DS32508 [MAXIM]

6-/8-/12-Port DS3/E3/STS-1 LIU; 6 / 8 / 12端口DS3 / E3 / STS - 1 LIU
DS32508
型号: DS32508
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

6-/8-/12-Port DS3/E3/STS-1 LIU
6 / 8 / 12端口DS3 / E3 / STS - 1 LIU

文件: 总130页 (文件大小:1669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+
DS32506/DS32508/DS32512  
6-/8-/12-Port DS3/E3/STS-1 LIU  
www.maxim-ic.com  
FEATURES  
GENERAL DESCRIPTION  
Pin-Compatible Family of Products  
The DS32506 (6 port), DS32508 (8 port), and  
DS32512 (12 port) line interface units (LIUs) are  
highly integrated, low-power, feature-rich LIUs for  
DS3, E3, and STS-1 applications. Each LIU port in  
these devices has independent receive and transmit  
Each Port Independently Configurable  
Receive Clock and Data Recovery for Up to 457  
meters (1500 feet) of 75Ω Coaxial Cable  
Standards-Compliant Transmit Waveshaping  
Uses 1:1 Transformers on Both Tx and Rx  
paths,  
a
jitter attenuator, full-featured pattern  
Three Control Interface Options: 8/16-Bit  
Parallel, SPI, and Hardware Mode  
generator and detector, performance-monitoring  
counters, and a complete set of loopbacks. An on-  
chip clock adapter generates all line-rate clocks from  
a single input clock. Ports are independently software  
configurable for DS3, E3, and STS-1 and can be  
individually powered down. Control interface options  
include 8-bit parallel, SPI™, and hardware mode.  
Jitter Attenuators (One Per Port) Can be Placed  
in the Receive Path or the Transmit Path  
Jitter Attenuators Have Provisionable Buffer  
Depth: 16, 32, 64, or 128 Bits  
Built-In Clock Adapter Generates All Line-Rate  
Clocks from a Single Input Clock (DS3, E3, STS-1,  
12.8MHz, 19.44MHz, 38.88MHz, 77.76MHz)  
APPLICATIONS  
Per-Port Programmable Internal Line Termination  
Requiring Only External Transformers  
High-Impedance Tx and Rx, Even When VDD = 0,  
Enables Hot-Swappable, 1:1 and 1+1 Board  
Redundancy Without Relays  
SONET/SDH and PDH  
Multiplexers  
Digital Cross-  
Connects  
ATM and Frame Relay  
Equipment  
Access Concentrators  
CSUs/DSUs  
WAN Routers and  
Switches  
PBXs  
DSLAMs  
Per-Port BERT for PRBS and Repetitive Pattern  
Generation and Detection  
Tx and Rx Open and Short Detection Circuitry  
Transmit Driver Monitor Circuitry  
Receive Loss-of-Signal (LOS) Monitoring  
Compliant with ANSI T1.231 and ITU G.775  
FUNCTIONAL DIAGRAM  
EACH LIU  
LINE IN  
DS3, E3,  
OR STS-1  
RECEIVE  
CLOCK  
AND DATA  
Automatic Data Squelching on Receive LOS  
Large Line Code Performance-Monitoring  
Counters for Accumulation Intervals Up to 1s  
RXP  
RXN  
CLK  
DATA  
Local and Remote Loopbacks  
Transmit Common Clock Option  
CONTROL  
AND  
STATUS  
Dallas  
Semiconductor  
DS325xx  
Power-Down Capability for Unused Ports  
Low-Power 1.8V/3.3V Operation (5V Tolerant I/O)  
Industrial Temperature Range: -40°C to +85°C  
Small Package: 23mm x 23mm, 484-Pin BGA  
IEEE 1149.1 JTAG Support  
LINE OUT  
DS3, E3,  
OR STS-1  
TRANSMIT  
CLOCK  
AND DATA  
TXP  
TXN  
CLK  
DATA  
ORDERING INFORMATION  
PART  
LIUs  
TEMP RANGE  
PIN-PACKAGE  
DS32506  
DS32506N  
DS32508  
DS32508N  
DS32512  
DS32512N  
6
6
8
8
12  
12  
0°C to +70°C  
484 BGA  
-40°C to +85°C 484 BGA  
0°C to +70°C 484 BGA  
-40°C to +85°C 484 BGA  
0°C to +70°C 484 BGA  
-40°C to +85°C 484 BGA  
Note: Add the “+” suffix for the lead-free package option.  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 130  
REV: 103008  
DS32506/DS32508/DS32512  
TABLE OF CONTENTS  
1. STANDARDS COMPLIANCE .............................................................................................6  
2. BLOCK DIAGRAM..............................................................................................................7  
3. APPLICATION EXAMPLE ..................................................................................................8  
4. DETAILED DESCRIPTION..................................................................................................9  
5. DETAILED FEATURES.....................................................................................................11  
5.1 GLOBAL FEATURES .......................................................................................................................11  
5.2 RECEIVER.....................................................................................................................................11  
5.3 TRANSMITTER ...............................................................................................................................11  
5.4 JITTER ATTENUATOR.....................................................................................................................11  
5.5 BIT ERROR-RATE TESTER (BERT) FEATURES ...............................................................................12  
5.6 CLOCK ADAPTER...........................................................................................................................12  
5.7 PARALLEL MICROPROCESSOR INTERFACE FEATURES.....................................................................12  
5.8 SPI SERIAL MICROPROCESSOR INTERFACE FEATURES ..................................................................12  
5.9 MISCELLANEOUS FEATURES..........................................................................................................12  
5.10 TEST FEATURES............................................................................................................................12  
5.11 LOOPBACK FEATURES...................................................................................................................12  
6. CONTROL INTERFACE MODES......................................................................................13  
7. PIN DESCRIPTIONS.........................................................................................................14  
7.1 SHORT PIN DESCRIPTIONS ............................................................................................................14  
7.2 DETAILED PIN DESCRIPTIONS ........................................................................................................17  
8. FUNCTIONAL DESCRIPTION ..........................................................................................24  
8.1 LIU MODE ....................................................................................................................................24  
8.2 TRANSMITTER ...............................................................................................................................24  
8.2.1 Transmit Clock .................................................................................................................................... 24  
8.2.2 Framer Interface Format and the B3ZS/HDB3 Encoder..................................................................... 24  
8.2.3 Error Insertion ..................................................................................................................................... 24  
8.2.4 AIS Generation.................................................................................................................................... 25  
8.2.5 Waveshaping ...................................................................................................................................... 25  
8.2.6 Line Build-Out ..................................................................................................................................... 25  
8.2.7 Line Driver........................................................................................................................................... 25  
8.2.8 Interfacing to the Line ......................................................................................................................... 25  
8.2.9 Driver Monitor and Output Failure Detection ...................................................................................... 26  
8.2.10 Power-Down........................................................................................................................................ 26  
8.2.11 Jitter Generation (Intrinsic).................................................................................................................. 26  
8.2.12 Jitter Transfer...................................................................................................................................... 26  
8.3 RECEIVER.....................................................................................................................................30  
8.3.1 Interfacing to the Line ......................................................................................................................... 30  
8.3.2 Optional Preamp ................................................................................................................................. 30  
8.3.3 Automatic Gain Control (AGC) and Adaptive Equalizer ..................................................................... 30  
8.3.4 Clock and Data Recovery (CDR)........................................................................................................ 31  
8.3.5 Loss-of-Signal (LOS) Detector............................................................................................................ 31  
8.3.6 Framer Interface Format and the B3ZS/HDB3 Decoder .................................................................... 32  
8.3.7 Power-Down........................................................................................................................................ 33  
8.3.8 Input Failure Detection........................................................................................................................ 33  
8.3.9 Jitter and Wander Tolerance............................................................................................................... 34  
8.3.10 Jitter Transfer...................................................................................................................................... 35  
8.4 JITTER ATTENUATOR.....................................................................................................................35  
8.5 BERT...........................................................................................................................................36  
2 of 130  
DS32506/DS32508/DS32512  
8.5.1 Configuration and Monitoring.............................................................................................................. 36  
8.5.2 Receive Pattern Detection .................................................................................................................. 37  
8.5.3 Transmit Pattern Generation............................................................................................................... 39  
8.6 LOOPBACKS..................................................................................................................................40  
8.7 GLOBAL RESOURCES ....................................................................................................................40  
8.7.1 Clock Rate Adapter (CLAD)................................................................................................................ 40  
8.7.2 One-Second Reference Generator..................................................................................................... 41  
8.7.3 General-Purpose I/O Pins................................................................................................................... 42  
8.7.4 Performance Monitor Register Update ............................................................................................... 42  
8.7.5 Transmit Manual Error Insertion ......................................................................................................... 43  
8.8 8-/16-BIT PARALLEL MICROPROCESSOR INTERFACE ......................................................................43  
8.8.1 8-Bit and 16-Bit Bus Widths................................................................................................................ 43  
8.8.2 Byte Swap Mode................................................................................................................................. 43  
8.8.3 Read-Write And Data Strobe Modes .................................................................................................. 43  
8.8.4 Multiplexed and Nonmultiplexed Operation........................................................................................ 43  
8.8.5 Clear-On-Read And Clear-On-Write Modes....................................................................................... 44  
8.8.6 Global Write Mode .............................................................................................................................. 44  
8.9 SPI SERIAL MICROPROCESSOR INTERFACE ...................................................................................44  
8.10 INTERRUPT STRUCTURE ................................................................................................................46  
8.11 RESET AND POWER-DOWN............................................................................................................47  
9. REGISTER MAPS AND DESCRIPTIONS.........................................................................49  
9.1 OVERVIEW ....................................................................................................................................49  
9.1.1 Status Bits........................................................................................................................................... 49  
9.1.2 Configuration Fields............................................................................................................................ 49  
9.1.3 Counters.............................................................................................................................................. 49  
9.2 OVERALL REGISTER MAP ..............................................................................................................50  
9.3 GLOBAL REGISTERS......................................................................................................................51  
9.4 PORT COMMON REGISTERS ..........................................................................................................62  
9.5 LIU REGISTERS ............................................................................................................................70  
9.6 B3ZS/HDB3 ENCODER REGISTERS ..............................................................................................79  
9.7 B3ZS/HDB3 DECODER REGISTERS ..............................................................................................80  
9.8 BERT REGISTERS ........................................................................................................................84  
10.  
11.  
12.  
13.  
JTAG INFORMATION ...................................................................................................91  
ELECTRICAL CHARACTERISTICS.............................................................................92  
PIN ASSIGNMENTS....................................................................................................106  
PACKAGE INFORMATION.........................................................................................127  
13.1 484-LEAD BGA (23MM X 23MM) (56-G60038-001) .....................................................................127  
14.  
THERMAL INFORMATION .........................................................................................128  
ACRONYMS AND ABBREVIATIONS.........................................................................129  
TRADEMARK ACKNOWLEDGEMENTS....................................................................129  
DATA SHEET REVISION HISTORY...........................................................................130  
15.  
16.  
17.  
3 of 130  
DS32506/DS32508/DS32512  
LIST OF FIGURES  
Figure 2-1. Block Diagram........................................................................................................................................... 7  
Figure 3-1. 12-Port Unchannelized DS3/E3 Card ....................................................................................................... 8  
Figure 4-1. External Connections, Internal Termination Enabled................................................................................ 9  
Figure 4-2. External Connections, Internal Termination Disabled............................................................................. 10  
Figure 8-1. DS3 Waveform Template........................................................................................................................ 27  
Figure 8-2. STS-1 Waveform Template..................................................................................................................... 28  
Figure 8-3. E3 Waveform Template........................................................................................................................... 29  
Figure 8-4. STS-1 and E3 Jitter Tolerance................................................................................................................ 34  
Figure 8-5. DS3 Jitter Tolerance................................................................................................................................ 34  
Figure 8-6. DS3 and E3 Wander Tolerance .............................................................................................................. 35  
Figure 8-7. Jitter Attenuation/Jitter Transfer.............................................................................................................. 36  
Figure 8-8. PRBS Synchronization State Diagram.................................................................................................... 38  
Figure 8-9. Repetitive Pattern Synchronization State Diagram................................................................................. 39  
Figure 8-10. SPI Clock Polarity and Phase Options.................................................................................................. 45  
Figure 8-11. SPI Bus Transactions............................................................................................................................ 46  
Figure 8-12. Interrupt Signal Flow ............................................................................................................................. 47  
Figure 11-1. Transmitter Framer Interface Timing Diagram...................................................................................... 95  
Figure 11-2. Receiver Framer Interface Timing Diagram.......................................................................................... 95  
Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed) .................................................. 99  
Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed) .................................................. 99  
Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed)......................................... 100  
Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed) ......................................... 100  
Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed)....................................................... 101  
Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed)....................................................... 101  
Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)................................................ 102  
Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed).............................................. 102  
Figure 11-11. SPI Interface Timing Diagram........................................................................................................... 104  
Figure 11-12. JTAG Timing Diagram....................................................................................................................... 105  
Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 109  
Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only.......................................................................... 111  
Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only................................................................. 113  
Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 115  
Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only.......................................................................... 117  
Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only................................................................. 119  
Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 121  
Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only.......................................................................... 123  
Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only................................................................. 125  
4 of 130  
DS32506/DS32508/DS32512  
LIST OF TABLES  
Table 1-1. Applicable Telecommunications Standards ............................................................................................... 6  
Table 7-1. Short Pin Descriptions.............................................................................................................................. 14  
Table 7-2. Analog Line Interface Pin Descriptions .................................................................................................... 17  
Table 7-3. Digital Framer Interface Pin Descriptions................................................................................................. 17  
Table 7-4. Global Pin Descriptions ............................................................................................................................ 18  
Table 7-5. Hardware Interface Pin Descriptions........................................................................................................ 19  
Table 7-6. Parallel Interface Pin Descriptions ........................................................................................................... 21  
Table 7-7. SPI Serial Interface Pin Descriptions ....................................................................................................... 22  
Table 7-8. CLAD Pin Descriptions............................................................................................................................. 22  
Table 7-9. JTAG Pin Descriptions ............................................................................................................................. 23  
Table 7-10. Power-Supply Pin Descriptions.............................................................................................................. 23  
Table 7-11. Manufacturing Test Pin Descriptions...................................................................................................... 23  
Table 8-1. Jitter Generation....................................................................................................................................... 26  
Table 8-2. DS3 Waveform Equations ........................................................................................................................ 27  
Table 8-3. DS3 Waveform Test Parameters and Limits............................................................................................ 27  
Table 8-4. STS-1 Waveform Equations..................................................................................................................... 28  
Table 8-5. STS-1 Waveform Test Parameters and Limits......................................................................................... 28  
Table 8-6. E3 Waveform Test Parameters and Limits............................................................................................... 29  
Table 8-7. Transformer Characteristics..................................................................................................................... 30  
Table 8-8. Recommended Transformers................................................................................................................... 30  
Table 8-9. Pseudorandom Pattern Generation.......................................................................................................... 37  
Table 8-10. Repetitive Pattern Generation................................................................................................................ 37  
Table 8-11. CLAD Clock Source Settings ................................................................................................................. 41  
Table 8-12. CLAD Clock Pin Output Settings............................................................................................................ 41  
Table 8-13. Global One-Second Reference Source.................................................................................................. 41  
Table 8-14. GPIO Pin Global Signal Assignments .................................................................................................... 42  
Table 8-15. GPIO Pin Control.................................................................................................................................... 42  
Table 8-16. Reset and Power-Down Sources ........................................................................................................... 48  
Table 9-1. Overall Register Map................................................................................................................................ 50  
Table 9-2. Port Registers........................................................................................................................................... 50  
Table 9-3. Global Register Map................................................................................................................................. 51  
Table 9-4. Port Common Register Map..................................................................................................................... 62  
Table 10-1. JTAG ID Code ........................................................................................................................................ 91  
Table 11-1. Recommended DC Operating Conditions.............................................................................................. 92  
Table 11-2. DC Characteristics.................................................................................................................................. 93  
Table 11-3. Framer Interface Timing ......................................................................................................................... 94  
Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes....................................................................... 96  
Table 11-5. Receiver Input Characteristics—E3 Mode ............................................................................................. 96  
Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes................................................................ 97  
Table 11-7. Transmitter Output Characteristics—E3 Mode....................................................................................... 97  
Table 11-8. Parallel CPU Interface Timing................................................................................................................ 98  
Table 11-9. SPI Interface Timing............................................................................................................................. 103  
Table 11-10. JTAG Interface Timing........................................................................................................................ 105  
Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512....................................... 106  
Table 14-1. Thermal Properties, Natural Convection .............................................................................................. 128  
Table 14-2. Theta-JA (θJA) vs. Airflow...................................................................................................................... 128  
5 of 130  
DS32506/DS32508/DS32512  
1. STANDARDS COMPLIANCE  
Table 1-1. Applicable Telecommunications Standards  
SPECIFICATION  
SPECIFICATION TITLE  
ANSI  
T1.102-1993  
T1.231-2003  
T1.404-2002  
Digital Hierarchy—Electrical Interfaces  
Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring  
Network-to-Customer Installation—DS3 Metallic Interface Specification  
AT&T  
TR54014  
ACCUNET® T45 Service Description and Interface Specification, 05/92  
ETSI  
Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U,  
D34S, D140U, and D140S); Network Interface Presentation, v1.2.1 February 2001  
Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S);  
Connection Characteristics, v1.2.1 February 2001  
Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal  
equipment interface, v1.2.1July 2001  
Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines;  
Attachment Requirements for Terminal Equipment Interface, July 1997  
ITU-T  
EN 300 686  
EN 300 687  
EN 300 689  
TBR 24  
G.703  
G.751  
Physical/Electrical Characteristics of Hierarchical Digital Interfaces, November 2001  
Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the  
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, November 1988  
Digital Multiplex Equipment Operating at 139,264 kbit/s and Multiplexing Three  
Tributaries at 44,736 kbit/s, November 1988  
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance  
Criteria, November 1994  
The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps  
Hierarchy, March, 2000  
G.755  
G.775  
G.823  
G.824  
The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps  
Hierarchy, March, 2000  
Error Performance Measuring Equipment Operating at the Primary Rate and Above,  
October 1992  
In-Service Code Violation Monitors for Digital Systems, November 1988  
Equipment To Perform In-Service Monitoring on 2048, 8448, 34,368 and 139,264 kbit/s  
Signals, October 1992  
O.151  
O.161  
O.152  
TELCORDIA  
GR-253-CORE  
GR-499-CORE  
GR-820-CORE  
SONET Transport Systems: Common Generic Criteria, Issue 3, September 2000  
Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 2,  
December 1998  
Generic Digital Transmission Surveillance, Issue 2, December 1997  
6 of 130  
 
DS32506/DS32508/DS32512  
2. BLOCK DIAGRAM  
Figure 2-1. Block Diagram  
CLAD  
JTAG  
Port n (1 of 12)  
AGC,  
Equalizer,  
and CDR  
B3ZS/  
HDB3  
Decoder  
RXPn  
Pre-Amp  
RXNn  
RCLKn  
RPOSn / RDATn  
RNEGn / RLCVn  
Pattern  
Detector  
ARES  
Driver  
Monitor  
ALB  
JA  
LLB  
DLB  
RCLKI  
TCLKI  
TCC  
Pattern  
Generator  
TDMn  
B3ZS/  
HDB3  
Encoder  
TXPn  
TXNn  
Line  
Driver  
Wave-  
shaping  
TCLKn  
TPOSn / TDATn  
TNEGn  
AIS Generator  
TAISn  
AIST  
Parallel and SPI Bus Interfaces  
Dallas  
Semiconductor  
DS325xx  
7 of 130  
 
DS32506/DS32508/DS32512  
3. APPLICATION EXAMPLE  
Figure 3-1. 12-Port Unchannelized DS3/E3 Card  
DS32512  
12-PORT  
DS3/E3/STS-1  
LIU  
DS31912  
12-PORT  
DS3/E3/STS-1  
77.76MHz TELECOM BUS  
MAPPER  
8 of 130  
 
DS32506/DS32508/DS32512  
4. DETAILED DESCRIPTION  
The DS32506 (6 port), DS32508 (8 port), and DS32512 (12 port) LIUs perform the functions necessary for  
interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit paths  
and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded  
alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs  
B3ZS/HDB3 decoding and outputs the recovered data in either binary (NRZ) or digital bipolar format. The  
transmitter accepts data in either binary (NRZ) or digital bipolar format, optionally performs B3ZS/HDB3 encoding,  
and drives standard pulse-shape waveforms onto 75Ω coaxial cable. Both transmitter and receiver are high-  
impedance when VDD is out of spec to enable hot-swappable 1:1 and 1+1 board redundancy without relays. The  
jitter attenuator can be mapped into the receiver data path, mapped into the transmitter data path, or disabled. An  
on-chip clock adapter generates all line-rate clocks from a single input clock. Control interface options include 8- or  
16-bit parallel, SPI, and hardware mode. The DS325xx LIUs conform to the telecommunications standards listed in  
Table 1-1. The external components required for proper operation are shown in Figure 4-1 and Figure 4-2.  
Figure 4-1. External Connections, Internal Termination Enabled  
TXP  
TXP  
TVDD  
RVDD  
JVDD  
0.1μF  
0.1μF  
0.01μF  
0.01μF  
1μF  
1μF  
1.8V  
POWER  
PLANE  
TXN  
TXN  
0.1μF  
0.01μF  
1μF  
1:1  
TVSS  
RXP  
RXN  
GROUND  
PLANE  
RVSS  
JVSS  
1:1  
9 of 130  
 
DS32506/DS32508/DS32512  
Figure 4-2. External Connections, Internal Termination Disabled  
TXP  
TXP  
TVDD  
RVDD  
JVDD  
0.1μF  
0.01μF  
0.01μF  
1μF  
1μF  
42.2Ω  
(1%)  
0.05μF  
1.8V  
POWER  
PLANE  
0.1μF  
0.1μF  
42.2Ω  
(1%)  
TXN  
TXN  
0.01μF  
1μF  
1:1  
TVSS  
RXP  
RXN  
38.3Ω  
(1%)  
0.05μF  
GROUND  
PLANE  
RVSS  
JVSS  
38.3Ω  
(1%)  
1:1  
Shorthand Notations. The notation “DS325xx” throughout this data sheet refers to either the DS32506, DS32508,  
or DS32512. This data sheet is the specification for all three devices. The LIUs on the DS325xx devices are  
identical. For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in  
place of the LIU port number. For example, on the DS32506, TCLKn is shorthand notation for pins TCLK1, TCLK2,  
TCLK3, TCLK4, TCLK5 and TCLK6 on LIU ports 1, 2, 3, 4, 5 and 6, respectively. This document also uses generic  
pin and register names such as TCLK (without a number suffix) when describing LIU operation. When working with  
a specific LIU on the DS325xx devices, generic names like TCLK should be converted to actual pin names, such  
as TCLK1.  
10 of 130  
 
DS32506/DS32508/DS32512  
5. DETAILED FEATURES  
5.1 Global Features  
Three interface modes: hardware, 8-/16-bit parallel bus, and SPI serial bus  
Independent per-port operation (e.g., line rate, jitter attenuator placement, or loopback type)  
Clock, data, and control signals can be inverted to allow a glueless interface to other devices  
Manual or automatic one-second update of performance monitoring counters  
Each port can be put into a low-power standby mode when not being used  
Requires only a single reference clock for all three LIU data rates using internal clock rate adapter  
Jitter attenuators can be used in either transmit or receive path  
Detection of loss-of-transmit clock  
Two programmable I/O pins per port  
Optional global write mode configures all LIUs at the same time  
Glueless interface to neighboring framer and mapper components  
5.2 Receiver  
AGC/equalizer block handles from 0 to 22dB of cable loss  
Programmable internal termination resistor  
Loss-of-lock (LOL) PLL status indication  
Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp  
Digital and analog loss-of-signal (LOS) detectors (compliant with ANSI T1.231 and ITU G.775)  
Software programmable B3ZS/HDB3 or AMI decoding  
Detection and accumulation of bipolar violations (BPV), code violations (CV), and  
excessive zeros occurrences (EXZ)  
Detection of receipt of B3ZS/HDB3 codewords  
Binary or bipolar framer interface  
On-board programmable PRBS detector  
Per-channel power-down control  
5.3 Transmitter  
Standards-compliant waveshaping  
Programmable waveshaping  
Programmable internal termination resistor  
Binary or bipolar framer interface  
Gapped clock capable up to 78MHz with jitter attenuator in transmit path  
Wide 50 ±20% transmit clock duty cycle  
Transmit common clock option  
Software programmable B3ZS/HDB3 or AMI decoding  
Programmable insertion of bipolar violations (BPV), code violations (CV), and excessive zeros (EXZ)  
AIS generator: unframed all ones, framed DS3 AIS, and STS-1 AIS-L  
Line build-out (LBO) control  
High-impedance line-driver output mode to support protection-switching applications  
Per-channel power-down control  
Output driver monitor  
5.4 Jitter Attenuator  
One jitter attenuator per port  
Fully integrated, requires no external components  
Meets all applicable ANSI, ITU, ETSI, and Telcordia jitter transfer and output jitter requirements  
Can be placed in the transmit path, receive path or disabled  
Programmable FIFO depth: 16, 32, 64, or 128 bits  
Overflow and underflow status indications  
11 of 130  
 
DS32506/DS32508/DS32512  
5.5 Bit Error-Rate Tester (BERT) Features  
One BERT per port  
Software programmable for insertion toward the transmit line interface or the receive system interface  
Generates and detects pseudo-random patterns of length 2n - 1 (n = 1 to 32) and repetitive patterns from 1 to  
32 bits in length  
Large 24-bit error counter and 32-bit bit counter allows testing to proceed for long periods without host  
intervention  
Errors can be inserted in the generated BERT patterns for diagnostic purposes (single bit errors or specific bit-  
error rates)  
Pattern synchronization even in the presence of 10-3 bit-error rate  
5.6 Clock Adapter  
Creates DS3, E3, STS-1, and/or telecom bus clocks from single input reference clock  
Input reference clock can be DS3, E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz, or 77.76MHz  
Use of common system timing frequencies such as 19.44MHz eliminates the need for any local oscillators,  
reducing cost and board space  
Very small jitter gain and intrinsic jitter generation  
Derived clocks can be output for external system use  
Transmit signals using CLAD clocks meet Telcordia (DS3) and ITU (E3) jitter and wander requirements  
5.7 Parallel Microprocessor Interface Features  
Multiplexed or nonmultiplexed 8- or 16-bit interface  
Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W)  
Ready (RDY/ACK) handshake output signal  
5.8 SPI Serial Microprocessor Interface Features  
Operation up to 10Mbps  
Burst mode for multibyte read and write accesses  
Programmable clock polarity and phase  
Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count  
5.9 Miscellaneous Features  
Global reset input pin  
Global interrupt output pin  
Two programmable I/O pins per port  
5.10 Test Features  
Five pin JTAG port  
All functional pins are in-out pins in JTAG mode  
Standard JTAG instructions: SAMPLE/PRELOAD, BYPASS, EXTEST, CLAMP, HIGHZ, IDCODE  
HIZ pin to force all digital output and I/O pins into a high-impedance state  
TEST pin for manufacturing test modes  
5.11 Loopback Features  
Analog local loopback—ALB (transmit line output to receive line input)  
Diagnostic local loopback—DLB (transmit framer interface to receive framer interface)  
Line loopback—LLB (receive clock and data recover to transmit waveshaping)  
Optional AIS generation on the line side of the loopback during diagnostic loopback  
12 of 130  
 
DS32506/DS32508/DS32512  
6. CONTROL INTERFACE MODES  
The DS325xx devices can be controlled by hardware interface, by microprocessor interface, or by a combination of  
both interfaces at the same time. The hardware interface is configured (enabled or disabled) independently from  
the microprocessor interface (8-bit parallel, 16-bit parallel, SPI, or disabled).  
When the hardware interface is enabled (HW = 1), device configuration can be controlled by input pins, while  
device status can be sensed on output pins. When the hardware interface is disabled (HW = 0), all the pins in  
Table 7-5 are disabled (inputs are ignored; outputs are placed in a high-impedance state).  
The microprocessor interface provides access to features, configuration options, and device status information that  
the hardware interface does not support. The microprocessor interface is enabled and configured by the IFSEL  
pins. When IFSEL = 01X, the SPI serial interface is enabled. When IFSEL = 10X, the 8-bit parallel interface is  
enabled. When IFSEL = 11X, the 16-bit parallel interface is enabled. For both the 8- and 16-bit parallel interfaces,  
IFSEL[0] = 0 specifies an Intel-style bus (CS, RD, and WR control signals) while IFSEL[0] = 1 specifies a Motorola-  
style bus (CS, R/W, and DS control signals). Through the microprocessor interface an external microprocessor can  
access a set of internal configuration and status registers inside the device. Pins that are not used by the selected  
microprocessor interface type but are used in other microprocessor interface modes are disabled (inputs are  
ignored and considered to be low and can be left floating or wired low or high; outputs are placed in a high-  
impedance state and can be left unconnected or wired low or high). When no microprocessor interface is selected  
(IFSEL = 000) all microprocessor interface inputs are ignored, and all microprocessor interface outputs are put in a  
high impedance state.  
When both the hardware interface and the microprocessor interface are enabled at the same time, many internal  
settings of the device can be configured by both a hardware interface pin and a microprocessor interface register  
bit with identical names and functions. In this situation the actual internal device setting is the logical OR of pin  
assertion and register bit assertion. For example, the transmitter output driver is enabled when the TOE pin is high  
OR the TOE register bit is high. When both the hardware interface and the microprocessor interface are enabled at  
the same time, the following hardware interface pins are ignored and replaced by equivalent configuration register  
fields: LMn[1:0], JAS[1:0], JAD[1:0], LBn[1:0], and LBS.  
13 of 130  
 
DS32506/DS32508/DS32512  
7. PIN DESCRIPTIONS  
Note: All digital pins are I/O pins in JTAG mode. This feature is to increase the effectiveness of board-level ATPG  
patterns to isolate interconnect failures.  
7.1 Short Pin Descriptions  
n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with  
internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output,  
Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high  
impedance), P = power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied  
to approximately 2.2V DC. See Section 12 for pin assignments.  
Table 7-1. Short Pin Descriptions  
NAME  
TYPE  
FUNCTION  
ANALOG LINE INTERFACE  
TXPn  
TXNn  
RXPn  
RXNn  
Oa  
Oa  
Ia  
Transmit Positive Analog (Port n)  
Transmit Negative Analog (Port n)  
Receive Positive Analog (Port n)  
Receive Negative Analog (Port n)  
DIGITAL FRAMER INTERFACE  
Transmit Clock (Port n)  
Ia  
TCLKn  
TPOSn/TDATn  
TNEGn  
I
I
Transmit Positive AMI/Transmit NRZ Data (Port n)  
Transmit Negative AMI (Port n)  
I
RCLKn  
Oz  
Oz  
Oz  
Receive Clock (Port n)  
RPOSn/RDATn  
RNEGn/RLCVn  
Receive Positive AMI/Receive NRZ Data (Port n)  
Receive Negative AMI/Receive Line Code Violation (Port n)  
GLOBAL I/O  
IFSEL[2:0]  
HW  
I
Ipd  
I
Microprocessor Interface Select  
Hardware Interface Enable  
Factory Test Enable (Active Low)  
High-Impedance Test Enable (Active Low)  
Reset (Active Low)  
TEST  
HIZ  
RST  
RESREF  
I
Ipu  
Oa  
Reference Resistor  
HARDWARE INTERFACE  
LMn[1:0]  
AIST  
Ipd  
Ipd  
Ipd  
Ipd  
Ipd  
Ipd  
O
LIU Mode Control (DS3, E3, or STS-1) (Port n)  
AIS Type Control (All Ports)  
TAISn  
TBIN  
Transmit AIS Control (Port n)  
Transmit Binary Interface Control (All Ports)  
Transmit Common Clock Control (All Ports)  
Transmit Clock Invert Control (All Ports)  
Transmit Driver Monitor Status (Port n)  
Transmit Line Build-Out Control (Port n)  
Transmit Output-Enable Control (Port n)  
Transmit Power-Down (All Ports)  
Internal Termination Resistance Enable (Tx and Rx) (All Ports)  
Receive Binary Interface Control (All Ports)  
Receive Clock Invert Control (All Ports)  
Receive Loss-of-Signal Status (Port n)  
Receive Monitor Preamp Control (Port n)  
TCC  
TCLKI  
TDMn  
TLBOn  
TOEn  
TPD  
Ipd  
Ipd  
Ipd  
I
ITRE  
RBIN  
Ipd  
Ipd  
O
RCLKI  
RLOSn  
RMONn  
Ipd  
14 of 130  
 
DS32506/DS32508/DS32512  
NAME  
TYPE  
FUNCTION  
Receive Power-Down (All Ports)  
Jitter Attenuator Depth (All Ports)  
RPD  
JAD[1:0]  
JAS[1:0]  
LBn[1:0]  
LBS  
Ipd  
Ipd  
Ipd  
I
Jitter Attenuator Select (Tx, Rx, or Disabled) (Port n)  
Loopback Control (Port n)  
Ipd  
Loopback Select (all ports)  
8-/16-BIT PARALLEL INTERFACE  
Chip Select (Active Low)  
I
CS  
RD/DS  
I
Read Enable (Active Low)/Data Strobe (Active Low)  
Write Enable (Active Low)/Read/Write Select  
Address Latch Enable  
I
I
WR/R/W  
ALE  
A[10:1]  
A[0]/BSWAP  
D[15:0]  
RDY/ACK  
INT  
I
Address Bus (Excluding LSB)  
Address Bus LSB/Byte Swap  
Data Bus [15:0]  
I
I/O  
Oz  
Oz  
Ready/Acknowledge (Active Low)  
Interrupt (Active Low)  
GPIOAn  
GPIOBn  
I/Opd General-Purpose I/O A (Port n)  
I/Opd General-Purpose I/O B (Port n)  
SPI SERIAL INTERFACE  
I
I
Chip Select (Active Low)  
Serial Clock  
CS  
SCLK  
SDI  
I
Serial Data Input  
Serial Data Output  
Clock Phase  
SDO  
O
I
CPHA  
CPOL  
INT  
I
Clock Polarity  
Oz  
Interrupt Output (Active Low)  
GPIOAn  
GPIOBn  
I/Opd General-Purpose I/O A (Port n)  
I/Opd General-Purpose I/O B (Port n)  
CLAD  
REFCLK  
CLKA  
I
Reference Clock  
I/O  
I/O  
I/O  
O
Clock A—DS3 44.736MHz  
Clock B—E3 34.368MHz  
Clock C—STS-1 51.84MHz  
Clock D—Telecom Bus 77.76MHz or 19.44MHz  
CLAD Bypass  
CLKB  
CLKC  
CLKD  
CLADBYP  
I
JTAG  
JTCLK  
JTMS  
JTDI  
I
JTAG Clock  
IPU  
IPU  
Oz  
IPU  
JTAG Mode Select  
JTAG Data Input  
JTDO  
JTRST  
JTAG Data Output  
JTAG Reset (Active Low)  
POWER SUPPLY AND GROUND PINS  
VDD18  
VDD33  
VSS  
P
Digital Core 1.8V Power, 1.8V ±5%  
I/O 3.3V Power, 3.3V ±5%  
Ground for VDD18 and VDD33  
P
P
P
P
P
JVDDn  
JVSSn  
RVDDn  
Jitter Attenuator 1.8V Power, 1.8V ±5% (Port n)  
Jitter Attenuator Ground (Port n)  
Receive 1.8V Power, 1.8V ±5% (Port n)  
15 of 130  
DS32506/DS32508/DS32512  
NAME  
TYPE  
FUNCTION  
RVSSn  
TVDDn  
TVSSn  
CVDD  
CVSS  
P
P
P
P
P
Receive Ground (Port n)  
Transmit 1.8V Power, 1.8V ±5% (Port n)  
Transmit Ground (Port n)  
CLAD 1.8V ±5%  
CLAD Ground  
MANUFACTURING TEST  
MT[10:0]  
Test  
Manufacturing Test Pins  
16 of 130  
DS32506/DS32508/DS32512  
7.2 Detailed Pin Descriptions  
n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with  
internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output, Oz =  
high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high impedance), P=  
power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied to 2.2V DC.  
Table 7-2. Analog Line Interface Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75Ω  
coaxial cable through a 1:1 transformer (Figure 4-1). These outputs can be disabled (high  
impedance) using the TOEn pin or the TOE or TPD configuration bits. See Section 8.2.8.  
TXPn,  
TXNn  
Oa  
RXPn,  
RXNn  
Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75Ω coaxial  
cable through a 1:1 transformer (Figure 4-1). See Section 8.3.1.  
Ia  
Table 7-3. Digital Framer Interface Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Transmit Clock. A DS3 (44.736MHz ±20ppm), E3 (34.368MHz ±20ppm), or STS-1  
(51.840MHz ±20ppm) clock should be applied at this pin. Data to be transmitted is clocked into  
the device at TPOS/TDAT and TNEG either on the rising edge of TCLK (TCLKI = 0) or the  
falling edge of TCLK (TCLKI = 1). When pin TCC = 1, all ports are clocked by TCLK1, and  
TCLKx (x 1) are ignored. See Section 8.2.1 for additional details.  
TCLKn  
I
Transmit Positive AMI/Transmit NRZ Data. This pin is sampled either on the rising edge of  
TCLK (TCLKI = 0) or on the falling edge of TCLK (TCLKI = 1). See Section 8.2.2.  
TPOSn: When the transmitter is configured to have a bipolar interface (TBIN = 0), a positive  
pulse is transmitted on the line when TPOS is high.  
TPOSn/  
TDATn  
I
TDATn: When the transmitter is configured to have a binary interface (TBIN = 1), the data on  
TDAT is transmitted after B3ZS or HDB3 encoding.  
Transmit Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN =  
0), a negative pulse is transmitted on the line when TNEG is high. When the transmitter is  
configured to have a binary interface (TBIN = 1), TNEG is ignored and should be wired either  
high or low. TNEG is sampled either on the rising edge of TCLK (TCLKI = 0) or the falling edge  
of TCLK (TCLKI = 1). See Section 8.2.2.  
TNEGn  
RCLKn  
I
Receive Clock. The clock recovered from the receive signal is output on the RCLK pin.  
Recovered data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of  
RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). During a loss-of-signal condition  
(RLOSn = 0), the RCLK output signal is derived from the LIU’s reference clock. See Section  
8.3.6.  
Oz  
Receive Positive AMI/Receive NRZ Data. This pin is updated either on the falling edge of  
RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6.  
RPOSn/  
RDATn  
RPOSn: When the receiver is configured to have a bipolar interface (RBIN = 0), RPOS pulses  
high for each positive AMI pulse received.  
Oz  
Oz  
RDATn: When the receiver is configured to have a binary interface (RBIN = 1), RDAT outputs  
decoded binary data.  
Receive Negative AMI/Receive Line-Code Violation. This pin is updated either on the falling  
edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6 for  
further details on code violations.  
RNEGn/  
RLCVn  
RNEGn: When the receiver is configured to have a bipolar interface (RBIN = 0), RNEG pulses  
high for each negative AMI pulse received.  
RLCVn: When the receiver is configured to have a binary interface (RBIN = 1), RLCV pulses  
high to flag code violations.  
17 of 130  
 
DS32506/DS32508/DS32512  
Table 7-4. Global Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Microprocessor Interface Select. When no microprocessor interface is selected, all  
microprocessor interface inputs are ignored and internally pulled low, and all microprocessor  
interface outputs are put in a high-impedance state. See Section 6 for details.  
000 = no microprocessor interface (must set HW = 1 and use hardware interface)  
001 = reserved  
010 = SPI serial interface, address and data MSB first  
011 = SPI serial interface, address and data LSB first  
IFSEL[2:0]  
I
100 = 8-bit parallel interface, Intel style (CS, RD, WR control signals)  
101 = 8-bit parallel interface, Motorola style (CS, R/W, DS control signals)  
110 = 16-bit parallel interface, Intel style (CS, RD, WR control signals)  
111 = 16- bit parallel interface, Motorola style (CS, R/W, DS control signals)  
Hardware Interface Enable. When the hardware interface pins are disabled, all hardware  
control inputs are ignored and internally pulled low, and all hardware status outputs are put in a  
high impedance state. See Section 6 for details.  
HW  
Ipd  
0 = Hardware interface pins disabled  
1 = Hardware interface pins enabled  
Factory Test Enable (Active Low). This pin enables the internal scan test mode when low.  
For normal operation tie high. This is an asynchronous input.  
I
I
TEST  
HIZ  
High-Impedance Test Enable (Active Low). This signal is used to enable testing. When this  
signal is low while JTRST is low, all the digital output and bidirectional pins are placed in the  
high-impedance state. For normal operation this signal is high. This is an asynchronous input.  
Reset (Active Low, Open Drain). When this global asynchronous reset is pulled low, all  
internal circuitry is reset and all internal registers are forced to their default values. The device  
is held in reset as long as RST is low. RST should be held low for at least two reference clock  
cycles. See Section 8.11.  
Ipu  
Oa  
RST  
Reference Resistor. This pin is tied to VSS through a 10kΩ ±1% resistor. This accurate  
resistor is used to calibrate on-chip resistor values including internal transmit and receive  
termination resistors.  
RESREF  
18 of 130  
 
DS32506/DS32508/DS32512  
Table 7-5. Hardware Interface Pin Descriptions  
NAME  
TYPE  
FUNCTION  
LIU Mode Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and  
HW = 1), these pins set the LIU mode for port n. See Section 8.1.  
00 = DS3  
01 = E3  
LMn[1:0]  
Ipd  
10 = STS-1  
11 = reserved  
AIS Type Control (All Ports). See Section 8.2.3.  
0 = Unframed all ones  
1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode)  
AIST  
Ipd  
Ipd  
Transmit AIS Control (Port n). The type of AIS signal is specified by the LMn[1:0] and AIST  
pins. See Section 8.2.3.  
0 = transmit normal data  
1 = transmit AIS  
TAISn  
Transmit Binary Interface Control (All Ports). See Section 8.2.2.  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins, and the B3ZS/HDB3  
encoder is disabled.  
1 = Transmitter framer interface is binary on the TDAT pin, and the B3ZS/HDB3 encoder is  
enabled.  
TBIN  
TCC  
Ipd  
Ipd  
Transmit Common Clock Control (All Ports). When this pin is high, the transmit paths of all  
ports are clocked by the TCLK1 pin, and pins TCLKx (x 1) are ignored. In designs where the  
transmit paths of all ports can be clocked synchronously with one another, this mode reduces  
wiring complexity between the LIU and the neighboring framer or mapper component. See  
Section 8.2.1.  
Transmit Clock Invert control (All Ports). See Section 8.2.1.  
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
TCLKI  
TDMn  
Ipd  
O
Transmit Driver Monitor Status (Port n). This pin reports the status of the transmit driver  
monitor. See Section 8.2.9 for more information.  
0 = Transmit line driver is operating properly.  
1 = Transmit line driver is faulty.  
Transmit Line Build-Out Control (Port n). This pin specifies cable length for waveform  
shaping in DS3 and STS-1 modes. In E3 mode it is ignored and should be wired high or low.  
See Section 8.2.6.  
TLBOn  
Ipd  
0 = Cable length 225ft  
1 = Cable length < 225ft  
Transmitter Output-Enable Control (Port n). This pin enables and disables the transmitter  
outputs. The transmitter continues to operate internally when the outputs are disabled; only the  
line driver and driver monitor are disabled. See Section 8.2.7.  
0 = TXPn/TXNn output drivers disabled (high impedance)  
1 = TXPn/TXNn output drivers enabled  
TOEn  
TPD  
Ipd  
Ipd  
Transmit Power-Down (All Ports). See Section 8.2.10.  
0 = Enable all transmitters  
1 = Power down all transmitters (drivers become high impedance)  
19 of 130  
 
DS32506/DS32508/DS32512  
NAME  
TYPE  
FUNCTION  
Internal Termination Resistance Enable (Tx and Rx) (All Ports). This bit indicates when the  
internal termination is enabled. See Section 8.2.8.  
ITRE  
I
0 = Disabled. The transmitters and receivers are terminated externally.  
1 = Enabled. The transmitters and receivers are terminated internally.  
Receive Binary Interface Control (All Ports). See Section 8.3.6.  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins, and the B3ZS/HDB3  
encoder is disabled.  
RBIN  
RCLKI  
RLOSn  
Ipd  
Ipd  
O
1 = Receiver framer interface is binary on the RDAT pin, and the B3ZS/HDB3 encoder is  
enabled.  
Receive Clock Invert Control (All Ports). See Section 8.3.6.3.  
0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK.  
Receive Loss-of-Signal Status (Port n). This pin is asserted upon detection of 192  
consecutive zeros in the receive data stream. It is deasserted when there are no excessive  
zero occurrences over a span of 192 clock periods. An excessive zero occurrence is defined as  
three or more consecutive zeros in DS3 and STS-1 modes or four or more zeros in E3 mode.  
See Section 8.3.5.  
Receive Monitor Preamp Control (Port n). This pin determines whether or not the receiver  
preamp is enabled in port n to provide flat gain to the incoming signal before the AGC/equalizer  
block processes it. This feature should be enabled when the device is being used to monitor  
signals that have been resistively attenuated by a monitor jack. See Section 8.3.2 for more  
information.  
RMONn  
Ipd  
0 = Disable the monitor preamp  
1 = Enable the monitor preamp  
Receive Power-Down (All Ports). See Section 8.3.7.  
0 = Enable all receivers  
1 = Power down all receivers (RXPn/RXNn high impedance. RCLKn, RPOSn/RDATn, and  
RNEGn/RLCVn high impedance.)  
RPD  
Ipd  
Ipd  
Jitter Attenuator Depth (All Ports). These pins are ignored when a microprocessor interface  
is enabled (IFSEL 000). See Section 8.4.  
00 = 16 bits  
01 = 32 bits  
10 = 64 bits  
11 = 128 bits  
JAD[1:0]  
Jitter Attenuator Select (All Ports). These pins select the location of the jitter attenuator.  
These pins are ignored when a microprocessor interface is enabled (IFSEL 000). See Section  
8.4.  
JAS[1:0]  
Ipd  
00 = Disabled  
01 = Receive path  
1X = Transmit path  
Loopback Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and  
HW = 1), these pins set the loopback mode for port n. See Section 8.6.  
00 = No loopback  
LBn[1:0]  
LBS  
Ipd  
Ipd  
01 = Diagnostic loopback (DLB)  
10 = Line loopback (LLB)  
11 = (LBS = 0) Line loopback (LLB) and diagnostic loopback (DLB) simultaneously  
11 = (LBS = 1) Analog loopback (ALB)  
Loopback Select (All Ports). This pin specifies how the device interprets the LBn[1:0] bits.  
This pin is ignored when a microprocessor interface is enabled (IFSEL 000). See Section 8.6.  
20 of 130  
 
DS32506/DS32508/DS32512  
Table 7-6. Parallel Interface Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Chip Select (Active Low). This pin must be asserted to read or write internal registers. See  
Section 8.8.3.  
I
CS  
Read Enable (Active Low)/Data Strobe (Active Low)  
RD: For the Intel-style bus (IFSEL = 1X0), RD is asserted to read internal registers.  
RD/DS  
I
I
DS: For the Motorola-style bus (IFSEL = 1X1), DS is asserted to access internal registers while  
the R/W pin specifies whether the access is a read or a write. See Section 8.8.3.  
Write Enable (Active Low)/Read/Write Select  
WR: For the Intel-style bus (IFSEL = 1X0), WR is asserted to write internal registers.  
WR/R/W  
R/W: For the Motorola-style bus (IFSEL = 1X1), R/W determines the type of bus transaction,  
with R/W = 1 indicating a read and R/W = 0 indicating a write. See Section 8.8.3.  
Address Latch Enable. This pin controls a latch on the A[10:0] inputs. For a nonmultiplexed  
parallel bus, ALE is wired high to make the latch transparent. For a multiplexed parallel bus, the  
falling edge of ALE latches the address. See Section 8.8.3.  
ALE  
I
I
Address Bus (Excluding LSB). These inputs specify the address of the internal 16-bit register  
to be accessed. A10 is not present on the DS32506. See Section 8.8.  
A[10:1]  
Address Bus LSB/Byte Swap. See Section 8.8.2.  
A[0]: This pin is connected to the lower address bit in 8-bit bus modes (IFSEL = 10X).  
0 = Output register bits 7:0 on D[7:0]; D[15:8] high impedance  
1 = Output register bits 15:8 on D[7:0]; D[15:8] high impedance  
A[0] /  
BSWAP  
I
BSWAP: This pin is tied high or low in 16-bit bus modes (IFSEL = 11X).  
0 = Output register bits 15:8 on D[15:8] and bits 7:0 on D[7:0]  
1 = Output register bits 7:0 on D[15:8] and bits 15:8 on D[7:0]  
Data Bus. A 8-bit or 16-bit bidirectional data bus. These pins are inputs during writes to internal  
registers and outputs during reads. D[15:8] are disabled (high impedance) in 8-bit bus modes  
(IFSEL = 10X). D[15:0] are disabled (high impedance) when CS = 1 or RST = 0. In 16-bit bus  
modes (IFSEL = 11X) the upper and lower bytes can be swapped by pulling the BSWAP pin  
high. See Section 8.8.  
D[15:0]  
I/O  
Ready Handshake (Tri-State)/Acknowledge Handshake (Tri-State, Active Low). Tri-stated  
when CS = 1 or RST = 0. See Section 8.8.  
RDY: Intel Mode (IFSEL = 100 or 110): RDY goes high when the read or write cycle can  
progress.  
RDY/ACK  
Oz  
Oz  
ACK: Motorola Mode (IFSEL = 101 or 111): ACK goes low when the read or write cycle can  
progress.  
Interrupt Output (Active Low, Open Drain, or Push-Pull). This pin is driven low in response  
to one or more unmasked, active interrupt sources within the device. INT remains low until the  
interrupt is serviced or masked. When GLOBAL.CR2:INTM = 0, INT is high impedance when  
inactive (default). When INTM = 1, INT is driven high when inactive. INT is high impedance  
when RST = 0. See Section 8.10.  
INT  
General-Purpose I/O A. When a microprocessor interface is enabled (IFSEL 000), this pin is  
GPIOAn  
GPIOBn  
I/Opd  
I/Opd  
the “A” general-purpose I/O pin for port n. See Section 8.7.3.  
General-Purpose I/O B. When a microprocessor interface is enabled (IFSEL 000), this pin is  
the “B” general-purpose I/O pin for port n. See Section 8.7.3. Note: GPIOB1, GPIOB2, and  
GPIOB3 can also be programmed as global control/status pins.  
21 of 130  
 
DS32506/DS32508/DS32512  
Table 7-7. SPI Serial Interface Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Chip Select (Active Low). This pin must be asserted to read or write internal registers.  
See Section 8.9.  
I
CS  
SCLK  
SDI  
I
I
Serial Clock. SCLK is always driven by the SPI bus master. See Section 8.9.  
Serial Data Input. The SPI bus master transmits data to the device on this pin.  
See Section 8.9.  
Serial Data Output. The device transmits data to the SPI bus master on this pin.  
See Section 8.9.  
SDO  
O
I
Clock Phase. See Section 8.9.  
0 = Data is latched on the leading edge of the SCLK pulse  
1 = Data is latched on the trailing edge of the SCLK pulse  
CPHA  
Clock Polarity. See Section 8.9.  
CPOL  
I
0 = SCLK is normally low and pulses high during bus transactions  
1 = SCLK is normally high and pulses low during bus transactions  
Interrupt Output (Active Low, Open Drain).  
See INT pin description in Table 7-6.  
Oz  
INT  
GPIOAn  
GPIOBn  
I/Opd General-Purpose I/O A. See GPIOAn pin description in Table 7-6.  
I/Opd General-Purpose I/O B. See GPIOBn pin description in Table 7-6.  
Table 7-8. CLAD Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Reference Clock. The signal on this pin is the input reference clock to the CLAD and  
must be transmission quality (±20ppm, low jitter). In hardware mode, REFCLK must be  
19.44MHz. In bus interface modes, REFCLK can be any of several frequencies. See  
Section 8.7.1.  
REFCLK  
I
Clock A—DS3 44.736MHz. When the CLAD is bypassed, a transmission-quality DS3  
clock (44.736MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are  
to operate in DS3 mode. When the CLAD is enabled this pin can be configured to output  
the DS3 clock synthesized by PLL-A. See Section 8.7.1.  
CLKA  
I/O  
Clock B—E3 34.368MHz. When the CLAD is bypassed, a transmission-quality E3 clock  
(34.368MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to  
operate in E3 mode. When the CLAD is enabled, this pin can be configured to output the  
E3 clock synthesized by PLL-B. See Section 8.7.1.  
Clock C—STS-1 51.84MHz. When the CLAD is bypassed, a transmission-quality STS-1  
clock (51.84MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are  
to operate in STS-1 mode. When the CLAD is enabled, this pin can be configured to  
output the STS-1 clock synthesized by PLL-C. See Section 8.7.1.  
CLKB  
CLKC  
CLKD  
I/O  
I/O  
O
Clock D—Telecom Bus 77.76MHz or 19.44MHz. When the CLAD is bypassed, this pin  
is driven low. When the CLAD is enabled this pin can output a 77.76MHz or 19.44MHz  
clock synthesized by PLL-D. See Section 8.7.1.  
CLAD Bypass Control. This pin controls whether the CLAD is used or bypassed. When  
a microprocessor interface is enabled (IFSEL 000), CLADBYP should be wired low to  
allow use of the GLOBAL.CR2:CLAD[6:0] field to control the CLAD. See Section 8.7.1.  
0 = Synthesize the DS3, E3, and STS-1 clocks from the clock on the REFCLK pin.  
1 = Source the DS3, E3, and STS-1 clocks from the CLKA, CLKB and CLKC pins.  
CLADBYP  
I
22 of 130  
 
DS32506/DS32508/DS32512  
Table 7-9. JTAG Pin Descriptions  
NAME  
TYPE  
FUNCTION  
JTAG Clock. This pin shifts data into JTDI on the rising edge and out of JTDO on the  
falling edge. JTCLK is typically a low frequency (less than 10MHz) 50% duty cycle clock  
signal. If boundary scan is not used, JTCLK should be pulled high. See Section 10.  
JTCLK  
I
JTAG Mode Select. This pin is used to control the JTAG controller state machine. JTMS  
is sampled on the rising edge of JTCLK. If boundary scan is not used, JTMS should be  
left unconnected or pulled high. See Section 10.  
JTMS  
JTDI  
Ipu  
Ipu  
JTAG Data Input. This pin is used to input data into the register that is enabled by the  
JTAG controller state machine. JTDI is sampled on the rising edge of JTCLK. If boundary  
scan is not used, JTDI should be left unconnected or pulled high. See Section 10.  
JTAG Data Output. This pin is the output of an internal scan shift register enabled by  
the JTAG controller state machine. JTDO is updated on the falling edge of JTCLK. JTDO  
is in high-impedance mode when a register is not selected or when the JTRST pin is low.  
JTDO goes into and out of high-impedance mode after the falling edge of JTCLK. See  
Section 10.  
JTDO  
Oz  
Ipu  
JTAG Reset (Active Low). When active, this pin forces the JTAG controller logic into  
the reset state and forces the JTDO pin into high-impedance mode. The JTAG controller  
is also reset when power is first applied via a power-on reset circuit. JTRST can be driven  
high or low for normal operation, but must be high for JTAG operation. See Section 10.  
JTRST  
Table 7-10. Power-Supply Pin Descriptions  
NAME  
TYPE  
FUNCTION  
VDD18  
VDD33  
VSS  
P
P
P
P
P
P
P
P
P
P
P
Digital Core 1.8V Power, 1.8V ±5%  
I/O 3.3V Power, 3.3V ±5%  
Ground for VDD18 and VDD33  
JVDDn  
JVSSn  
RVDDn  
RVSSn  
TVDDn  
TVSSn  
CVDD  
CVSS  
Jitter Attenuator 1.8V Power, 1.8V ±5%  
Jitter Attenuator Ground  
Receive 1.8V Power, 1.8V ±5%  
Receive Ground  
Transmit 1.8V Power, 1.8V ±5%  
Transmit Ground  
CLAD 1.8V ±5%  
CLAD Ground  
Table 7-11. Manufacturing Test Pin Descriptions  
NAME  
TYPE  
FUNCTION  
Manufacturing Test Pins 10 to 0. MT[0] and MT[2:10] must not be connected. MT[1]  
must be connected to digital ground (same as VSS pins).  
MT[10:0]  
Test  
23 of 130  
 
DS32506/DS32508/DS32512  
8. FUNCTIONAL DESCRIPTION  
8.1 LIU Mode  
Each port is independently configurable for DS3, E3 or STS-1 operation. When only the hardware interface is  
enabled (IFSEL = 000 and HW = 1), the LMn[1:0] pins specify the LIU mode. When a microprocessor interface is  
enabled (IFSEL 000) the PORT.CR2:LM[1:0] control bits specify the LIU mode.  
8.2 Transmitter  
8.2.1 Transmit Clock  
If the jitter attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be  
transmission quality (i.e., ±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the  
transmit path, the signal on TCLK can be jittery and/or periodically gapped, but must still have an average  
frequency within ±20ppm of the nominal line rate. When enabled in the transmit path, the jitter attenuator generates  
the transmit line clock. See Section 8.4 for more information about the jitter attenuator.  
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.  
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample these pins on  
the falling edge of TCLK, pull the TCLKI pin high or set the PORT.INV:TCLKI configuration bit.  
8.2.1.1 Transmit Common Clock Mode  
When the TCC pin is high, the transmit paths of all ports are clocked from TCLK1 and pins TCLKx (x 1) are  
ignored. When the TCC pin is low, the PORT.CR2:TCC register bit specifies whether the transmit clock for port n  
comes from TCLKn or TCLK1. In designs where the transmit paths of all ports can be clocked synchronously with  
one another, common transmit clocking reduces wiring complexity between the LIU and the neighboring framer or  
mapper component.  
8.2.2 Framer Interface Format and the B3ZS/HDB3 Encoder  
Data to be transmitted can be input in either bipolar or binary format.  
8.2.2.1 Bipolar Interface Format  
To select the bipolar interface format, pull the TBIN pin low and clear the PORT.CR2:TBIN configuration bit. In  
bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled on the TPOS and  
TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses are indicated by  
TNEG = 1. If TPOS and TNEG are high at the same time the transmitter generates an AMI pulse that is the  
opposite state of the pulse previously transmitted.  
8.2.2.2 Binary Interface Format  
To select the binary interface format, pull the TBIN pin high (all ports) or set the PORT.CR2:TBIN configuration bit  
(per port). In binary format, the B3ZS/HBD3 encoder is enabled, and the NRZ data to be transmitted is sampled on  
the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired low. In DS3 and STS-1  
modes, B3ZS encoding is performed. In these modes, whenever three consecutive zeros are found in the transmit  
data stream they are replaced with a B3ZS codeword. In E3 mode HDB3 encoding is performed. In this mode,  
whenever four consecutive zeros are found in the transmit data stream they are replaced with an HDB3 codeword.  
In all three modes, the B3ZS or HDB3 codeword is constructed such that the last bit is a BPV with the opposite  
polarity of the most recently transmitted BPV.  
8.2.3 Error Insertion  
Bipolar violation (BPV) errors and excessive zeros (EXZ) errors can be inserted into the transmit data stream using  
the transmit manual error insert (TMEI) logic (see Section 8.7.5). Configuration bit LINE.TCR:BPVI enables the  
insertion of bipolar violations, while LINE.TCR:EXZI enables the insertion of excessive zero events. Note: BPV  
errors and EXZ errors can only be inserted in the binary interface format.  
If the transmitter is configured for binary interface format (Section 8.2.2.2) and BPVI = 1 then when the configured  
manual error insert control goes from zero to one, the transmitter waits for the next occurrence of two consecutive  
24 of 130  
 
DS32506/DS32508/DS32512  
1s where the polarity of the first 1 is opposite the polarity of the BPV in the last B3ZS/HDB3 codeword. The first 1 is  
transmitted according to the normal AMI rule, but the second 1 is transmitted with the same polarity as the first 1,  
thus making the second 1 a bipolar violation.  
If the transmitter is configured for binary interface format (Section 8.2.2.2) and EXZI = 1, then when the configured  
manual error insert control goes from zero to one, the transmitter waits for the next occurrence of three (four)  
consecutive zeros in the transmit data stream and inhibits the replacement of those zeros with a B3ZS (HDB3)  
codeword.  
The transmitter ensures that there is at least one intervening 1 between consecutive BPV or EXZ errors. If a  
second error insertion request of a given type (BPV or EXZ) is initiated before a previous request has been  
completed, the second request is ignored.  
8.2.4 AIS Generation  
The transmitter can be configured to transmit an AIS signal by asserting the TAIS pin or the PORT.CR3:TAIS  
configuration bit. The type of AIS signal to be generated is specified by the LIU mode (LMn[1:0] pins or  
PORT.CR2:LM[1:0] configuration bits) and the AIS type (AIST pin or PORT.CR3:AIST configuration bit). When  
AIST = 0, the AIS signal is unframed all ones for DS3, E3 and STS-1 modes. When AIST = 1, the AIS signal is the  
framed DS3 AIS signal in DS3 mode, unframed all ones in E3 mode, and the AIS-L signal in STS-1 mode. The  
AIS-L signal is normally scrambled, but scrambling can be disabled by setting PORT.CR3:SCRD = 1.  
8.2.5 Waveshaping  
8.2.5.1 Standards-Compliant Waveshaping  
Waveshaping converts the transmit clock, positive data, and negative data signals into a single analog AMI signal  
with the waveshape required for interfacing to DS3/E3/STS-1 lines. Figure 8-1 and Table 8-2 show the DS3  
waveform equations and template. Figure 8-2 and Table 8-4 show the STS-1 waveform equations and template.  
Figure 8-3 shows the E3 waveform template.  
8.2.5.2 Programmable Waveshaping  
The transmit waveshape can be adjusted with the TWSC[19:0] bits in the LIU.TWSCR1 and LIU.TWSCR2  
registers. These signals control the amplitude, slew rates and various other aspects of the waveform template. See  
the register descriptions for further details.  
8.2.6 Line Build-Out  
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length  
from 0 to 450 feet, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225 feet or  
greater, both the TLBO pin and the LIU.CR1:TLBO configuration bit should be low to disable the LBO circuitry.  
When the LBO circuitry is disabled, output pulses are driven onto the coaxial cable without any preattenuation. For  
cable lengths less than 225 feet, either the TLBO pin or the LIU.CR1:TLBO configuration bit should be high to  
enable the LBO circuitry. When the LBO circuitry is enabled, pulses are preattenuated by the LBO circuitry before  
being driven onto the coaxial cable to provide attenuation that mimics the attenuation of 225 feet of coaxial cable.  
8.2.7 Line Driver  
The transmit line driver can be disabled (TXP and TXN outputs high impedance) by deasserting the TOE pin and  
deasserting the LIU.CR1:TOE configuration bit. Powering down the transmitter through the TPD pin or the  
PORT.CR1:TPD configuration bit also disables the transmit line driver.  
8.2.8 Interfacing to the Line  
The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75Ω) through a 1:1 isolation transformer  
connected to the TXP and TXN pins. The transmit line termination can be internal to the device, external to the  
device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when the internal  
termination is enabled (LIU.CR1:TTRE = 1) and no external termination resistors are used. Figure 4-2 shows the  
arrangement of the transformer and external termination resistors when the internal termination is disabled  
(LIU.CR1:TTRE = 0). The internal termination resistor value for the transmitter is specified in LIU.CR1:TRESADJ.  
Table 8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended  
transformers.  
25 of 130  
 
DS32506/DS32508/DS32512  
8.2.9 Driver Monitor and Output Failure Detection  
The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If  
the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 MCLK cycles, then the monitor  
activates the TDM output pin (if the hardware interface is enabled) and sets the LIU.SR:TDM status bit. The setting  
of LIU.SR:TDM can cause an interrupt if enabled by LIU.SRIE:TDMIE. When the transmitter is disabled, the  
transmit driver monitor is also disabled. The transmit driver monitor is clocked by the LIU’s reference clock.  
Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short  
circuit at a distance less than a few inches (~11 inches for FR-4 material) can introduce inverted reflections that  
reduce the outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM pin and/or the TDM  
status bit. Similarly an open circuit a similar distance away can introduce noninverted reflections that increase the  
outgoing amplitude above the VTXMAX threshold and thereby activate the TDM pin and/or the TDM status bit. Shorts  
and opens at larger distances away from TXP/TXN can also activate the TDM pin and/or the TDM status bit, but  
this effect is data-pattern dependent.  
If either TXP or TXN is not connected (open), shorted to VDD, or shorted to VSS, then a transmit failure alarm is  
declared by setting the LIU.SR:TFAIL status bit. A change of state of the TFAIL status bit can cause an interrupt if  
enabled by LIU.SRIE:TFAILIE. TFAIL is cleared when activity is detected on both TXP and TXN.  
8.2.10 Power-Down  
To minimize power consumption when the transmitter is not being used, the TPD pin (all ports) or the  
PORT.CR1:TPD configuration bit (per port) can be asserted. When the transmitter is powered down, the TXP and  
TXN pins are put in a high-impedance state and the transmit drivers are powered down.  
8.2.11 Jitter Generation (Intrinsic)  
The transmitter meets the jitter generation requirements of all applicable standards in Table 8-1, with or without the  
jitter attenuator enabled. Generated jitter is measured with a jitter-free, 0ppm input clock.  
Table 8-1. Jitter Generation  
DS325xx JITTER  
SIGNAL STANDARD REQUIREMENT  
BANDWIDTH  
UNITS  
WITHOUT CLAD WITH CLAD  
TYP  
0.01  
0.02  
0.015  
0.02  
0.005  
0.04  
MAX  
0.02  
0.03  
0.025  
0.03  
0.008  
0.06  
TYP MAX  
DS3  
DS3  
DS3  
E3  
STS-1  
STS-1  
GR-499  
T1.404  
T1.404  
G.751  
GR-253  
GR-253  
0.3 UIRMS  
0.5 UIP-P  
0.05 UIP-P  
0.05 UIP-P  
0.01 UIRMS  
0.10 UIP-P  
10Hz to 400kHz  
10Hz to 400kHz  
30kHz to 400kHz  
100Hz to 800kHz  
12kHz to 400kHz  
12kHz to 400kHz  
0.01  
0.05  
0.04  
0.04  
0.02  
0.06  
0.05  
0.05  
UIRMS  
UIP-P  
UIP-P  
UIP-P  
UIRMS  
UIP-P  
0.007 0.01  
0.06 0.08  
8.2.12 Jitter Transfer  
Without the jitter attenuator on the transmit side, the transmitter passes jitter through unchanged. With the jitter  
attenuator enabled on the transmit side, the transmitter meets the jitter transfer requirements of all applicable  
telecommunication standards in Table 1-1. See Figure 8-7.  
26 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-1. DS3 Waveform Template  
2nd Rise  
1st Fall  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DS325xx waveshape segments.  
See the LIU.TWSCR register  
descriptions.  
1st Rise  
2nd Fall  
-0.2  
-1.0  
0.25  
-0.75  
-0.5  
0
0.5  
0.75  
1.0  
1.25  
1.5  
-0.25  
Time (UI)  
Table 8-2. DS3 Waveform Equations  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATION  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.36  
0.36 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.08 + 0.407e-1.84(T - 0.36)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Table 8-3. DS3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
44.736Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Pulse Amplitude  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75Ω (±1%) resistive  
Between 0.36V and 0.85V  
An isolated pulse (preceded by two zeros and followed by  
one zero) falls within the curves listed in Table 8-2.  
Between -1.8dBm and +5.7dBm  
At least 20dB less than the power at 22.368MHz  
Ratio of positive and negative pulses must be between 0.90  
and 1.10  
Pulse Shape  
Unframed All-Ones Power Level at 22.368MHz  
Unframed All-Ones Power Level at 44.736MHz  
Pulse Imbalance of Isolated Pulses  
27 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-2. STS-1 Waveform Template  
2nd Rise  
1st Fall  
DS325xx waveshape segments.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
See the LIU.TWSCR register  
descriptions.  
1st Rise  
2nd Fall  
-0.2  
-1.0  
-0.75  
-0.5  
-0.25  
0
0.5  
1.0  
1.25  
1.5  
0.25  
0.75  
Time (UI)  
Table 8-4. STS-1 Waveform Equations  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATIONS  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.26  
0.26 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.1 + 0.61e-2.4(T - 0.26)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Table 8-5. STS-1 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
51.840Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Pulse Amplitude  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75Ω (±1%) resistive  
0.800V nominal (not covered in specs)  
An isolated pulse (preceded by two zeros and followed by one  
zero) falls within the curved listed in Table 8-4.  
Between -1.8dBm and +5.7dBm  
Pulse Shape  
Unframed All-Ones Power Level at 25.92MHz  
Unframed All-Ones Power Level at 51.84MHz  
At least 20dB less than the power at 25.92MHz  
28 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-3. E3 Waveform Template  
DS325xx waveshape  
Zero Level  
Zero Level  
Overshoot  
One Level  
17.0 (14.55 + 2.45)  
Undershoot  
segments. See the  
LIU.TWSCR register  
descriptions.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.1  
0.9  
8.65 (14.55 - 5.90)  
12.1 (14.55 - 2.45)  
Nominal Pulse  
0.5  
14.55  
24.5 (14.55 + 9.95)  
0.1  
-0.1  
-0.2  
29.1 (14.55 +  
14.55)  
-15  
-10  
-5  
0
5
10  
15  
Time (ns)  
Table 8-6. E3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
34.368Mbps (±20ppm)  
HDB3  
Rate  
Line Code  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the transmitter  
75Ω (±1%) resistive  
Pulse Amplitude  
1.0V (nominal)  
An isolated pulse (preceded by two zeros  
and followed by one or more zeros) falls  
within the template shown in Figure 8-3.  
Pulse Shape  
Ratio of the Amplitudes of Positive and  
Negative Pulses at the Center of the Pulse  
Interval  
Ratio of the Widths of Positive and Negative  
Pulses at the Nominal Half Amplitude  
0.95 to 1.05  
0.95 to 1.05  
29 of 130  
 
DS32506/DS32508/DS32512  
8.3 Receiver  
8.3.1 Interfacing to the Line  
The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the  
incoming coaxial cable (75Ω) through a 1:1 isolation transformer. The receive line termination can be internal to the  
device, external to the device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when  
the internal termination is enabled (LIU.CR2:RTRE = 1) and no external termination resistors are used. Figure 4-2  
shows the arrangement of the transformer and external termination resistors when the internal termination is  
disabled (LIU.CR2:RTRE = 0). The internal termination resistor value is specified in LIU.CR2:RRESADJ[3:0]. Table  
8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended  
transformers. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format.  
Table 8-7. Transformer Characteristics  
PARAMETER  
Turns Ratio  
VALUE  
1:1 ±2%  
0.200MHz to 340MHz (typ)  
Bandwidth 75Ω  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
Isolation Voltage  
40μH (min)  
0.12μH (max)  
10pF (max)  
1500VRMS (min)  
Table 8-8. Recommended Transformers  
OCL  
PRIMARY  
(μH) (min) (max)  
LL  
(μH)  
PIN-  
BANDWIDTH  
75Ω (MHz)  
MANUFACTURER  
PART  
TEMP RANGE  
PACKAGE/  
SCHEMATIC  
6 SMT LS-1/E  
6 THT LC-1/E  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Halo Electronics  
Halo Electronics  
Halo Electronics  
Halo Electronics  
PE-65967  
PE-65966  
T3001  
TX3025  
TX3036  
TX3047  
TX3051  
0°C to +70°C  
0°C to +70°C  
40  
40  
40  
100  
100  
100  
60  
40  
40  
0.10  
0.10  
0.11  
0.120  
0.110  
0.150  
0.120  
0.10  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
-40°C to +85°C 6 SMT LS-2/E  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 SMT BH/3  
24 SMT  
32 SMT YB/1  
48 SMT  
TG01-0406NS 0°C to +70°C  
TD01-0406NS 0°C to +70°C  
6 SMT SMD/A  
6 DIP DIP/A  
TG01-0456NS -40°C to +85°C 6 SMT SMD/A  
TD01-0456NE -40°C to +85°C 6 DIP DIP/A  
0.10  
0.12  
0.12  
45  
45  
Note: Table subject to change. Multiport transformers are also available. Contact the manufacturers for details at www.pulseeng.com and  
www.haloelectronics.com.  
8.3.2 Optional Preamp  
The receiver can be used in monitoring applications that typically have series resistors with a resistive loss of  
approximately 20dB. When the RMON pin is high or the LIU.CR2:RMON configuration bit is set, the receiver can  
compensate for this resistive loss by applying 14dB of additional flat gain to the incoming signal before sending the  
signal to the AGC/equalizer block (an additional 6dB of flat gain is applied in the AGC circuitry for a total gain of  
20dB). When the preamp is enabled the receiver automatically determines whether or not to make use of the  
preamp’s additional gain. Status bit LIU.SR:RPAS indicates whether or not the preamp is in use. A change of state  
of LIU.SR:RPAS can cause an interrupt if enabled by LIU.SRIE:RPASIE.  
8.3.3 Automatic Gain Control (AGC) and Adaptive Equalizer  
The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in  
the transmission channel and variations in transmission power. Since the incoming signal also experiences  
frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies  
frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically  
adapts to coaxial cable losses from 0 to 22dB, which translates into 0 to 457 meters (1500 feet) of coaxial cable  
30 of 130  
 
DS32506/DS32508/DS32512  
(AT&T 734A or equivalent). The AGC and the equalizer work simultaneously but independently to supply a signal  
of nominal amplitude and pulse shape to the clock and data recovery block. The AGC/equalizer block automatically  
handles direct (0 meters) monitoring of the transmitter output signal. The real-time receiver gain level can be read  
from the LIU.RGLR register. Note: When the receiver preamp is on (LIU.SR:RPAS = 1), the actual receiver gain  
level is the level read from the LIU.RGLR register plus 14dB.  
8.3.4 Clock and Data Recovery (CDR)  
The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock,  
positive data, and negative data signals. The CDR operates from the LIU’s reference clock. See Section 8.7.1 for  
more information about reference clocks and clock selection.  
The receiver locks onto the incoming signal using a clock recovery PLL. The PLL lock status is indicated in the  
LIU.SR:RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and reference  
clock frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state  
of the RLOL status bit can cause an interrupt if enabled by LIU.SRIE:RLOLIE. Note that if the reference clock is not  
present, RLOL is not set.  
8.3.5 Loss-of-Signal (LOS) Detector  
The receiver contains analog and digital LOS detectors. The analog LOS (ALOS) detector resides in the  
AGC/equalizer block. At approximately 23dB below nominal pulse amplitude ALOS is declared by setting the  
LIU.SR:ALOS status bit. A change of state of the ALOS status bit can cause an interrupt if enabled by  
LIU.SRIE:ALOSIE. When ALOS is declared the CDR block forces all zeros out of the data recovery circuit, causing  
digital LOS (DLOS), which is indicated by the RLOS pin and the LINE.RSR:LOS status bit. During ALOS the RCLK  
pin follows the LIU’s reference clock, since no clock information is being received on RXP/RXN. ALOS is cleared at  
approximately 22dB below nominal pulse amplitude. When the preamp is enabled (Section 8.3.2) ALOS is declared  
at approximately 37dB below nominal and cleared at approximately 36dB below nominal.  
The digital LOS detector declares DLOS when it detects 192 consecutive zeros in the recovered data stream.  
When DLOS occurs, the receiver asserts the RLOS pin (if the hardware interface is enabled) and the  
LINE.RSR:LOS status bit. DLOS is cleared when there are no EXZ occurrences over a span of 192 clock periods.  
An EXZ occurrence is defined as three or more consecutive zeros in DS3 and STS-1 modes and four or more  
consecutive zeros in E3 mode. The RLOS pin and the LOS status bit are deasserted when the DLOS condition is  
cleared. A change of state of the LINE.RSR:LOS status bit can cause an interrupt if enabled by  
LINE.RSRIE:LOSIE. DLOS is only declared when B3ZS/HDB3 decoding is enabled (LINE.RCR:RZSD = 0). When  
B3ZS/HDB3 decoding is disabled in the LIU, decoding should be enabled in the neighboring DS3/E3 framer, and  
DLOS should be detected and report by the framer.  
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which  
asserts RLOS when it counts 192 consecutive zeros coming out of the CDR block and clears RLOS when it counts  
192 consecutive pulse intervals without excessive zero occurrences.  
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the  
DLOS detector, as follows:  
For E3 RLOS Assertion:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or  
equal to a signal level approximately 23dB below nominal, and mutes the data coming out of  
the clock and data recovery block. (23dB below nominal is in the “tolerance range” of G.775,  
where LOS may or may not be declared.)  
2) The DLOS detector counts 192 consecutive zeros coming out of the CDR block and asserts  
RLOS. (192 meets the 10 N 255 pulse-interval duration requirement of G.775.)  
For E3 RLOS Clear:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than  
or equal to a signal level approximately 22dB below nominal, and enables data to come out of  
the CDR block. (22dB is in the “tolerance range” of G.775, where LOS may or may not be  
declared.)  
2) The DLOS detector counts 192 consecutive pulse intervals without EXZ occurrences and  
deasserts RLOS. (192 meets the 10 N 255 pulse-interval duration requirement of G.775.)  
31 of 130  
 
DS32506/DS32508/DS32512  
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At the STS-1 rate, the time  
required for the DLOS detector to count 192 consecutive zeros falls in the range of 2.3 T 100μs required by  
ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 192  
consecutive pulse intervals with no excessive zeros is less than the 125μs to 250μs period required by ANSI  
T1.231 for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.  
During LOS, the RCLK output pin is derived from the LIU’s reference clock. The ALOS detector has a longer time  
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first  
(asserting the RLOS pin and LOS status bit), followed by the ALOS detector. When a signal is restored, the DLOS  
detector does not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the  
signal rise above a signal level approximately 22dB below nominal.  
8.3.6 Framer Interface Format and the B3ZS/HDB3 Decoder  
The recovered data can be output in either bipolar or binary format. Reception of a B3ZS or HDB3 codeword is  
flagged by the LINE.RSRL:ZSCDL latched status bit.  
8.3.6.1 Bipolar Interface Format  
To select the bipolar interface format, pull the RBIN pin low and clear the PORT.CR2:RBIN configuration bit. In  
bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is buffered and output on the RPOS  
and RNEG outputs for subsequent decoding by a downstream framer or mapper. Received positive-polarity pulses  
are indicated by RPOS = 1, while negative-polarity pulses are indicated by RNEG = 1.  
In DS3 and STS-1 modes an excessive zeros error (EXZ) is declared whenever there is an occurrence of 3 or  
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an  
occurrence of 4 or more zeros. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits and  
accumulated in the LINE.REXZCR register.  
In all three modes (DS3, E3, and STS-1) a bipolar violation is declared if two positive pulses are received without  
an intervening negative pulse or if two negative pulses are received without an intervening positive pulse. Bipolar  
violations (BPVs) are flagged by the LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the  
LINE.RBPVCR register.  
8.3.6.2 Binary Interface Format  
To select the binary interface format, pull the RBIN pin high (all ports) or set the PORT.CR2:RBIN configuration bit  
(per port). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and output as  
a binary (NRZ) value on the RDAT pin, while bipolar violations, code violations, and excessive zero errors are  
detected and flagged on the RLCV pin.  
In DS3 and STS-1 modes, B3ZS decoding is performed. In these modes, whenever a B3ZS codeword is found in  
the receive data stream it is replaced with three zeros. In E3 mode HDB3 decoding is performed. In this mode,  
whenever an HDB3 codeword is found in the receive data stream it is replaced with four zeros. The decoding  
search criteria for a B3ZS/HDB3 codeword is programmable using the LINE.RCR:RDZSF control bit.  
An excessive zeros error (EXZ) is declared in DS3 and STS-1 modes whenever there is an occurrence of 3 or  
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an  
occurrence of 4 or more zeros in a row. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits  
and accumulated in the LINE.REXZCR register.  
A bipolar violation error (BPV error) is declared in DS3 and STS-1 modes if a BPV is detected that is not part of a  
valid B3ZS codeword. In E3 mode, a bipolar violation error is declared whenever a BPV is detected that is not part  
of a valid HDB3 codeword. In E3 mode if LINE.RCR:E3CVE = 1, code violations are detected rather than bipolar  
violation errors. A code violation is declared whenever consecutive BPVs (not BPV errors) have the same polarity  
(ITU O.161 definition). The error detection search criteria for a B3ZS/HDB3 codeword is programmable using the  
LINE.RCR:REZSF control bit. Bipolar violations (or code violations if LINE.RCR:E3CVE = 1) are flagged by the  
LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the LINE.RBPVCR register.  
In the discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates  
the AMI rule is denoted as V.  
In DS3 and STS-1 modes, B3ZS decoding is performed, and RLCV is asserted during any RCLK cycle where the  
data RDAT causes ones of the following code violations:  
32 of 130  
 
DS32506/DS32508/DS32512  
When LINE.RCR:E3CVE = 0:  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
The third zero in an EXZ.  
When LINE.RCR:E3CVE = 1:  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
In E3 mode, HDB3 decoding is performed, and RLCV is asserted during any RCLK cycle where the data on RDAT  
causes one of the following code violations:  
When LINE.RCR:E3CVE = 0:  
A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).  
A BPV with the same polarity as the last BPV.  
The fourth zero in an EXZ.  
When LINE.RCR:E3CVE = 1:  
A BPV with the same polarity as the last BPV.  
In any cycle where RLCV is asserted to flag a BPV, the RDAT pin outputs a one. In any cycle where RLCV is  
asserted to flag an EXZ, the RDAT pin outputs a zero. The state bit that tracks the polarity of the last BPV is  
toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.  
8.3.6.3 RCLK Inversion  
The polarity of RCLK can be inverted to support a glueless interface to a variety of neighboring components.  
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on  
these pins on the rising edge of RCLK, pull the RCLKI pin high or set the PORT.INV:RCLKI configuration bit.  
8.3.6.4 Receiver Output Disable  
The RCLK, RPOS/RDAT and RNEG/RLCV pins can be disabled (put in a high-impedance state) to support  
protection switching and redundant-LIU applications. This capability supports system configurations where two or  
more LIUs are wire-ORed together and a system processor selects one to be active. To disable these pins, set the  
PORT.CR2:ROD configuration bit.  
8.3.7 Power-Down  
To minimize power consumption when the receiver is not being used, assert the RPD pin (all ports) or the  
PORT.CR1:RPD configuration bit (per port). When the receiver is powered down, the RCLK, RPOS/RDAT, and  
RNEG/RLCV pins are disabled (high impedance). In addition, the RXP and RXN pins become high impedance.  
8.3.8 Input Failure Detection  
The LIU receiver can detect opens and shorts on the RXP and RXN differential inputs. By default, the receiver  
detects the following problems, collectively labeled type 1 failures: open RXP connection, open RXN connection,  
common-mode RXP/RXN short to VDD, and common-mode RXP/RXN short to VSS. Type 1 failures are reported on  
LIU.SR:RFAIL1. RFAIL1 is cleared when activity is detected on both RXP and RXN.  
If LIU.CR2:RFL2E = 1, the receiver also detects a type 2 failure, which is an open or high-impedance path between  
RXP and RXN. In a board with the external components shown in Figure 4-1 or Figure 4-2, the receive transformer  
normally presents a low-impedance path between RXP and RXN. To detect a type 2 failure, the receiver connects  
an 40μA DC current source to RXP and measures the impedance between RXP and RXN. When this impedance is  
greater than about 5kΩ the receiver declares a type 2 failure on LIU.SR:RFAIL2. When the type 2 failure detection  
circuitry is enabled, internal termination must be disabled (LIU.CR2:RTRE = 0) and external termination must not  
be present or a type 2 failure will not be detected because the impedance of the termination is below the type 2  
failure threshold.  
33 of 130  
 
DS32506/DS32508/DS32512  
8.3.9 Jitter and Wander Tolerance  
The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in Table  
1-1. See Figure 8-4 for STS-1 and E3 jitter tolerance characteristics. See Figure 8-5 for DS3 jitter tolerance  
characteristics. See Figure 8-6 for DS3 and E3 wander tolerance characteristics. Note: Only G.823 and G.824 have  
wander tolerance requirements.  
Figure 8-4. STS-1 and E3 Jitter Tolerance  
100  
34.4  
15  
GR-253 (STS-1)  
G.823 (E3)  
10  
DS325xx  
Jitter Tolerance  
1.5  
1.0  
0.15  
0.1  
30  
1.675  
4.4  
300  
2k  
20k  
10k  
800k  
1M  
1
10  
100  
1k  
100k  
Frequency (Hz)  
Figure 8-5. DS3 Jitter Tolerance  
100  
67  
G.824 (DS3)  
GR-499 Cat I (DS3)  
GR-499 Cat II (DS3)  
10  
5
DS325xx  
Jitter Tolerance  
1.0  
0.3  
0.1  
1.675  
21.9  
600  
669  
2.3k  
22.3k30k  
60k  
300k  
400k  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
34 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-6. DS3 and E3 Wander Tolerance  
1000  
805  
DS325xx  
Wander Tolerance  
G.824 (DS3)  
G.823 (E3)  
137.5  
100  
67  
34.4  
10  
1.2  
10-5  
6.12  
0.032  
0.13  
10-1  
1.675  
4.4  
10-4  
10-3  
10-2  
1
10  
Frequency (Hz)  
8.3.10 Jitter Transfer  
Without the jitter attenuator on the receive side, the receiver attenuates jitter at frequencies above its corner  
frequency (approximately 300kHz) and passes jitter at lower frequencies. With the jitter attenuator enabled on the  
receive side, the receiver meets the jitter transfer requirements of all applicable telecommunication standards in  
Table 1-1. See Figure 8-7.  
8.4 Jitter Attenuator  
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can  
be disabled. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the JAS[1:0] and JAD[1:0]  
pins specify the specify the JA location and buffer depth for all ports. When a microprocessor interface is enabled  
(IFSEL 000), the JAS[1:0] and JAD[1:0] pins are ignored, and the LIU.CR1:JAS[1:0] and JAD[1:0] configuration  
bits specify the JA location and buffer depth for each port individually. The JA buffer depth can be set to 16, 32, 64  
or 128 bits. Figure 8-7 shows the minimum jitter attenuation for the device when the jitter attenuator is enabled.  
Figure 8-7 also shows the receive jitter transfer when the jitter attenuator is disabled.  
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated  
data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter  
amplitudes. The JA has a loop bandwidth of reference_clock ÷ 2,058,874 (see corner frequencies in Figure 8-7).  
The JA attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower  
frequencies to pass through relatively unaffected.  
The jitter attenuator requires a transmission-quality reference clock (i.e., ±20ppm frequency accuracy and low  
jitter). See Section 8.7.1 for more information about reference clocks and clock selection.  
When the microprocessor interface is enabled, the jitter attenuator indicates the fill status of its FIFO buffer in the  
LIU.SRL:JAFL (JA full) and LIU.SRL:JAEL (JA empty) status bits. When the buffer becomes full, the JA  
momentarily increases the frequency of the read clock by 6250ppm to avoid buffer overflow and consequent data  
errors. When the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by  
6250ppm to avoid buffer underflow and consequent data errors. During these momentary frequency adjustments,  
jitter is passed through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is  
large enough to cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to  
indicate that data errors have occurred. JAFL and JAEL can cause an interrupt if enabled by the corresponding  
enable bits in the LIU.SRIE register.  
As shown in Figure 8-7, the jitter attenuator meets the jitter transfer requirements of all applicable standards listed  
in Table 1-1.  
35 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-7. Jitter Attenuation/Jitter Transfer  
21.7 Hz (DS3)  
16.7 Hz (E3)  
25.2 Hz (STS-1)  
27Hz  
1k  
>150k  
40Hz  
40k 59.6k  
0
DS3 [GR - 499 (1995)]  
CATEGORY I  
DS3 [GR -253 (1999)]  
CATEGORY I  
DS325xx TYPICAL  
RECEIVER JITTER  
TRANSFER WITH  
JITTER ATTENUATOR  
DISABLED  
STS-1 [GR-253 (1999)]  
CATEGORY II  
-10  
-20  
E3 [TBR24 (1997)]  
DS325xx  
DS3/E3/STS-1  
MINIMUM  
DS3 [GR- 499 (1999)]  
CATEGORY II  
JITTER  
ATTENUATION  
WITH JITTER  
ATTENUATOR  
ENABLED  
-30  
10k  
10  
100  
1k  
100k  
1M  
FREQUENCY (Hz)  
8.5 BERT  
Each LIU port has a built-in bit error-rate tester (BERT). The BERT is a software-programmable test-pattern  
generator and monitor capable of meeting most error performance requirements for digital transmission equipment.  
It can generate and synchronize to pseudo-random patterns with a generation polynomial of the form xn + xy + 1,  
(where n and y can take on values from 1 to 32 with y < n) and to repetitive patterns of any length up to 32 bits.  
The pattern generator generates the programmable test pattern, and inserts the test pattern into the data stream.  
The pattern detector extracts the test pattern from the receive data stream and monitors it. Figure 2-1 shows the  
location of the BERT Block within the DS325xx devices.  
8.5.1 Configuration and Monitoring  
The pattern detector is always enabled. The pattern generator is enabled by setting the PORT.CR3:BERTE  
configuration bit. When the BERT is enabled and PORT.CR3:BERTD=0, the pattern is transmitted and received in  
the line direction, i.e. the pattern generator is the data source for the transmitter, and the receiver is the data source  
for the pattern detector. When the BERT is enabled and PORT.CR3:BERTD=1, the pattern is transmitted and  
received in the system direction, i.e. the pattern generator is the data source for the RPOS/RDAT and RNEG/RLCV  
pins, and the TPOS/TDAT and TNEG pins are the data source for the pattern detector. See Figure 2-1.  
The I/O of the BERT are binary (NRZ) format. Thus while the BERT is enabled, both PORT.CR2:RBIN and  
PORT.CR2:TBIN must be set to 1 for proper operation. In addition, while transmitting/receiving BERT patterns in  
the system direction (PORT.CR3:BERTD = 1), the neighboring framer or mapper component must also be  
configured for binary interface mode to match the LIU. If the LIU interface is normally bipolar, the interface can be  
changed back to bipolar mode when the system is done using the BERT function (PORT.CR3:BERTE = 0).  
The following tables show how to configure the BERT to send and receive common patterns.  
36 of 130  
 
DS32506/DS32508/DS32512  
Table 8-9. Pseudorandom Pattern Generation  
BERT.PCR REGISTER  
BERT.CR  
PATTERN TYPE  
BERT.SPR2  
BERT.SPR1  
PTF[4:0]  
(hex)  
PLF[4:0]  
(hex)  
TPIC,  
RPIC  
PTS QRSS  
29-1 O.153 (511 type)  
04  
08  
0
0
0
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0
211-1 O.152 and  
O.153 (2047 type)  
08  
0A  
0
215-1 O.151  
220-1 O.153  
0D  
10  
02  
11  
0E  
13  
13  
16  
0
0
0
0
0
0
1
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
1
0
0
1
220-1 O.151 QRSS  
223-1 O.151  
Table 8-10. Repetitive Pattern Generation  
BERT.PCR REGISTER  
PATTERN TYPE  
BERT.SPR2  
BERT.SPR1  
PTF[4:0]  
(hex)  
PLF[4:0]  
(hex)  
PTS QRSS  
All 1s  
NA  
00  
00  
01  
03  
17  
0F  
07  
03  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF20  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFE  
0xFFFE  
0xFFFC  
0x0022  
0x0001  
0xFF01  
0xFFF1  
All 0s  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Alternating 1s and 0s  
11001100...  
3 in 24  
1 in 16  
1 in 8  
1 in 4  
After configuring these bits, the pattern must be loaded into the BERT. This is accomplished via a zero-to-one  
transition on BERT.CR.TNPL for the pattern generator and BERT.CR.RNPL for the pattern detector. The BERT  
must be enabled (PORT.CR3:BERTE = 1) before the pattern is loaded for the pattern load operation to take effect.  
Monitoring the BERT requires reading the BERT.SR register, which contains the Bit-Error Count (BEC) bit and the  
Out of Synchronization (OOS) bit. The BEC bit is set to one when the bit error counter is one or more. The OOS bit  
is set to one when the pattern detector is not synchronized to the incoming pattern, which occurs when it receives 6  
or more bit errors within a 64-bit window. The Receive BERT Bit Count Register (BERT.RBCR) and the Receive  
BERT Bit Error-Count Register (BERT.RBECR) are updated upon the reception of a Performance Monitor Update  
signal (e.g., BERT.CR.LPMU). This signal updates the registers with the bit and bit-error counts since the last  
update and then resets the counters. See Section 8.7.4 for more details about performance monitor updates.  
8.5.2 Receive Pattern Detection  
The pattern detector synchronizes the receive pattern generator to the incoming pattern. The receive pattern  
generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant  
bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the  
feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and  
y are individually programmable (1 to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the  
receive pattern generator is the feedback. If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be  
an XOR of bits 17 and 20, and the output is forced to one if the next 14 bits are all zeros. For PRBS and QRSS  
patterns, the feedback is forced to one if bits 1 through 31 are all zeros. Depending on the type of pattern  
programmed, pattern detection performs either PRBS synchronization or repetitive pattern synchronization.  
37 of 130  
 
DS32506/DS32508/DS32512  
8.5.2.1 Receive PRBS Synchronization  
PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The  
receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and  
then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If  
at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern  
resynchronization is initiated. Automatic pattern resynchronization can be disabled by setting BERT.CR:APRD = 1.  
Pattern resynchronization can also be initiated manually by a zero-to-one transition of the Manual Pattern  
Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted before comparison with the  
receive pattern generator by setting BERT.CR:RPIC. See Figure 8-8 for the PRBS synchronization diagram.  
Figure 8-8. PRBS Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Load  
32 bits loaded  
8.5.2.2 Receive Repetitive Pattern Synchronization  
Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern.  
The receive pattern generator is synchronized by searching each incoming data stream bit position for the  
repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match  
the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS  
pattern generator, automatic pattern resynchronization is initiated. Automatic pattern re-synchronization can be  
disabled by setting BERT.CR:APRD = 1. Pattern resynchronization can also be initiated manually by a zero-to-one  
transition of the Manual Pattern Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted  
before comparison with the receive pattern generator by setting BERT.CR:RPIC.  
See Figure 8-9 for the repetitive pattern synchronization state diagram.  
38 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-9. Repetitive Pattern Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Match  
Pattern Matches  
8.5.2.3 Receive Pattern Monitoring  
Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts  
the incoming bits. An Out Of Synchronization (BERT.SR:OOS = 1) condition is declared when the synchronization  
state machine is not in the “Sync” state. An OOS condition is terminated when the synchronization state machine is  
in the “Sync” state. A change of state of the OOS status bit sets the BERT.SRL:OOSL latched status bit and can  
cause an interrupt if enabled by BERT.SRIE:OOSIE.  
Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If the  
two bits do not match, a bit error is declared (BERT.SRL:BEL = 1), and the bit error and bit counts are incremented  
(BERT.RBECR and BERT.RBCR, respectively). If the two bits do match, only the bit count is incremented. The bit  
count and bit error count are not incremented when an OOS condition exists. The setting of the BEL status bit can  
cause an interrupt if enabled by BERT.SRIE:BEIE.  
8.5.3 Transmit Pattern Generation  
The pattern generator generates the outgoing test pattern. The transmit pattern generator is a 32-bit shift register  
that shifts data from the least significant bit (LSB) or bit 1 to the most significant bit (MSB) or bit 32. The input to bit  
1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the feedback is an XOR of bit n and bit  
y. For a repetitive pattern (length n), the feedback is bit n. The values for n and y are individually programmable (1  
to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the receive pattern generator is the feedback.  
If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be an XOR of bits 17 and 20, and the output  
is forced to one if the next 14 bits are all zeros. For PRBS and QRSS patterns, the feedback is forced to one if bits  
1 through 31 are all zeros. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value  
before pattern generation starts. The seed/pattern value is programmable (0 - 2n - 1) in the BERT.SPR registers.  
The generated pattern can be inverted by setting BERT.CR:TPIC.  
39 of 130  
 
DS32506/DS32508/DS32512  
8.5.3.1  
Transmit Error Insertion  
Errors can be inserted into the generated pattern one at a time or at a rate of one out of every 10n bits. The value of  
n is programmable (1 to 7 or off) in the BERT.TEICR:TEIR[2:0] configuration field. Single bit error insertion is  
enabled by setting BERT.TEICR:BEI and can be initiated from the microprocessor interface or by the manual error  
insertion pin (GPIOB2). See Section 8.7.5 for more information about manual error insertion.  
8.6 Loopbacks  
Each LIU has three internal loopbacks. See Figure 2-1. When only the hardware interface is enabled (IFSEL = 000  
and HW = 1), loopbacks are controlled by the LBn[1:0] and LBS pins. When a microprocessor interface is enabled  
(IFSEL 000), loopbacks are controlled by the LB[1:0] and LBS fields in the PORT.CR3 register.  
Analog loopback (ALB) connects the outgoing transmit signal back to the receiver’s analog front end. During ALB  
the transmit signal is output normally on TXP/TXN, but the received signal on RXP/RXN is ignored.  
Line loopback (LLB) connects the output of the receiver to the input of the transmitter. The LLB path does not  
include the B3ZS/HDB3 decoder and encoder so that the signal looped back is exactly the same as the signal  
received, including bipolar violations and code violations. During LLB, recovered clock and data are output on  
RCLK, RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored.  
Diagnostic loopback (DLB) connects the TCLK, TPOS/TDAT and TNEG pins to the RCLK, RPOS/RDAT, and  
RNEG/RLCV pins. During DLB (with LLB disabled), the signal on TXP/TXN can be the normal transmit signal or an  
AIS signal from the AIS generator. DLB and LLB can be enabled simultaneously to provide simultaneous remote  
and local loopbacks.  
8.7 Global Resources  
8.7.1 Clock Rate Adapter (CLAD)  
The CLAD is used to create multiple transmission-quality reference clocks from a single transmission-quality  
(±20ppm, low jitter) clock input on the REFCLK pin. The LIUs in the device need up to three different reference  
clocks (DS3, E3, and STS-1) for use by the CDRs and jitter attenuators. Given one of these clock rates or any of  
several other clock frequencies on the REFCLK pin, the CLAD can generate all three LIU reference clocks. The  
internally generated reference clock signals can optionally be driven out on pins CLKA, CLKB, and CLKC for  
external use. In addition a fourth frequency, either 77.76MHz or 19.44MHz, can be generated and driven out on the  
CLKD pin for use in Telecom Bus applications.  
When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the CLAD is controlled by the CLADBYP  
pin, and the REFCLK frequency is fixed at 19.44MHz. When the CLADBYP pin is high all PLLs in the CLAD are  
bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins  
become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins.  
Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the  
LIUs. When CLADBYP is low, all four PLLs in the CLAD are enabled, and the generated DS3, E3, STS-1, and  
77.76MHz clocks are always output on CLKA, CLKB, CLKC and CLKD, respectively.  
When a microprocessor interface is enabled (IFSEL 000), the CLAD clock mode and the REFCLK frequency are  
set by the GLOBAL.CR2:CLAD[6:4] bits, as shown in Table 8-11. When CLAD[6:4] = 000, all PLLs in the CLAD are  
bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins  
become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins.  
Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the  
LIUs. CLAD[6:4] = 000 is equivalent to pulling the CLADBYP pin high. When CLAD[6:4] 000, the PLL circuits are  
enabled as needed to generate the required clocks, as determined by the CLAD[6:0] bits and the LIU mode bits  
(PORT.CR2:LM[1:0]). If a clock rate is not required as a reference clock, then the PLL used to generate that clock  
is automatically disabled and powered down. The CLAD[3:0] bits are output enable controls for CLKA, CLKB,  
CLKC and CLKD, respectively. Configuration bit GLOBAL.CR2:CLKD19 specifies the frequency to be output on the  
CLKD pin (77.76MHz or 19.44MHz). Status register GLOBAL.SRL provides activity status for the REFCLK, CLKA,  
CLKB and CLKC pins and lock status for the CLAD.  
Each LIU block indicates the absence of the reference clock it requires by setting its LIU.SR:LOMC bit.  
40 of 130  
 
DS32506/DS32508/DS32512  
Table 8-11. CLAD Clock Source Settings  
CLAD[6:4]  
REFCLK  
CLKA  
CLKB  
CLKC  
CLKD  
000  
001  
010  
011  
100  
101  
110  
111  
Don't Care  
DS3 input  
E3 input  
DS3 input  
DS3 output  
DS3 output  
DS3 output  
DS3 output  
DS3 output  
DS3 output  
DS3 output  
E3 input  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
E3 output  
STS-1 input  
STS-1 output  
STS-1 output  
STS-1 output  
STS-1 output  
STS-1 output  
STS-1 output  
STS-1 output  
Low output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
77.76 or 19.44MHz output  
STS-1 input  
77.76MHz input  
19.44MHz input  
38.88MHz input  
12.80MHz input  
Table 8-12. CLAD Clock Pin Output Settings  
CLAD[3:0]*  
CLKA PIN  
CLKB PIN  
CLKC PIN  
CLKD PIN  
XXX0  
XXX1  
XX0X  
XX1X  
X0XX  
X1XX  
0XXX  
1XXX  
Low output  
PLL-A output  
—-  
Low output  
PLL-B output  
Low output  
PLL-C output  
Low output  
PLL-D output  
*When CLAD[6:4] = 000, CLKA, CLKB, and CLKC are inputs and CLKD is held low.  
8.7.2 One-Second Reference Generator  
The one-second reference signal can be used to update performance monitoring registers on a precise one-  
second interval. The generated internal signal is a 50% duty cycle signal that is divided down from the indicated  
reference signal. The low to high edge on this signal sets the GLOBAL.SRL:1SREFL latched one-second bit, which  
can generate an interrupt if enabled. The low to high edge is used to initiate a performance monitor register update  
when GLOBAL.CR1:GPM[1:0] = 1X. The internal one-second reference can be output on the GPIOB3 pin by  
setting GLOBAL.CR1:G1SROE. The source for the one second reference is set by GLOBAL.CR1:G1SRS[3:0]. The  
DS3, E3, and STS-1 reference clocks are sourced from the CLAD, if the CLAD is configured to generate them, or  
from the CLKA, CLKB ,and CLKC pins, respectively.  
Table 8-13. Global One-Second Reference Source  
G1SRS[3:0]  
SOURCE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Disabled  
DS3 reference clock  
E3 reference clock  
STS-1 reference clock  
Port 1 TCLK  
Port 2 TCLK  
Port 3 TCLK  
Port 4 TCLK  
Port 5 TCLK  
Port 6 TCLK  
Port 7 TCLK  
Port 8 TCLK  
Port 9 TCLK  
Port 10 TCLK  
Port 11 TCLK  
Port 12 TCLK  
41 of 130  
 
DS32506/DS32508/DS32512  
8.7.3 General-Purpose I/O Pins  
When a microprocessor interface is enabled (IFSEL 000), there are two general-purpose I/O (GPIO) pins  
available per port, each of which can be used as a general-purpose input, general-purpose output, or loss-of-signal  
output. In addition, GPIOB1, GPIOB2, and GPIOB3 can be used as a global I/O signal. The GPIO pins are  
independently configurable using the GPIOynS fields of the GLOBAL.GIOACR and GLOBAL.GIOBCR registers  
(see Table 8-15). When a GPIO pin is configured as an input, its value can be read from the GLOBAL.GIOARR or  
GLOBAL.GIOBRR registers. When a GPIO pins is configured as a loss-of-signal status output, its state mimics the  
state of the LINE.RSR:LOS status bit. When a port is powered down and a GPIO pin has been programmed as an  
associated loss-of-signal output, the pin is held low. Programming a GPIO pin as a global signal overrides the I/O  
settings specified by the GPIOynS field for that pin and configures the pin as an input or an output as shown in  
Table 8-14.  
Table 8-14. GPIO Pin Global Signal Assignments  
GLOBAL SIGNAL  
PIN  
FUNCTION  
CONTROL BIT  
GPIOAn  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOBk  
None  
Global PMU input  
Global TMEI input  
1SREF output  
None  
GLOBAL.CR1.GPM[1:0]  
GLOBAL.CR1.MEIMS  
GLOBAL.CR1.G1SROE  
Note: n = 1 to 12, k = 4 to 12.  
Table 8-15. GPIO Pin Control  
GPIOynS[1:0]  
FUNCTION  
00  
01  
10  
11  
Input  
Output LOS status for port n  
Output logic 0  
Output logic 1  
Note: n = 1 to 12, y = A or B.  
8.7.4 Performance Monitor Register Update  
Each performance monitor counter can count at least one second of events before saturating at the maximum  
count. Each counter has an associated status bit that is set when the counter value is not zero, a latched status bit  
that is set when the counter value changes from zero to one, and a latched status bit that is set each time the  
counter is incremented.  
There is a holding register for each performance monitor counter that is updated when a performance monitoring  
update is performed. A performance monitoring update causes the counter value to be loaded into the holding  
register and the counter to be cleared. If a counter increment occurs at the exact same time as the counter reset,  
the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set.  
The performance monitor update (PMU) signal initiates a performance monitoring update. The PMU signal can be  
sourced from a general-purpose I/O pin (GPIOB1), the internal one-second reference, a global register bit  
(GLOBAL.CR1:GPMU), or a port register bit (PORT.CR1:PMU). Note: The BERT PMU can be sourced from a  
block level register bit (BERT.CR:LPMU). To use GPIOB1, GLOBAL.CR1.GPM[1:0] is set to 01, the appropriate  
PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the internal one-  
second reference, GLOBAL.CR1:GPM[1:0] is set to 1X, the appropriate PORT.CR1:PMUM bits are set to 1, and  
the appropriate BERT.CR:PMUM bits are set to 1. To use the global PMU register bit, GLOBAL.CR1:GPM[1:0] is  
set to 00, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to  
1. To use the port PMU register bit, the associated PORT.CR1:PMUM bit is set to 0, and the appropriate  
BERT.CR:PMUM bits are set to 1. To use the BERT.CR:LPMU register bit, the appropriate BERT.CR:PMUM bit is  
set to 0.  
When using the global or port PMU register bits, the PMU bit should be set to initiate the process and cleared when  
the associated PMS status bit (GLOBAL.SR:GPMS or PORT.SR:PMS) is set. When using the GPIO pin or internal  
one-second reference, the PMS bit is set shortly after the signal goes high, and cleared shortly after the signal  
42 of 130  
 
DS32506/DS32508/DS32512  
goes low. The PMS has an associated latched status bit that can generate an interrupt if enabled. The port PMS  
signal does not go high until an update of all the appropriately configured block-level performance monitoring  
counters in the port has been completed. The global PMS signal does not go high until an update of all the  
appropriately configured port-level performance monitoring counters in the entire chip has been completed.  
8.7.5 Transmit Manual Error Insertion  
Various types of errors can be inserted in the transmit data stream using the Transmit Manual Error Insertion  
(TMEI) signal, which can be sourced from a block-level register bit, a port register bit (PORT.CR1:TMEI), a global  
register bit (GLOBAL.CR1:TMEI), or a general-purpose I/O pin (GPIOB2). To use GPIOB2 as the TMEI signal,  
GLOBAL.CR1.MEIMS is set to 1, the appropriate PORT.CR1.MEIMS bits are set to 1, and the appropriate block-  
level MEIMS bits are set to 1. To use the global TMEI register bit, GLOBAL.CR1.MEIMS is set to 0, the appropriate  
PORT.CR1.MEIMS bits are set to 1, and the appropriate block-level MEIMS bits are set to 1. To use the port TMEI  
register bit, the associated PORT.CR1.MEIMS is set to 0 and the appropriate block-level MEIMS bits are set to 1.  
To use the block-level TSEI register bit, the associated block-level MEIMS bit is set to 0.  
In order for an error of a particular type to be inserted, the error type must be enabled by setting the associated  
error insertion enable bit in the associated block's error insertion register. Once enabled, a single error is inserted  
at the next opportunity when the TMEI signal transitions from zero to one. Note: If the TMEI signal has multiple  
zero-to-one transitions between error insertion opportunities, only a single error is inserted.  
8.8 8-/16-Bit Parallel Microprocessor Interface  
See Table 11-8 and Figure 11-3 to Figure 11-10 for parallel interface timing diagrams and parameters.  
8.8.1 8-Bit and 16-Bit Bus Widths  
When the IFSEL pins are set to 1XX, the device presents a parallel microprocessor interface. In 8-bit modes  
(IFSEL = 10X), the address is composed of all the address bits including A[0], the lower 8 data lines D[7:0] are  
used, and the upper 8 data lines D[15:8] are disabled (high impedance). In 16-bit modes (IFSEL = 11X), the  
address does not include A[0], and all 16 data lines D[15:0] are used.  
8.8.2 Byte Swap Mode  
In 16-bit modes (IFSEL = 11X), the microprocessor interface can operate in byte swap mode. The BSWAP pin is  
used to determine whether byte swapping is enabled. This pin should be static and not change during operation.  
When the BSWAP pin is low the upper register bits REG[15:8] are mapped to the upper external data bus lines  
D[15:8], and the lower register bits REG[7:0] are mapped to the lower external data bus lines D[7:0]. When the  
BSWAP pin is high the upper register bits REG[15:8] are mapped to the lower external data bus lines D[7:0], and  
the lower register bits REG[7:0] are mapped to the upper external data bus lines D[15:8].  
8.8.3 Read-Write And Data Strobe Modes  
The processor interface can operate in either read-write strobe mode (also known as "Intel" mode) or data strobe  
mode (also known as "Motorola" mode). When IFSEL = 1X0 the read-write strobe mode is enabled. In this mode a  
negative pulse on RD performs a read cycle, and a negative pulse on WR performs a write cycle.  
When IFSEL = 1X1 the data strobe mode is enabled. In this mode, a negative pulse on DS when R/W is high  
performs a read cycle, and a negative pulse on DS when R/W is low performs a write cycle.  
8.8.4 Multiplexed and Nonmultiplexed Operation  
In all parallel interface modes the interface supports both multiplexed and nonmultiplexed operation. For  
multiplexed operation in 8-bit modes, wire A[10:8] to the processor’s A[10:8] pins, wire A[7:0] to D[7:0] and to the  
processor’s multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the processor. For  
nonmultiplexed 8-bit operation, wire ALE high and wire A[10:0] and D[7:0] to the appropriate pins on the processor.  
For multiplexed operation in 16-bit modes, wire A[10:0] to D[10:0], wire D[15:0] to the CPU’s multiplexed  
address/data bus, and connect the ALE pin to the appropriate pin on the processor. For nonmultiplexed 16-bit  
operation, wire ALE high and wire A[10:0] and D[15:0] to the appropriate pins on the processor.  
43 of 130  
 
DS32506/DS32508/DS32512  
8.8.5 Clear-On-Read And Clear-On-Write Modes  
The latched status register bits can be programmed to clear on a read access or clear on a write access. The  
global control register bit GLOBAL.CR2.LSBCRE specifies the method used to clear all of the latched status  
registers. When LSBCRE = 0, latched status register bits are cleared when written with a 1. When LSBCRE = 1,  
latched status register bits are cleared when read.  
The clear-on-write mode expects the user to use the following method: read the latched status register then write a  
1 to the register bits to be cleared. This method is useful when multiple software tasks use the same latched status  
register. Each task can clear the bits it uses without affecting any of the latched status bits used by other tasks.  
The clear-on-read mode clears all latched status bits in a register automatically when the latched status register is  
read. This method works well when no more than one software task uses any single latched status register. An  
event that occurs while the associated latched status register is being read results in the associated latched status  
bit being set after the read is completed.  
8.8.6 Global Write Mode  
When GLOBAL.CR2:GWRM = 1, a write to a register of any port causes the data to be written to the same register  
in all the ports on the device. In this mode register reads are not supported and result in undefined data.  
8.9 SPI Serial Microprocessor Interface  
When the IFSEL pins are set to 01X the device presents an SPI interface on the CS, SCLK, SDI, and SDO pins.  
SPI is a widely-used master/slave bus protocol that allows a master device and one or more slave devices to  
communicate over a serial bus. The DS325xx is always a slave device. Masters are typically microprocessors,  
ASICs or FPGAs. Data transfers are always initiated by the master device, which also generates the SCLK signal.  
The DS325xx receives serial data on the SDI pin and transmits serial data on the SDO pin. SDO is high-impedance  
except when the DS325xx is transmitting data to the bus master. Note that the ALE pin must be wired high for  
proper operation of the SPI interface.  
Bit Order. When IFSEL[2:0] = 010 the register address and all data bytes are transmitted MSB first on both SDI  
and SDO. When IFSEL[2:0] = 011, the register address and all data bytes are transmitted LSB first on both SDI  
and SDO. The Motorola SPI convention is MSB first.  
Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low  
and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus  
transactions. The CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on  
the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in  
on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge. See Figure  
8-10.  
Device Selection. Each SPI device has its own chip-select line. To select the DS325xx, pull its CS pin low.  
Control Word. After CS is pulled low, the bus master transmits the control word during the first 16 SCLK cycles. In  
MSB-first mode, the control word has the form:  
R/W A13 A12 A11 A10 A9 A8 A7  
A6 A5 A4 A3 A2 A1 A0 BURST  
where A[13:0] is the register address, R/W is the data direction bit (1 = read, 0 = write), and BURST is the burst bit  
(1 = burst access, 0 = single-byte access). In LSB-first mode, the order of the 14 address bits is reversed. In the  
discussion that follows, a control word with R/W = 1 is a read control word, while a control word with R/W = 0 is a  
write control word. Note: The address range of the DS32512 is 000h–7FFh, so A[13:11] are ignored.  
Single-Byte Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with  
BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS  
high.  
Single-Byte Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with  
BURST = 0. The DS325xx then responds with the requested data byte. The bus master then terminates the  
transaction by pulling CS high.  
Burst Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with BURST = 1  
followed by the first data byte to be written. The DS325xx receives the first data byte on SDI, writes it to the  
specified register, increments its internal address register, and prepares to receive the next data byte. If the master  
44 of 130  
 
DS32506/DS32508/DS32512  
continues to transmit, the DS325xx continues to write the data received and increment its address counter. After  
the address counter reaches 7FFh it rolls over to address 000h and continues to increment.  
Burst Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with BURST = 1.  
The DS325xx then responds with the requested data byte on SDO, increments its address counter, and prefetches  
the next data byte. If the bus master continues to demand data, the DS325xx continues to provide the data on  
SDO, increment its address counter, and prefetch the following byte. After the address counter reaches 7FFh it  
rolls over to address 000h and continues to increment.  
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by  
pulling CS high. In response to early terminations, the DS325xx resets its SPI interface logic and waits for the start  
of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data  
byte, the current data byte is not written.  
Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the  
DS325xx is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support  
this option, the bus master must not drive the SDI/SDO line when the DS325xx is transmitting.  
AC Timing. See Table 11-9 and Figure 11-11 for AC timing specifications for the SPI interface.  
Figure 8-10. SPI Clock Polarity and Phase Options  
CS  
SCK  
CPOL = 0, CPHA = 0  
SCK  
CPOL = 0, CPHA = 1  
SCK  
CPOL = 1, CPHA = 0  
SCK  
CPOL = 1, CPHA = 1  
SDI/SDO  
MSB  
6
5
4
3
2
1
LSB  
CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES)  
45 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-11. SPI Bus Transactions  
Single-Byte Write  
CS  
R/W Register Address Burst Data Byte  
SDI  
0 (Write)  
0 (single-byte)  
SDO  
Single-Byte Read  
CS  
R/W Register Address Burst  
SDI  
1 (Read)  
0 (single-byte)  
SDO  
Data Byte  
Burst Write  
CS  
R/W Register Address Burst Data Byte 1  
Data Byte N  
SDI  
0 (Write)  
1 (burst)  
SDO  
Burst Read  
CS  
R/W Register Address Burst  
SDI  
1 (Read)  
1 (burst)  
Data Byte 1  
Data Byte N  
SDO  
8.10 Interrupt Structure  
The interrupt structure is designed to efficiently guide the user to the source of an interrupt. The status bits in the  
global interrupt status register (GLOBAL.ISR) are read to determine if the interrupt source comes from a global  
event, such as a one-second timer interrupt, or one of the ports. If the interrupt source is a global event, the global  
status register is read (GLOBAL.SRL) to determine the source. If the interrupt source is a port, the port interrupt  
status register (PORT.ISR) is read to determine if the interrupt source comes from a port event, such as a  
performance monitor update interrupt, or one of the functional blocks inside the port. If the interrupt source is a port  
event, the port status register is read (PORT.SRL) to determine the source. If the interrupt source is from a  
functional block inside the port, the associated block's status register is read to determine the source. The source  
of an interrupt can be determined by reading no more than three 16-bit registers.  
Once the interrupt source has been determined, the interrupt can be cleared by either reading or writing the latched  
status register (see Section 8.8.5). An alternate method for clearing an interrupt is to disable the interrupt at the bit,  
block, port, or global level by writing a zero to the associated interrupt enable bit. Note: Disabling the interrupt at  
the block, port, or global level disables all interrupts sources at or below that level.  
46 of 130  
 
DS32506/DS32508/DS32512  
Figure 8-12. Interrupt Signal Flow  
PORT LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
GLOBAL LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
PORT.SRL bit  
PORT.SRIE bit  
GLOBAL.SRL bit  
GLOBAL.SRIE bit  
GLOBAL INTERRUPT  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
PORT.SRL bit  
PORT.SRIE bit  
GLOBAL.SRL bit  
GLOBAL.SRIE bit  
GLOBAL.ISR bit  
GLOBAL.ISRIE bit  
GLOBAL.ISRIE bit  
GLOBAL.ISR bit  
INT*  
PORT.ISR bit  
block SRL bit  
block SRIE bit  
PORT.ISRIE bit  
PORT.ISRIE bit  
PORT.ISR bit  
block SRL bit  
block SRIE bit  
PORT INTERRUPT  
STATUS REGISTER  
AND INTERRUPT  
BLOCK LATCHED  
STATUS REGISTER  
AND INTERRUPT  
ENABLE REGISTER  
ENABLE REGISTER  
8.11 Reset and Power-Down  
When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the device is can be reset via the RST  
pin. The transmitters of all ports can be powered down using the TPD pin, while the receivers of all ports can be  
powered down using the RPD pin.  
When a microprocessor interface is enabled (IFSEL 000), the device presents a number of reset and power down  
options. The device can be reset at a global level via the GLOBAL.CR1:RST bit or the RST pin, and at the port  
level via the PORT.CR1:RST bit. Each port can be powered down via the PORT.CR1:TPD and RPD bits. The  
JTAG logic is reset by the JTRST pin.  
The external RST pin and the global reset bit (GLOBAL.CR1:RST) are combined to create an internal global reset  
signal. The global reset signal resets all the status and control registers on the chip (except the GLOBAL.CR1:RST  
bit), to their default values. It also resets all flip-flops in the global logic (including the CLAD block) and port logic to  
their reset values. The GLOBAL.CR1:RST bit stays set after a one is written to it. It is reset to zero when a zero is  
written to it or when the external RST pin is active.  
At the port level, the global reset signal combines with the port reset bit (PORT.CR1:RST) to create a port reset  
signal. The port reset signal resets all the status and control registers in the port (except PORT.CR1:RST bit) to  
their default values. It also resets all flip-flops in the port logic to their reset values. The port reset bit  
(PORT.CR1:RST) stays set after a one is written to it. It is reset to zero when a zero is written to it or when the  
global reset signal is active.  
The data path reset (RSTDP) resets all of the same registers and flip-flops as the “general” reset (RST), except for  
the control registers. This allows the device to be programmed while the data path logic is in reset. It is  
recommended that a port be placed in data path reset during configuration changes.  
The global data path reset bit (GLOBAL.CR1:RSTDP) is set to one when the global reset signal is active. This bit is  
cleared when a zero is written to it while the global reset signal is inactive. The global data path reset resets all of  
the data path registers and flip-flops on the chip.  
The port data path reset bit (PORT.CR1:RSTDP) is set to one when the port reset signal is active. It is cleared  
when a zero is written to it while the port reset signal is inactive. The port data path reset resets all of the port logic  
data path registers and flip-flops.  
47 of 130  
 
DS32506/DS32508/DS32512  
Table 8-16. Reset and Power-Down Sources  
REGISTER BITS  
PIN  
INTERNAL SIGNALS  
GLOBAL.CR1  
PORT.CR1  
Global  
Data Path  
Reset  
Tx Port  
Power-  
Down  
Rx Port Port Data  
Global  
Reset  
Port  
Reset  
RST RST RSTDP RST TPD RPD RSTDP  
Power-  
Path  
Down  
Reset  
0
1
1
1
1
1
1
1
1
F0  
1
0
0
0
0
0
0
0
F1  
F1  
1
0
0
0
0
0
0
F0  
F0  
0
1
0
0
0
0
0
F1  
F1  
0
F1  
1
1
0
0
0
F1  
F1  
0
F1  
1
0
1
0
0
F1  
F1  
0
F1  
0
0
0
1
0
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
1
1
0
1
0
0
1
1
1
1
1
0
0
1
0
Register bit states: F0 = forced to 0, F1 = forced to 1, 0 = set to 0, 1 = set to 1  
The reset signals in the device are asserted asynchronously and do not require a clock to put the logic into the  
reset state. The control registers do not require a clock to come out of the reset state, but all other logic does  
require a clock to come out of the reset state.  
The port transmit power-down function (PORT.CR1:TPD) disables all the transmit clocks and powers down the  
transmit LIU to minimize power consumption. The port receive power-down function (PORT.CR1:RPD) disables all  
of the receive clocks and powers down the receive LIU to minimize power consumption. The one-second timer  
circuit can be powered down by disabling its reference clock. The CLAD can be powered down by disabling it  
(setting GLOBAL.CR2:CLAD[6:0] = 0). The global logic cannot be powered down.  
After a global reset, all of the control and status registers in all ports are set to their default values and all the other  
flip-flops are reset to their reset values. The global data path reset (GLOBAL.CR1:RSTDP), all the port data path  
resets (PORT.CR1:RSTDP), and all the port power-down (PORT.CR1:TPD and RPD) bits are set after the global  
reset. A valid initialization sequence is to clear the port power-down bits in the ports that are to be active, write to all  
of the configuration registers to set them in the desired modes, then clear the GLOBAL.CR1:RSTDP and  
PORT.CR1:RSTDP bits. This causes all the logic to start up in a predictable manner. The device can also be  
initialized by clearing the GLOBAL.CR1:RSTDP, PORT.CR1:RSTDP, and PORT.CR1:TPD and RPD bits, then  
writing to all of the configuration registers to set them in the desired modes, and then clearing all of the latched  
status bits. This second initialization scheme can cause the device to operate unpredictably for a brief period of  
time.  
Some of the I/O pins are put into a known state at reset. At the global level, the microprocessor interface output  
and I/O pins (D[15:0]) are forced into the high impedance state when the RST pin is active, but not when the  
GLOBAL.CR1:RST bit is active. The CLAD clock pins CLKA, CLKB, and CLKC are forced to be the LIU reference  
clock inputs. The general-purpose I/O pins (GPIOAn and GPIOBn) are forced to be inputs until after the RST pin is  
deasserted. At the port level, the LIU transmitter outputs TXP and TXN are forced into a high-impedance state.  
Note: Setting any of the reset (RST), data path reset (RSTDP), or power-down (TPD, RPD) bits for less than 100  
ns may result in the associated circuits coming up in a random state. When a power-down bit is cleared, it takes  
approximately 1ms for all of the associated circuits to power-up.  
48 of 130  
 
DS32506/DS32508/DS32512  
9. REGISTER MAPS AND DESCRIPTIONS  
9.1 Overview  
When a microprocessor interface is enabled (IFSEL[2:0] 000), the registers described in this section are  
accessible. The overall memory map is shown in Table 9-1. The DS32512 register map covers the address range  
of 000 to 7FFh. On the DS32508, writes in the address space for LIUs 9 through 12 are ignored, and reads from  
these addresses return 00h. On the DS32506, address line A[10] is not present, and writes into the address space  
for LIU 7 are ignored, and reads from these addresses return 00h. The address LSB A[0] is used to address the  
upper and lower bytes of a register in 8-bit mode, and to swap the upper and lower bytes in 16-bit mode.  
In each register, bit 15 is the MSB and bit 0 is the LSB. Register addresses not listed and bits marked “—“ are  
reserved and must be written with 0 and ignored when read. Writing other values to these registers may put the  
device in a factory test mode resulting in undefined operation. Bits labeled “0” or “1” must be written with that value  
for proper operation. Register fields with underlined names are read-only fields; writes to these fields have no  
effect. All other fields are read-write. Register fields are described in detail in the register descriptions in Sections  
9.3 to 9.8.  
9.1.1 Status Bits  
The device has two types of status bits. Real-time status bits are read-only and indicate the state of a signal at the  
time it is read. Latched status bit are set when the associated event occurs and remain set until cleared. Once  
cleared, a latched status bit is not set again until the associated event recurs (goes away and comes back). A  
latched-on-change bit is a latched status bit that is set when the event occurs and when it goes away. A latched  
status bit can be cleared using either a clear-on-read or clear-on-write method (see Section 8.8.5). For clear-on-  
read, all latched status bits in a latched status register are cleared when the register is read. In 16-bit mode, all 16  
latched status bits are cleared. In 8-bit mode, only the eight bits read are cleared. For clear-on-write, a latched bit in  
a latched status register is cleared when a logic 1 is written to that bit. For example, writing FFFFh to a 16-bit  
latched status register clears all latched status bits in the register, whereas writing 0001h only clears bit 0 of the  
register. When set, some latched status bits can cause an interrupt request if enabled to do so by corresponding  
interrupt enable bits.  
9.1.2 Configuration Fields  
Configuration fields are read-write. During reset, each configuration field reverts to the default value shown in the  
register definition. Configuration register bits marked “—“ are reserved and must be written with 0. Configuration  
registers and bits can be written to and read from during a data path reset, however, all changes to these bits are  
ignored during the data path reset. As a result, all bits requiring a zero-to-one transition to initiate an action must  
have the transition occur after the data path reset has been removed. See Section 8.11 for more information about  
resets and data path resets.  
9.1.3 Counters  
All counters stop counting at their maximum count. A counter register is updated by asserting (low to high  
transition) the performance monitoring update signal (PMU). During a counter register update, the performance  
monitoring status signal (PMS) is deasserted. A counter register update consists of loading the counter register  
with the current count, resetting the counter, resetting the zero count status indication, and then asserting PMS. No  
events are missed during an update. See Section 8.7.4 for more information about performance monitor register  
updates.  
49 of 130  
 
DS32506/DS32508/DS32512  
9.2 Overall Register Map  
Table 9-1. Overall Register Map  
BASE  
BLOCK  
ADDRESS  
000h  
080h  
100h  
180h  
200h  
280h  
300h  
380h  
400h  
480h  
500h  
580h  
600h  
680h  
Global Registers  
Port Registers for Port 1  
Port Registers for Port 2  
Port Registers for Port 3  
Port Registers for Port 4  
Port Registers for Port 5  
Port Registers for Port 6  
Port Registers for Port 7  
Port Registers for Port 8  
Port Registers for Port 9  
Port Registers for Port 10  
Port Registers for Port 11  
Port Registers for Port 12  
Unused  
Table 9-2. Port Registers  
ADDRESS  
OFFSET  
DESCRIPTION  
BLOCK  
00h–1Fh  
20h–2Fh  
30h–3Fh  
40h–4Fh  
50h–6Fh  
70h–7Fh  
Port Common Registers  
LIU Registers  
B3ZS/HDB3 Encoder Registers  
B3ZS/HDB3 Decoder Registers  
BERT Registers  
PORT  
LIU  
LINE Tx  
LINE Rx  
BERT  
Unused  
Note: The address offsets given in this table are offsets from port base addresses shown in Table 9-1.  
50 of 130  
 
DS32506/DS32508/DS32512  
9.3 Global Registers  
Table 9-3. Global Register Map  
ADDRESS  
REGISTER  
OFFSET  
REGISTER DESCRIPTION  
ID Register  
Global Control Register 1  
Global Control Register 2  
Unused  
000h  
002h  
004h  
GLOBAL.IDR  
GLOBAL.CR1  
GLOBAL.CR2  
006h–00Eh  
010h  
GLOBAL.GIOACR1 General-Purpose I/O A Control Register 1  
GLOBAL.GIOACR2 General-Purpose I/O A Control Register 2  
GLOBAL.GIOBCR1 General-Purpose I/O B Control Register 1  
GLOBAL.GIOBCR2 General-Purpose I/O B Control Register 2  
012h  
014h  
016h  
018h–01Eh  
020h  
022h  
024h–026h  
028h  
02Ah  
02Ch  
02Eh–036h  
038h  
GLOBAL.ISR  
GLOBAL.ISRIE  
GLOBAL.SR  
GLOBAL.SRL  
GLOBAL.SRIE  
Unused  
Global Interrupt Status Register  
Global Interrupt Enable Register  
Unused  
Global Status Register  
Global Status Register Latched  
Global Status Register Interrupt Enable  
Unused  
General-Purpose I/O A Read Register  
General-Purpose I/O B Read Register  
Unused  
GLOBAL.GIOARR  
GLOBAL.GIOBRR  
03Ah  
03Ch–07Eh  
Register Name:  
GLOBAL.IDR  
Register Description:  
Register Address:  
ID Register  
000h  
Bit #  
15  
14  
13  
12  
11  
10  
9
8
Name  
ID15  
ID14  
ID13  
ID12  
ID11  
ID10  
ID9  
ID8  
Bit #  
7
6
5
4
3
2
1
0
Name  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bits 15 to 12: Device REV ID (ID[15:12]). These bits of the device ID register have the same information as the  
four bits of the JTAG REV ID portion of the JTAG ID register, JTAG ID[31:28]. See Section 10.  
Bits 11 to 0: Device CODE ID (ID[11:0]). These bits of the device ID register have the same information as the 12  
bits of the JTAG CODE ID portion of the JTAG ID register, JTAG ID[23:12]. See Section 10.  
51 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.CR1  
Global Control Register #1  
002h  
Bit #  
Name  
Default  
15  
14  
0
13  
0
12  
0
11  
10  
0
9
0
8
G1SROE  
0
G1SRS[3:0]  
0
Bit #  
Name  
Default  
7
TMEI  
0
6
MEIMS  
0
5
0
4
3
GPMU  
0
2
0
1
RSTDP  
1
0
RST  
0
GPM[1:0]  
0
Bits 12 to 9: Global One-Second Reference Source (G1SRS[3:0]). These bits determine the source for the  
internally generated one second reference. The source is selected from one of the CLAD clocks or from one of the  
port transmit clocks. See Section 8.7.2.  
0000 = Disabled  
0001 = DS3 reference clock  
0010 = E3 reference clock  
0011 = STS-1 reference clock  
0100 = Port 1 TCLK  
0101 = Port 2 TCLK  
0110 = Port 3 TCLK  
0111 = Port 4 TCLK  
1000 = Port 5 TCLK  
1001 = Port 6 TCLK  
1010 = Port 7 TCLK  
1011 = Port 8 TCLK  
1100 = Port 9 TCLK  
1101 = Port 10 TCLK  
1110 = Port 11 TCLK  
1111 = Port 12 TCLK  
Bit 8: Global One-Second Reference Output Enable (G1SROE). This bit determines whether the GPIOB3 pin is  
used to output the global one second reference signal. See Section 8.7.2.  
0 = GPIOB3 pin mode selected by GLOBAL.GIOBCR1:GIOB3S[1:0].  
1 = GPIOB3 outputs the global one second reference signal specified by GLOBAL.CR1:G1SRS[3:0]  
Bit 7: Transmit Manual Error Insert (TMEI). When GLOBAL.CR1:MEIMS = 0, this bit is used to insert errors in all  
blocks in all ports where block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. Error(s) are inserted at the next  
opportunity after this bit transitions from low to high. See Section 8.7.5. Note: This bit should be set low  
immediately after each error insertion.  
Bit 6: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the manual error insertion signal  
for all block-level error generators that have block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. See Section 8.7.5.  
0 = Global error insertion using GLOBAL.CR1:TMEI bit  
1 = Global error insertion using the GPIOB2 pin  
Bits 5 and 4: Global Performance Monitor Update Mode (GPM[1:0]). These bits specify the source of the  
performance monitoring update signal for all blocks that have block-level PMUM = 1 and PORT.CR1:PMUM = 1.  
See Section 8.7.4.  
00 = Global PM update using the GLOBAL.CR1:GPMU bit  
01 = Global PM update using the GPIOB1 pin  
1X = One-second PM update using the internal one-second counter (see Section 8.7.2)  
52 of 130  
 
DS32506/DS32508/DS32512  
Bit 3: Global Performance Monitor Register Update (GPMU). When GLOBAL.CR1:GPM[1:0] = 00, this bit is  
used to update all of the performance monitor registers where block-level PMUM = 1 and PORT.CR1:PMUM = 1.  
When this bit transitions from low to high, all configured performance monitoring registers are updated with the  
latest counter value, and all associated counters are reset. This bit should remain high until the performance  
monitor update status bit (GLOBAL.SR:GPMS) goes high, and then it should be brought back low, which clears the  
GPMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded  
with a value of one, and the “counter is non-zero” latched status bit is set. See Section 8.7.4.  
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the internal data path and status registers in  
all ports to their default state. This bit must be set high for a minimum of 100ns. See Section 8.11.  
0 = Normal operation  
1 = Force all data path registers to their default values  
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this  
RST bit), on all of the ports, are reset to their default state. This bit must be set high for a minimum of 100ns. This  
bit is logically ORed with the inverted hardware signal RST. See Section 8.11.  
0 = Normal operation  
1 = Force all internal registers to their default values  
53 of 130  
DS32506/DS32508/DS32512  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.CR2  
Global Control Register #2  
004h  
Bit #  
Name  
Default  
15  
14  
0
13  
0
12  
0
11  
CLAD[6:0]  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
CLKD19  
0
4
INTM  
0
3
RAS  
0
2
RAD  
0
1
LSBCRE  
0
0
GWRM  
0
Bits 14 to 8: CLAD I/O Mode (CLAD[6:0]). These bits control the CLAD clock I/O pins REFCLK, CLKA, CLKB,  
CLKC and CLKD. See Table 8-11 and Table 8-12 in Section 8.7.1.  
Bit 5: CLKD Frequency is 19.44MHz (CLKD19). This bit specifies the frequency to be output on CLKD when the  
CLAD[3] configuration bit is high.  
0 = 77.76MHz  
1 = 19.44MHz  
Bit 4: INT Pin Mode (INTM). This bit determines the inactive mode of the INT pin. The INT pin always drives low  
when an enabled interrupt source is active. See Section 8.10.  
0 = Pin is high impedance when no enabled interrupts are active  
1 = Pin drives high when no enabled interrupts are active  
Bit 3: RDY/ACK Select (RAS). This bit controls the microprocessor interface output pin RDY/ACK in Intel mode  
(IFSEL = 100 or 110) and Motorola mode (IFSEL = 101 or 111).  
0 = Normal operation: RDY in Intel mode and ACK in Motorola mode  
1 = Reverse operation: ACK in Intel mode and RDY in Motorola mode  
Bit 2: RDY/ACK Disable (RAD). This bit disables the microprocessor interface output pin RDY/ACK.  
0 = Enable, normal operation  
1 = Disable, tri-state  
Bit 1: Latched Status Bit Clear-on-Read Enable (LSBCRE). This bit determines when the latched status register  
bits are cleared. See Section 8.8.5.  
0 = Latched status register bits are cleared on a write  
1 = Latched status register bits are cleared on a read  
Bit 0: Global Write Mode (GWRM). This bit enables the global write mode. When this bit is set, a write to a  
register of any port causes a write to the same register in all the ports. In this mode register reads are not  
supported and result in undefined data. See Section 8.8.6.  
0 = Normal write mode  
1 = Global write mode  
54 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
GLOBAL.GIOACR1  
Register Description:  
Register Address:  
General-Purpose I/O A Control Register #1  
010h  
Bit #  
Name  
Default  
15  
14  
0
13  
12  
0
11  
10  
0
9
8
0
0
GIOA8S[1:0]  
GIOA7S[1:0]  
GIOA6S[1:0]  
GIOA5S[1:0]  
0
7
0
0
5
0
0
3
0
0
1
0
Bit #  
Name  
Default  
6
4
2
GIOA4S[1:0]  
GIOA3S[1:0]  
GIOA2S[1:0]  
GIOA1S[1:0]  
0
0
0
0
Note: See Section 8.7.3 for more information.  
Bits 15, 14: General-Purpose I/O A 8 Select (GIOA8S[1:0]). These bits specify the function of the GPIOA8 pin.  
00 = Input  
01 = Output LOS status for port 8  
10 = Output logic 0  
11 = Output logic 1  
Bits 13, 12: General-Purpose I/O A 7 Select (GIOA7S[1:0]). These bits specify the function of the GPIOA7 pin.  
00 = Input  
01 = Output LOS status for port 7  
10 = Output logic 0  
11 = Output logic 1  
Bits 11, 10: General-Purpose I/O A 6 Select (GIOA6S[1:0]). These bits specify the function of the GPIOA6 pin.  
00 = Input  
01 = Output LOS status for port 6  
10 = Output logic 0  
11 = Output logic 1  
Bits 9, 8: General-Purpose I/O A 5 Select (GIOA5S[1:0]). These bits specify the function of the GPIOA5 pin.  
00 = Input  
01 = Output LOS status for port 5  
10 = Output logic 0  
11 = Output logic 1  
Bits 7, 6: General-Purpose I/O A 4 Select (GIOA4S[1:0]). These bits specify the function of the GPIOA4 pin.  
00 = Input  
01 = Output LOS status for port 4  
10 = Output logic 0  
11 = Output logic 1  
Bits 5, 4: General-Purpose I/O A 3 Select (GIOA3S[1:0]). These bits specify the function of the GPIOA3 pin  
00 = Input  
01 = Output LOS status for port 3  
10 = Output logic 0  
11 = Output logic 1  
Bits 3, 2: General-Purpose I/O A 2 Select (GIOA2S[1:0]). These bits specify the function of the GPIOA2 pin.  
00 = Input  
01 = Output LOS status for port 2  
10 = Output logic 0  
11 = Output logic 1  
Bits 1, 0: General-Purpose I/O A 1 Select (GIOA1S[1:0]). These bits specify the function of the GPIOA1 pin.  
00 = Input  
01 = Output LOS status for port 1  
10 = Output logic 0  
11 = Output logic 1  
55 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
GLOBAL.GIOACR2  
Register Description:  
Register Address:  
General-Purpose I/O A Control Register #2  
012h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
6
0
5
4
0
3
2
0
1
0
0
GIOA12S[1:0]  
0
GIOA11S[1:0]  
0
GIOA10S[1:0]  
0
GIOA9S[1:0]  
0
Note: See Section 8.7.3 for more information.  
Bits 7, 6: General-Purpose I/O A 12 Select (GIOA12S[1:0]). These bits specify the function of the GPIOA12 pin.  
00 = Input  
01 = Output LOS status for port 12  
10 = Output logic 0  
11 = Output logic 1  
Bits 5, 4: General-Purpose I/O A 11 Select (GIOA11S[1:0]). These bits specify the function of the GPIOA11 pin  
00 = Input  
01 = Output LOS status for port 11  
10 = Output logic 0  
11 = Output logic 1  
Bits 3, 2: General-Purpose I/O A 10 Select (GIOA10S[1:0]). These bits specify the function of the GPIOA10 pin.  
00 = Input  
01 = Output LOS status for port 10  
10 = Output logic 0  
11 = Output logic 1  
Bits 1, 0: General-Purpose I/O A 9 Select (GIOA9S[1:0]). These bits specify the function of the GPIOA9 pin.  
00 = Input  
01 = Output LOS status for port 9  
10 = Output logic 0  
11 = Output logic 1  
56 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
GLOBAL.GIOBCR1  
Register Description:  
Register Address:  
General-Purpose I/O B Control Register #1  
014h  
Bit #  
Name  
Default  
15  
14  
0
13  
12  
0
11  
10  
0
9
8
0
0
GIOB8S[1:0]  
GIOB7S[1:0]  
GIOB6S[1:0]  
GIOB5S[1:0]  
0
7
0
0
5
0
0
3
0
0
1
0
Bit #  
Name  
Default  
6
4
2
GIOB4S[1:0]  
GIOB3S[1:0]  
GIOB2S[1:0]  
GIOB1S[1:0]  
0
0
0
0
Note: See Section 8.7.3 for more information.  
Bits 15, 14: General-Purpose I/O B 8 Select (GIOB8S[1:0]). These bits specify the function of the GPIOB8 pin.  
00 = Input  
01 = Output LOS status for port 8  
10 = Output logic 0  
11 = Output logic 1  
Bits 13, 12: General-Purpose I/O B 7 Select (GIOB7S[1:0]). These bits specify the function of the GPIOB7 pin.  
00 = Input  
01 = Output LOS status for port 7  
10 = Output logic 0  
11 = Output logic 1  
Bits 11, 10: General-Purpose I/O B 6 Select (GIOB6S[1:0]). These bits specify the function of the GPIOB6 pin.  
00 = Input  
01 = Output LOS status for port 6  
10 = Output logic 0  
11 = Output logic 1  
Bits 9, 8: General-Purpose I/O B 5 Select (GIOB5S[1:0]). These bits specify the function of the GPIOB5 pin.  
00 = Input  
01 = Output LOS status for port 5  
10 = Output logic 0  
11 = Output logic 1  
Bits 7, 6: General-Purpose I/O B 4 Select (GIOB4S[1:0]). These bits specify the function of the GPIOB4 pin.  
00 = Input  
01 = Output LOS status for port 4  
10 = Output logic 0  
11 = Output logic 1  
Bits 5, 4: General-Purpose I/O B 3 Select (GIOB3S[1:0]). These bits specify the function of the GPIOB3 pin.  
Note: If GLOBAL.CR1:G1SROE is set to 1, GPIOB3 is the global one second reference output signal.  
00 = Input  
01 = Output LOS status for port 3  
10 = Output logic 0  
11 = Output logic 1  
Bits 3, 2: General-Purpose I/O B 2 Select (GIOB2S[1:0]). These bits specify the function of the GPIOB2 pin.  
Note: If GLOBAL.CR1:MEIMS is set to 1, GPIOB2 is the global transmit manual error insertion (TMEI) input signal.  
00 = Input  
01 = Output LOS status for port 2  
10 = Output logic 0  
11 = Output logic 1  
57 of 130  
 
DS32506/DS32508/DS32512  
Bits 1, 0: General-Purpose I/O B 1 Select (GIOB1S[1:0]). These bits specify the function of the GPIOB1 pin.  
Note: If GLOBAL.CR1:GPM[1:0] is set to 01, GPIOB1 is the global performance monitoring update input signal.  
00 = Input  
01 = Output LOS status for port 1  
10 = Output logic 0  
11 = Output logic 1  
Register Name:  
GLOBAL.GIOBCR2  
Register Description:  
Register Address:  
General-Purpose I/O B Control Register #2  
016h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
6
0
5
4
0
3
2
0
1
0
0
GIOB12S[1:0]  
0
GIOB11S[1:0]  
0
GIOB10S[1:0]  
0
GIOB9S[1:0]  
0
Note: See Section 8.7.3 for more information.  
Bits 7, 6: General-Purpose I/O 12 Select (GIOB12S[1:0]). These bits specify the function of the GPIOB12 pin.  
00 = Input  
01 = Output LOS status for port 12  
10 = Output logic 0  
11 = Output logic 1  
Bits 5, 4: General-Purpose I/O 11 Select (GIOB11S[1:0]). These bits specify the function of the GPIOB11 pin  
00 = Input  
01 = Output LOS status for port 11  
10 = Output logic 0  
11 = Output logic 1  
Bits 3, 2: General-Purpose I/O 10 Select (GIOB10S[1:0]). These bits specify the function of the GPIOB10 pin.  
00 = Input  
01 = Output LOS status for port 10  
10 = Output logic 0  
11 = Output logic 1  
Bits 1, 0: General-Purpose I/O 9 Select (GIOB9S[1:0]). These bits specify the function of the GPIOB9 pin.  
00 = Input  
01 = Output LOS status for port 9  
10 = Output logic 0  
11 = Output logic 1  
58 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
GLOBAL.ISR  
Register Description:  
Register Address:  
Global Interrupt Status Register  
020h  
Bit #  
Name  
15  
14  
13  
12  
P12ISR  
11  
P11ISR  
10  
P10ISR  
9
8
P9ISR  
P8ISR  
Bit #  
7
6
5
4
3
2
1
0
Name  
P7ISR  
P6ISR  
P5ISR  
P4ISR  
P3ISR  
P2ISR  
P1ISR  
GSR  
Bits 12 to 1: Port n Interrupt Status Register (PnISR). This bit is set when any of the bits in the port n interrupt  
status register (PORT.ISR) are set and enabled for interrupt. When set, this bit causes an interrupt if  
GLOBAL.ISRIE:PnISRIE is set. See Section 8.10.  
Bit 0: Global Status Register (GSR). This bit is set when any of the latched status register bits in the global  
latched status register (GLOBAL.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if  
GLOBAL.ISRIE:GSRIE is set. See Section 8.10.  
Register Name:  
GLOBAL.ISRIE  
Register Description:  
Register Address:  
Global Interrupt Status Register Interrupt Enable  
022h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
11  
10  
9
P9ISRIE  
0
8
P8ISRIE  
0
P12ISRIE P11ISRIE P10ISRIE  
0
0
0
Bit #  
Name  
Default  
7
P7ISRIE  
0
6
P6ISRIE  
0
5
P5ISRIE  
0
4
P4ISRIE  
0
3
P3ISRIE  
0
2
P2ISRIE  
0
1
P1ISRIE  
0
0
GSRIE  
0
Bits 12 to 1: Port n Interrupt Status Register Interrupt Enable (PnISRIE). This bit is the interrupt enable for the  
GLOBAL.ISR:PnISR status bit. See Section 8.10.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Global Status Register Interrupt Enable (GSRIE). This bit is the interrupt enable for the GLOBAL.ISR:GSR  
status bit. See Section 8.10.  
0 = mask the interrupt  
1 = enable the interrupt  
59 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
Register Description:  
Register Address:  
GLOBAL.SR  
Global Status Register  
028h  
Bit #  
Name  
Default  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
Name  
Default  
7
6
5
4
3
2
CLOL  
0
1
0
GPMS  
0
Bit 2: CLAD Loss of Lock (CLOL). This bit is set when the CLAD is not locked to the reference frequency.  
Bit 0: Global Performance Monitoring Update Status (GPMS). This bit is set when the PORT.SR:PMS status  
bits are set in all of the ports that are enabled for global update control (i.e., all ports that have PORT.CR1:PMUM =  
1). Ports that have PORT.CR1:PMUM = 0 have no effect on this bit. In global software update mode, the global  
update request bit (GLOBAL.CR1:GPMU) should be held high until this status bit goes high. See Section 8.7.4.  
0 = The associated update request signal is low or not all register updates are completed.  
1 = The requested performance register updates are all completed.  
Register Name:  
GLOBAL.SRL  
Register Description:  
Register Address:  
Global Status Register Latched  
02Ah  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
7
6
5
4
3
2
1
0
Name  
CLKCL  
CLKBL  
CLKAL  
CLADL  
CLOLL  
G1SREFL  
GPMSL  
Bit 6: CLAD C Clock Activity Latched (CLKCL). This bit is set when the signal on the CLKC pin is active. Note:  
This bit should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 8.7.1.  
Bit 5: CLAD B Clock Activity Latched (CLKBL). This bit is set when the signal on the CLKB pin is active. Note:  
This bit should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 8.7.1.  
Bit 4: CLAD A Clock Activity Latched (CLKAL). This bit is set when the signal on the CLKA pin is active. Note:  
This bit should always be low when GLOBAL.CR2:CLAD[6:4] 000. See Section 8.7.1.  
Bit 3: CLAD Reference Clock Activity Status Latched (CLADL). This bit is set when the CLAD PLL reference  
clock signal on the REFCLK pin is active. Note: When GLOBAL.CR2:CLAD[6:4] = 000, the REFCLK pin is unused.  
See Section 8.7.1.  
Bit 2: CLAD Loss of Lock Latched (CLOLL). This bit is set when the GLOBAL.SR:CLOL status bit transitions  
from low to high.  
Bit 1: Global One-Second Status Latched (G1SREFL). This bit is set once each second when the internal global  
one-second timer signal transitions low to high. When set, this bit causes an interrupt if interrupt enables  
GLOBAL.SRIE:G1SREFIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1.  
Bit 0: Global Performance Monitoring Update Status Latched (GPMSL). This bit is set when the  
GLOBAL.SR:GPMS status bit changes from low to high. When set, this bit causes an interrupt if interrupt enables  
GLOBAL.SRIE:GPMSIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1.  
60 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
GLOBAL.SRIE  
Register Description:  
Register Address:  
Global Status Register Interrupt Enable  
02Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
CLOLIE  
0
1
0
G1SREFIE GPMSIE  
0
0
Bit 2: CLAD Loss of Lock Interrupt Enable (CLOLIE). This bit is the interrupt enable for the  
GLOBAL.SRL:CLOLL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Global One-Second Interrupt Enable (G1SREFIE). This bit is the interrupt enable for the  
GLOBAL.SRL:G1SREFL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Global Performance Monitoring Update Status Interrupt Enable (GPMSIE). This bit is the interrupt  
enable for the GLOBAL.SRL: GPMSL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Register Name:  
GLOBAL.GIOARR  
Register Description:  
Register Address:  
General-Purpose I/O A Read Register  
038h  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
GPIOA12 GPIOA11 GPIOA10  
GPIOA9  
Bit #  
7
6
5
4
3
2
1
0
Name  
GPIOA8  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA3  
GPIOA2  
GPIOA1  
Bits 11 to 0: General-Purpose I/O A n Status (GPIOAn). Bit n indicates the status of general-purpose I/O A pin n  
(GPIOAn). See Section 8.7.3.  
Register Name:  
GLOBAL.GIOBRR  
Register Description:  
Register Address:  
General-Purpose I/O B Read Register  
03Ah  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
GPIOB12 GPIOB11 GPIOB10  
GPIOB9  
Bit #  
7
6
5
4
3
2
1
0
Name  
GPIOB8  
GPIOB7  
GPIOB6  
GPIOB5  
GPIOB4  
GPIOB3  
GPIOB2  
GPIOB1  
Bits 11 to 0: General-Purpose I/O B n Status (GPIOBn). Bit n indicates the status of general-purpose I/O B pin n  
(GPIOBn). See Section 8.7.3.  
61 of 130  
 
DS32506/DS32508/DS32512  
9.4 Port Common Registers  
Table 9-4. Port Common Register Map  
ADDRESS  
OFFSET  
REGISTER  
REGISTER DESCRIPTION  
00h  
02h  
04h  
06h  
PORT.CR1  
PORT.CR2  
PORT.CR3  
Port Control Register 1  
Port Control Register 2  
Port Control Register 3  
Unused  
08h  
Unused  
0Ah  
0Ch  
0Eh  
10h  
PORT.INV  
Port I/O Invert Control Register  
Unused  
Unused  
Port Interrupt Status Register  
Unused  
PORT.ISR  
12h  
14h  
PORT.ISRIE Port Interrupt Status Register Interrupt Enable  
16h  
Unused  
18h  
PORT.SR  
PORT.SRL  
Port Status Register  
Port Status Register Latched  
1Ah  
1Ch  
1Eh  
PORT.SRIE Port Status Register Interrupt Enable  
Unused  
Register Name:  
PORT.CR1  
Register Description:  
Register Address:  
Port Control Register 1  
n * 80h + 00h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
TMEI  
0
6
MEIMS  
0
5
PMUM  
0
4
PMU  
0
3
TPD  
1
2
RPD  
1
1
RSTDP  
1
0
RST  
0
Bit 7: Transmit Manual Error Insert (TMEI). When PORT.CR1:MEIMS = 0, this bit is used to insert errors in all  
blocks where block-level MEIMS = 1. Error(s) are inserted at the next opportunity after this bit transitions from low  
to high. See Section 8.7.5. Note: This bit should be set low immediately after each error insertion.  
Bit 6: Transmit Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion  
signal for all block-level error generators that have block-level MEIMS = 1. See Section 8.7.5.  
0 = Port-level error insertion via PORT.CR1:TMEI  
1 = Global error insertion as specified by GLOBAL.CR1:MEIMS  
Bit 5: Port Performance Monitor Update Mode (PMUM). This bit specifies the source of the performance  
monitoring update signal for all blocks that have block-level PMUM = 1. See Section 8.7.4.  
0 = Port-level PM update via PORT.CR1:PMU  
1 = Global PM update as specified by GLOBAL.CR1:GPM[1:0]  
Bit 4: Port Performance Monitor Register Update (PMU). When PORT.CR1:PMUM = 0, this bit is used to  
update all of the performance monitor registers where block-level PMUM = 1. When this bit transitions from low to  
high, all configured performance monitoring registers are updated with the latest counter values, and all associated  
counters are reset. This bit should remain high until the performance monitor update status bit (PORT.SR:PMS)  
goes high, and then it should be brought back low, which clears the PMS status bit. If a counter increment occurs  
at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is non-  
zero” latched status bit is set. See Section 8.7.4.  
62 of 130  
 
DS32506/DS32508/DS32512  
Bit 3: Transmit Power-Down (TPD). When this bit is set, the transmit path of the port is powered down and  
considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11.  
0 = Normal operation  
1 = Power down the port transmit path (TXP and TXN become high impedance)  
Bit 2: Receive Power-Down (RPD). When this bit is set, the receive path of the port is powered down and  
considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11.  
0 = Normal operation  
1 = Power down the port receive path (RPOS/RDAT, RNEG/RLCV, and RCLK become high impedance)  
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the port’s internal data path and status  
registers to their default state. This bit must be set high for a minimum of 100ns and then set back low. See Section  
8.11.  
0 = Normal operation  
1 = Force all data path registers to their default values  
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this  
RST bit) of this port are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is  
logically ORed with the inverted hardware signal RST and the GLOBAL.CR1:RST bit. See Section 8.11.  
0 = Normal operation  
1 = Force all internal registers to their default values  
63 of 130  
DS32506/DS32508/DS32512  
Register Name:  
PORT.CR2  
Register Description:  
Register Address:  
Port Control Register 2  
n * 80h + 02h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
ROD  
0
3
TBIN  
0
2
RBIN  
0
1
TCC  
0
0
0
LM[1:0]  
Bits 7 and 6: LIU Mode (LM[1:0]). These bits select the operating mode of the port. See Section 8.1.  
00 = DS3  
01 = E3  
10 = STS-1  
11 = reserved  
Bit 4: Receive Output Disable (ROD). See Section 8.3.6.4.  
0 = enable the receiver outputs  
1 = disable the receiver outputs (RCLK, RPOS/RDAT, and RNEG/RLCV)  
Bit 3: Transmit Binary Interface Enable (TBIN). See Section 8.2.2.  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder  
is disabled.  
1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled.  
Bit 2: Receive Binary Interface Enable (RBIN). See Section 8.3.6.  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is  
disabled.  
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code  
violations. The B3ZS/HDB3 encoder is enabled.  
Bit 1: Transmit Common Clock Mode (TCC). See Section 8.2.1.1.  
0 = Source transmit clock for port n from TCLKn  
1 = Source transmit clock for port n from TCLK1  
64 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
PORT.CR3  
Register Description:  
Register Address:  
Port Control Register 3  
n * 80h + 04h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
BERTE  
0
8
BERTD  
0
Bit #  
Name  
Default  
7
SCRD  
0
6
0
5
0
4
AIST  
0
3
TAIS  
0
2
LBS  
0
1
0
0
LB[1:0]  
0
Bit 9: BERT Enable (BERTE). See Section 8.5.  
0 = disable the BERT pattern generator (the pattern detector is always enabled)  
1 = enable the BERT pattern generator (the pattern detector is always enabled)  
Bit 8: BERT Direction (BERTD). See Section 8.5.  
0 = line direction (transmit to receive)  
1 = system direction (receive to transmit)  
Bit 7: STS-1 Scrambling Disable (SCRD). This bit controls STS-1 scrambling when AIS-L is generated in STS-1  
mode. See Section 8.2.3.  
0 = Perform scrambling  
1 = Do not perform scrambling  
Bit 4: AIS Type (AIST). See Section 8.2.4.  
0 = Unframed all ones  
1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode)  
Bit 3: Transmit AIS (TAIS). The type of AIS signal depends on the LIU mode (DS3, E3, or STS-1) and the  
configured AIS type. See Section 8.2.4.  
0 = transmit normal data  
1 = transmit AIS signal  
Bit 2: Loopback Select (LBS). This bit affects the function of the loopback mode (LBM[1:0]) bits.  
Bits 1 and 0: Loopback Mode (LB[1:0]). These bits enable loopbacks. The effect of the LB = 11 decode is  
controlled by the LBS configuration bit. See Section 8.6.  
00 = No loopback  
01 = Diagnostic loopback (DLB)  
10 = Line loopback (LLB)  
11 (LBS = 0) = Line loopback (LLB) and diagnostic loopback (DLB) simultaneously  
11 (LBS = 1) = Analog loopback (ALB)  
65 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
PORT.INV  
Register Description:  
Register Address:  
Port I/O Invert Control Register  
n * 80h + 0Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
TNEGI  
0
5
TPOSI  
0
4
TCLKI  
0
3
0
2
RNEGI  
0
1
RPOSI  
0
0
RCLKI  
0
Bit 6: TNEG Invert (TNEGI). This bit inverts the TNEG input pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 5: TPOS/TDAT Invert (TPOSI). This bit inverts the TPOS/TDAT input pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 4: TCLK Invert (TCLKI). This bit inverts the TCLK pin input pin when set. See Section 8.2.1.  
0 = Noninverted; TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = Inverted; TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Bit 2: RNEG/RLCV Invert (RNEGI). This bit inverts the RNEG/RLCV output pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 1: RPOS/RDAT Invert (RPOSI). This bit inverts the RPOS/RDAT output pin when set.  
0 = Noninverted  
1 = Inverted  
Bit 0: RCLK Invert (RCLKI). This bit inverts the RCLKn output pin when set. See Section 8.3.6.3.  
0 = Noninverted; RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK.  
1 = Inverted; RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK.  
66 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
PORT.ISR  
Register Description:  
Register Address:  
Port Interrupt Status Register  
n * 80h + 10h  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
7
6
5
4
3
2
1
0
Name  
LDSR  
LIUSR  
BSR  
PSR  
Bit 3: Line Decoder Status Register Interrupt Status (LDSR). This bit is set when any of the latched status  
register bits in the B3ZS/HDB3 Line Decoder block are set and enabled for interrupt. When set, this bit causes an  
interrupt if PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are both set. See Section 8.10.  
Bit 2: LIU Status Register Interrupt Status (LIUSR). This bit is set when any of the latched status register bits in  
the LIU block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:LIUSRIE and  
GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.  
Bit 1: BERT Status Register Interrupt Status (BSR). This bit is set when any of the latched status register bits in  
the BERT block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:BSRIE and  
GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.  
Bit 0: Port Status Register Interrupt Status (PSR). This bit is set when any of the latched status register bits in  
the port latched status register (PORT.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt  
if PORT.ISRIE:PSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.  
Register Name:  
PORT.ISRIE  
Register Description:  
Register Address:  
Port Interrupt Status Register Interrupt Enable  
n * 80h + 14h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
LDSRIE  
0
2
LIUSRIE  
0
1
BSRIE  
0
0
PSRIE  
0
Bit 3: Line Decoder Status Register Interrupt Enable (LDSRIE). This bit is the interrupt enable for the  
PORT.ISR:LDSR status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: LIU Status Register Interrupt Enable (LIUSRIE). This bit is the interrupt enable for the PORT.ISR:LIUSR  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: BERT Status Register Interrupt Enable (BSRIE). This bit is the interrupt enable for the PORT.ISR:BSR  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Port Status Register Interrupt Enable (PSRIE). This bit is the interrupt enable for the PORT.ISR:PSR  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
67 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
PORT.SR  
Register Description:  
Register Address:  
Port Status Register  
n * 80h + 18h  
Bit #  
Name  
Default  
15  
14  
13  
12  
11  
10  
9
8
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
PMS  
0
Bit 0: Performance Monitoring Update Status (PMS). This bit is set when the PMS bits are set in all of the port  
functional blocks that are configured for port-level update control (i.e., all blocks that have PMUM = 1). Blocks that  
have PMUM = 0 have no effect on this bit. In port-level software update mode, the port update request bit  
(PORT.CR1:PMU) should be held high until this status bit goes high. See Section 8.7.4.  
0 = The associated update request signal is low or not all register updates are completed.  
1 = The requested performance register updates are all completed.  
Register Name:  
PORT.SRL  
Register Description:  
Register Address:  
Port Status Register Latched  
n * 80h + 1Ah  
Bit #  
Name  
15  
14  
13  
12  
11  
10  
9
8
TCLKL  
Bit #  
7
6
5
4
3
2
1
0
Name  
PMSL  
Bit 8: Transmit Clock Activity Status Latched (TCLKL). This bit is set when the signal on the TCLK pin used by  
this port (TCLKn when TCC = 0, TCLK1 when TCC = 1) is active. When set, this bit causes an interrupt if interrupt  
enables PORT.SRIE:TCLKIE, PORT.ISRIE:PSRIE, and GLOBAL.ISRIE: PnISRIE are all set.  
Bit 0: Performance Monitoring Update Status Latched (PMSL). This bit is set when the PORT.SR:PMS status  
bit changes from low to high. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:PMSIE,  
PORT.ISRIE:PSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.7.4.  
68 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
PORT.SRIE  
Register Description:  
Register Address:  
Port Status Register Interrupt Enable  
n * 80h + 1Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
TCLKIE  
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PMSIE  
0
Bit 8: Transmit Clock Activity Latched Status Interrupt Enable (TCLKIE). This bit is the interrupt enable for the  
PORT.SRL:TCLKL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Performance Monitoring Update Latched Status Interrupt Enable (PMSIE). This bit is the interrupt  
enable for the PORT.SRL:PMSL bit.  
0 = mask the interrupt  
1 = enable the interrupt  
69 of 130  
 
DS32506/DS32508/DS32512  
9.5 LIU Registers  
ADDRESS  
OFFSET  
REGISTER  
REGISTER DESCRIPTION  
Control Register 1  
20h  
22h  
LIU.CR1  
LIU.CR2  
Control Register 2  
24h  
26h  
28h  
LIU.TWSCR1  
LIU.TWSCR2  
LIU.SR  
Transmit Waveshaping Control Register 1  
Transmit Waveshaping Control Register 2  
Status Register  
2Ah  
LIU.SRL  
Status Register Latched  
2Ch  
2Eh  
LIU.SRIE  
LIU.RGLR  
Status Register Interrupt Enable  
Receive Gain Level Register  
Register Name:  
LIU.CR1  
Register Description:  
Register Address:  
LIU Control Register 1  
n * 80h + 20h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
8
0
0
0
JAD[1:0]  
JAS[1:0]  
Bit #  
Name  
Default  
7
0
6
0
5
TLBO  
0
4
TOE  
0
3
2
TTRE  
0
TRESADJ[2:0]  
0
0
Bits 11, 10: Jitter Attenuator Depth (JAD[1:0]). These bits select the jitter attenuator buffer depth. See Section  
8.4.  
00 = 16 bits  
01 = 32 bits  
10 = 64 bits  
11 = 128 bits  
Bit 9, 8: Jitter Attenuator Select (JAS[1:0]). These bits select the location of the jitter attenuator. See Section 8.4.  
00 = Disabled  
01 = Receive Path  
10 = Transmit Path  
11 = Transmit Path  
Bit 5: Transmit LIU LBO (TLBO). This bit is used to enable the transmit LBO circuit which causes the transmit  
signal to be preattenuated to mimic the attenuation of approximately approximates about 225 feet of cable. This is  
used to reduce near-end crosstalk when the cable lengths are short. This signal is only valid in DS3 and STS-1  
modes. See Section 8.2.6.  
0 = Disabled  
1 = Enabled  
Bit 4: Transmit Output Enable (TOE). This bit enables the transmitter outputs (TXP and TXN). The transmitter  
continues to operate internally when the transmitter is tri-stated. Only the line driver and driver monitor are  
disabled. See Section 8.2.7. Note: This bit is ORed with the associated TOE input pin.  
0 = TXP and TXN are high impedance  
1 = TXP and TXN are driven  
Bit 3: Transmit Termination Resistor Enable (TTRE). This bit indicates when the transmitter internal termination  
is enabled. See Section 8.2.8.  
0 = Disabled, the transmitter is terminated externally  
1 = Enabled, the transmitter is terminated internally  
70 of 130  
 
DS32506/DS32508/DS32512  
Bits 2, 0: Transmit Resistor Adjustment (TRESADJ[2:0]). These bits are used to adjust the internal termination  
resistance of the transmitter. See Section 8.2.8.  
000 = 75Ω  
001 = 82Ω  
010 = 90Ω  
011 = 100Ω  
100 = 68Ω  
101 = 62Ω  
110 = 56Ω  
111 = 50Ω  
Register Name:  
LIU.CR2  
Register Description:  
Register Address:  
LIU Control Register 2  
n * 80h + 22h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
RFL2E  
0
4
RMON  
0
3
RTRE  
0
2
0
1
0
0
RRESADJ[2:0]  
0
Bit 5: Receive Fail 2 Enable (RFL2E). This bit is used to enable the receive failure type 2 detection. See Section  
8.3.8.  
0 = Disable receive failure type 2 detection  
1 = Enable receive failure type 2 detection  
Bit 4: Receive LIU Monitor Mode (RMON). This bit is used to enable the receive LIU monitor mode preamplifier.  
Enabling the preamplifier adds about 14dB of linear amplification for use in monitor applications where the signal  
has been reduced 20dB using resistive attenuator circuits. Note: When enabled, the preamp is turned on or off  
automatically depending upon the input signal level. See Section 8.3.2.  
0 = Disable the preamp  
1 = Enable the preamp  
Bit 3: Receive Termination Resistor Enable (RTRE). This bit indicates when the receiver internal termination is  
enabled. See Section 8.3.1.  
0 = Disabled, the receiver is terminated externally  
1 = Enabled, the receiver is terminated internally  
Bits 2 to 0: Receive Resistor Adjustment (RRESADJ[2:0]). These bits are used to adjust the internal termination  
resistance of the receiver. See Section 8.3.1.  
000 = 75Ω  
001 = 82Ω  
010 = 90Ω  
011 = 100Ω  
100 = 68Ω  
101 = 62Ω  
110 = 56Ω  
111 = 50Ω  
71 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LIU.TWSCR1  
Register Description:  
Register Address:  
LIU Transmit Waveshaping Control Register 1  
n * 80h + 24h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
11  
0
10  
0
9
0
1
0
8
0
0
0
TWSC[15:8]  
0
4
0
Bit #  
Name  
Default  
7
6
5
3
2
TWSC[7:0]  
0
0
0
0
0
See Figure 8-1, Figure 8-2, and Figure 8-3 for illustrations of the first and second rise/fall time segments of the DS3  
and STS-1 waveforms and the overshoot, one level, undershoot, and zero level segments for the E3 waveform.  
Bits 15, 14: Transmit Waveshaping Control (TWSC[15:14]). In DS3 and STS-1 modes, this field adjusts the  
width of the first of two rising-edge segments. In E3 mode this field adjusts the width of the leading edge overshoot.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first rise time  
normal overshoot width  
increase overshoot width  
decrease overshoot width  
decrease overshoot width  
01 - increase first rise time by 0.1ns  
10 - decrease first rise time by 0.1ns  
11 - decrease first rise time by 0.2ns  
Bits 13, 12: Transmit Waveshaping Control (TWSC[13:12]). In DS3 and STS-1 modes, this field adjusts the  
width of the second of two rising-edge segments. In E3 mode this field adjusts the width of the pulse plateau.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal second rise time  
normal “one level” time  
01 - increase second rise time by 0.1ns  
10 - decrease second rise time by 0.1ns  
11 - decrease second rise time by 0.1ns  
increase “one level” time by 0.15ns  
decrease “one level” time by 0.15ns  
decrease “one level” time by 0.3ns  
Bits 11, 10: Transmit Waveshaping Control (TWSC[11:10]). In DS3 and STS-1 modes, this field adjusts the  
width of the first of two falling-edge segments. In E3 mode this field adjusts the width of the trailing edge  
undershoot.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first fall time  
normal undershoot width  
01 - increase first fall time by 0.1ns  
10 - decrease first fall time by 0.1ns  
11 - decrease first fall time by 0.1ns  
increase undershoot width by 0.15ns  
decrease undershoot width by 0.15ns  
decrease undershoot width by 0.3ns  
Bits 9, 8: Transmit Waveshaping Control (TWSC[9:8]). In DS3 and STS-1 modes, this field adjusts the width of  
the second of two falling-edge segments. In E3 mode this field adjusts the width of the zero after the trailing edge.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal second fall time  
normal “zero level” width  
01 - increase second fall time by 0.1ns  
10 - decrease second fall time by 0.1ns  
11 - decrease second fall time by 0.2ns  
increase “zero level” width by 0.15ns  
decrease “zero level” width by 0.15ns  
decrease “zero level” width by 0.3ns  
Bits 7, 6: Transmit Waveshaping Control (TWSC[7:6]). In DS3 and STS-1 modes, this field adjusts the  
amplitude of the first of two rising-edge segments. In E3 mode this field adjusts the amplitude of the leading edge  
overshoot. The 11 value is a special case in which the entire pulse is made narrower.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first rise amplitude  
01 - decrease first rise amplitude 15%  
10 - increase first rise amplitude 15%  
11 - decrease pulse width by 0.15ns  
normal overshoot  
decrease overshoot amplitude 2%  
increase overshoot amplitude 2%  
decrease pulse width by 0.15ns  
72 of 130  
 
DS32506/DS32508/DS32512  
Bits 5, 4: Transmit Waveshaping Control (TWSC[5:4]). In DS3 and STS-1 modes, this field adjusts the  
amplitude of the second of two rising-edge segments. In E3 mode this field has no effect, except for the 11 value,  
which is a special case in which the entire pulse is made wider.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal rise amplitude  
normal pulse  
01 - decrease second rise amplitude 15%  
10 - increase second rise amplitude 15%  
11 - increase pulse width by 0.15ns  
normal pulse  
normal pulse  
increase pulse width by 0.15ns  
Bits 3, 2: Transmit Waveshaping Control (TWSC[3:2]). In DS3 and STS-1 modes, this field adjusts the  
amplitude of the first of two falling-edge segments. In E3 mode this field adjusts the amplitude of the trailing edge  
overshoot. The 11 value is a special case in which the entire pulse is made wider.  
DS3/STS-1 Behavior  
E3 Behavior  
00 - normal first fall time  
normal undershoot  
01 - decrease first fall time amplitude 15%  
10 - increase first fall time amplitude 15%  
11 - increase pulse width by 0.15ns  
decrease undershoot 2%  
increase undershoot 2%  
increase pulse width by 0.15ns  
Bits 1, 0: Transmit Waveshaping Control (TWSC[1:0]). In DS3 and STS-1 modes, this field adjusts the fall time  
of the second of two falling-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a  
special case in which the entire pulse is made narrower.  
DS3/STS-1 Behavior  
00 - normal second fall time  
E3 Behavior  
normal pulse  
01 - decrease second fall time amplitude 15% normal pulse  
10 - increase second fall time amplitude 15% normal pulse  
11 - decrease pulse width by 0.15ns  
decrease pulse width by 0.15ns  
73 of 130  
DS32506/DS32508/DS32512  
Register Name:  
LIU.TWSCR2  
Register Description:  
Register Address:  
LIU Transmit Waveshaping Control Register 2  
n * 80h + 26h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
TWSC[19:16]  
0
Bits 3 to 0: Transmit Waveshaping Control (TWSC[19:16]). This field adjusts overall amplitude of the transmit  
output pulse.  
0000 - nominal amplitude (see Table 11-6 and Table 11-7)  
0001 - increase amplitude by 3.75%  
0010 - increase amplitude by 7.5%  
0011 - increase amplitude by 11.25%  
0100 - increase amplitude by 15%  
0101 - increase amplitude by 20%  
0110 - increase amplitude by 25%  
0111 - increase amplitude by 30%  
1000 - decrease amplitude by 12.5%  
1001 - decrease amplitude by 9.375%  
1010 - decrease amplitude by 6.25%  
1011 - decrease amplitude by 3.125%  
110X - increase amplitude to internal current limit  
111X - increase amplitude to maximum, current limiting disabled  
74 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LIU.SR  
Register Description:  
Register Address:  
LIU Status Register  
n * 80h + 28h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
TDM  
0
9
TFAIL  
0
8
LOMC  
0
Bit #  
Name  
Default  
7
1
6
1
5
0
4
RPAS  
0
3
RFAIL1  
0
2
RFAIL2  
0
1
RLOL  
0
0
ALOS  
0
Bit 10: Transmit Driver Monitor (TDM). This bit indicates when the transmit driver is faulty. See Section 8.2.9.  
0 = the transmit line driver is operating properly  
1 = the transmit line driver is faulty  
Bit 9: Transmit Output Failure (TFAIL). This bit indicates when there is a failure on the transmit differential  
outputs (TXP/TXN). See Section 8.2.9.  
0 = an open or short has not been detected on TXP or TXN  
1 = an open or short has been detected on TXP or TXN  
Bit 8: Loss of Master Clock (LOMC). This bit indicates whether or not the master reference clock (DS3, E3, or  
STS-1, depending on PORT.CR2:LM[1:0] setting) is available from the CLAD block. See Section 8.7.1.  
0 = the master reference clock is present  
1 = that master reference clock is not present  
Bit 4: Receive Preamp Status (RPAS). See Section 8.3.2.  
0 = the receiver preamp is off  
1 = the receiver preamp is on  
Bit 3: Receive Failure Type 1 (RFAIL1). See Section 8.3.8.  
0 = a receive failure type 1 has not been detected on RXP or RXN  
1 = a receive failure type 1 has been detected on RXP or RXN.  
Bit 2: Receive Failure Type 2 (RFAIL2). See Section 8.3.8.  
0 = a receive failure type 2 has not been detected on RXP or RXN  
1 = a receive failure type 2 has been detected on RXP or RXN.  
Bit 1: Receive Loss of Lock (RLOL). See Section 8.3.4.  
0 = the incoming clock frequency on RXP/RXN is within ±7700ppm of the master reference clock  
1 = the incoming clock frequency on RXP/RXN is more than ±7900ppm away from the master  
reference clock  
Bit 0: Analog Loss of Signal (ALOS). See Section 8.3.5.  
0 = an analog LOS (ALOS) condition has not been detected  
1 = an ALOS condition has been detected  
75 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LIU.SRL  
Register Description:  
Register Address:  
LIU Status Register Latched  
n * 80h + 2Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
JAFL  
0
11  
JAEL  
0
10  
TDML  
0
9
TFAILL  
0
8
LOMCL  
0
Bit #  
Name  
Default  
7
0
6
0
5
RGLCL  
0
4
RPASL  
0
3
RFAIL1L  
0
2
RFAIL2L  
0
1
RLOLL  
0
0
ALOSL  
0
Bit 12: Jitter Attenuator Full Latched (JAFL). This bit is set when the jitter attenuator buffer is full, or when data  
has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if  
interrupt enables LIU.SRIE:JAFIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4.  
Bit 11: Jitter Attenuator Empty Latched (JAEL). This bit is set when the jitter attenuator buffer is empty, or when  
data has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if  
interrupt enables LIU.SRIE:JAEIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4.  
Bit 10: Transmit Driver Monitor Change Latched (TDML). This bit is set when the LIU.SR:TDM bit changes  
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TDMIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 9: Transmit Output Failure Change Latched (TFAILL). This bit is set when the LIU.SR:TFAIL bit changes  
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TFAILIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 8: Loss of Master Clock Latched (LOMCL). This bit is set when the LIU.SR:LOMC bit is set. When set, this  
bit causes an interrupt if interrupt enables LIU.SRIE:LOMCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE  
are all set.  
Bit 5: Receive Gain Level Change Latched (RGLCL). This bit is set when the receive gain level (LIU.RGLR:  
RGL[7:0]) changes. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RGLCIE,  
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set.  
Bit 4: Receive Preamp Status Change Latched (RPASL). This bit is set when the LIU.SR:RPAS bit changes  
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RPASIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 3: Receive Failure Type 1 Change Latched (RFAIL1L). This bit is set when the LIU.SR:RFAIL1 bit changes  
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL1IE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 2: Receive Failure Type 2 Change Latched (RFAIL2L). This bit is set when the LIU.SR:RFAIL2 bit changes  
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL2IE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 1: Receive Loss of Lock Change Latched (RLOLL). This bit is set when the LIU.SR:RLOL bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RLOLIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 0: Analog Loss of Signal Change Latched (ALOSL). This bit is set when the LIU.SR:ALOS bit changes state.  
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:ALOSIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
76 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LIU.SRIE  
Register Description:  
Register Address:  
LIU Status Register Interrupt Enable  
n * 80h + 2Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
JAFIE  
0
11  
JAEIE  
0
10  
TDMIE  
0
9
TFAILIE  
0
8
LOMCIE  
0
Bit #  
Name  
Default  
7
0
6
0
5
RGLCIE  
0
4
RPASIE  
0
3
2
1
RLOLIE  
0
0
ALOSIE  
0
RFAIL1IE RFAIL2IE  
0
0
Bit 12: Jitter Attenuator Full Interrupt Enable (JAFIE). This bit is the interrupt enable for the LIU.SRL:JAFL bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 11: Jitter Attenuator Empty Interrupt Enable (JAEIE). This bit is the interrupt enable for the LIU.SRL:JAEL  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 10: Transmit Driver Monitor Interrupt Enable (TDMIE). This bit is the interrupt enable for the LIU.SRL:TDML  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 9: Transmit Output Failure Interrupt Enable (TFAILIE). This bit is the interrupt enable for the  
LIU.SRL:TFAILL bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 8: Loss of Master Clock Interrupt Enable (LOMCIE). This bit is the interrupt enable for the LIU.SRL:LOMCL  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 5: Receive Gain Level Change Interrupt Enable (RGLCIE). This bit is the interrupt enable for the  
LIU.SRL:RGLCL bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 4: Receive Preamp Status Interrupt Enable (RPASIE). This bit is the interrupt enable for the LIU.SRL:RPASL  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 3: Receive Failure Type 1 Interrupt Enable (RFAIL1IE). This bit is the interrupt enable for the  
LIU.SRL:RFAIL1L bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 2: Receive Failure Type 2 Interrupt Enable (RFAIL2IE). This bit is the interrupt enable for the  
LIU.SRL:RFAIL2L bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 1: Receive Loss of Lock Interrupt Enable (RLOLIE). This bit is the interrupt enable for the LIU.SRL:RLOLL  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
77 of 130  
 
DS32506/DS32508/DS32512  
Bit 0: Analog Loss Of Signal Interrupt Enable (ALOSIE). This bit is the interrupt enable for the LIU.SRL:ALOSL  
bit.  
0 = interrupt disabled  
1 = interrupt enabled  
Register Name:  
LIU.RGLR  
Register Description:  
Register Address:  
LIU Receive Gain Level Register  
n * 80h + 2Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
RGL7  
0
6
RGL6  
0
5
RGL5  
0
4
RGL4  
0
3
RGL3  
0
2
RGL2  
0
1
RGL1  
0
0
RGL0  
0
Bits 7 to 0: Receive Gain Level (RGL[7:0]). This field reports the real-time receiver gain level in 0.25 dB  
increments. Values of 00–60h indicate receiver gain of 0dB to +24dB in 0.25dB increments. Values of F4–Fifth  
indicate receiver gain of -3dB to -0.25dB in 0.25dB increments. See Section 8.3.3.  
78 of 130  
 
DS32506/DS32508/DS32512  
9.6 B3ZS/HDB3 Encoder Registers  
ADDRESS  
OFFSET  
REGISTER  
REGISTER DESCRIPTION  
30h  
32h–3Eh  
LINE.TCR  
B3ZS/HDB3 Transmit Control Register  
Unused  
Register Name:  
LINE.TCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Transmit Control Register  
n * 80h + 30h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
TZSD  
0
3
EXZI  
0
2
BPVI  
0
1
TSEI  
0
0
MEIMS  
0
Bit 4: Transmit Zero Suppression Encoding Disable (TZSD)  
0 = zero suppression (B3ZS or HDB3) encoding is enabled  
1 = zero suppression (B3ZS or HDB3) encoding is disabled, and only AMI encoding is performed  
Bit 3: Excessive Zero Insert Enable (EXZI). See Section 8.2.3.  
0 = excessive zero event (EXZ) insertion is disabled  
1 = excessive zero event insertion is enabled  
Bit 2: Bipolar Violation Insert Enable (BPVI). See Section 8.2.3.  
0 = bipolar violation (BPV) insertion is disabled  
1 = bipolar violation insertion is enabled.  
Bit 1: Transmit Single Error Insert (TSEI). When LINE.TCR:MEIMS = 0, this bit is used to insert errors of the  
type(s) specified by EXZI and BPVI in the transmit data stream. A zero-to-one transition causes a single error to be  
inserted. For a second error to be inserted, this bit must be set to 0, and then back to 1. Note: If LINE.TCR:MEIMS  
is low, and this bit transitions more than once between error insertion opportunities, only one error is inserted. See  
Section 8.7.5.  
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the  
transmit encoder/decoder block. Note: If the TMEI pin or TSEI bit is one, changing the state of this bit may cause  
an error to be inserted. See Section 8.7.5.  
0 = Block-level error insertion using the LINE.TCR:TSEI control bit  
1 = Port-level or global-level error insertion as specified by PORT.CR1:MEIMS  
79 of 130  
 
DS32506/DS32508/DS32512  
9.7 B3ZS/HDB3 Decoder Registers  
ADDRESS  
REGISTER  
OFFSET  
REGISTER DESCRIPTION  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
LINE.RCR  
LINE.RSR  
LINE.RSRL  
LINE.RSRIE  
B3ZS/HDB3 Receive Control Register  
Unused  
B3ZS/HDB3 Receive Status Register  
B3ZS/HDB3 Receive Status Register Latched  
B3ZS/HDB3 Receive Status Register Interrupt Enable  
Unused  
LINE.RBPVCR B3ZS/HDB3 Receive Bipolar Violation Count Register  
LINE.REXZCR B3ZS/HDB3 Receive Excessive Zero Count Register  
Register Name:  
LINE.RCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Control Register  
n * 80h + 40h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
E3CVE  
0
2
REZSF  
0
1
RDZSF  
0
0
RZSD  
0
Bit 3: E3 Code Violation Enable (E3CVE). In E3 mode (PORT.CR2:LM[1:0] = 01), this bit specifies whether the  
LINE.RBPVCR register counts bipolar violations or E3 coding violations. Note: E3 line coding violations are defined  
in ITU O.161 as consecutive bipolar violations of the same polarity. This bit is ignored in B3ZS mode. See Section  
8.3.6.2.  
0 = bipolar violations.  
1 = E3 line coding violations  
Bit 2: Receive BPV Error Detection Zero Suppression Code Format (REZSF). When REZSF = 0, BPV error  
detection detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature if two  
zeros are followed by a BPV. When REZSF = 1, BPV error detection detects a B3ZS signature if a zero is followed  
by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if two  
zeros are followed by a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note:  
Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero  
followed by a BPV, and the first HDB3 signature is defined as two zeros followed by a BPV. All subsequent  
B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting (REZSF = 0) conforms to  
ITU O.162. The default setting may falsely ignore actual BPVs that are not codewords. It is recommended that  
REZSF be set to one for most applications. This setting is more robust to accurately detect codewords. See  
Section 8.3.6.2.  
Bit 1: Receive Zero Suppression Decoding Zero Suppression Code Format (RDZSF). When RDZSF = 0, zero  
suppression decoding detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3  
signature if two zeros are followed by a BPV. When RDZSF = 1, zero suppression decoding detects a B3ZS  
signature if a zero is followed by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature,  
and an HDB3 signature if two zeros are followed by a BPV that has the opposite polarity of the BPV in the previous  
HDB3 signature. Note: Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS  
signature is defined as a zero followed by a BPV, and the first HDB3 signature is defined as two zeros followed by  
a BPV. All subsequent B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting  
(RDZSF = 0) may falsely decode actual BPVs that are not codewords. It is recommended that RDZSF be set to  
one for most applications. This setting is more robust to accurately detect codewords. See Section 8.3.6.2.  
Bit 0: Receive Zero Suppression Decoding Disable (RZSD)  
0 = zero suppression (B3ZS or HDB3) decoding is enabled  
1 = zero suppression (B3ZS or HDB3) decoding is disabled, and only AMI decoding is performed  
80 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LINE.RSR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register  
n * 80h + 44h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
EXZC  
0
2
0
1
BPVC  
0
0
LOS  
0
Bit 3: Excessive Zero Count (EXZC). See Section 8.3.6.  
0 = the Receive Excessive Zero Count Register (LINE.REXZCR) is zero  
1 = the Receive Excessive Zero Count Register (LINE.REXZCR) is one or more  
Bit 1: Bipolar Violation Count (BPVC). See Section 8.3.6.  
0 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is zero  
1 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is one or more  
Bit 0: Loss of Signal (LOS). See Section 8.3.5.  
0 = receive line interface is not in a LOS condition  
1 = receive line interface is in an LOS condition  
Register Name:  
LINE.RSRL  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register Latched  
n * 80h + 46h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
ZSCDL  
0
4
EXZL  
0
3
EXZCL  
0
2
BPVL  
0
1
BPVCL  
0
0
LOSL  
0
Bit 5: Zero Suppression Code Detect Latched (ZSCDL). This bit is set when a B3ZS or HDB3 signature is  
detected. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:ZSCDIE, PORT.ISRIE:LDSRIE  
and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.  
Bit 4: Excessive Zero Latched (EXZL). This bit is set when an excessive zero event is detected on the incoming  
bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZIE,  
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.  
Bit 3: Excessive Zero Count Latched (EXZCL). This bit is set when LINE.RSR:EXZC transitions from zero to  
one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZCIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.  
Bit 2: Bipolar Violation Latched (BPVL). This bit is set when a bipolar violation (or E3 LCV if enabled) is detected  
on the incoming bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVIE,  
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.  
Bit 1: Bipolar Violation Count Latched (BPVCL). This bit is set when LINE.RSR:BPVC transitions from zero to  
one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVCIE, PORT.ISRIE:LDSRIE and  
GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.  
Bit 0: Loss of Signal Change Latched (LOSL). This bit is set when LINE.RSR:LOS changes state. When set, this  
bit causes an interrupt if interrupt enables LINE.RSRIE:LOSIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE  
are all set. See Section 8.3.5.  
81 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LINE.RSRIE  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Status Register Interrupt Enable  
n * 80h + 48h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
ZSCDIE  
0
4
EXZIE  
0
3
EXZCIE  
0
2
BPVIE  
0
1
BPVCIE  
0
0
LOSIE  
0
Bit 5: Zero Suppression Code Detect Interrupt Enable (ZSCDIE). This bit is the interrupt enable for the  
LINE.RSRL:ZSCDL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 4: Excessive Zero Interrupt Enable (EXZIE). This bit is the interrupt enable for the LINE.RSRL:EXZL status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 3: Excessive Zero Count Interrupt Enable (EXZCIE). This bit is the interrupt enable for the  
LINE.RSRL:EXZCL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: Bipolar Violation Interrupt Enable (BPVIE). This bit is the interrupt enable for the LINE.RSRL:BPVL status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Bipolar Violation Count Interrupt Enable (BPVCIE). This bit is the interrupt enable for the  
LINE.RSRL:BPVCL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Loss-of-Signal Interrupt Enable (LOSIE). This bit is the interrupt enable for the LINE.RSRL:LOSL status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
82 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
LINE.RBPVCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Bipolar Violation Count Register  
n * 80h + 4Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BPV[15:8]  
BPV[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: Bipolar Violation Count (BPV[15:0]). These 16 bits indicate the number of bipolar violations  
detected on the incoming bipolar data stream. See Section 8.3.6.  
Register Name:  
LINE.REXZCR  
Register Description:  
Register Address:  
B3ZS/HDB3 Receive Excessive Zero Count Register  
n * 80h + 4Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
EXZ[15:8]  
EXZ[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bit 15 to 0: Excessive Zero Count (EXZ[15:0]). These 16 bits indicate the number of excessive zero conditions  
detected on the incoming bipolar data stream. See Section 8.3.6.  
83 of 130  
 
DS32506/DS32508/DS32512  
9.8 BERT Registers  
ADDRESS  
OFFSET  
REGISTER  
REGISTER DESCRIPTION  
BERT Control Register  
BERT Pattern Configuration Register  
BERT Seed/Pattern Register 1  
BERT Seed/Pattern Register 2  
Transmit Error Insertion Control Register  
Unused  
50h  
52h  
54h  
56h  
BERT.CR  
BERT.PCR  
BERT.SPR1  
BERT.SPR2  
BERT.TEICR  
BERT.SR  
BERT.SRL  
BERT.SRIE  
58h  
5Ah  
5Ch  
5Eh  
60h  
BERT Status Register  
BERT Status Register Latched  
BERT Status Register Interrupt Enable  
Unused  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
BERT.RBECR1 Receive Bit Error Count Register 1  
BERT.RBECR2 Receive Bit Error Count Register 2  
BERT.RBCR1 Receive Bit Count Register 1  
BERT.RBCR2 Receive Bit Count Register 2  
Unused  
Unused  
Register Name:  
BERT.CR  
Register Description:  
Register Address:  
BERT Control Register  
n * 80h + 50h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
PMUM  
0
6
LPMU  
0
5
RNPL  
0
4
RPIC  
0
3
MPR  
0
2
APRD  
0
1
TNPL  
0
0
TPIC  
0
Bit 7: Performance Monitoring Update Mode (PMUM). This bit specifies the source of the performance  
monitoring update signal for the BERT block. See Section 8.7.4. Note: If RPMU or LPMU is one, changing the state  
of this bit may cause a performance monitoring update to occur.  
0 = Block-level update via BERT.CR:LPMU  
1 = Port-level or global update as specified by PORT.CR1:PMUM  
Bit 6: Local Performance Monitoring Update (LPMU). When BERT.CR:PMUM = 0, this bit updates the  
performance monitoring registers in the BERT block. When this bit transitions from low to high, the BERT.RBECR  
and BERT.RBCR registers are updated with the latest counter values and the counters are reset. This bit should  
remain high until the performance monitor update status bit (BERT.SR:PMS) goes high, and then it should be  
brought back low, which clears the PMS status bit. If a counter increment occurs at the exact same time as the  
counter reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. See  
Section 8.7.4.  
Bit 5: Receive New Pattern Load (RNPL). A zero-to-one transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be  
loaded into the receive pattern generator. This bit must be changed to zero and back to one for another pattern to  
be loaded. Loading a new pattern forces the receive pattern generator out of the “Sync” state which causes a  
resynchronization to be initiated. Note: The test pattern fields mentioned above must not change for four RCLK  
cycles after this bit transitions from zero to one. See Section 8.5.1.  
84 of 130  
 
DS32506/DS32508/DS32512  
Bit 4: Receive Pattern Inversion Control (RPIC). See Section 8.5.1.  
0 = do not invert the incoming data stream  
1 = invert the incoming data stream  
Bit 3: Manual Pattern Resynchronization (MPR). A zero-to-one transition of this bit causes the receive pattern  
generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another  
resynchronization to be initiated. Note: A manual resynchronization forces the pattern detector out of the “Sync”  
state. See Section 8.5.2.  
Bit 2: Automatic Pattern Resynchronization Disable (APRD). When APRD = 0, the receive pattern generator  
automatically resynchronizes to the incoming pattern if six or more times during the current 64-bit window the  
incoming data stream bit and the receive pattern generator output bit did not match. When APRD = 1, the receive  
pattern generator does not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is  
prevented by not allowing the receive pattern generator to automatically exit the “Sync” state. See Section 8.5.2.  
Bit 1: Transmit New Pattern Load (TNPL). A zero-to-one transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be  
loaded into the transmit pattern generator. This bit must be changed to zero and back to one for another pattern to  
be loaded. Note: The test pattern fields mentioned above must not change for four TCLK cycles after this bit  
transitions from zero to one. See Section 8.5.1.  
Bit 0: Transmit Pattern Inversion Control (TPIC). See Section 8.5.1.  
0 = do not invert the outgoing data stream  
1 = invert the outgoing data stream  
Register Name:  
BERT.PCR  
Register Description:  
Register Address:  
BERT Pattern Configuration Register  
n * 80h + 52h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
PTF[4:0]  
0
9
0
1
0
8
0
0
0
Bit #  
Name  
Default  
7
0
6
QRSS  
0
5
PTS  
0
4
3
2
PLF[4:0]  
0
0
0
Bits 12 to 8: Pattern Tap Feedback (PTF[4:0]). These five bits control the PRBS “tap” feedback of the pattern  
generator. The “tap” feedback is from bit y of the pattern generator (y = PTF[4:0] + 1). These bits are ignored when  
the BERT block is programmed for a repetitive pattern (PTS = 1). For a PRBS signal, the feedback is an XOR of bit  
n and bit y. See Section 8.5.1.  
Bit 6: QRSS Enable (QRSS). See Section 8.5.1.  
0 = Disabled: the pattern generator configuration is controlled by PTS, PLF[4:0], PTF[4:0], and  
BSP[31:0]  
1 = Enabled: the pattern generator configuration is forced to a PRBS pattern with a generating  
polynomial of x20 + x17 + 1, and the output of the pattern generator is forced to one if the next  
14 output bits are all zero.  
Bit 5: Pattern Type Select (PTS). See Section 8.5.1.  
0 = PRBS pattern  
1 = repetitive pattern.  
Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). This field controls the “length” feedback of the pattern  
generator. The “length” feedback is from bit n of the pattern generator (n = PLF[4:0] + 1). For a PRBS signal, the  
feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n. See Section 8.5.1.  
85 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
BERT.SPR1  
Register Description:  
Register Address:  
BERT Seed/Pattern Register #1  
n * 80h + 54h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BSP[15:8]  
BSP[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: BERT Seed/Pattern (BSP[15:0])  
Register Name:  
BERT.SPR2  
Register Description:  
Register Address:  
BERT Seed/Pattern Register #2  
n * 80h + 56h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
0
1
0
8
0
0
0
BSP[31:24]  
0
3
0
Bit #  
Name  
Default  
7
6
5
4
2
BSP[23:16]  
0
0
0
0
0
Bits 15 to 0: BERT Seed/Pattern (BSP[31:16])  
BERT Seed/Pattern (BSP[31:0]). This 32-bit field is the programmable seed for a transmit PRBS pattern, or the  
programmable pattern for a transmit or receive repetitive pattern. BSP[31] is the first bit output on the transmit side  
for a 32-bit repetitive pattern or 32-bit PRBS. BSP[31] is the first bit input on the receive side for a 32-bit repetitive  
pattern. See Section 8.5.1.  
86 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
BERT.TEICR  
Register Description:  
Register Address:  
BERT Transmit Error Insertion Control Register  
n * 80h + 58h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
TEIR[2:0]  
0
3
0
2
BEI  
0
1
TSEI  
0
0
MEIMS  
0
Bits 5 to 3: Transmit Error Insertion Rate (TEIR[2:0]). This field indicates the rate at which errors are  
automatically inserted in the output data stream. One out of every 10n bits is inverted, where n = TEIR[2:0]. A value  
of 0 disables error insertion. A value of 1 results in every 10th bit being inverted. A value of 2 result in every 100th  
bit being inverted. Error insertion starts when this field is written with a non-zero value. If this field is written during  
an error insertion, the new error rate is used after the next error is inserted. See Section 8.5.3.1.  
Bit 2: Bit Error Insertion Enable (BEI). See Section 8.5.3.1.  
0 = single-bit error insertion is disabled  
1 = single-bit error insertion is enabled  
Bit 1: Transmit Single Error Insert (TSEI). When BERT.TEICR:MEIMS = 0 and BEI = 1, this bit is used to insert  
single-bit errors in the outgoing BERT data stream. A zero-to-one transition causes a single bit error to be inserted.  
For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If MEIMS is low, and this bit  
transitions more than once between error insertion opportunities, only one error is inserted. See Section 8.7.5.  
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the  
BERT block. Note: If TMEI or TSEI is one, changing the state of this bit may cause a bit error to be inserted. See  
Section 8.7.5.  
0 = error insertion is initiated by the BERT.TEICR:TSEI register bit  
1 = error insertion is initiated by the transmit manual error insertion signal (TMEI) specified by the  
PORT.CR1:MEIMS register bit.  
87 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
BERT.SR  
Register Description:  
Register Address:  
BERT Status Register  
n * 80h + 5Ch  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMS  
1
2
0
1
BEC  
0
0
OOS  
0
Bit 3: Performance Monitoring Update Status (PMS). This bit is set when the performance monitoring registers  
(BERT.RBCR and BERT.RBECR) have been updated. PMS is asynchronously forced low when the  
BERT.CR:LPMU bit (BERT.CR:PMUM = 0) or RPMU signal (BERT.CR:PMUM = 1) goes low. See Section 8.7.4.  
0 = The associated update request signal is low or not all register updates are completed  
1 = The requested performance register updates are all completed  
Bit 1: Bit Error Count (BEC). See Section 8.5.1.  
0 = the bit error count is zero  
1 = the bit error count is one or more  
Bit 0: Out of Synchronization (OOS). See Section 8.5.1.  
0 = the receive pattern generator is synchronized to the incoming pattern  
1 = the receive pattern generator is not synchronized to the incoming pattern  
Register Name:  
BERT.SRL  
Register Description:  
Register Address:  
BERT Status Register Latched  
n * 80h + 5Eh  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSL  
0
2
BEL  
0
1
BECL  
0
0
OOSL  
0
Bit 3: Performance Monitoring Update Status Latched (PMSL). This bit is set when the BERT.SR:PMS bit  
transitions from zero to one. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:PMSIE,  
PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set.  
Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected in the received pattern. When set, this  
bit causes an interrupt if interrupt enables BERT.SRIE:BEIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are  
all set.  
Bit 1: Bit Error Count Latched (BECL). This bit is set when the BERT.SR:BEC bit transitions from zero to one.  
When set, this bit causes an interrupt if interrupt enables BERT.SRIE:BECIE, PORT.ISRIE:BSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
Bit 0: Out of Synchronization Latched (OOSL). This bit is set when the BERT.SR:OOS bit changes state. When  
set, this bit causes an interrupt if interrupt enables BERT.SRIE:OOSIE, PORT.ISRIE:BSRIE and  
GLOBAL.ISRIE:PnISRIE are all set.  
88 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
BERT.SRIE  
Register Description:  
Register Address:  
BERT Status Register Interrupt Enable  
n * 80h + 60h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSIE  
0
2
BEIE  
0
1
BECIE  
0
0
OOSIE  
0
Bit 3: Performance Monitoring Update Status Interrupt Enable (PMSIE). This bit is the interrupt enable for the  
BERT.SRL:PMSL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 2: Bit Error Interrupt Enable (BEIE). This bit is the interrupt enable for the BERT.SRL:BEL status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 1: Bit Error Count Interrupt Enable (BECIE). This bit is the interrupt enable for the BERT.SRL:BECL status  
bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Bit 0: Out of Synchronization Interrupt Enable (OOSIE). This bit is the interrupt enable for the BERT.SRL:OOSL  
status bit.  
0 = mask the interrupt  
1 = enable the interrupt  
Register Name:  
BERT.RBECR1  
Register Description:  
Register Address:  
BERT Receive Bit Error Count Register #1  
n * 80h + 64h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
BEC[15:8]  
BEC[7:0]  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Bits 15 to 0: Bit Error Count (BEC[15:0])  
89 of 130  
 
DS32506/DS32508/DS32512  
Register Name:  
BERT.RBECR2  
Register Description:  
Register Address:  
BERT Receive Bit Error Count Register #2  
n * 80h + 66h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Bit #  
Name  
Default  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
BEC[23:16]  
0
Bits 7 to 0: Bit Error Count (BEC[23:16])  
Bit Error Count (BEC[23:0]). This field is the holding register for an internal BERT bit error counter that tracks the  
number of bit errors detected in the incoming data stream since the last performance monitoring update. The  
internal counter stops incrementing when it reaches a count of FF FFFFh and does not increment when an OOS  
condition exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4.  
The source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit.  
Register Name:  
BERT.RBCR1  
Register Description:  
Register Address:  
BERT Receive Bit Count Register #1  
n * 80h + 68h  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BC[15:8]  
BC[7:0]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: Bit Count (BC[15:0])  
Register Name:  
BERT.RBCR2  
Register Description:  
Register Address:  
BERT Receive Bit Count Register #2  
n * 80h + 6Ah  
Bit #  
Name  
Default  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
1
0
8
0
0
0
BC[31:24]  
BC[23:16]  
Bit #  
Name  
Default  
7
6
5
4
3
2
0
0
0
0
0
0
Bits 15 to 0: Bit Count (BC[31:16])  
Bit Count (BC[31:0]). This field is the holding register for an internal BERT bit counter that tracks the total number  
of bit received in the incoming data stream since the last performance monitoring update. The internal counter  
stops incrementing when it reaches a count of FFFF FFFFh and does not increment when an OOS condition  
exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4. The  
source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit.  
90 of 130  
 
DS32506/DS32508/DS32512  
10. JTAG INFORMATION  
The DS325xx LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional  
public instructions included are HIGHZ, CLAMP, and IDCODE. The devices contain the following items, which  
meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins  
can be found in Table 7-9. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.1-  
1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. The  
bypass register is a 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions to provide a short  
path between JTDI and JTDO. The boundary scan register contains a shift register path and a latched parallel  
output for control cells and digital I/O cells. DS325xx BSDL files are available at  
www.maxim-ic.com/TechSupport/telecom/bsdl.htm. An optional test register, the identification register, has also  
been included in the device design. The identification register contains a 32-bit shift register and a 32-bit latched  
parallel output. Table 10-1 shows the identification register contents for the DS32506, DS32508, and DS32512  
devices.  
Table 10-1. JTAG ID Code  
PART  
REVISION  
DEVICE CODE  
MANUFACTURER CODE  
00010100001  
REQUIRED  
DS32506  
DS32508  
DS32512  
Consult factory  
Consult factory  
Consult factory  
0000 0000 0111 1000  
0000 0000 0111 1001  
0000 0000 0111 1010  
1
1
1
00010100001  
00010100001  
91 of 130  
 
DS32506/DS32508/DS32512  
11. ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Input or Output Lead with Respect to VSS…………………………………………-0.3V to +5.5V  
Supply Voltage Range with Respect to VSS  
VDD33………………………………………………………………………………………………...-0.3V to +3.63V  
VDD18 ………………………………………………………………………………………………..-0.1V to +1.89V  
Ambient Operating Temperature Range*..…………………………………………………………………..-40°C to +85°C  
Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C  
Storage Temperature Range………………………………………………………………………………...-55°C to +125°C  
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not  
implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.  
*Ambient operating temperature range when device is mounted on a four-layer JEDEC test board with no airflow.  
Note: The typical values listed in the following tables and operation at -40oC are not production tested, but are guaranteed by  
design (GBD).  
Table 11-1. Recommended DC Operating Conditions  
(TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VDD18  
VDD33  
1.71  
1.8  
1.89  
Digital Supply Voltage  
V
3.135 3.300 3.465  
CVDD, JVDD, RVDD, and  
TVDD  
Analog Supply Voltage  
AVDD  
1.71  
1.80  
1.89  
V
Logic 1, All Other Input Pins  
Logic 0, All Other Input Pins  
VIH  
VIL  
2.0  
3.6  
V
V
-0.3  
+0.8  
92 of 130  
 
DS32506/DS32508/DS32512  
Table 11-2. DC Characteristics  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DS32506  
248  
324  
476  
90  
320  
420  
620  
165  
220  
330  
200  
260  
380  
165  
220  
330  
Supply Current, VDD18 (Note 1)  
IDD18  
mA  
DS32508  
DS32512  
DS32506  
DS32508  
DS32512  
DS32506  
DS32508  
DS32512  
DS32506  
DS32508  
DS32512  
Supply Current, VDD33 (Note 1)  
IDD33  
mA  
mA  
mA  
120  
180  
170  
220  
320  
90  
Supply Current, Transmitters Disabled  
(All TOE = 0), VDD18 (Note 2)  
IDDTTS18  
Supply Current, Transmitters Disabled  
(All TOE = 0), VDD33 (Note 2)  
IDDTTS33  
120  
180  
Supply Current, Power-Down  
(All TPD = RPD = 1), VDD18  
(Notes 2, 3)  
Supply Current, Power-Down  
(All TPD = RPD = 1), VDD33  
(Notes 2, 3)  
DS32506, DS32508,  
DS32512  
IDDPD18  
16  
40  
10  
mA  
mA  
DS32506, DS32508,  
DS32512  
IDDPD33  
5.3  
7
Lead Capacitance  
CIO  
IIL  
10  
+10  
pF  
μA  
μA  
μA  
V
Input Leakage, Input Pins with Pullup  
Input Leakage, All Other Input Pins  
Output Leakage (when High-Z)  
Output Voltage (IO = -4.0mA)  
(Note 4)  
(Note 4)  
(Note 4)  
-300  
-50  
-10  
2.4  
0
IIL  
+10  
ILO  
VOH  
VOL  
+10  
VDD33  
0.4  
Output Voltage (IO = +4.0mA)  
V
Note 1:  
TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); TXPn/TXNn driving all ones into 75Ω resistive loads; analog loopback  
enabled; all other inputs at VDD33 or grounded; all other outputs open.  
Note 2:  
Note 3:  
Note 4:  
TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); other inputs at VDD33 or grounded; digital outputs left open circuited.  
HW = 0, CLAD[6:0] = 0000000 (disabled), G1SRS[3:0] = 0000 (disable), CS = 1 (inactive).  
0V < VIN < VDD18 for all other digital inputs.  
93 of 130  
 
DS32506/DS32508/DS32512  
Table 11-3. Framer Interface Timing  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-1  
and Figure 11-2.)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Notes 1, 2)  
MIN  
TYP  
MAX UNITS  
22.4  
29.1  
19.3  
50  
RCLK/TCLK Clock Period  
t1  
ns  
(Notes 2, 3)  
(Notes 2, 4)  
RCLK Duty Cycle  
t2/t, t3/t1 (Notes 5, 6)  
t2/t, t3/t1 (Note 6)  
45  
30  
30  
3
55  
70  
70  
%
%
%
ns  
ns  
TCLK Duty Cycle  
LIU Reference Clock Duty Cycle  
TPOS/TDAT, TNEG to TCLK Setup Time  
TPOS/TDAT, TNEG Hold Time  
t2/t, t3/t1 (Notes 6, 7)  
t4  
t5  
(Notes 6, 8)  
(Notes 6, 8)  
1
RCLK to RPOS/RDAT, RNEG/RLCV  
Value Change  
t6  
(Notes 5, 6, 9)  
1
7
ns  
RCLK Rise and Fall Time  
TCLK Rise and Fall Time  
t7  
t8  
(Notes 6, 10 )  
(Notes 5, 11)  
1
2
2
ns  
ns  
Note 1:  
Note 2:  
DS3 mode.  
78MHz is the maximum instantaneous frequency for a gapped clock. The maximum average frequency is 45.094MHz for DS3,  
34.643MHz for E3, and 52.255MHz for STS-1.  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Note 7:  
Note 8:  
E3 mode.  
STS-1 mode.  
Outputs loaded with 25pF, measured at 50% threshold.  
Not tested during production test.  
The LIU reference clock must be a ±20ppm low-jitter clock. See Section 8.7.1 for more information on reference clocks.  
When TCLKI = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCLKI = 1, TPOS/TDAT and TNEG are  
sampled on the falling edge of TCLK.  
Note 9:  
When RCLKI = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCLKI = 1, RPOS/RDAT and  
RNEG/RLCV are updated on the rising edge of RCLK.  
Note 10: Outputs loaded with 25pF, measured between VOL(MAX) and VOH(MIN)  
.
Measured between VIL(MAX) and VIH(MIN)  
.
Note 11:  
94 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-1. Transmitter Framer Interface Timing Diagram  
t1  
t2  
t3  
TCLK (NORMAL)  
TCLK (INVERTED)  
t
8
t4  
t5  
TPOS/TDAT  
TNEG  
Figure 11-2. Receiver Framer Interface Timing Diagram  
t1  
t2  
t3  
RCLK (NORMAL)  
RCLK (INVERTED)  
t6  
t7  
RPOS/RDAT  
RNEG/RLCV  
95 of 130  
 
DS32506/DS32508/DS32512  
Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Receive Sensitivity (Length of Cable)  
1500  
10  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Note 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
1000  
200  
-25  
mVpk  
mVpk  
dB  
-23  
-22  
-20  
-34  
dB  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
-37  
-39  
dB  
-36  
dB  
Intrinsic Jitter Generation (Note 2)  
0.02  
UIP-P  
Note 1: An interfering signal (215 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined  
signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the lowest signal-  
to-noise ratio that results in a bit error ratio 10-9.  
Note 2: Not tested during production test.  
Note 3: Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement,  
incoming data traffic is unframed 215 - 1 PRBS.  
Note 4: With respect to nominal 800mVpk signal.  
Table 11-5. Receiver Input Characteristics—E3 Mode  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
Receive Sensitivity (Length of Cable)  
MIN  
TYP  
1200  
12  
MAX  
UNITS  
900  
1500  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Notes 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
1300  
260  
-24  
mVpk  
mVpk  
dB  
-18  
-38  
dB  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
-44  
dB  
dB  
Intrinsic Jitter Generation (Note 2)  
0.03  
UIP-P  
Note 1: An interfering signal (223 - 1 PRBS, HDB3 encoded, compliant waveshape, nominal bit rate) is added to the input signal. The  
combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the  
lowest signal-to-noise ratio that results in a bit error ratio 10-9.  
Note 2: Not tested during production test.  
Note 3: Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement,  
incoming data traffic is unframed 223 - 1 PRBS.  
Note 4: With respect to nominal 1000mVpk signal.  
96 of 130  
 
DS32506/DS32508/DS32512  
Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
700  
500  
700  
500  
0.9  
TYP  
800  
600  
800  
600  
1.0  
MAX  
900  
700  
900  
700  
1.1  
UNITS  
mVpk  
mVpk  
mVpk  
mVpk  
DS3 Output Pulse Amplitude, TLBO = 0 (Note 1)  
DS3 Output Pulse Amplitude, TLBO = 1 (Note 1)  
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1)  
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1)  
Ratio of Positive and Negative Pulse-Peak Amplitudes  
DS3 Power Level at 22.368MHz (Note 2)  
-1.8  
+5.7  
-20  
dBm  
dB  
DS3 Power Level at 44.736MHz vs. Power Level at 22.368MHz (Note 2)  
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 0  
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 1  
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 0  
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 1  
680  
480  
920  
720  
mVpk  
mVpk  
mVpk  
mVpk  
Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1).  
Note 2: Unframed all-ones output signal, 3kHz bandwidth.  
Table 11-7. Transmitter Output Characteristics—E3 Mode  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
Output Pulse Amplitude (Note 1)  
MIN  
TYP  
MAX  
UNITS  
mVpk  
ns  
900  
1000 1100  
14.55  
Pulse Width (Note 1)  
Positive/Negative Pulse Amplitude Ratio (at Centers of Pulses) (Note 1)  
Positive/Negative Pulse Width Ratio (at Nominal Half Amplitude)  
0.95  
0.95  
1.00  
1.00  
880  
1.05  
1.05  
Transmit Driver Monitor Minimum Threshold (VTXMIN  
)
mVpk  
mVpk  
Transmit Driver Monitor Maximum Threshold (VTXMAX  
)
1120  
Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1).  
97 of 130  
 
DS32506/DS32508/DS32512  
Table 11-8. Parallel CPU Interface Timing  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
(See Figure 11-3, Figure 11-4, Figure 11-5, Figure 11-6, Figure 11-7, Figure 11-8, Figure 11-9, and  
Figure 11-10.)  
PARAMETER  
SYMBOL MIN TYP MAX UNITS  
t1  
t2  
0
0
ns  
ns  
Setup Time for A[10:0] Valid to RD, WR, or DS Active (Notes 1, 2)  
Setup Time for CS Active to RD, WR, or DS Active  
Delay Time from RD or DS Active to D[15:0] Valid Without RDY/ACK  
Handshake  
t3a  
65  
20  
ns  
Delay Time from RDY or ACK Active to D[15:0] Valid  
Hold Time from RD, WR, or DS Inactive to CS Inactive  
Delay from CS, RD, or DS Inactive to D[15:0] Invalid (Note 3)  
t3b  
t4  
ns  
ns  
ns  
0
2
t5  
Wait Time from WR or DS Active to Latch D[15:0] Without RDY/ACK  
Handshake  
t6a  
65  
ns  
Wait Time from RDY or ACK Active to Latch D[15:0]  
D[15:0] Setup Time to WR or DS Inactive  
D[15:0] Hold Time from WR or DS Inactive  
A[10:0] Hold Time from WR, RD, or DS Inactive  
Delay from WR, RD, or DS Inactive to ALE Active  
RD, WR, or DS Inactive Time  
t6b  
t7  
20  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t8  
t9a  
t9b  
t10  
t11  
t12  
t13  
5
20  
75  
10  
10  
20  
Muxed Address Valid to ALE Inactive (Note 4)  
Muxed Address Hold Time from ALE Inactive (Note 4)  
ALE Pulse Width (Note 4)  
Setup Time for ALE High or Muxed Address Valid to CS Active  
(Notes 4, 5, 6)  
t14  
0
ns  
t15  
t16  
t17  
t18  
15  
15  
ns  
ns  
ns  
ns  
Delay from CS Inactive to D[15:0] Disable  
Delay from CS Active to RDY/ACK Enable  
2
Delay from CS, RD, WR, or DS Inactive to RDY/ACK Inactive (Note 7)  
Delay from CS Inactive to RDY/ACK Disable  
15  
Note 1: D[15:0] loaded with 50pF when tested as outputs.  
Note 2: If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest  
TCLK gap.  
Note 3: Not tested during production test.  
Note 4: In nonmultiplexed bus applications (Figure 11-3 to Figure 11-6), ALE should be wired high. In multiplexed bus applications (Figure  
11-7 to Figure 11-10), A[10:0] should be wired to D[15:0] and the falling edge of ALE latches the address.  
Note 5: t14 starts at the occurrence of the rising edge of ALE or A[10:0] valid whichever occurs later.  
Note 6:  
In order to avoid bus contention, during a read cycle A[10:0] should be disabled prior to RD or DS being active.  
Note 7: RDY/ACK may be disabled (t18) before going inactive (t17).  
98 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[10:0]  
WR  
CS  
RD  
t2  
t4  
t10  
t3a  
t5  
t15  
D[15:0]  
RDY  
t16  
t3b  
t18  
t17  
Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[10:0]  
RD  
CS  
t2  
t4  
t6a  
t10  
WR  
t7  
t8  
D[15:0]  
RDY  
t16  
t18  
t6b  
t17  
99 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[10:0]  
R/W  
CS  
t2  
t4  
t10  
DS  
t3a  
t5  
t15  
D[15:0]  
RDY  
t16  
t3b  
t18  
t17  
Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed)  
t1  
t9a  
A[10:0]  
R/W  
CS  
t2  
t4  
t6a  
t10  
DS  
t7  
t8  
D[15:0]  
RDY  
t16  
t18  
t6b  
t17  
100 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[10:0]  
t14  
WR  
CS  
RD  
t2  
t4  
t10  
t15  
t3a  
t5  
D[15:0]  
RDY  
t16  
t3b  
t18  
t17  
Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[10:0]  
t14  
RD  
CS  
t2  
t4  
t6a  
t10  
t18  
WR  
t7  
t8  
D[15:0]  
RDY  
t16  
t6b  
t17  
101 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[10:0]  
t14  
R/W  
CS  
t2  
t4  
t10  
t15  
DS  
t3a  
t5  
D[15:0]  
RDY  
t16  
t3b  
t18  
t17  
Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed)  
9b  
t13  
t11  
ALE  
t12  
A[10:0]  
t14  
R/W  
CS  
t2  
t4  
t6a  
t10  
t18  
DS  
t7  
t8  
D[15:0]  
RDY  
t16  
t6b  
t17  
102 of 130  
 
DS32506/DS32508/DS32512  
Table 11-9. SPI Interface Timing  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
(See Figure 11-11.) (Note 1)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
SCLK Frequency  
SCLK Cycle Time  
fBUS  
tCYC  
tSUC  
tHDC  
tCLKH  
tCLKL  
tSUI  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
15  
15  
50  
50  
5
CS Setup to First SCLK Edge  
CS Hold Time After Last SCLK Edge  
SCLK High Time  
SCLK Low Time  
SDI Data Setup Time  
SDI Data Hold Time  
tHDI  
15  
0
SDO Enable Time (High Impedance to Output Active)  
SDO Disable Time (Output Active to High Impedance)  
SDO Data Valid Time  
tEN  
tDIS  
25  
40  
tDV  
SDO Data Hold Time After Update SCLK Edge  
tHDO  
5
Note 1:  
All timing is specified with 100 pF load on all SPI pins.  
103 of 130  
 
DS32506/DS32508/DS32512  
Figure 11-11. SPI Interface Timing Diagram  
CPHA = 0  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
CPHA = 1  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
104 of 130  
 
DS32506/DS32508/DS32512  
Table 11-10. JTAG Interface Timing  
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)  
(See Figure 11-12.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
1000  
500  
MAX  
UNITS  
ns  
JTCLK Clock Period  
t1  
t2/t3  
t4  
JTCLK Clock High/Low Time (Note 1)  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
50  
50  
50  
2
ns  
ns  
t5  
ns  
t6  
50  
50  
ns  
JTCLK to JTDO High-Z Delay (Note 2)  
JTRST Width Low Time  
t7  
2
ns  
t8  
100  
ns  
Note 1:  
Note 2:  
Clock can be stopped high or low.  
Not tested during production test.  
Figure 11-12. JTAG Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI  
JTMS  
JTRST  
t6  
t7  
JTDO  
t8  
JTRST  
105 of 130  
 
DS32506/DS32508/DS32512  
12. PIN ASSIGNMENTS  
Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
A0  
A1/LB5[1]  
A2/LB6[1]  
A3/LB7[1]  
A4/LB8[1]  
A5/LB9[1]  
A6/LB10[1]  
A7/LB11[1]  
A8/LB12[1]  
A9/ITRE  
V5  
T8  
RCLK8  
RCLK9  
N16  
H11  
T20  
G18  
R18  
A3  
TCC  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
TCLK8  
TCLK9  
TCLK10  
TCLK11  
TCLK12  
TCLKI  
TDM1  
C6  
L16  
R22  
K18  
M17  
J18  
T21  
G21  
P17  
H15  
U20  
E20  
T17  
C5  
TVSS4  
TVSS4  
TVSS4  
TVSS5  
TVSS5  
TVSS5  
TVSS6  
TVSS6  
TVSS6  
TVSS7  
TVSS7  
TVSS7  
TVSS8  
TVSS8  
TVSS8  
TVSS9  
TVSS9  
TVSS9  
TVSS10  
TVSS10  
TVSS10  
TVSS11  
TVSS11  
TVSS11  
TVSS12  
TVSS12  
TVSS12  
TXN1  
P6  
U3  
W5  
R9  
RCLK10  
RCLK11  
RCLK12  
RCLKI  
V1  
C9  
Y4  
E9  
P9  
F10  
U10  
V8  
AA3  
T9  
R11  
U8  
RD/DS  
RDY/ACK  
REFCLK  
RESREF  
RLOS1  
RLOS2  
RLOS3  
RLOS4  
RLOS5  
RLOS6  
RLOS7  
RLOS8  
RLOS9  
RLOS10  
RLOS11  
RLOS12  
RMON1  
RMON2  
RMON3  
RMON4  
RMON5  
RMON6  
RMON7  
RMON8  
RMON9  
RMON10  
RMON11  
RMON12  
RNEG1  
RNEG2  
RNEG3  
RNEG4  
RNEG5  
RNEG6  
AB2  
R10  
W6  
E7  
L22  
L2  
V9  
C12  
D11  
F12  
T12  
V12  
Y12  
D14  
E15  
F14  
U14  
V15  
Y16  
C18  
C19  
F16  
U16  
V18  
Y20  
J1  
A10  
K19  
P22  
F22  
V22  
H19  
M14  
H16  
W21  
D20  
P14  
H9  
AIST  
ALE  
T10  
G7  
M21  
M22  
M19  
M20  
Y5  
CLADBYP  
CLKA  
K21  
P21  
K15  
P19  
J20  
N17  
H14  
Y21  
B22  
U19  
H10  
T16  
E4  
CLKB  
TDM2  
CLKC  
TDM3  
CLKD  
TDM4  
TDM5  
CS  
CVDD  
L18  
L19  
L20  
T5  
TDM6  
CVDD  
TDM7  
CVSS  
R13  
L6  
TDM8  
D0/LB1[0]/SDO  
D1/LB2[0]/SDI  
D2/LB3[0]/SCLK  
D3/LB4[0]  
D4/LB5[0]  
D5/LB6[0]  
D6/LB7[0]/CPHA  
D7/LB8[0]/CPOL  
D8/LB9[0]  
D9/LB10[0]  
D10/LB11[0]  
D11/LB12[0]  
D12/LB1[1]  
D13/LB1[2]  
D14/LB1[3]  
D15/LB1[4]  
GPIOA1/LM1[1]  
GPIOA2/LM2[1]  
TDM9  
T6  
R4  
TDM10  
TDM11  
TDM12  
TEST  
R5  
F2  
R6  
AA1  
D8  
T7  
R7  
V10  
A10  
V13  
B14  
W16  
A18  
W19  
K17  
N21  
E22  
L14  
J17  
Y22  
TLBO1  
TLBO2  
TLBO3  
TLBO4  
TLBO5  
TLBO6  
TLBO7  
TLBO8  
TLBO9  
TLBO10  
TLBO11  
TLBO12  
TNEG1  
L7  
V4  
M9  
TXN1  
J2  
P7  
K8  
TXN2  
P1  
U5  
N5  
TXN2  
P2  
W4  
Y3  
D10  
Y7  
TXN3  
D1  
TXN3  
D2  
N8  
E13  
AB10  
D16  
AA14  
F17  
T14  
J22  
TXN4  
W1  
W2  
A7  
AA2  
P8  
TXN4  
TXN5  
AB1  
R8  
TXN5  
B7  
TXN6  
AA8  
AB8  
A12  
J5  
TXN6  
M7  
TXN7  
106 of 130  
 
DS32506/DS32508/DS32512  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
GPIOA3/LM3[1]  
GPIOA4/LM4[1]  
GPIOA5/LM5[1]  
GPIOA6/LM6[1]  
GPIOA7/LM7[1]  
GPIOA8/LM8[1]  
GPIOA9/LM9[1]  
GPIOA10/LM10[1]  
GPIOA11/LM11[1]  
GPIOA12/LM12[1]  
GPIOB1/LM1[0]  
GPIOB2/LM2[0]  
GPIOB3/LM3[0]  
GPIOB4/LM4[0]  
GPIOB5/LM5[0]  
GPIOB6/LM6[0]  
GPIOB7/LM7[0]  
GPIOB8/LM8[0]  
GPIOB9/LM9[0]  
GPIOB10/LM10[0]  
GPIOB11/LM11[0]  
GPIOB12/LM12[0]  
HIZ  
J7  
N6  
RNEG7  
RNEG8  
RNEG9  
RNEG10  
RNEG11  
RNEG12  
RPD  
H18  
N15  
H12  
W20  
G17  
R17  
B3  
TNEG2  
TNEG3  
TNEG4  
TNEG5  
TNEG6  
TNEG7  
TNEG8  
TNEG9  
TNEG10  
TNEG11  
TNEG12  
TOE1  
M18  
K20  
W22  
J19  
V21  
E21  
AA22  
C21  
R15  
F19  
T18  
K22  
T22  
G22  
M16  
C22  
R19  
F21  
P16  
D21  
V19  
F20  
U17  
D6  
TXN7  
TXN8  
B12  
AA12  
AB12  
A16  
B16  
AA16  
AB16  
A20  
B20  
AA20  
AB20  
H1  
F8  
TXN8  
U11  
F11  
U13  
F13  
Y14  
F15  
Y18  
G2  
TXN9  
TXN9  
TXN10  
TXN10  
TXN11  
TXN11  
TXN12  
TXN12  
TXP1  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RPOS5  
RPOS6  
RPOS7  
RPOS8  
RPOS9  
RPOS10  
RPOS11  
RPOS12  
RST  
J21  
L17  
J15  
U22  
H20  
P20  
H17  
R20  
F18  
T19  
G16  
R16  
C3  
M4  
G5  
TOE2  
TXP1  
H2  
T1  
TOE3  
TXP2  
N1  
E8  
TOE4  
TXP2  
N2  
Y10  
B10  
AB14  
A14  
R12  
B18  
U15  
J8  
TOE5  
TXP3  
C1  
TOE6  
TXP3  
C2  
TOE7  
TXP4  
U1  
TOE8  
TXP4  
U2  
TOE9  
TXP5  
A8  
RVDD1  
RVDD2  
RVDD3  
RVDD4  
RVDD5  
RVDD6  
RVDD7  
RVDD8  
RVDD9  
RVDD10  
RVDD11  
RVDD12  
RVSS1  
RVSS2  
RVSS3  
RVSS4  
RVSS5  
RVSS6  
RVSS7  
RVSS8  
RVSS9  
RVSS10  
RVSS11  
RVSS12  
L4  
TOE10  
TOE11  
TOE12  
TPD  
TXP5  
B8  
P3  
TXP6  
AA7  
AB7  
A13  
B13  
AA11  
AB11  
A17  
B17  
AA15  
AB15  
A21  
B21  
AA19  
AB19  
C10  
C17  
G1  
G4  
TXP6  
HW  
B1  
V3  
TXP7  
IFSEL0  
U9  
C8  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TPOS5  
TPOS6  
TPOS7  
TPOS8  
TPOS9  
TPOS10  
TPOS11  
TPOS12  
TVDD1  
TVDD1  
TVDD1  
TVDD2  
TVDD2  
TVDD2  
TVDD3  
TVDD3  
L15  
N19  
H21  
M15  
J16  
U21  
G20  
P15  
H13  
V20  
E19  
R14  
J3  
TXP7  
IFSEL1  
Y6  
Y9  
TXP8  
IFSEL2  
W7  
AB3  
G8  
C11  
Y13  
E14  
V16  
D17  
U18  
L1  
TXP8  
TXP9  
INT  
JAD0  
TXP9  
JAD1  
C4  
TXP10  
TXP10  
TXP11  
TXP11  
TXP12  
TXP12  
VDD18  
VDD18  
VDD18  
VDD18  
VDD18  
VDD18  
VDD18  
VDD18  
VDD33  
JAS0  
F7  
JAS1  
E5  
JTCLK  
D4  
JTDI  
D3  
P5  
JTDO  
F6  
F5  
JTMS  
H7  
W3  
E3  
C7  
JTRST  
JVDD1  
H3  
W10  
E11  
W13  
C14  
Y17  
E17  
AB22  
K4  
JVDD2  
M1  
A1  
K5  
H22  
N20  
T2  
JVDD3  
M3  
JVDD4  
T4  
M6  
JVDD5  
E10  
AA6  
D13  
N3  
AA10  
AA18  
J10  
JVDD6  
A2  
JVDD7  
F4  
107 of 130  
DS32506/DS32508/DS32512  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
SIGNAL  
BALL  
JVDD8  
JVDD9  
JVDD10  
JVDD11  
JVDD12  
JVSS1  
JVSS2  
JVSS3  
JVSS4  
JVSS5  
JVSS6  
JVSS7  
JVSS8  
JVSS9  
JVSS10  
JVSS11  
JVSS12  
LBS  
W11  
E16  
W14  
E18  
V17  
H4  
RXN1  
RXN2  
RXN3  
RXN4  
RXN5  
RXN6  
RXN7  
RXN8  
RXN9  
RXN10  
RXN11  
RXN12  
RXP1  
RXP2  
RXP3  
RXP4  
RXP5  
RXP6  
RXP7  
RXP8  
RXP9  
RXP10  
RXP11  
RXP12  
TAIS1  
TAIS2  
TAIS3  
TAIS4  
TAIS5  
TAIS6  
TAIS7  
TAIS8  
TAIS9  
TAIS10  
TAIS11  
TAIS12  
TBIN  
K1  
R2  
TVDD3  
TVDD4  
TVDD4  
TVDD4  
TVDD5  
TVDD5  
TVDD5  
TVDD6  
TVDD6  
TVDD6  
TVDD7  
TVDD7  
TVDD7  
TVDD8  
TVDD8  
TVDD8  
TVDD9  
TVDD9  
TVDD9  
TVDD10  
TVDD10  
TVDD10  
TVDD11  
TVDD11  
TVDD11  
TVDD12  
TVDD12  
TVDD12  
TVSS1  
TVSS1  
TVSS1  
TVSS2  
TVSS2  
TVSS2  
TVSS3  
TVSS3  
TVSS3  
K6  
N7  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VSS  
J13  
K9  
E1  
U4  
K14  
N9  
Y2  
V2  
B6  
B9  
N14  
P10  
P13  
A22  
J6  
AB9  
A11  
AB13  
A15  
AA17  
A19  
AA21  
K2  
D9  
M2  
F9  
B2  
P11  
V7  
T3  
VSS  
A9  
Y8  
VSS  
J9  
AB6  
C13  
V11  
C16  
V14  
D19  
W17  
H8  
D12  
E12  
G10  
U12  
W12  
Y11  
C15  
D15  
G12  
T13  
W15  
Y15  
C20  
D18  
G14  
T15  
W18  
Y19  
J4  
VSS  
J11  
J12  
K7  
VSS  
VSS  
R1  
VSS  
K10  
K11  
K12  
K13  
L5  
E2  
VSS  
Y1  
VSS  
A6  
VSS  
AA9  
B11  
AA13  
B15  
AB17  
B19  
AB21  
F1  
VSS  
MT0  
L21  
D5  
VSS  
L8  
MT1  
VSS  
L9  
MT2  
G6  
VSS  
L10  
L11  
L12  
L13  
M10  
M11  
M12  
M13  
N10  
N11  
N12  
N13  
P18  
U6  
MT3  
AA4  
AB4  
A4  
VSS  
MT4  
VSS  
MT5  
VSS  
MT6  
B4  
VSS  
MT7  
AA5  
AB5  
A5  
L3  
VSS  
MT8  
H6  
VSS  
MT9  
R3  
VSS  
MT10  
B5  
G9  
VSS  
RBIN  
E6  
W8  
K3  
VSS  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
K16  
N22  
D22  
N18  
J14  
R21  
G19  
G11  
T11  
G13  
P12  
G15  
AB18  
D7  
M8  
VSS  
M5  
VSS  
N4  
VSS  
P4  
VSS  
F3  
VSS  
U7  
G3  
VSS  
W9  
V6  
H5  
WR/R/W  
Note: There are two TXP leads and two TXN leads for each LIU port. For best performance, the two TXP leads must be wired together and the  
two TXN leads must be wired together on each port.  
108 of 130  
DS32506/DS32508/DS32512  
Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
RCLKI  
MT5  
MT9  
RXP5  
TXN5  
TXP5  
JVSS5  
RMON7  
RXN7  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
RMON3  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
RPD  
RST  
MT6  
JAD1  
MT10  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
GPIOB5  
GPIOA5  
JAD0  
LBS  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
RLOS11  
VSS  
GPIOB7  
VDD18  
TLBO5  
JVDD5  
TVSS5  
TVDD7  
TDM11  
VDD33  
VSS  
RXP7  
RVDD7  
TVSS7  
RVSS7  
GPIOA7  
TAIS7  
RCLK9  
VSS  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
D14  
C
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
RBIN  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
D6/CPHA  
D9  
JTDO  
MT2  
JAS0  
F
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
TAIS3  
VSS  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
GPIOA4  
TVSS4  
D3  
TLBO3  
VSS  
VDD33  
VSS  
VSS  
K
TLBO1  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
VSS  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
TVSS1  
D11  
TLBO2  
VDD33  
A5  
VSS  
VSS  
M
N
VSS  
VSS  
D13  
VDD33  
A9  
TVDD6  
P
D15  
A3  
R
RD/DS  
TAIS8  
GPIOA6  
JVSS8  
JVDD8  
TVDD8  
TXP8  
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
RMON6  
RVSS6  
GPIOB6  
VDD18  
TLBO8  
10  
U
RDY/ACK  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
A0  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
V
WR/R/W  
A10  
A2  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
MT7  
AA  
AB  
A8  
MT4  
MT8  
TXP6  
TXP8  
INT  
1
2
3
4
5
7
11  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
109 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
TXN7  
TXP7  
TXP7  
JVSS7  
GPIOB9  
RMON9  
RVSS9  
TVSS9  
RVDD9  
TVSS9  
TVDD11  
TDM7  
RXN9  
TXN9  
TXP9  
RMON11  
GPIOB11  
TVSS11  
TVDD11  
JVDD11  
RPOS9  
RCLK11  
RNEG7  
TCLK5  
RXN11  
RXP11  
TVSS11  
JVSS11  
TPOS11  
TNEG11  
RCLK7  
RLOS5  
TNEG5  
RLOS1  
CVDD  
TXN11  
TXN11  
TVDD11  
RLOS9  
TCLK11  
TOE11  
TPOS7  
RPOS5  
TDM5  
TXP11  
TXP11  
TNEG9  
TOE9  
VSS  
A
B
C
D
E
TXN7  
RXP9  
TXN9  
TXP9  
TDM9  
TVSS7  
TVDD9  
TVDD9  
TVSS9  
GPIOA11  
TAIS11  
TCLK9  
RPOS3  
TDM3  
JVSS9  
TLBO9  
JVDD9  
TVSS11  
RPOS11  
RLOS7  
TPOS5  
RCLK1  
TCLK1  
TOE4  
VDD18  
RVDD11  
RVSS11  
TLBO11  
RNEG11  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
TOE5  
TVDD7  
TVDD7  
TVSS7  
TVDD9  
RNEG9  
VSS  
JVDD7  
TLBO7  
GPIOA9  
TAIS9  
TPOS9  
VDD33  
VSS  
RCLK3  
RNEG3  
RLOS3  
TOE3  
TNEG7  
TOE7  
F
TCLK7  
TPOS3  
RPOS1  
TDM1  
MT0  
G
H
J
VDD18  
TNEG1  
TOE1  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
RLOS10  
TPOS12  
TLBO12  
TVSS10  
JVSS10  
JVDD10  
GPIOA10  
TLBO10  
GPIOB8  
14  
VSS  
TCLK3  
TNEG3  
CVSS  
K
L
VSS  
VSS  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
TNEG10  
TVDD12  
GPIOB12  
TVSS10  
TVDD10  
TVDD10  
TXP10  
TXP10  
15  
CVDD  
REFCLK  
CLKB  
VSS  
VSS  
TNEG2  
RCLK4  
VSS  
CLKC  
CLKD  
CLKA  
M
N
P
VSS  
VSS  
RCLK8  
TOE8  
TPOS2  
TDM4  
VDD18  
RPOS6  
RPOS8  
RCLK10  
TCLK10  
TPOS10  
RNEG10  
TVSS12  
TXN12  
TXN12  
20  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
RLOS8  
TDM8  
RXN12  
RXP12  
21  
RCLK2  
RLOS2  
TCLK2  
TOE2  
TAIS10  
GPIOB10  
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
VDD33  
RLOS12  
TVDD10  
GPIOA8  
RMON8  
RVSS8  
RVDD8  
RXP8  
TCLK8  
RNEG12  
TCLK12  
TOE12  
JVDD12  
JVSS12  
RVSS10  
RXN10  
RXP10  
17  
RPOS12  
TDM12  
TVSS12  
RVDD10  
RMON10  
TVSS10  
TXN10  
TXN10  
16  
RCLK12  
TNEG12  
RVDD12  
TVSS12  
TVDD12  
GPIOA12  
VDD18  
TAIS12  
18  
TOE6  
R
T
RPOS10  
TDM10  
TOE10  
RMON12  
TVDD12  
TXP12  
TXP12  
19  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
TNEG8  
RVSS12  
22  
U
V
W
Y
AA  
AB  
TXN8  
RXN8  
12  
13  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
110 of 130  
DS32506/DS32508/DS32512  
Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
TVDD3  
RCLKI  
MT5  
MT9  
RXP5  
TXN5  
TXP5  
JVSS5  
RMON7  
RXN7  
A
B
HW  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
LM4[0]  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
LB3[1]  
1
JVSS3  
TXP3  
RPD  
RST  
MT6  
JAD1  
MT10  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
LM5[0]  
LM5[1]  
JAD0  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
RLOS11  
VSS  
LM7[0]  
VDD18  
TLBO5  
JVDD5  
TVSS5  
TVDD7  
TDM11  
VDD33  
VSS  
RXP7  
RVDD7  
TVSS7  
RVSS7  
LM7[1]  
TAIS7  
RCLK9  
VSS  
C
TXN3  
RXP3  
RMON3  
LM1[0]  
TXP1  
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
LM3[0]  
TVSS3  
LM1[1]  
TVDD1  
VSS  
RBIN  
JTDO  
MT2  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
LB11[0]  
LB10[1]  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
LM2[0]  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
LB7[0]  
LB10[0]  
LB8[1]  
MT3  
JAS0  
F
CLADBYP  
JTMS  
LM3[1]  
VSS  
G
H
TAIS3  
VSS  
LBS  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
LM4[1]  
TVSS4  
LB4[0]  
LB2[0]  
VSS  
TLBO3  
VSS  
VDD33  
VSS  
VSS  
K
TLBO1  
LM2[1]  
TVDD4  
LB8[0]  
LB6[0]  
LB5[0]  
VSS  
VSS  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
LB3[0]  
LB1[0]  
LB9[0]  
N.C.  
TVSS1  
LB12[0]  
LB2[1]  
LB4[1]  
LB5[1]  
N.C.  
TLBO2  
VDD33  
LB9[1]  
LB7[1]  
LB11[1]  
IFSEL0  
TVSS6  
VSS  
VSS  
VSS  
M
N
VSS  
VSS  
TXN2  
RXN2  
VDD18  
TXP4  
VDD33  
ITRE  
TVDD6  
N.C.  
P
R
N.C.  
TAIS8  
LM6[1]  
JVSS8  
JVDD8  
TVDD8  
TXP8  
TXP8  
11  
T
TVSS6  
RMON6  
RVSS6  
LM6[0]  
VDD18  
TLBO8  
10  
U
TVDD4  
TXN4  
RXN4  
LB1[1]  
LB12[1]  
2
N.C.  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
V
LB6[1]  
N.C.  
N.C.  
W
Y
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
MT7  
AA  
AB  
MT4  
MT8  
TXP6  
RXN6  
9
3
4
5
7
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
111 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
TXN7  
TXP7  
TXP7  
JVSS7  
LM9[0]  
RMON9  
RVSS9  
TVSS9  
RVDD9  
TVSS9  
TVDD11  
TDM7  
RXN9  
TXN9  
TXP9  
RMON11  
LM11[0]  
TVSS11  
TVDD11  
JVDD11  
RPOS9  
RCLK11  
RNEG7  
TCLK5  
TCLK3  
CVDD  
RXN11  
RXP11  
TVSS11  
JVSS11  
TPOS11  
TNEG11  
RCLK7  
RLOS5  
TNEG5  
RLOS1  
CVDD  
TXN11  
TXN11  
TVDD11  
RLOS9  
TCLK11  
TOE11  
TPOS7  
RPOS5  
TDM5  
TXP11  
TXP11  
TNEG9  
TOE9  
VSS  
A
B
C
D
E
TXN7  
RXP9  
TXN9  
TXP9  
TDM9  
TVSS7  
TVDD9  
TVDD9  
TVSS9  
LM11[1]  
TAIS11  
TCLK9  
RPOS3  
TDM3  
JVSS9  
TLBO9  
JVDD9  
TVSS11  
RPOS11  
RLOS7  
TPOS5  
RCLK1  
TCLK1  
TOE4  
VDD18  
RVDD11  
RVSS11  
TLBO11  
RNEG11  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
TOE5  
TVDD7  
TVDD7  
TVSS7  
TVDD9  
RNEG9  
VSS  
JVDD7  
TLBO7  
LM9[1]  
TAIS9  
TPOS9  
VDD33  
VSS  
RCLK3  
RNEG3  
RLOS3  
TOE3  
TNEG7  
TOE7  
F
TCLK7  
TPOS3  
RPOS1  
TDM1  
MT0  
G
H
J
VDD18  
TNEG1  
TOE1  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
RLOS10  
TPOS12  
TLBO12  
TVSS10  
JVSS10  
JVDD10  
LM10[1]  
TLBO10  
LM8[0]  
14  
VSS  
TNEG3  
CVSS  
K
L
VSS  
VSS  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
TNEG10  
TVDD12  
LM12[0]  
TVSS10  
TVDD10  
TVDD10  
TXP10  
TXP10  
15  
REFCLK  
CLKB  
VSS  
VSS  
TNEG2  
RCLK4  
VSS  
CLKC  
CLKD  
CLKA  
M
N
P
VSS  
VSS  
RCLK8  
TOE8  
TPOS2  
TDM4  
VDD18  
RPOS6  
RPOS8  
RCLK10  
TCLK10  
TPOS10  
RNEG10  
TVSS12  
TXN12  
TXN12  
20  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
RLOS8  
TDM8  
RXN12  
RXP12  
21  
RCLK2  
RLOS2  
TCLK2  
TOE2  
TAIS10  
LM10[0]  
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
TXN8  
12  
VDD33  
RLOS12  
TVDD10  
LM8[1]  
RMON8  
RVSS8  
RVDD8  
RXP8  
TCLK8  
RNEG12  
TCLK12  
TOE12  
JVDD12  
JVSS12  
RVSS10  
RXN10  
RXP10  
17  
RPOS12  
TDM12  
TVSS12  
RVDD10  
RMON10  
TVSS10  
TXN10  
TXN10  
16  
RCLK12  
TNEG12  
RVDD12  
TVSS12  
TVDD12  
LM12[1]  
VDD18  
TAIS12  
18  
TOE6  
R
T
RPOS10  
TDM10  
TOE10  
RMON12  
TVDD12  
TXP12  
TXP12  
19  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
TNEG8  
RVSS12  
22  
U
V
W
Y
AA  
AB  
RXN8  
13  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
112 of 130  
DS32506/DS32508/DS32512  
Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
N.C.  
MT5  
MT9  
RXP5  
TXN5  
TXP5  
JVSS5  
N.C.  
RXN7  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
N.C.  
N.C.  
RST  
MT6  
N.C.  
MT10  
N.C.  
RXN5  
N.C.  
TXN5  
RVSS5  
N.C.  
TXP5  
RVDD5  
N.C.  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
N.C.  
GPIOB7  
VDD18  
N.C.  
RXP7  
RVDD7  
TVSS7  
RVSS7  
GPIOA7  
N.C.  
TXP3  
TXN3  
RXN3  
N.C.  
C
JTDI  
JTCLK  
TEST  
MT1  
N.C.  
D
N.C.  
N.C.  
N.C.  
GPIOB5  
GPIOA5  
N.C.  
JVDD5  
TVSS5  
TVDD7  
N.C.  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
N.C.  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
JTDO  
MT2  
N.C.  
F
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
N.C.  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
N.C.  
N.C.  
N.C.  
RCLK9  
VSS  
VSS  
VSS  
VDD33  
VSS  
HIZ  
J
TVDD3  
N.C.  
N.C.  
VDD33  
VSS  
VSS  
K
N.C.  
VSS  
VSS  
VSS  
L
TVDD2  
TVDD2  
RVDD2  
N.C.  
TVSS2  
N.C.  
TVDD2  
GPIOA4  
TVSS4  
D3  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
TVSS1  
D11  
N.C.  
VSS  
VSS  
M
N
VDD33  
A5  
VSS  
VSS  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
D13  
VDD33  
A9  
TVDD6  
RD/DS  
N.C.  
P
D15  
A3  
R
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
JVDD4  
TVDD4  
D6/CPHA  
D9  
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
N.C.  
GPIOA6  
JVSS8  
JVDD8  
TVDD8  
TXP8  
TXP8  
11  
U
RDY/ACK  
TVSS6  
N.C.  
A0  
TVDD6  
IFSEL2  
N.C.  
V
WR/R/W  
A10  
A2  
RVSS6  
GPIOB6  
VDD18  
N.C.  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
TVDD6  
TXN6  
TXN6  
8
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
MT7  
TXP6  
TXP6  
7
AA  
AB  
D14  
A8  
MT4  
MT8  
INT  
1
2
3
4
5
10  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
113 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
GPIOB9  
N.C.  
15  
16  
TXN9  
17  
18  
19  
RXN11  
RXP11  
TVSS11  
JVSS11  
TPOS11  
TNEG11  
RCLK7  
N.C.  
20  
21  
22  
VSS  
TXN7  
TXP7  
TXP7  
JVSS7  
RXN9  
TXP9  
N.C.  
TXN11  
TXN11  
TVDD11  
N.C.  
TXP11  
TXP11  
TNEG9  
N.C.  
A
B
C
D
E
TXN7  
RXP9  
TXN9  
TXP9  
GPIOB11  
TVSS11  
TVDD11  
JVDD11  
RPOS9  
RCLK11  
RNEG7  
TCLK5  
TCLK3  
CVDD  
N.C.  
TVSS7  
RVSS9  
TVSS9  
RVDD9  
TVSS9  
TVDD11  
N.C.  
TVDD9  
TVDD9  
TVSS9  
GPIOA11  
N.C.  
JVSS9  
N.C.  
VDD18  
RVDD11  
RVSS11  
N.C.  
N.C.  
TVDD7  
TVDD7  
TVSS7  
TVDD9  
RNEG9  
VSS  
JVDD7  
N.C.  
RCLK3  
RNEG3  
N.C.  
JVDD9  
TVSS11  
RPOS11  
N.C.  
TCLK11  
N.C.  
TNEG7  
N.C.  
GPIOA9  
N.C.  
F
RNEG11  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
N.C.  
TPOS7  
RPOS5  
N.C.  
TCLK7  
TPOS3  
RPOS1  
N.C.  
N.C.  
G
H
J
TPOS9  
VDD33  
VSS  
TCLK9  
RPOS3  
N.C.  
VDD18  
TNEG1  
N.C.  
RCLK5  
VDD33  
RNEG4  
N.C.  
TPOS5  
RCLK1  
TCLK1  
N.C.  
TNEG5  
N.C.  
VSS  
TNEG3  
CVSS  
K
L
VSS  
VSS  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
TNEG10  
TVDD12  
GPIOB12  
TVSS10  
TVDD10  
TVDD10  
TXP10  
TXP10  
15  
CVDD  
CLKC  
TPOS2  
N.C.  
MT0  
REFCLK  
CLKB  
RCLK2  
N.C.  
VSS  
VSS  
TNEG2  
RCLK4  
VSS  
CLKD  
CLKA  
RNEG2  
N.C.  
M
N
P
VSS  
VSS  
VDD33  
N.C.  
RCLK8  
N.C.  
VDD18  
RPOS6  
RPOS8  
RCLK10  
TCLK10  
TPOS10  
RNEG10  
TVSS12  
TXN12  
TXN12  
20  
N.C.  
VDD33  
N.C.  
TCLK8  
RNEG12  
TCLK12  
N.C.  
GPIOB10  
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
TXN8  
12  
TPOS12  
N.C.  
RPOS12  
N.C.  
RCLK12  
TNEG12  
RVDD12  
TVSS12  
TVDD12  
GPIOA12  
VDD18  
N.C.  
N.C.  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
N.C.  
TCLK2  
N.C.  
R
T
TVDD10  
GPIOA8  
N.C.  
RPOS10  
N.C.  
TVSS10  
JVSS10  
JVDD10  
GPIOA10  
N.C.  
TVSS12  
RVDD10  
N.C.  
RPOS4  
N.C.  
U
V
JVDD12  
JVSS12  
RVSS10  
RXN10  
RXP10  
17  
N.C.  
RVSS8  
RVDD8  
RXP8  
RXN8  
13  
N.C.  
TNEG4  
RNEG6  
TNEG8  
RVSS12  
22  
W
Y
TVSS10  
TXN10  
TXN10  
16  
TVDD12  
TXP12  
TXP12  
19  
N.C.  
RXN12  
RXP12  
21  
AA  
AB  
GPIOB8  
14  
18  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
114 of 130  
DS32506/DS32508/DS32512  
Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
RCLKI  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
RMON7  
RXN7  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
RMON3  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
RPD  
RST  
MT6  
JAD1  
N.C.  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
GPIOB5  
GPIOA5  
JAD0  
LBS  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
N.C.  
GPIOB7  
VDD18  
TLBO5  
JVDD5  
TVSS5  
TVDD7  
N.C.  
RXP7  
RVDD7  
TVSS7  
RVSS7  
GPIOA7  
TAIS7  
N.C.  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
D14  
C
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
RBIN  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
D6/CPHA  
D9  
JTDO  
MT2  
JAS0  
F
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
TAIS3  
VSS  
VSS  
VDD33  
VSS  
VSS  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
GPIOA4  
TVSS4  
D3  
TLBO3  
VSS  
VDD33  
VSS  
VSS  
K
TLBO1  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
VSS  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
TVSS1  
D11  
TLBO2  
VDD33  
A5  
VSS  
VSS  
M
N
VSS  
VSS  
D13  
VDD33  
A9  
TVDD6  
RD/DS  
TAIS8  
GPIOA6  
JVSS8  
JVDD8  
TVDD8  
TXP8  
TXP8  
11  
P
D15  
A3  
R
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
RMON6  
RVSS6  
GPIOB6  
VDD18  
TLBO8  
10  
U
RDY/ACK  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
A0  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
V
WR/R/W  
A10  
A2  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
MT7  
AA  
AB  
A8  
MT4  
MT8  
TXP6  
INT  
1
2
3
4
5
7
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
115 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
16  
N.C.  
17  
N.C.  
18  
N.C.  
19  
N.C.  
20  
N.C.  
21  
22  
VSS  
TXN7  
TXP7  
TXP7  
JVSS7  
N.C.  
A
B
C
D
E
TXN7  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TVSS7  
VSS  
VSS  
VSS  
VDD18  
VSS  
VSS  
VSS  
VSS  
N.C.  
TOE5  
TVDD7  
TVDD7  
TVSS7  
VSS  
JVDD7  
TLBO7  
N.C.  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
RCLK3  
RNEG3  
RLOS3  
TOE3  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
TNEG7  
TOE7  
TCLK7  
TPOS3  
RPOS1  
TDM1  
MT0  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
F
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
RCLK7  
RLOS5  
TNEG5  
RLOS1  
CVDD  
CLKC  
TPOS2  
TDM4  
TOE6  
N.C.  
TPOS7  
RPOS5  
TDM5  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
RPOS8  
N.C.  
G
H
J
N.C.  
N.C.  
TDM7  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
N.C.  
N.C.  
RLOS7  
TPOS5  
RCLK1  
TCLK1  
TOE4  
RCLK8  
TOE8  
N.C.  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
TCLK8  
N.C.  
RNEG7  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
VDD18  
TNEG1  
TOE1  
VSS  
VDD33  
VSS  
RPOS3  
TDM3  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
N.C.  
VSS  
K
L
VSS  
VSS  
REFCLK  
CLKB  
VSS  
VSS  
CLKA  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
RLOS8  
TDM8  
N.C.  
M
N
P
VSS  
VSS  
RCLK2  
RLOS2  
TCLK2  
TOE2  
N.C.  
VDD33  
N.C.  
N.C.  
N.C.  
N.C.  
R
T
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
TXN8  
12  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
GPIOA8  
RMON8  
RVSS8  
RVDD8  
RXP8  
RXN8  
13  
VSS  
N.C.  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
TNEG8  
VSS  
U
V
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
W
Y
N.C.  
VSS  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
AA  
AB  
GPIOB8  
14  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
15  
16  
17  
18  
19  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
116 of 130  
DS32506/DS32508/DS32512  
Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
TVDD3  
RCLKI  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
RMON7  
RXN7  
A
B
HW  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
LM4[0]  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
LB3[1]  
1
JVSS3  
TXP3  
TXN3  
RXP3  
RMON3  
LM1[0]  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
LB1[1]  
N.C.  
RPD  
RST  
MT6  
JAD1  
N.C.  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
LM5[0]  
LM5[1]  
JAD0  
LBS  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
N.C.  
LM7[0]  
VDD18  
TLBO5  
JVDD5  
TVSS5  
TVDD7  
N.C.  
RXP7  
RVDD7  
TVSS7  
RVSS7  
LM7[1]  
TAIS7  
N.C.  
C
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
LM3[0]  
TVSS3  
LM1[1]  
TVDD1  
VSS  
RBIN  
JTDO  
MT2  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
LM2[0]  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
LB7[0]  
N.C.  
JAS0  
F
CLADBYP  
JTMS  
LM3[1]  
VSS  
G
H
TAIS3  
VSS  
VSS  
VDD33  
VSS  
VSS  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
LM4[1]  
TVSS4  
LB4[0]  
LB2[0]  
VSS  
TLBO3  
VSS  
VDD33  
VSS  
VSS  
K
TLBO1  
LM2[1]  
TVDD4  
LB8[0]  
LB6[0]  
LB5[0]  
VSS  
VSS  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
LB3[0]  
LB1[0]  
N.C.  
TVSS1  
N.C.  
TLBO2  
VDD33  
N.C.  
VSS  
VSS  
M
N
VSS  
VSS  
LB2[1]  
LB4[1]  
LB5[1]  
N.C.  
VDD33  
ITRE  
TVDD6  
N.C.  
P
LB7[1]  
N.C.  
R
N.C.  
TAIS8  
LM6[1]  
JVSS8  
JVDD8  
TVDD8  
TXP8  
TXP8  
11  
T
IFSEL0  
TVSS6  
VSS  
TVSS6  
RMON6  
RVSS6  
LM6[0]  
VDD18  
TLBO8  
10  
U
N.C.  
N.C.  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
V
LB6[1]  
N.C.  
N.C.  
W
Y
LB8[1]  
MT3  
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
RXN6  
9
N.C.  
MT7  
AA  
AB  
N.C.  
MT4  
MT8  
TXP6  
2
3
4
5
7
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
117 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
16  
N.C.  
17  
N.C.  
18  
N.C.  
19  
N.C.  
20  
N.C.  
21  
22  
VSS  
TXN7  
TXP7  
TXP7  
JVSS7  
N.C.  
A
B
C
D
E
TXN7  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TVSS7  
VSS  
VSS  
VSS  
VDD18  
VSS  
VSS  
VSS  
VSS  
N.C.  
TOE5  
TVDD7  
TVDD7  
TVSS7  
VSS  
JVDD7  
TLBO7  
N.C.  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
RCLK3  
RNEG3  
RLOS3  
TOE3  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
TNEG7  
TOE7  
TCLK7  
TPOS3  
RPOS1  
TDM1  
MT0  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
F
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
RCLK7  
RLOS5  
TNEG5  
RLOS1  
CVDD  
CLKC  
TPOS2  
TDM4  
TOE6  
N.C.  
TPOS7  
RPOS5  
TDM5  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
RPOS8  
N.C.  
G
H
J
N.C.  
N.C.  
TDM7  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
N.C.  
N.C.  
RLOS7  
TPOS5  
RCLK1  
TCLK1  
TOE4  
RCLK8  
TOE8  
N.C.  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
TCLK8  
N.C.  
RNEG7  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
VDD18  
TNEG1  
TOE1  
VSS  
VDD33  
VSS  
RPOS3  
TDM3  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
N.C.  
VSS  
K
L
VSS  
VSS  
REFCLK  
CLKB  
VSS  
VSS  
CLKA  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
RLOS8  
TDM8  
N.C.  
M
N
P
VSS  
VSS  
RCLK2  
RLOS2  
TCLK2  
TOE2  
N.C.  
VDD33  
N.C.  
N.C.  
N.C.  
N.C.  
R
T
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
TXN8  
12  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
LM8[1]  
RMON8  
RVSS8  
RVDD8  
RXP8  
RXN8  
13  
VSS  
N.C.  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
TNEG8  
VSS  
U
V
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
W
Y
N.C.  
VSS  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
AA  
AB  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
14  
15  
16  
17  
18  
19  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
118 of 130  
DS32506/DS32508/DS32512  
Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
N.C.  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
N.C.  
RXN7  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
N.C.  
N.C.  
RST  
MT6  
N.C.  
N.C.  
N.C.  
RXN5  
N.C.  
TXN5  
RVSS5  
N.C.  
TXP5  
RVDD5  
N.C.  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
N.C.  
GPIOB7  
VDD18  
N.C.  
RXP7  
RVDD7  
TVSS7  
RVSS7  
GPIOA7  
N.C.  
TXP3  
TXN3  
RXN3  
N.C.  
C
JTDI  
JTCLK  
TEST  
MT1  
N.C.  
D
N.C.  
N.C.  
N.C.  
GPIOB5  
GPIOA5  
N.C.  
JVDD5  
TVSS5  
TVDD7  
N.C.  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
N.C.  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
JTDO  
MT2  
N.C.  
F
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
N.C.  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
VDD33  
VSS  
VSS  
HIZ  
J
TVDD3  
N.C.  
N.C.  
VDD33  
VSS  
VSS  
K
N.C.  
VSS  
VSS  
VSS  
L
TVDD2  
TVDD2  
RVDD2  
N.C.  
TVSS2  
N.C.  
TVDD2  
GPIOA4  
TVSS4  
D3  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
TVSS1  
D11  
N.C.  
VSS  
VSS  
M
N
VDD33  
A5  
VSS  
VSS  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
D13  
VDD33  
A9  
TVDD6  
RD/DS  
N.C.  
P
D15  
A3  
R
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
JVDD4  
TVDD4  
D6/CPHA  
D9  
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
N.C.  
GPIOA6  
JVSS8  
JVDD8  
TVDD8  
TXP8  
TXP8  
11  
U
RDY/ACK  
TVSS6  
N.C.  
A0  
TVDD6  
IFSEL2  
N.C.  
V
WR/R/W  
A10  
A2  
RVSS6  
GPIOB6  
VDD18  
N.C.  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
TVDD6  
TXN6  
TXN6  
8
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
MT7  
TXP6  
TXP6  
7
AA  
AB  
D14  
A8  
MT4  
MT8  
INT  
1
2
3
4
5
10  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
119 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
16  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
TPOS5  
RCLK1  
TCLK1  
N.C.  
RCLK8  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
16  
17  
N.C.  
18  
N.C.  
19  
N.C.  
20  
N.C.  
21  
N.C.  
22  
VSS  
TXN7  
TXP7  
TXP7  
JVSS7  
A
B
C
D
E
TXN7  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TVSS7  
VSS  
VSS  
VDD18  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
TVDD7  
TVDD7  
TVSS7  
VSS  
JVDD7  
N.C.  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
RCLK3  
RNEG3  
N.C.  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
TNEG7  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
F
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
RCLK7  
N.C.  
TPOS7  
RPOS5  
N.C.  
TCLK7  
TPOS3  
RPOS1  
N.C.  
N.C.  
G
H
J
N.C.  
N.C.  
N.C.  
N.C.  
RPOS7  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
N.C.  
RNEG7  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
VDD18  
TNEG1  
N.C.  
VSS  
VDD33  
VSS  
RCLK5  
VDD33  
RNEG4  
N.C.  
RPOS3  
N.C.  
TNEG5  
N.C.  
VSS  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
RPOS8  
N.C.  
K
L
VSS  
VSS  
TPOS1  
TPOS4  
RNEG8  
TPOS8  
N.C.  
CVDD  
CLKC  
TPOS2  
N.C.  
MT0  
REFCLK  
CLKB  
RCLK2  
N.C.  
VSS  
VSS  
CLKA  
RNEG2  
N.C.  
M
N
P
VSS  
VSS  
VDD33  
N.C.  
N.C.  
VDD33  
N.C.  
TCLK8  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
N.C.  
TCLK2  
N.C.  
R
T
TVSS8  
TVDD8  
TVSS8  
TVDD8  
TVSS8  
TXN8  
TXN8  
12  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
GPIOA8  
N.C.  
VSS  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
RPOS4  
N.C.  
U
V
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
RVSS8  
RVDD8  
RXP8  
RXN8  
13  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
TNEG4  
RNEG6  
TNEG8  
VSS  
W
Y
N.C.  
VSS  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
AA  
AB  
GPIOB8  
14  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
15  
17  
18  
19  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
120 of 130  
DS32506/DS32508/DS32512  
Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
RCLKI  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
N.C.  
N.C.  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
RMON3  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
RPD  
RST  
MT6  
JAD1  
N.C.  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
GPIOB5  
GPIOA5  
JAD0  
LBS  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
N.C.  
N.C.  
VDD18  
TLBO5  
JVDD5  
TVSS5  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
TVDD6  
RD/DS  
N.C.  
GPIOA6  
VSS  
VSS  
VSS  
N.C.  
N.C.  
11  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
D14  
C
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
RBIN  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
D6/CPHA  
D9  
JTDO  
MT2  
JAS0  
F
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
TAIS3  
VSS  
N.C.  
VSS  
VDD33  
VSS  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
GPIOA4  
TVSS4  
D3  
TLBO3  
VSS  
VDD33  
VSS  
K
TLBO1  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
TVSS1  
D11  
TLBO2  
VDD33  
A5  
VSS  
M
N
VSS  
D13  
VDD33  
A9  
P
D15  
A3  
R
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
RMON6  
RVSS6  
GPIOB6  
VDD18  
N.C.  
U
RDY/ACK  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
A0  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
V
WR/R/W  
N.C.  
A2  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
N.C.  
AA  
AB  
A8  
MT4  
N.C.  
TXP6  
INT  
1
2
3
4
5
7
10  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
121 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
RPOS3  
TDM3  
TPOS1  
TPOS4  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
15  
16  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
TPOS5  
RCLK1  
TCLK1  
TOE4  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
16  
17  
N.C.  
18  
N.C.  
19  
N.C.  
20  
N.C.  
21  
N.C.  
22  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VDD18  
VSS  
VSS  
VSS  
VSS  
N.C.  
TOE5  
RCLK3  
RNEG3  
RLOS3  
TOE3  
VDD18  
TNEG1  
TOE1  
REFCLK  
CLKB  
RCLK2  
RLOS2  
TCLK2  
TOE2  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
F
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
G
H
J
N.C.  
N.C.  
N.C.  
RLOS5  
TNEG5  
RLOS1  
CVDD  
CLKC  
TPOS2  
TDM4  
TOE6  
N.C.  
RPOS5  
TDM5  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
N.C.  
TPOS3  
RPOS1  
TDM1  
MT0  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
12  
VDD33  
VSS  
VSS  
VSS  
VSS  
VDD33  
N.C.  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
13  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
N.C.  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
N.C.  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
K
L
CLKA  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
N.C.  
M
N
P
N.C.  
N.C.  
N.C.  
R
T
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
U
V
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
W
Y
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
AA  
AB  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
14  
17  
18  
19  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
122 of 130  
DS32506/DS32508/DS32512  
Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
TVDD3  
RCLKI  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
N.C.  
N.C.  
A
B
HW  
TXP3  
TXN3  
RXN3  
TAIS1  
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
LM4[0]  
TXP4  
TVSS4  
TXN4  
RXP4  
RMON4  
LB3[1]  
1
JVSS3  
TXP3  
TXN3  
RXP3  
RMON3  
LM1[0]  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
LB1[1]  
N.C.  
RPD  
RST  
MT6  
JAD1  
N.C.  
TCLKI  
MT1  
RXN5  
TCC  
TXN5  
RVSS5  
TBIN  
TXP5  
RVDD5  
RMON5  
LM5[0]  
LM5[1]  
JAD0  
LBS  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
TAIS5  
N.C.  
N.C.  
VDD18  
TLBO5  
JVDD5  
TVSS5  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
TVDD6  
N.C.  
N.C.  
LM6[1]  
VSS  
VSS  
VSS  
N.C.  
N.C.  
11  
C
JTDI  
JTCLK  
TEST  
TPD  
D
JAS1  
RVSS3  
LM3[0]  
TVSS3  
LM1[1]  
TVDD1  
VSS  
RBIN  
JTDO  
MT2  
AIST  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
TAIS2  
TVDD2  
TVDD2  
RVDD2  
TAIS4  
JVSS4  
TVSS4  
RVDD4  
RVSS4  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
LM2[0]  
TVSS2  
TVSS2  
RMON2  
JVDD4  
TVDD4  
VSS  
JAS0  
F
CLADBYP  
JTMS  
LM3[1]  
VSS  
G
H
TAIS3  
VSS  
N.C.  
VSS  
VDD33  
VSS  
HIZ  
J
TVDD3  
RMON1  
TVDD2  
LM4[1]  
TVSS4  
LB4[0]  
LB2[0]  
VSS  
TLBO3  
VSS  
VDD33  
VSS  
K
TLBO1  
LM2[1]  
TVDD4  
N.C.  
VSS  
L
TVSS2  
TLBO4  
RVSS2  
LB3[0]  
LB1[0]  
N.C.  
TVSS1  
N.C.  
TLBO2  
VDD33  
N.C.  
VSS  
M
N
VSS  
LB2[1]  
LB4[1]  
LB5[1]  
N.C.  
VDD33  
ITRE  
P
LB6[0]  
LB5[0]  
VSS  
VSS  
R
N.C.  
N.C.  
T
IFSEL0  
TVSS6  
VSS  
TVSS6  
RMON6  
VSS  
U
N.C.  
N.C.  
TVDD6  
IFSEL2  
TLBO6  
TXP6  
TVSS6  
TAIS6  
TVDD6  
TXN6  
TXN6  
8
V
N.C.  
LB6[1]  
N.C.  
N.C.  
W
Y
N.C.  
IFSEL1  
JVDD6  
JVSS6  
6
RVDD6  
RXP6  
RXN6  
9
LM6[0]  
VDD18  
N.C.  
N.C.  
MT3  
N.C.  
AA  
AB  
N.C.  
MT4  
N.C.  
TXP6  
2
3
4
5
7
10  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
123 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
RPOS3  
TDM3  
TPOS1  
TPOS4  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
15  
16  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
TPOS5  
RCLK1  
TCLK1  
TOE4  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
16  
17  
N.C.  
18  
N.C.  
19  
N.C.  
20  
N.C.  
21  
N.C.  
22  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VDD18  
VSS  
VSS  
VSS  
VSS  
N.C.  
TOE5  
RCLK3  
RNEG3  
RLOS3  
TOE3  
VDD18  
TNEG1  
TOE1  
REFCLK  
CLKB  
RCLK2  
RLOS2  
TCLK2  
TOE2  
RPOS4  
RLOS4  
TNEG4  
RNEG6  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
F
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
G
H
J
N.C.  
N.C.  
N.C.  
RLOS5  
TNEG5  
RLOS1  
CVDD  
CLKC  
TPOS2  
TDM4  
TOE6  
N.C.  
RPOS5  
TDM5  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
N.C.  
TPOS3  
RPOS1  
TDM1  
MT0  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
12  
VDD33  
VSS  
VSS  
VSS  
VSS  
VDD33  
N.C.  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
13  
RCLK5  
VDD33  
RNEG4  
RLOS6  
VDD33  
N.C.  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
TDM6  
N.C.  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
K
L
CLKA  
RNEG2  
TDM2  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
N.C.  
M
N
P
N.C.  
N.C.  
N.C.  
R
T
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
U
V
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
W
Y
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
N.C.  
AA  
AB  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
14  
17  
18  
19  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
124 of 130  
DS32506/DS32508/DS32512  
Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only  
Left Half  
1
2
3
4
5
6
7
8
9
10  
11  
JVDD3  
HW  
TVDD3  
N.C.  
MT5  
N.C.  
RXP5  
TXN5  
TXP5  
JVSS5  
N.C.  
N.C.  
A
B
JVSS3  
TXP3  
TXN3  
RXP3  
N.C.  
N.C.  
RST  
MT6  
N.C.  
N.C.  
N.C.  
RXN5  
N.C.  
TXN5  
RVSS5  
N.C.  
TXP5  
RVDD5  
N.C.  
TVDD5  
TVSS5  
TVDD5  
TVSS5  
TVDD5  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
TVDD6  
RD/DS  
N.C.  
GPIOA6  
VSS  
VSS  
VSS  
N.C.  
N.C.  
11  
TXP3  
TXN3  
RXN3  
N.C.  
C
JTDI  
JTCLK  
TEST  
MT1  
N.C.  
D
N.C.  
N.C.  
N.C.  
GPIOB5  
GPIOA5  
N.C.  
JVDD5  
TVSS5  
VSS  
JTRST  
TVSS3  
TVSS3  
JVDD1  
TVDD1  
TVSS1  
N.C.  
E
TVDD3  
RVDD3  
JVSS1  
TVSS1  
TVDD1  
RVDD1  
GPIOB2  
TVSS2  
TVSS2  
N.C.  
RVSS3  
GPIOB3  
TVSS3  
GPIOA1  
TVDD1  
VSS  
JTDO  
MT2  
N.C.  
F
VDD18  
TXP1  
TXN1  
RXN1  
RVSS1  
JVDD2  
TXP2  
TXN2  
RXP2  
GPIOB4  
TXP4  
TVSS4  
TXN4  
RXP4  
N.C.  
GPIOB1  
TXP1  
TXN1  
RXP1  
RESREF  
JVSS2  
TXP2  
TXN2  
RXN2  
VDD18  
TXP4  
TVDD4  
TXN4  
RXN4  
D12  
CLADBYP  
JTMS  
GPIOA3  
VSS  
G
H
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
VDD33  
VSS  
HIZ  
J
TVDD3  
N.C.  
N.C.  
VDD33  
VSS  
K
N.C.  
VSS  
VSS  
L
TVDD2  
TVDD2  
RVDD2  
N.C.  
TVSS2  
N.C.  
TVDD2  
GPIOA4  
TVSS4  
D3  
GPIOA2  
TVDD4  
D7/CPOL  
D5  
TVSS1  
D11  
N.C.  
VSS  
M
N
VDD33  
A5  
VSS  
RVSS2  
D2/SCLK  
D0/SDO  
D8  
D13  
VDD33  
A9  
P
D15  
A3  
R
JVSS4  
TVSS4  
RVDD4  
RVSS4  
D10  
JVDD4  
TVDD4  
D6/CPHA  
D9  
D1/SDI  
VSS  
D4  
A1  
A7  
ALE  
T
VSS  
IFSEL0  
TVSS6  
VSS  
TVSS6  
N.C.  
U
RDY/ACK  
TVSS6  
N.C.  
A0  
TVDD6  
IFSEL2  
N.C.  
V
WR/R/W  
N.C.  
A2  
RVSS6  
GPIOB6  
VDD18  
N.C.  
W
Y
A4  
IFSEL1  
JVDD6  
JVSS6  
6
TVDD6  
TXN6  
TXN6  
8
RVDD6  
RXP6  
RXN6  
9
CS  
A6  
MT3  
N.C.  
TXP6  
TXP6  
7
AA  
AB  
D14  
A8  
MT4  
N.C.  
INT  
1
2
3
4
5
10  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
125 of 130  
 
DS32506/DS32508/DS32512  
Right Half  
12  
13  
14  
N.C.  
15  
N.C.  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
RPOS3  
N.C.  
TPOS1  
TPOS4  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
15  
16  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
TPOS5  
RCLK1  
TCLK1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
16  
17  
N.C.  
18  
N.C.  
19  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
TNEG5  
N.C.  
CVDD  
CLKC  
TPOS2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
19  
20  
N.C.  
21  
N.C.  
22  
VSS  
N.C.  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
VDD18  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
RCLK3  
RNEG3  
N.C.  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
F
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
G
H
J
N.C.  
N.C.  
N.C.  
RPOS5  
N.C.  
TPOS3  
RPOS1  
N.C.  
VDD18  
TNEG1  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
VSS  
VSS  
VSS  
VSS  
VSS  
N.C.  
N.C.  
12  
VDD33  
VSS  
VSS  
VSS  
VSS  
VDD33  
N.C.  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
13  
RCLK5  
VDD33  
RNEG4  
N.C.  
RNEG5  
RNEG1  
RPOS2  
TCLK4  
N.C.  
TCLK5  
TCLK3  
CVDD  
TNEG2  
RCLK4  
VSS  
TNEG3  
CVSS  
CLKD  
VDD18  
RPOS6  
N.C.  
K
L
MT0  
REFCLK  
CLKB  
RCLK2  
N.C.  
CLKA  
RNEG2  
N.C.  
M
N
P
VDD33  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RCLK6  
TCLK6  
TPOS6  
TNEG6  
N.C.  
TCLK2  
N.C.  
R
T
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
VSS  
N.C.  
RPOS4  
N.C.  
U
V
VSS  
VSS  
VSS  
N.C.  
VSS  
VSS  
VSS  
N.C.  
TNEG4  
RNEG6  
N.C.  
W
Y
N.C.  
VSS  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
VDD18  
N.C.  
N.C.  
N.C.  
AA  
AB  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
14  
17  
18  
20  
21  
22  
High-Speed Analog  
High-Speed Digital  
Low-Speed Analog  
Low-Speed Digital  
VDD 1.8V  
N.C. and Manufacturing Test  
VDDIO 3.3V  
Analog VSS  
VSS  
Analog VDD 1.8V  
126 of 130  
DS32506/DS32508/DS32512  
13. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
13.1 484-Lead BGA (23mm x 23mm) (56-G60038-001)  
127 of 130  
 
DS32506/DS32508/DS32512  
14. THERMAL INFORMATION  
Table 14-1. Thermal Properties, Natural Convection  
PARAMETER  
Ambient Temperature (Note 1)  
Junction Temperature  
Theta-JA (θJA), Still Air (Note 1)  
Theta-JC (θJC)  
MIN  
-40  
-40  
TYP  
MAX  
+85  
+125  
UNITS  
°C  
°C  
°C/W  
°C/W  
°C/W  
°C/W  
16.0  
5.4  
7.7  
Psi-JB  
Psi-JT  
0.4  
Note 1:  
The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.  
Table 14-2. Theta-JA (θJA) vs. Airflow  
FORCED AIR  
(METERS PER  
THETA-JA (θJA)  
SECOND)  
0
1
2
16.0 °C/W  
13.8 °C/W  
12.8 °C/W  
128 of 130  
 
DS32506/DS32508/DS32512  
15. ACRONYMS AND ABBREVIATIONS  
AIS  
AMI  
B3ZS  
BER  
BPV  
CV  
Alarm Indication Signal  
Alternate Mark Inversion  
Bipolar with Three-Zero Substitution  
Bit-Error Rate, Bit-Error Ratio  
Bipolar Violation  
Code Violation  
DS3  
EXZ  
Digital Signal, Level 3  
Excessive Zeros  
HDB3  
IO, I/O  
LIU  
High-Density Bipolar of Order 3  
Input/Output  
Line Interface Unit  
LOL  
Loss of Lock  
LOS  
LSB  
Loss of Signal  
Least Significant Bit  
MSB  
PDH  
PRBS  
Rx, RX  
SONET  
SDH  
STS  
STS-1  
Tx, TX  
UI  
Most Significant Bit  
Plesiochronous Digital Hierarchy  
Pseudo-Random Bit Sequence  
Receive  
Synchronous Optical Network  
Synchronous Digital Hierarchy  
Synchronous Transmission Signal  
Synchronous Transmission Signal at Level 1  
Transmit  
Unit Interval  
UIP-P  
UIRMS  
Unit Interval Peak-to-Peak  
Unit Intervals Root Mean Square  
16. TRADEMARK ACKNOWLEDGEMENTS  
ACCUNET is a registered trademark of AT&T.  
SPI is a trademark of Motorola, Inc.  
Telcordia is a registered trademark of Telcordia Technologies.  
129 of 130  
 
DS32506/DS32508/DS32512  
17. DATA SHEET REVISION HISTORY  
REVISION  
PAGES  
CHANGED  
DESCRIPTION  
DATE  
062906  
Initial data sheet release.  
Added Internal Receive Enable (ITRE) pin to Table 7-1. Short Pin Descriptions.  
Changed VDD18 tolerance from ±10% to ±5% (Table 7-1. Short Pin Descriptions).  
14  
15  
Added Internal Receive Enable (ITRE) pin description to Table 7-5. Hardware  
Interface Pin Description.  
20  
23  
25  
26  
Changed VDD18 tolerance from ±10% to ±5% (Table 7-10. Power-Supply Pin  
Descriptions).  
In Section 8.2.8, removed “Note that internal termination is only available when a  
microprocessor interface is enabled.”  
Changed RXP to TXN in the third paragraph of Section 8.2.9: Driver Monitor and  
Output Failure Detection.  
In Section 8.3.1, removed “Note that internal termination is only available when a  
microprocessor interface is enabled.”  
30  
48  
091307  
Removed Section 8.12: Initialization.  
In the Absolute Maximum Ratings section, changed the VDD18 supply range from  
”-0.1V to +1.98V” to “-0.1V to +1.89V”.  
92  
In Table 11-1, changed VDD18 from 1.62V (min) to 1.71V (min) and 1.98V (max) to  
1.89V (max).  
In Table 11-2, changed all IDD18, IDD33, IDDTTS18, and IDDTTS33 typ and max values.  
93  
93, 94, 96,  
97, 98,  
103, 105  
In Table 11-2 to Table 11-10, changed VDD18 tolerance from ±10% to ±5%.  
In Table 12-1, added ITRE to ball R10.  
106  
In Figure 12-2, Figure 12-5, and Figure 12-8, changed ball R10 from N.C. to ITRE for  
DS32512, DS32508, and DS32506 hardware-interface-only pin assignments.  
111, 117,  
123  
In Figure 12-8 (left half), corrected typos where some pins for port 7 were listed (do  
not exist on the DS32506). Changed pins A10, A11, B10, B11, F11, and G11 to N.C.  
Changed pins C11, D11, E11, G10, R9, and V4 to VSS.  
123  
83  
040808  
103008  
In Section 9.7, clarified register bit text descriptions for LINE.RSR:BPVC and  
LINE.RSR:EXCZ.  
130 of 130  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2008 Maxim Integrated Products  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.  
 

相关型号:

DS32508+

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, LEAD FREE, BGA-484
MAXIM

DS32508N

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32508N+

暂无描述
MAXIM

DS3251

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
DALLAS

DS3251

DATACOM, PCM TRANSCEIVER, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144
ROCHESTER

DS32512

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32512+

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, LEAD FREE, BGA-484
MAXIM

DS32512A2

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
MAXIM

DS32512N

6-/8-/12-Port DS3/E3/STS-1 LIU
MAXIM

DS32512NW

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
MAXIM

DS32512W

PCM Transceiver, 1-Func, PBGA484, 23 X 23 MM, 1 MM PITCH, BGA-484
MAXIM

DS3251N

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
DALLAS