive pattern or 32-bit PRBS. BSP[31] is the first bit input on the receive side for a 32-bit repetitive pattern. See  
Section 9.5.1.  
87 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.TEICR  
Register Description:  
Register Address:  
BERT Transmit Error Insertion Control Register  
n x 80h + 58h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
TEIR[2:0]  
0
3
0
2
BEI  
0
1
TSEI  
0
0
MEIMS  
0
Bits 5 to 3: Transmit Error Insertion Rate (TEIR[2:0]). This field indicates the rate at which errors are automatically  
inserted in the output data stream. One out of every 10n bits is inverted, where n = TEIR[2:0]. A value of 0 disables error  
insertion. A value of 1 results in every 10th bit being inverted. A value of 2 result in every 100th bit being inverted. Error  
insertion starts when this field is written with a non-zero value. If this field is written during an error insertion, the new  
error rate is used after the next error is inserted. See Section 9.5.3.1.  
Bit 2: Bit Error Insertion Enable (BEI). See Section 9.5.3.1.  
0 = single-bit error insertion is disabled  
1 = single-bit error insertion is enabled  
Bit 1: Transmit Single Error Insert (TSEI). When BERT.TEICR:MEIMS = 0 and BEI = 1, this bit is used to insert single-  
bit errors in the outgoing BERT data stream. A 0 to 1 transition causes a single bit error to be inserted. For a second bit  
error to be inserted, this bit must be set to 0, and back to 1. Note: If MEIMS is low, and this bit transitions more than once  
between error insertion opportunities, only one error is inserted. See Section 9.7.5.  
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the BERT  
block. Note: If TMEI or TSEI is one, changing the state of this bit may cause a bit error to be inserted. See Section 9.7.5.  
0 = error insertion is initiated by the BERT.TEICR:TSEI register bit  
1 = error insertion is initiated by the transmit manual error insertion signal (TMEI) specified by the  
PORT.CR1:MEIMS register bit  
88 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.SR  
Register Description:  
Register Address:  
BERT Status Register  
n x 80h + 5Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMS  
0
2
0
1
BEC  
0
0
OOS  
0
Bit 3: Performance Monitoring Update Status (PMS). This bit is set when the performance monitoring registers  
(BERT.RBCR and BERT.RBECR) have been updated. PMS is asynchronously forced low when the BERT.CR:LPMU bit  
(BERT.CR:PMUM = 0) or RPMU signal (BERT.CR:PMUM = 1) goes low. See Section 9.7.4.  
0 = The associated update request signal is low or not all register updates are completed  
1 = The requested performance register updates are all completed  
Bit 1: Bit Error Count (BEC). See Section 9.5.1.  
0 = the bit error count is zero  
1 = the bit error count is one or more  
Bit 0: Out Of Synchronization (OOS). See Section 9.5.1.  
0 = the receive pattern generator is synchronized to the incoming pattern  
1 = the receive pattern generator is not synchronized to the incoming pattern  
Register Name:  
BERT.SRL  
Register Description:  
Register Address:  
BERT Status Register Latched  
n x 80h + 5Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSL  
0
2
BEL  
0
1
BECL  
0
0
OOSL  
0
Bit 3: Performance Monitoring Update Status Latched (PMSL). This bit is set when the BERT.SR:PMS bit transitions  
from 0 to 1. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:PMSIE, PORT.ISRIE:BSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected in the received pattern. When set, this bit  
causes an interrupt if interrupt enables BERT.SRIE:BEIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set.  
Bit 1: Bit Error Count Latched (BECL). This bit is set when the BERT.SR:BEC bit transitions from 0 to 1. When set, this  
bit causes an interrupt if interrupt enables BERT.SRIE:BECIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all  
set.  
Bit 0: Out Of Synchronization Latched (OOSL). This bit is set when the BERT.SR:OOS bit changes state. When set,  
this bit causes an interrupt if interrupt enables BERT.SRIE:OOSIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are  
all set.  
89 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.SRIE  
Register Description:  
Register Address:  
BERT Status Register Interrupt Enable  
n x 80h + 60h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSIE  
0
2
BEIE  
0
1
BECIE  
0
0
OOSIE  
0
Bit 3: Performance Monitoring Update Status Interrupt Enable (PMSIE). This bit is the interrupt enable for the  
BERT.SRL:PMSL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: Bit Error Interrupt Enable (BEIE). This bit is the interrupt enable for the BERT.SRL:BEL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Bit Error Count Interrupt Enable (BECIE). This bit is the interrupt enable for the BERT.SRL:BECL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Out Of Synchronization Interrupt Enable (OOSIE). This bit is the interrupt enable for the BERT.SRL:OOSL  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
90 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.RBECR1  
Register Description:  
Register Address:  
BERT Receive Bit Error Count Register 1  
n x 80h + 64h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BEC[15:8]  
BEC[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Register Name:  
BERT.RBECR2  
Register Description:  
Register Address:  
BERT Receive Bit Error Count Register 2  
n x 80h + 66h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
BEC[23:16]  
0
Bit Error Count (BEC[23:0]). This field is the holding register for an internal BERT bit error counter that tracks the  
number of bit errors detected in the incoming data stream since the last performance monitoring update. The internal  
counter stops incrementing when it reaches a count of FF FFFFh and does not increment when an OOS condition exists.  
This register is updated when a performance monitoring update is performed. See Section 9.7.4. The source for the  
performance monitoring update signal is specified by the BERT.CR:PMUM bit.  
91 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Register Name:  
BERT.RBCR1  
Register Description:  
Register Address:  
BERT Receive Bit Count Register 1  
n x 80h + 68h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BC[15:8]  
BC[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Register Name:  
BERT.RBCR2  
Register Description:  
Register Address:  
BERT Receive Bit Count Register 2  
n x 80h + 6Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BC[31:24]  
BC[23:16]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bit Count (BC[31:0]). This field is the holding register for an internal BERT bit counter that tracks the total number of bit  
received in the incoming data stream since the last performance monitoring update. The internal counter stops  
incrementing when it reaches a count of FFFF FFFFh and does not increment when an OOS condition exists. This  
register is updated when a performance monitoring update is performed. See Section 9.7.4. The source for the  
performance monitoring update signal is specified by the BERT.CR:PMUM bit.  
92 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
11. JTAG INFORMATION  
The DS3250x LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional  
public instructions included are HIGHZ, CLAMP, and IDCODE. The devices contain the following items, which  
meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins  
can be found in Table 8-9. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.1-  
1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. The  
bypass register is a 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions to provide a short  
path between JTDI and JTDO. The boundary scan register contains a shift register path and a latched parallel  
output for control cells and digital I/O cells. DS3250x BSDL files are available at:  
www.maxim-ic.com/TechSupport/telecom/bsdl.htm.  
An optional test register, the identification register, has also been included in the device design. The identification  
register contains a 32-bit shift register and a 32-bit latched parallel output. Table 11-1 shows the identification  
register contents for the DS32501, DS32502, DS32503, and DS32504 devices.  
Table 11-1. JTAG ID Code  
PART  
REVISION  
DEVICE CODE  
MANUFACTURER CODE  
00010100001  
REQUIRED  
DS32501  
DS32502  
DS32503  
DS32504  
Consult factory  
Consult factory  
Consult factory  
Consult factory  
0000 0000 0111 1011  
0000 0000 0111 1100  
0000 0000 0111 1101  
0000 0000 0111 1110  
1
1
1
1
00010100001  
00010100001  
00010100001  
93 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
12. ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Input or Output Lead with Respect to VSS..................................................... -0.3V to +5.5V  
Supply Voltage Range (VDD33) with Respect to VSS ........................................................................... -0.3V to +3.63V  
Supply Voltage Range (VDD18) with Respect to VSS ........................................................................... -0.1V to +1.98V  
Ambient Operating Temperature Range* .......................................................................................... -40°C to +85°C  
Junction Operating Temperature Range ........................................................................................... -40°C to +125°C  
Storage Temperature Range ............................................................................................................. -55°C to +125°C  
Soldering Temperature ............................................................................... See IPC/JEDEC J-STD-020 Specification  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not  
implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.  
*Ambient operating temperature range when device is mounted on a four-layer JEDEC test board with no airflow.  
Note: The typical values listed in the following tables and operations at -40oC operation are not production tested, but are guaranteed by  
design.  
Table 12-1. Recommended DC Operating Conditions  
(TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VDD18  
VDD33  
1.62  
1.8  
1.98  
Digital Supply Voltage  
V
3.135 3.300 3.465  
CVDD, JVDD, RVDD, and  
TVDD  
Analog Supply Voltage  
AVDD  
1.71  
1.80  
1.89  
V
Logic 1, All Other Input Pins  
Logic 0, All Other Input Pins  
VIH  
VIL  
2.0  
3.6  
V
V
-0.3  
+0.8  
94 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-2. DC Characteristics  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DS32501  
DS32502  
DS32503  
DS32504  
DS32501  
DS32502  
DS32503  
DS32504  
DS32501  
DS32502  
DS32503  
DS32504  
DS32501  
DS32502  
DS32503  
DS32504  
DS32501,  
DS32502,  
DS32503,  
DS32504  
DS32501,  
DS32502,  
DS32503,  
DS32504  
58  
96  
134  
172  
15  
30  
45  
60  
45  
70  
95  
120  
15  
30  
70  
120  
170  
220  
32  
55  
80  
110  
50  
80  
110  
140  
32  
55  
80  
Supply Current, VDD18 (Notes 1, 2)  
IDD18  
mA  
Supply Current, VDD33 (Notes 1, 2)  
IDD33  
mA  
mA  
Supply Current, Transmitters Disabled  
(All TOE = 0), VDD18 (Notes 2, 3)  
IDDTTS18  
Supply Current, Transmitters Disabled  
(All TOE = 0), VDD33 (Notes 2, 3)  
IDDTTS33  
IDDPD18  
IDDPD33  
mA  
mA  
mA  
45  
60  
110  
Supply Current, Power-Down  
(All TPD = RPD = 1), VDD18  
(Notes 2, 3, 4)  
16  
20  
10  
Supply Current, Power-Down  
(All TPD = RPD = 1), VDD33  
(Notes 2, 3, 4)  
5.3  
7
Lead Capacitance  
CIO  
IIL  
ILO  
VOH  
VOL  
10  
+10  
+10  
VDD33  
0.4  
pF  
μA  
μA  
V
Input Leakage, All Other Input Pins  
Output Leakage (when High-Z)  
Output Voltage (IO = -4.0mA)  
Output Voltage (IO = +4.0mA)  
(Note 5)  
(Note 5)  
-300  
-50  
2.4  
0
V
Note 1:  
TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); TXPn/TXNn driving all ones into 75Ω resistive loads; analog loopback  
enabled; all other inputs at VDD33 or grounded; all other outputs open.  
Note 2:  
Note 3:  
Note 4:  
Design targets. Actual values will be listed after device characterization.  
TCLKn = CLKC = 51.84MHz; other inputs at VDD33or grounded; digital outputs left open circuited.  
IFSEL 0, CLAD[6:0] = 0000000 (disabled), G1SRS[3:0] = 0000 (disable), CS = 1 (inactive).  
Note 5:  
0V < VIN < VDD18 for all other digital inputs.  
95 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-3. Framer Interface Timing  
(VDD18 = 1.8V±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 12-1  
and Figure 12-2.)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Notes 1, 2)  
MIN  
TYP  
MAX UNITS  
22.4  
29.1  
19.3  
50  
RCLK/TCLK Clock Period  
t1  
ns  
(Notes 2, 3)  
(Notes 2, 4)  
RCLK Duty Cycle  
t2/t, t3/t1 (Notes 5, 6)  
t2/t, t3/t1 (Note 6)  
45  
30  
30  
3
55  
70  
70  
%
%
%
ns  
ns  
TCLK Duty Cycle  
LIU Reference Clock Duty Cycle  
TPOS/TDAT, TNEG to TCLK Setup Time  
TPOS/TDAT, TNEG Hold Time  
t2/t, t3/t1 (Notes 6, 7)  
t4  
t5  
(Notes 6, 8)  
(Notes 6, 8)  
1
RCLK to RPOS/RDAT, RNEG/RLCV  
Value Change  
t6  
(Notes 5, 6, 9)  
1
7
ns  
RCLK Rise and Fall Time  
TCLK Rise and Fall Time  
t7  
t8  
(Notes 6, 10 )  
(Notes 5, 11)  
1
2
2
ns  
ns  
Note 1:  
Note 2:  
DS3 mode.  
78MHz is the maximum instantaneous frequency for a gapped clock. The maximum average frequency is 45.094MHz for DS3,  
34.643MHz for E3, and 52.255MHz for STS-1.  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Note 7:  
Note 8:  
E3 mode.  
STS-1 mode.  
Outputs loaded with 25pF, measured at 50% threshold.  
Not tested during production test.  
The LIU reference clock must be a ±20ppm low-jitter clock. See Section 9.7.1 for more information on reference clocks.  
When TCLKI = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCLKI = 1, TPOS/TDAT and TNEG are  
sampled on the falling edge of TCLK.  
Note 9:  
When RCLKI = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCLKI = 1, RPOS/RDAT and  
RNEG/RLCV are updated on the rising edge of RCLK.  
Note 10: Outputs loaded with 25pF, measured between VOL(MAX) and VOH(MIN)  
.
Measured between VIL(MAX) and VIH(MIN)  
.
Note 11:  
96 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-1. Transmitter Framer Interface Timing Diagram  
t1  
t2  
t3  
TCLK (NORMAL)  
TCLK (INVERTED)  
t8  
t4  
t5  
TPOS/TDAT  
TNEG  
Figure 12-2. Receiver Framer Interface Timing Diagram  
t1  
t2  
t3  
RCLK (NORMAL)  
RCLK (INVERTED)  
t6  
t7  
RPOS/RDAT  
RNEG/RLCV  
97 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-4. Receiver Input Characteristics—DS3 and STS-1 Modes  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Receive Sensitivity (Length of Cable)  
1500  
10  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Note 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
1000  
200  
-25  
mVpk  
mVpk  
dB  
-23  
-22  
-20  
-34  
dB  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
-37  
-39  
dB  
-36  
dB  
Intrinsic Jitter Generation (Note 2)  
0.02  
UIP-P  
Note 1: An interfering signal (215 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined  
signal is passed through 0 to 900 feet of coaxial cable and presented to the DS3250x receiver. This spec indicates the lowest signal-  
to-noise ratio that results in a bit error ratio 10-9.  
Note 2: Not tested during production test.  
Note 3: Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (see Figure 3-2). During measurement,  
incoming data traffic is unframed 215 - 1 PRBS.  
Note 4: With respect to nominal 800mVpk signal.  
Table 12-5. Receiver Input Characteristics—E3 Mode  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Receive Sensitivity (Length of Cable)  
2000  
12  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Notes 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
1300  
260  
-25  
mVpk  
mVpk  
dB  
-20  
-34  
dB  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
-39  
dB  
dB  
Intrinsic Jitter Generation (Note 2)  
0.03  
UIP-P  
Note 1: An interfering signal (223 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined  
signal is passed through 0 to 900 feet of coaxial cable and presented to the DS3250x receiver. This spec indicates the lowest signal-  
to-noise ratio that results in a bit error ratio 10-9.  
Note 2: Not tested during production test.  
Note 3: Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (see Figure 3-2). During measurement,  
incoming data traffic is unframed 223 - 1 PRBS.  
Note 4: With respect to nominal 1000mVpk signal.  
98 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-6. Transmitter Output Characteristics—DS3 and STS-1 Modes  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
DS3 Output Pulse Amplitude, TLBO = 0 (Note 1)  
DS3 Output Pulse Amplitude, TLBO = 1 (Note 1)  
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1)  
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1)  
Ratio of Positive and Negative Pulse-Peak Amplitudes  
DS3 Power Level at 22.368MHz (Note 2)  
700  
500  
700  
500  
0.9  
800  
600  
800  
600  
1.0  
900  
700  
900  
700  
1.1  
mVpk  
mVpk  
mVpk  
mVpk  
-1.8  
+5.7  
-20  
dBm  
dB  
DS3 Power Level at 44.736MHz vs. Power Level at 22.368 MHz (Note 2)  
Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 3-2).  
Note 2: Unframed all-ones output signal, 3kHz bandwidth.  
Note 3: Measured with a jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies.  
Note 4:  
With ±5% power supply.  
Table 12-7. Transmitter Output Characteristics—E3 Mode  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Output Pulse Amplitude (Note 1)  
900  
1000 1100  
14.55  
mVpk  
ns  
Pulse Width (Note 1)  
Positive/Negative Pulse Amplitude Ratio (at Centers of Pulses) (Note 1)  
Positive/Negative Pulse Width Ratio (at Nominal Half Amplitude)  
0.95  
0.95  
1.00  
1.00  
880  
1.05  
1.05  
Transmit Driver Monitor Minimum Threshold (VTXMIN  
)
mVpk  
mVpk  
Transmit Driver Monitor Maximum Threshold (VTXMAX  
)
1120  
Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 3-2).  
Note 2: Measured with a jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies.  
Note 3:  
With ±5% power supply.  
99 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-8. Parallel CPU Interface Timing  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 12-3,  
Figure 12-4, Figure 12-5, Figure 12-6, Figure 12-7, Figure 12-8, Figure 12-9, and Figure 12-10.)  
PARAMETER  
SYMBOL MIN TYP MAX UNITS  
t1  
t2  
0
0
ns  
ns  
Setup Time for A[9:1] Valid to RD, WR, or DS Active (Notes 1, 2)  
Setup Time for CS Active to RD, WR, or DS Active  
Delay Time from RD or DS Active to D[15:0] Valid Without ACK  
Handshake  
t3a  
65  
20  
ns  
Delay Time from ACK Active to D[15:0] Valid  
t3b  
t4  
ns  
ns  
ns  
0
2
Hold Time from RD, WR, or DS Inactive to CS Inactive  
Delay from CS, RD, or DS Inactive to D[15:0] Invalid (Note 3)  
t5  
Wait Time from WR or DS Active to Latch D[15:0] Without ACK  
Handshake  
t6a  
65  
ns  
Wait Time from ACK Active to Latch D[15:0]  
D[15:0] Setup Time to WR or DS Inactive  
D[15:0] Hold Time from WR or DS Inactive  
A[9:1] Hold Time from WR, RD, or DS Inactive  
Delay from WR, RD, or DS Inactive to ALE Active  
RD, WR, or DS Inactive Time  
Muxed Address Valid to ALE Inactive (Note 4)  
Muxed Address Hold Time from ALE Inactive (Note 4)  
ALE Pulse Width (Note 4)  
t6b  
t7  
20  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t8  
t9a  
t9b  
t10  
t11  
t12  
t13  
5
20  
75  
10  
10  
20  
Setup Time for ALE High or Muxed Address Valid to CS Active  
(Notes 4, 5, 6)  
t14  
t15  
0
ns  
ns  
15  
Delay from CS Inactive to D[15:0] Disable  
Note 1: D[15:0] loaded with 50pF when tested as outputs.  
Note 2: If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest  
TCLK gap.  
Note 3: Not tested during production test.  
Note 4: In nonmultiplexed bus applications (Figure 12-3 to Figure 12-6), ALE should be wired high. In multiplexed bus applications  
(Figure 12-7 to Figure 12-10), A[9:1] should be wired to D[15:0] and the falling edge of ALE latches the address.  
Note 5: t14 starts at the occurrence of the rising edge of ALE or A[9:1] valid whichever occurs later.  
Note 6:  
In order to avoid bus contention, during a read cycle A[9:1] should be disabled prior to RD or DS being active.  
100 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[9:1]  
WR  
t2  
t4  
CS  
RD  
t10  
t15  
t3  
t5  
D[15:0]  
Figure 12-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[9:1]  
RD  
t2  
t4  
CS  
t6  
t10  
WR  
t7  
t8  
D[15:0]  
101 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[9:1]  
R/W  
CS  
t2  
t4  
t10  
t15  
DS  
t5  
t3  
D[15:0]  
Figure 12-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[9:1]  
R/W  
CS  
t2  
t4  
t6  
t10  
DS  
t7  
t8  
D[15:0]  
102 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[9:1]  
t14  
WR  
CS  
RD  
t2  
t4  
t10  
t15  
t3  
t5  
D[15:0]  
Figure 12-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[9:1]  
t14  
RD  
CS  
t2  
t4  
t6  
t10  
WR  
t7  
t8  
D[15:0]  
103 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[9:1]  
t14  
R/W  
CS  
t2  
t4  
t10  
t15  
DS  
t3  
t5  
D[15:0]  
Figure 12-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[9:1]  
t14  
R/W  
CS  
t2  
t4  
t6  
t10  
DS  
t7  
t8  
D[15:0]  
104 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-9. SPI Interface Timing  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
(See Figure 12-11.)  
PARAMETER (Note 1)  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
SCLK Frequency  
SCLK Cycle Time  
fBUS  
tCYC  
tSUC  
tHDC  
tCLKH  
tCLKL  
tSUI  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
15  
15  
50  
50  
5
CS Setup to First SCLK Edge  
CS Hold Time After Last SCLK Edge  
SCLK High Time  
SCLK Low Time  
SDI Data Setup Time  
SDI Data Hold Time  
tHDI  
15  
0
SDO Enable Time (High Impedance to Output Active)  
SDO Disable Time (Output Active to High Impedance)  
SDO Data Valid Time  
tEN  
tDIS  
25  
40  
tDV  
SDO Data Hold Time After Update SCLK Edge  
tHDO  
5
Note 1:  
All timing is specified with 100pF load on all SPI pins.  
105 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 12-11. SPI Interface Timing Diagram  
CPHA = 0  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
CPHA = 1  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
106 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Table 12-10. JTAG Interface Timing  
(VDD18 = 1.8V ±10%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
(See Figure 12-12.)  
PARAMETER  
JTCLK Clock Period  
SYMBOL  
MIN  
TYP  
1000  
500  
MAX  
UNITS  
ns  
t1  
t2/t3  
t4  
JTCLK Clock High/Low Time (Note 1)  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
50  
50  
50  
2
ns  
ns  
t5  
ns  
t6  
50  
50  
ns  
JTCLK to JTDO High-Impedance Delay (Note 2)  
JTRST Width Low Time  
t7  
2
ns  
t8  
100  
ns  
Note 1:  
Note 2:  
Clock can be stopped high or low.  
Not tested during production test.  
Figure 12-12. JTAG Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI  
JTMS  
JTRST  
t6  
t7  
JTDO  
t8  
JTRST  
107 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
13. PIN ASSIGNMENTS  
Table 13-1. Pin Assignments Sorted by Signal Name for DS32504 (Microprocessor  
Interface Mode)  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A4  
B4  
C4  
F5  
A3  
G5  
B3  
E4  
C3  
D4  
F8  
K6  
K5  
M5  
L5  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
HIZ  
IFSEL0  
IFSEL1  
IFSEL2  
INT  
H3  
C10  
J5  
G3  
G4  
D10  
M4  
J4  
A2  
A1  
F4  
G8  
K3  
RLOS4  
RNEG1  
RNEG2  
RNEG3  
RNEG4  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RST  
RVDD1  
RVDD2  
RVDD3  
RVDD4  
RVSS1  
RVSS2  
RVSS3  
RVSS4  
RXN1  
RXN2  
RXN3  
RXN4  
RXP1  
RXP2  
RXP3  
RXP4  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TEST  
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TOE1  
J8  
F10  
H10  
C11  
K12  
E11  
G11  
A12  
J12  
M2  
E2  
K2  
B8  
L10  
F2  
L2  
B7  
L11  
F1  
L1  
A7  
M11  
E1  
K1  
A8  
M10  
F12  
H12  
D11  
L12  
M1  
G10  
J11  
D12  
M12  
J7  
TOE2  
TOE3  
TOE4  
J9  
H7  
K10  
F11  
H11  
C12  
K11  
C2  
H2  
B10  
L8  
D2  
J2  
B9  
L9  
D3  
J3  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TPVSS1  
TPVSS2  
TPVSS3  
TPVSS4  
TVDD1  
TVDD2  
TVDD3  
TVDD4  
TVSS1  
TVSS2  
TVSS3  
TVSS4  
TXN1  
TXN2  
TXN3  
TXN4  
TXP1  
TXP2  
TXP3  
TXP4  
A9  
ALE  
CLKA  
CLKB  
CLKC  
CLKD  
CS  
CVDD  
CVDD  
CVSS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
JTCLK  
JTDI  
JTDO  
L3  
K4  
L4  
M3  
B1  
F9  
L6  
JTMS  
JTRST  
M6  
K7  
C8  
D9  
C7  
D8  
D6  
D7  
A6  
E7  
B6  
A5  
C6  
B5  
E9  
C5  
D5  
E6  
F3  
JTVDD1  
JTVDD2  
JTVDD3  
JTVDD4  
JVSS1  
JVSS2  
JVSS3  
JVSS4  
MT  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RD/DS  
REFCLK  
RESREF  
RLOS1  
RLOS2  
RLOS3  
C9  
K9  
D1  
J1  
G1  
A11  
M7  
B2  
G2  
B11  
L7  
H4  
E12  
G12  
B12  
J10  
G9  
K8  
A9  
M9  
C1  
H1  
A10  
M8  
E5  
H8  
E8  
H5  
F6  
VDD18  
VDD18  
VDD33  
VDD33  
VSS  
VSS  
VSS  
VSS  
WR/R/W  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
GPIOA1  
E3  
J6  
H9  
H6  
F7  
G6  
G7  
E10  
Note: See Figure 13-1 for the pin assignment diagram.  
108 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-1. DS32504 Pin Assignment—Microprocessor Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
A4  
A0  
D9  
D6  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
GPIOA3 RNEG3 TPOS3  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
A6  
A8  
A1  
A2  
A9  
A7  
D11  
D13  
D8  
D10  
RVSS3  
D2  
RVDD3  
D0  
TVDD3 TPVSS3  
TXP1  
TXN1  
RXP1  
RXN1  
TPVSS1  
TVDD1  
TVSS3  
D1  
TVSS1  
D14  
D4  
D5  
D3  
GPIOB3  
TCLK3  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG3  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
RVDD1 RESREF  
VDD18  
A3  
D15  
D7  
VDD33  
ALE  
D12  
WR/R/W  
RNEG1  
TNEG1  
RNEG2  
RCLK4  
TOE4  
RVSS1 GPIOA1 IFSEL2  
VSS  
VSS  
RLOS3  
VSS  
CS  
JTVDD2 JVSS2  
GPIOB1 GPIOB2  
MT  
A5  
VSS  
INT  
G
H
J
RD/DS  
RLOS2  
TOE2  
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TPVSS2 GPIOA2  
VDD33  
TOE3  
TOE1  
CVSS  
JVSS4  
VDD18  
RLOS4  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
GPIOA4 RLOS1  
TNEG2 RPOS4  
TPOS4 RNEG4  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
CLKA  
CVDD  
REFCLK TVSS4  
K
L
K
L
TVSS4  
TVDD4  
RVDD4  
RVSS4  
TCLK4  
GPIOB4  
CLKC  
CVDD  
JTVDD4  
TXP4  
TXN4  
RXP4  
RXN4  
TNEG4  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
109 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-2. DS32504 Pin Assignment—SPI Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
N.C.  
N.C.  
N.C.  
CPHA  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RVSS3  
SCLK  
N.C.  
RVDD3  
SDO  
TVDD3  
TVSS3  
SDI  
TVSS3  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
GPIOA3 RNEG3 TPOS3  
TVSS1  
N.C.  
N.C.  
N.C.  
GPIOB3  
N.C.  
TCLK3  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG3  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
RVDD1 RESREF  
VDD18  
N.C.  
N.C.  
CPOL  
VSS  
VDD33  
ALE  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
RNEG1  
TNEG1  
RNEG2  
RCLK4  
TOE4  
CS  
JTVDD2 JVSS2  
GPIOB1 GPIOB2  
MT  
N.C.  
VSS  
VSS  
N.C.  
INT  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2 GPIOA2  
VDD33  
RLOS3  
TOE3  
TOE1  
CVSS  
JVSS4  
VDD18  
RLOS4  
RLOS2  
TOE2  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
GPIOA4 RLOS1  
TNEG2 RPOS4  
TPOS4 RNEG4  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
CLKA  
CVDD  
REFCLK TVSS4  
K
L
K
L
TVSS4  
TVDD4  
RVDD4  
RVSS4  
TCLK4  
GPIOB4  
CLKC  
CVDD  
JTVDD4  
TXP4  
TXN4  
RXP4  
RXN4  
TNEG4  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
110 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-3. DS32504 Pin Assignment—Hardware Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
TAIS1  
TLBO1 RMON2  
LB3[1]  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
RNEG3 TPOS3  
TCLK3 TNEG3  
RPOS1 RCLK1  
TPOS1 TCLK1  
RPOS2 RCLK2  
TPOS2 TCLK2  
TNEG2 RPOS4  
TPOS4 RNEG4  
RVSS4 TCLK4  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
TAIS3  
RBIN  
TLBO2 RMON4 RMON1 RVSS3  
RVDD3  
LB1[0]  
TVDD3  
TVSS3  
LB2[0]  
JAS0  
TVSS3  
LM3[1]  
LM3[0]  
TPD  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
TLBO3  
TCLKI  
JAS1  
JAD0  
RMON3  
LB1[1]  
JAD1  
LB3[0]  
LB2[1]  
LB4[1]  
VSS  
TVSS1  
LB4[0]  
RVDD1 RESREF TAIS4  
VDD18  
TLBO4  
TAIS2  
VDD33  
LM4[1]  
CLKB  
VDD33  
TBIN  
RVSS1  
LM1[1]  
LM1[0]  
LM2[1]  
TVSS2  
JTCLK  
JTDI  
IFSEL2  
LM2[0]  
MT  
VSS  
RCLKI  
RPD  
RNEG1  
TNEG1  
RNEG2  
RCLK4  
TOE4  
JTVDD2 JVSS2  
VSS  
VSS  
CLADBYP  
VDD18  
RLOS4  
REFCLK  
TVSS4  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2  
TVDD2  
RVDD2  
RVSS2  
RLOS3  
RLOS1  
CLKA  
CVDD  
TOE3  
TOE1  
CVSS  
JVSS4  
RLOS2  
TOE2  
HIZ  
JTDO  
JTMS  
TVSS4  
TVDD4  
K
L
K
L
CLKD  
RVDD4  
LM4[0]  
CLKC  
CVDD  
JTVDD4  
TXP4  
TXN4  
RXP4  
RXN4  
TNEG4  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
111 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-4. DS32503 Pin Assignment—Microprocessor Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
A4  
A0  
D9  
D6  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1  
TXP1  
JVSS1  
TVSS1  
TVDD1  
A6  
A8  
A1  
A2  
D11  
D13  
D8  
D10  
RVSS3  
D2  
RVDD3  
D0  
TVDD3  
TVSS3  
D1  
TVSS3  
GPIOA3 RNEG3 TPOS3  
TXN1  
TVSS1  
N.C.  
A7  
D14  
D4  
D5  
D3  
GPIOB3  
TCLK3  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG2  
N.C.  
TNEG3  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
N.C.  
RXP1  
RXN1  
JTVDD2  
TXP2  
RVDD1 RESREF  
VDD18  
A3  
D15  
D7  
VDD33  
ALE  
D12  
WR/R/W  
RNEG1  
TNEG1  
RNEG2  
N.C.  
RVSS1 GPIOA1 IFSEL2  
JVSS2 GPIOB1 GPIOB2  
TVSS2 GPIOA2  
VSS  
VSS  
VSS  
TOE3  
TOE1  
CVSS  
N.C.  
CS  
A5  
VSS  
INT  
G
H
J
RD/DS  
RLOS2  
TOE2  
N.C.  
G
H
J
MT  
HIZ  
VDD33  
N.C.  
RLOS3  
RLOS1  
CLKA  
CVDD  
VDD18  
N.C.  
TXN2  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
RXP2  
RXN2  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
112 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-5. DS32503 Pin Assignment—SPI Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
N.C.  
N.C.  
N.C.  
CPHA  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RVSS3  
SCLK  
N.C.  
RVDD3  
SDO  
TVDD3  
TVSS3  
SDI  
TVSS3  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
GPIOA3 RNEG3 TPOS3  
TVSS1  
N.C.  
N.C.  
N.C.  
GPIOB3  
N.C.  
TCLK3  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG2  
N.C.  
TNEG3  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
N.C.  
RVDD1 RESREF  
VDD18  
N.C.  
N.C.  
CPOL  
VSS  
VDD33  
ALE  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
RNEG1  
TNEG1  
RNEG2  
N.C.  
CS  
JTVDD2 JVSS2  
GPIOB1 GPIOB2  
MT  
N.C.  
VSS  
VSS  
N.C.  
INT  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2 GPIOA2  
VDD33  
N.C.  
RLOS3  
RLOS1  
CLKA  
CVDD  
TOE3  
TOE1  
CVSS  
N.C.  
VDD18  
N.C.  
RLOS2  
TOE2  
N.C.  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
113 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-6. DS32503 Pin Assignment—Hardware Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
TAIS1  
TLBO1 RMON2  
LB3[1]  
RXN3  
RXP3  
TXN3  
TXP3  
JTVDD3 RPOS3  
JVSS3 RCLK3  
RNEG3 TPOS3  
TCLK3 TNEG3  
RPOS1 RCLK1  
TPOS1 TCLK1  
RPOS2 RCLK2  
TPOS2 TCLK2  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
TAIS3  
RBIN  
TLBO2  
TLBO3  
TCLKI  
N.C.  
N.C.  
JAS1  
JAD0  
VDD18  
N.C.  
RMON1 RVSS3  
RVDD3  
LB1[0]  
N.C.  
TVDD3  
TVSS3  
LB2[0]  
JAS0  
TVSS3  
LM3[1]  
LM3[0]  
TPD  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
RMON3  
LB1[1]  
JAD1  
LB3[0]  
LB2[1]  
N.C.  
TVSS1  
RVDD1 RESREF  
VDD33  
TBIN  
RVSS1  
LM1[1]  
LM1[0]  
LM2[1]  
TVSS2  
JTCLK  
JTDI  
IFSEL2  
LM2[0]  
MT  
VSS  
VSS  
RCLKI  
RPD  
RNEG1  
TNEG1  
RNEG2  
N.C.  
JTVDD2 JVSS2  
TAIS2  
VDD33  
N.C.  
VSS  
VSS  
CLADBYP  
VDD18  
N.C.  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2  
TVDD2  
RVDD2  
RVSS2  
RLOS3  
RLOS1  
CLKA  
CVDD  
TOE3  
TOE1  
CVSS  
N.C.  
RLOS2  
TOE2  
N.C.  
TNEG2  
N.C.  
N.C.  
N.C.  
N.C.  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
114 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-7. DS32502 Pin Assignment—Microprocessor Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
A4  
A0  
D9  
D6  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
A6  
A8  
A1  
A2  
D11  
D13  
D8  
D10  
N.C.  
D2  
N.C.  
D0  
N.C.  
N.C.  
D1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
TVSS1  
N.C.  
A7  
D14  
D4  
D5  
D3  
GPIOB3  
N.C.  
N.C.  
RVDD1 RESREF  
VDD18  
A3  
D15  
D7  
VDD33  
ALE  
D12  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG2  
N.C.  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
N.C.  
WR/R/W  
RNEG1  
TNEG1  
RNEG2  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
VSS  
N.C.  
RLOS1  
CLKA  
CVDD  
VSS  
VSS  
N.C.  
TOE1  
CVSS  
N.C.  
CS  
JTVDD2 JVSS2  
GPIOB1 GPIOB2  
MT  
A5  
INT  
G
H
J
RD/DS  
RLOS2  
TOE2  
N.C.  
N.C.  
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2 GPIOA2  
VDD33  
N.C.  
VDD18  
N.C.  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
115 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-8. DS32502 Pin Assignment—SPI Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
N.C.  
N.C.  
N.C.  
CPHA  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
SCLK  
N.C.  
N.C.  
SDO  
N.C.  
N.C.  
SDI  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
TVSS1  
N.C.  
N.C.  
N.C.  
GPIOB3  
N.C.  
N.C.  
N.C.  
RVDD1 RESREF  
VDD18  
N.C.  
N.C.  
CPOL  
VSS  
VDD33  
ALE  
N.C.  
CS  
RPOS1  
TPOS1  
RPOS2  
TPOS2  
TNEG2  
N.C.  
RCLK1  
TCLK1  
RCLK2  
TCLK2  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
RNEG1  
TNEG1  
RNEG2  
N.C.  
JTVDD2 JVSS2  
GPIOB1 GPIOB2  
MT  
N.C.  
VSS  
VSS  
N.C.  
RLOS2  
TOE2  
N.C.  
N.C.  
INT  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2 GPIOA2  
VDD33  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
TVDD2  
RVDD2  
RVSS2  
TVSS2  
JTCLK  
JTDI  
RLOS1  
CLKA  
CVDD  
TOE1  
CVSS  
N.C.  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
116 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-9. DS32502 Pin Assignment—Hardware Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
TAIS1  
TLBO1 RMON2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
RBIN  
TLBO2  
N.C.  
N.C.  
JAS1  
JAD0  
VDD18  
N.C.  
RMON1  
N.C.  
N.C.  
N.C.  
N.C.  
LB1[0]  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
TVSS1  
TVDD1  
TVSS1  
TCLKI  
N.C.  
LB1[1]  
JAD1  
VSS  
LB2[1]  
N.C.  
LB2[0]  
JAS0  
RCLKI  
RPD  
N.C.  
RVDD1 RESREF  
VDD33  
TBIN  
TPD  
RPOS1 RCLK1  
TPOS1 TCLK1  
RPOS2 RCLK2  
TPOS2 TCLK2  
RVSS1  
LM1[1]  
LM1[0]  
LM2[1]  
TVSS2  
JTCLK  
JTDI  
IFSEL2  
LM2[0]  
MT  
VSS  
RNEG1  
TNEG1  
RNEG2  
N.C.  
JTVDD2 JVSS2  
TAIS2  
VDD33  
N.C.  
VSS  
VSS  
CLADBYP  
VDD18  
N.C.  
G
H
J
G
H
J
TXP2  
TXN2  
RXP2  
RXN2  
TVSS2  
TVDD2  
RVDD2  
RVSS2  
N.C.  
N.C.  
RLOS2  
TOE2  
N.C.  
RLOS1  
CLKA  
CVDD  
TOE1  
CVSS  
N.C.  
TNEG2  
N.C.  
N.C.  
N.C.  
N.C.  
HIZ  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
117 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-10. DS32501 Pin Assignment—Microprocessor Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
A4  
A0  
D9  
D6  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
A6  
A1  
A2  
D11  
D13  
D8  
D10  
N.C.  
D2  
N.C.  
D0  
N.C.  
N.C.  
D1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
N.C.  
TVSS1  
TVDD1  
N.C.  
TVSS1  
N.C.  
A7  
D14  
D4  
D5  
D3  
GPIOB3  
N.C.  
N.C.  
RVDD1 RESREF  
VDD18  
A3  
D15  
D7  
VDD33  
ALE  
D12  
CS  
RPOS1  
TPOS1  
N.C.  
RCLK1  
TCLK1  
N.C.  
WR/R/W  
RNEG1  
TNEG1  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
VSS  
N.C.  
RLOS1  
CLKA  
CVDD  
VSS  
VSS  
N.C.  
TOE1  
CVSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
GPIOB1 GPIOB2  
A5  
INT  
G
H
J
RD/DS  
N.C.  
N.C.  
N.C.  
N.C.  
G
H
J
N.C.  
N.C.  
N.C.  
MT  
HIZ  
VDD33  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
JTCLK  
JTDI  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
118 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-11. DS32501 Pin Assignment—SPI Interface Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
N.C.  
N.C.  
N.C.  
CPHA  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
SCLK  
N.C.  
N.C.  
SDO  
N.C.  
N.C.  
SDI  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
N.C.  
TVSS1  
TVDD1  
TVSS1  
N.C.  
N.C.  
N.C.  
GPIOB3  
N.C.  
N.C.  
N.C.  
RVDD1 RESREF  
VDD18  
N.C.  
N.C.  
CPOL  
VSS  
VDD33  
ALE  
N.C.  
CS  
RPOS1  
TPOS1  
N.C.  
RCLK1  
TCLK1  
N.C.  
RVSS1 GPIOA1 IFSEL2  
VSS  
RNEG1  
TNEG1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
GPIOB1 GPIOB2  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
INT  
G
H
J
G
H
J
N.C.  
N.C.  
N.C.  
MT  
HIZ  
VDD33  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
RLOS1  
CLKA  
CVDD  
TOE1  
CVSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
JTCLK  
JTDI  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
119 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
Figure 13-12. DS32501 Pin Assignment—Hardware Mode  
1
2
3
4
5
6
7
8
9
10  
11  
12  
IFSEL1  
IFSEL0  
TAIS1  
TLBO1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
A
B
C
D
E
F
JTVDD1 JVSS1  
N.C.  
RBIN  
N.C.  
N.C.  
N.C.  
JAS1  
JAD0  
VDD18  
N.C.  
RMON1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
TOE1  
CVSS  
N.C.  
N.C.  
LB1[0]  
N.C.  
N.C.  
N.C.  
N.C.  
JAS0  
RCLKI  
RPD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXP1  
TXN1  
RXP1  
RXN1  
N.C.  
TVSS1  
TVDD1  
TVSS1  
TCLKI  
N.C.  
LB1[1]  
JAD1  
VSS  
N.C.  
RVDD1 RESREF  
VDD33  
TBIN  
TPD  
RPOS1 RCLK1  
TPOS1 TCLK1  
RVSS1  
N.C.  
LM1[1]  
LM1[0]  
N.C.  
IFSEL2  
N.C.  
RNEG1  
TNEG1  
N.C.  
N.C.  
VSS  
CLADBYP  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
G
H
J
G
H
J
N.C.  
N.C.  
MT  
VDD33  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RLOS1  
CLKA  
CVDD  
N.C.  
HIZ  
N.C.  
N.C.  
JTCLK  
JTDI  
JTDO  
JTMS  
CLKB  
CLKD  
REFCLK  
N.C.  
N.C.  
K
L
K
L
N.C.  
N.C.  
N.C.  
N.C.  
CLKC  
CVDD  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TEST  
RST  
JTRST  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
High-Speed Analog  
Low-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
Digital I/O VDD, 3.3V  
Digital Core VDD, 1.8V  
Digital VSS  
Analog VDD, 1.8V  
Analog VSS  
N.C. and Manufacturing Test. Not Connected.  
120 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
14. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
14.1 13mm x13mm 144-Lead TE-CSBGA (56-G6016-001)  
121 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
15. THERMAL INFORMATION  
Table 15-1. Thermal Properties—Natural Convection  
PARAMETER  
Ambient Temperature (Note 1)  
Junction Temperature  
Theta-JA (θJA), Still Air (Note 2)  
Psi-JB  
MIN  
-40°C  
-40°C  
TYP  
MAX  
+85°C  
+125°C  
22.4°C/W  
9.2°C/W  
1.6°C/W  
Psi-JT  
Note 1:  
Note 2:  
The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.  
Theta-JA (θJA) is the junction to ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test  
board with no airflow and dissipating maximum power.  
Table 15-2. Theta-JA (θJA) vs. Airflow  
FORCED AIR  
(METERS PER  
THETA-JA (θJA)  
SECOND)  
0
1
2
22.4°C/W  
19.0°C/W  
17.2°C/W  
122 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
16. TRADEMARK ACKNOWLEDGEMENTS  
SPI is a trademark of Motorola, Inc.  
ACCUNET is a registered trademark of AT&T.  
Telcordia is a registered trademark of Telcordia Technologies.  
123 of 124  
 
PRELIMINARY  
DS32501/DS32502/DS32503/DS32504  
17. DATA SHEET REVISION HISTORY  
REVISION  
DATE  
DESCRIPTION  
042007  
Initial data sheet release.  
124 of 124  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.  
 

相关型号:

DS32502+

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, LEAD FREE, CSBGA-144
MAXIM

DS32502N

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144
MAXIM

DS32503N

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144
MAXIM

DS32506

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32506+

DATACOM, PCM TRANSCEIVER, PBGA484, 23 X 23 MM, 1 MM PITCH, LEAD FREE, BGA-484
ROCHESTER

DS32506N

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32506NA2

DATACOM, PCM TRANSCEIVER, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
ROCHESTER

DS32506NA2

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
MAXIM

DS32506NW

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
MAXIM

DS32508

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32508+

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, LEAD FREE, BGA-484
MAXIM

DS32508N

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM