LTC4078XEDD#TRPBF [Linear]

LTC4078/LTC4078X - Dual Input Li-Ion Battery Charger with Overvoltage Protection; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC4078XEDD#TRPBF
型号: LTC4078XEDD#TRPBF
厂家: Linear    Linear
描述:

LTC4078/LTC4078X - Dual Input Li-Ion Battery Charger with Overvoltage Protection; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

电池 光电二极管
文件: 总16页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4078/LTC4078X  
Dual Input Li-Ion Battery  
Charger with Overvoltage Protection  
FEATURES  
DESCRIPTION  
The LTC®4078/LTC4078X are standalone linear chargers  
that are capable of charging a single-cell Li-Ion/Polymer  
batteryfrombothwalladapterandUSBinputs.Thechargers  
can detect power at the inputs and automatically select  
the appropriate power source for charging.  
n
22V Maximum Voltage for Wall Adapter and  
USB Inputs  
n
Charge Single-Cell Li-Ion Batteries from Wall  
Adapter and USB Inputs  
Automatic Input Power Detection and Selection  
Charge Current Programmable Up to 950mA from  
Wall Adapter Input  
Overvoltage Lockout for Wall Adapter and USB Inputs  
Battery Detection Input Disables Charger When No  
Battery is Present  
No External MOSFET, Sense Resistor or Blocking  
Diode Needed  
n
n
No external sense resistor or blocking diode is required  
for charging due to the internal MOSFET architecture. The  
LTC4078/LTC4078Xfeatureamaximum22Vratingforboth  
wall adapter and USB inputs, although charging stops if  
the selected power source exceeds the overvoltage limit.  
Internal thermal feedback regulates the battery charge  
current to maintain a constant die temperature during  
high power operation or high ambient temperature con-  
ditions. The float voltage is fixed at 4.2V and the charge  
current is programmed with an external resistor. The  
LTC4078/LTC4078X terminate the charge cycle when the  
charge current drops below the programmed termination  
threshold after the final float voltage is reached.  
n
n
n
n
Thermal Regulation Maximizes Charge Rate Without  
Risk of Overheating*  
n
n
n
n
n
n
n
Preset Charge Voltage with 0.ꢀ6 ꢁccuracy  
Programmable Charge Current Termination  
40μꢁ USB Suspend Current in Shutdown  
Charge Status Output  
ꢁutomatic Recharge  
Otherfeaturesincludebatterypresentdetection,automatic  
recharge,undervoltagelockout,chargestatusoutputs,and  
“powerpresentstatusoutputstoindicatethepresenceof  
wall adapter or USB power. The device is offered in a low  
profile (0.75mm) 3mm × 3mm 10-lead DFN package.  
ꢁvailable Without Trickle Charge (LTC4078X)  
ꢁvailable in a Thermally Enhanced, Low Profile  
(0.75mm) 10-Lead (3mm × 3mm) DFN Package  
APPLICATIONS  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ꢁll other trademarks are the property of their respective owners.  
*Protected by U.S. Patents including ꢀ522118, ꢀ7003ꢀ4.  
n
Cellular Telephones  
n
Handheld Computers  
n
Portable MP3 Players  
Digital Cameras  
n
TYPICAL APPLICATION  
Charger Current vs Supply Voltage  
900  
R
R
= 1.24k  
= 2k  
IDC  
IUSB  
High Voltage Dual Input Battery Charger  
800  
700  
ꢀ00  
500  
400  
300  
200  
100  
0
V
V
= 3.5V  
BꢁT  
BꢁTDET  
for Li-Ion Battery Pack  
= 0V  
800mꢁ (WꢁLL)  
500mꢁ (USB)  
CHꢁRGE FROM DCIN  
LTC4078  
WꢁLL  
ꢁDꢁPTER  
DCIN  
BꢁT  
USB  
USBIN BꢁTDET  
IUSB  
4.2V  
Li-Ion  
+
CHꢁRGE  
FROM USBIN  
PORT  
1μF  
2k  
3.9k  
BꢁTTERY  
PꢁCK  
IDC  
ITERM  
1μF  
16  
1.24k  
16  
GND  
2k  
16  
2
3
4
5
7
8
19 20  
4078X Tꢁ01  
SUPPLY VOLTꢁGE (V)  
4078x Tꢁ01b  
4078xfb  
1
LTC4078/LTC4078X  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Input Supply Voltage (DCIN, USBIN) ............–0.3 to 22V  
ENꢁBLE, CHRG, PWR, BꢁTDET, BT...............–0.3 to ꢀV  
IDC, IUSB, ITERM Pin Current .................................1mꢁ  
DCIN, USBIN, BꢁT Pin Current....................................1ꢁ  
BꢁT Short-Circuit Duration............................Continuous  
Maximum Junction Temperature........................... 125°C  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Storage Temperature Range................... –ꢀ5°C to 125°C  
TOP VIEW  
USBIN  
IUSB  
1
2
3
4
5
10 DCIN  
9
8
7
BꢁT  
ITERM  
PWR  
11  
IDC  
BꢁTDET  
ENꢁBLE  
CHRG  
DD PꢁCKꢁGE  
10-LEꢁD (3mm × 3mm) PLꢁSTIC DFN  
T
= 125°C, θ = 40°C/W (Note 3)  
JMꢁX  
Jꢁ  
EXPOSED PꢁD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4078XEDD#PBF  
LTC4078EDD#PBF  
TAPE AND REEL  
PART MARKING  
LCYP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC4078XEDD#TRPBF  
LTC4078EDD#TRPBF  
–40°C to 85°C  
–40°C to 85°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LDJY  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VDCIN = 5V, VUSBIN = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.3  
TYP  
MAX  
5.5  
UNITS  
l
l
V
V
Operating Supply Voltage  
Operating Supply Voltage  
DCIN Supply Current  
V
V
DCIN  
USBIN  
DCIN  
4.3  
5.5  
l
l
I
Charge Mode (Note 4), R = 10k  
350  
70  
40  
70  
800  
120  
80  
μꢁ  
μꢁ  
μꢁ  
μꢁ  
IDC  
Standby Mode; Charge Terminated  
Shutdown Mode (ENꢁBLE = 5V)  
Overvoltage Mode (V  
= 10V)  
140  
DCIN  
l
l
I
USBIN Supply Current  
Charge Mode (Note 5), R  
= 10k, V  
= 2V  
DCIN  
= 2V  
DCIN  
350  
70  
40  
70  
23  
800  
120  
80  
140  
40  
μꢁ  
μꢁ  
μꢁ  
μꢁ  
μꢁ  
USBIN  
IUSB  
Standby Mode; Charge Terminated, V  
Shutdown (V = 2V, ENꢁBLE = 0V)  
DCIN  
Overvoltage Mode (V  
DCIN  
= 10V)  
USBIN  
V
> V  
USBIN  
V
Regulated Output (Float) Voltage  
BꢁT Pin Current  
I
I
= 1mꢁ  
4.185  
4.1ꢀ5  
4.2  
4.2  
4.215  
4.235  
V
V
FLOꢁT  
BꢁT  
BꢁT  
= 1mꢁ, 0°C < T < 85°C  
l
l
l
I
R
R
R
= 1.25k, Constant-Current Mode  
770  
455  
93  
800  
47ꢀ  
100  
–7.5  
–7.5  
–7.5  
830  
495  
107  
–12  
–12  
–12  
mꢁ  
mꢁ  
mꢁ  
μꢁ  
μꢁ  
μꢁ  
BꢁT  
IDC  
= 2.1k, Constant-Current Mode  
IUSB  
= 10k or R  
= 10k  
IDC  
IUSB  
Standby Mode, Charge Terminated  
Shutdown Mode (Charger Disabled)  
Sleep Mode (V  
= 0V, V  
= 0V)  
DCIN  
USBIN  
4078xfb  
2
LTC4078/LTC4078X  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VDCIN = 5V, VUSBIN = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
V
V
IDC Pin Regulated Voltage  
IUSB Pin Regulated Voltage  
Charge Current Termination Threshold  
Constant-Current Mode  
Constant-Current Mode  
V
V
IDC  
1
IUSB  
l
l
l
l
I
R
ITERM  
R
ITERM  
R
ITERM  
R
ITERM  
= 1k  
90  
42  
8
100  
50  
10  
5
110  
58  
12  
ꢀ.5  
mꢁ  
mꢁ  
mꢁ  
mꢁ  
TERMINꢁTE  
= 2k  
= 10k  
= 20k  
3.5  
I
Trickle Charge Current (Note ꢀ)  
V
V
< V ; R = 1.25k  
TRIKL IDC  
ꢀ0  
30  
80  
47.5  
100  
ꢀ5  
mꢁ  
mꢁ  
TRIKL  
BꢁT  
BꢁT  
< V  
; R = 2.1k  
TRIKL IUSB  
V
Trickle Charge Threshold (Note ꢀ)  
DCIN Undervoltage Lockout Voltage  
USBIN Undervoltage Lockout Voltage  
DCIN Overvoltage Lockout Voltage  
USBIN Overvoltage Lockout Voltage  
V
Rising  
2.8  
2.9  
3
V
TRIKL  
BꢁT  
Hysteresis  
100  
mV  
V
V
V
V
From Low to High  
Hysteresis  
4
4.15  
190  
4.3  
4.1  
ꢀ.2  
ꢀ.2  
V
mV  
UVDC  
From Low to High  
Hysteresis  
3.8  
5.8  
5.8  
3.95  
170  
V
mV  
UVUSB  
OVDC  
From Low to High  
Hysteresis  
185  
V
mV  
From Low to High  
Hysteresis  
185  
V
mV  
OVUSB  
V
V
V
– V Lockout Threshold  
V
V
from Low to High, V = 4.2V  
70  
10  
120  
40  
170  
70  
mV  
mV  
ꢁSD-DC  
DCIN  
BꢁT  
DCIN  
DCIN  
BꢁT  
from High to Low, V = 4.2V  
BꢁT  
V
– V Lockout Threshold  
V
USBIN  
V
USBIN  
from Low to High  
from High to Low  
70  
10  
120  
40  
170  
70  
mV  
mV  
ꢁSD-USB  
USBIN  
BꢁT  
V
ENꢁBLE Input Threshold Voltage  
ENꢁBLE Pulldown Resistance  
BꢁTDET Input Threshold Voltage  
BꢁTDET Pull-Up Current  
0.ꢀ  
1
0.9  
2
1.2  
3.5  
2
V
MΩ  
V
ENꢁBLE  
l
R
ENꢁBLE  
BDET  
V
From Low to High  
= 0V  
1.25  
2
1.75  
4
I
V
μꢁ  
V
BꢁTDET  
BꢁTDET  
V
V
BꢁTDET Open Circuit Voltage  
4
4.2  
0.12  
4.4  
0.35  
BOC  
OL  
Output Low Voltage  
(CHRG, PWR)  
I
= 5mꢁ  
V
SINK  
ΔV  
Recharge Battery Threshold Voltage  
Recharge Comparator Filter Time  
Termination Comparator Filter Time  
V
V
– V  
, 0°C < T < 85°C  
90  
2.25  
1
125  
4.1  
1.ꢀ  
ꢀ00  
1ꢀ0  
ꢀ.75  
2.4  
mV  
ms  
RECHRG  
FLOꢁT  
RECHRG  
t
t
from High to Low  
RECHRG  
TERMINꢁTE  
BꢁT  
BꢁT  
I
Drops Below Termination Threshold  
ms  
R
Power FET “ON” Resistance  
(Between DCIN and BꢁT)  
mΩ  
ON-DC  
ON-USB  
LIM  
R
Power FET “ON” Resistance  
(Between USBIN and BꢁT)  
700  
120  
mΩ  
°C  
T
Junction Temperature in Constant-  
Temperature Mode  
Note 1: Stresses beyond those listed under ꢁbsolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any ꢁbsolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC4078/LTC4078X are guaranteed to meet the performance  
specifications from 0°C to 85°C. Specifications over the 40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: Failure to correctly solder the exposed backside of the package to  
the PC board will result in a thermal resistance much higher than 40°C/W.  
See Thermal Considerations.  
Note 4: Supply current includes IDC and ITERM pin current (approximately  
100μꢁ each) but does not include any current delivered to the battery  
through the BꢁT pin.  
Note 5: Supply current includes IUSB and ITERM pin current  
(approximately 100μꢁ each) but does not include any current delivered to  
the battery through the BꢁT pin.  
Note 6: This parameter is not applicable to the LTC4078X.  
4078xfb  
3
LTC4078/LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise specified.  
Regulated Output (Float) Voltage  
vs Charge Current  
Regulated Output (Float) Voltage  
vs Temperature  
IDC Pin Voltage vs Temperature  
(Constant-Current Mode)  
4.220  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
1.008  
1.00ꢀ  
1.004  
1.002  
1.000  
0.998  
0.99ꢀ  
0.994  
0.992  
4.2ꢀ  
4.24  
4.22  
4.20  
4.18  
4.1ꢀ  
4.14  
4.12  
4.10  
V
DCIN  
= V  
= 5V  
V
DCIN  
= 5V  
V
= V  
USBIN  
= 5V  
USBIN  
DCIN  
R
= 1.24k  
IDC  
R
IDC  
= R  
= 2k  
IUSB  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
0
100 200 300 400 500 ꢀ00 700 800 900  
(mꢁ)  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
I
BꢁT  
4078x G02  
4078x G03  
4078x G01  
IUSB Pin Voltage vs Temperature  
(Constant-Current Mode)  
Charge Current  
Charge Current  
vs IDC Pin Voltage  
vs IUSB Pin Voltage  
1.008  
1.00ꢀ  
1.004  
1.002  
1.000  
0.998  
0.99ꢀ  
0.994  
0.992  
900  
800  
700  
ꢀ00  
500  
400  
300  
200  
100  
0
900  
800  
700  
ꢀ00  
500  
400  
300  
200  
100  
0
V
= 5V  
V
DCIN  
= 5V  
V
= 5V  
USBIN  
USBIN  
R
= 1.24k  
R
= 1.24k  
IUSB  
IDC  
R
= 2k  
IDC  
R
= 2k  
IUSB  
R
= 10k  
R
= 10k  
IUSB  
IDC  
–10  
10  
30  
50  
70  
90  
0
0.2  
0.4  
0.ꢀ  
(V)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.ꢀ  
0.8  
1.0  
1.2  
TEMPERꢁTURE (°C)  
V
V
IUSB  
(V)  
IDC  
4078x G04  
4078x G05  
4078x G0ꢀ  
PWR Pin I-V Curve  
CHRG Pin I-V Curve  
ꢀ0  
50  
40  
30  
20  
10  
0
ꢀ0  
50  
40  
30  
20  
10  
0
V
DCIN  
= V  
= 5V  
USBIN  
V
= V  
= 5V  
USBIN  
DCIN  
0
1
2
3
4
5
0
1
2
3
4
5
V
CHRG  
(V)  
V
PWR  
(V)  
4078x G08  
4078x G07  
4078xfb  
4
LTC4078/LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise specified.  
Charge Current  
Charge Current  
vs Ambient Temperature  
vs Supply Voltage  
Charge Current vs Battery Voltage  
1000  
900  
800  
700  
ꢀ00  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
ꢀ00  
500  
400  
300  
200  
100  
0
R
= 1.24k  
IDC  
IDC  
800  
ꢀ00  
400  
200  
R
= R  
IUSB  
= 2k  
R
V
Jꢁ  
= 1.24k  
= 4V  
V
V
θ
= V  
= 5V  
50  
V
= V  
= 5V  
USBIN  
IDC  
BꢁT  
= 30°C/W  
DCIN  
BꢁT  
Jꢁ  
USBIN  
DCIN  
IDC  
= 4V  
R
= 1.24k  
θ
= 30°C/W  
θ
= 30°C/W  
Jꢁ  
0
70  
90 110 130  
4.0 4.5 5.0 5.5 ꢀ.0 ꢀ.5 7.0 7.5 8.0  
(V)  
2.4 2.7 3.0 3.3 3.ꢀ 3.9 4.2 4.5  
(V)  
–10  
30  
10  
TEMPERꢁTURE (°C)  
V
BꢁT  
V
4078x G10  
DCIN  
4078x G12  
4078x G11  
DCIN Power FET On-Resistance  
vs Temperature  
USBIN Power FET On-Resistance  
vs Temperature  
ENABLE Pin Threshold Voltage  
(On-to-Off) vs Temperature  
900  
850  
800  
750  
700  
ꢀ50  
ꢀ00  
800  
750  
700  
ꢀ50  
ꢀ00  
550  
500  
1000  
980  
9ꢀ0  
940  
920  
900  
880  
8ꢀ0  
V
I
= 4V  
= 200mꢁ  
V
DCIN  
= V  
= 5V  
USBIN  
V
I
= 4V  
= 200mꢁ  
BꢁT  
BꢁT  
BꢁT  
BꢁT  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
4078x G14  
4078x G15  
4078x G13  
USBIN Shutdown Current  
vs Temperature  
DCIN Shutdown Current  
vs Temperature  
ENABLE Pin Pulldown Resistance  
vs Temperature  
ꢀ0  
55  
50  
45  
40  
35  
30  
25  
20  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.ꢀ  
ꢀ0  
55  
50  
45  
40  
35  
30  
25  
20  
V
= 0V  
V
= 5V  
ENꢁBLE  
ENꢁBLE  
V
= 5V  
USBIN  
V
DCIN  
= 5V  
V
= 4.3V  
USBIN  
V
DCIN  
= 4.3V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
4078x G1ꢀ  
4078x G17  
4078x G18  
4078xfb  
5
LTC4078/LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise specified.  
Undervoltage Lockout Threshold  
vs Temperature  
Overvoltage Lockout Threshold  
vs Temperature  
ꢀ.10  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
ꢀ.05  
ꢀ.00  
5.95  
5.90  
5.85  
5.80  
DCIN UVLO  
USBIN OVLO  
DCIN OVLO  
USBIN UVLO  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
4078x G20  
4078x G19  
Recharge Threshold Voltage  
vs Temperature  
Battery Drain Current  
vs Temperature  
4.11  
4.09  
4.07  
4.05  
4.03  
9.0  
8.5  
8.0  
7.5  
7.0  
ꢀ.5  
ꢀ.0  
V
DCIN  
= V  
= 5V  
USBIN  
V
V
= V  
= NOT CONNECTED  
USBIN  
DCIN  
BꢁT  
= 4.2V  
–10  
10  
30  
50  
70  
90  
–50  
–25  
0
25  
50  
75  
100  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
4078x G21  
4078x G22  
BATDET Pin Threshold Voltage  
(On-to-Off) vs Temperature  
BATDET Voltage/Current  
vs Temperature  
2.0  
1.9  
1.8  
1.7  
1.ꢀ  
1.5  
1.4  
4.4  
4.3  
4.2  
4.1  
4.0  
ꢀ.00  
V
DCIN  
= V  
= 5V  
USBIN  
V
DCIN  
= V  
= 5V  
USBIN  
V
BOC  
5.25  
4.50  
3.75  
3.00  
I
BꢁTDET  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERꢁTURE (°C)  
TEMPERꢁTURE (°C)  
4078x G23  
4078x G24  
4078xfb  
6
LTC4078/LTC4078X  
PIN FUNCTIONS  
USBIN (Pin 1): USB Input Supply Pin. This input provides  
low by an internal N-channel MOSFET. When the charge  
cycle is completed, CHRG becomes high impedance. This  
output is capable of driving an LED.  
power to the battery charger assuming a voltage greater  
than V  
and less than V  
is present (typically  
UVUSB  
OVUSB  
3.95V to ꢀV respectively). However, the DCIN input will  
take priority if a voltage greater than V is present at  
DCIN (typically 4.15V). The USBIN input allows charge  
currents up to 850mꢁ. This pin should be bypassed with  
a 1μF capacitor.  
ENABLE(Pin6):EnableInput.WhentheLTC4078/LTC4078X  
are charging from the DCIN source, a logic low on this  
pin enables the charger. When the LTC4078/LTC4078X are  
charging from the USBIN source, a logic high on this pin  
enables the charger. If this input is left floating, an internal  
2MΩ pulldown resistor defaults the LTC4078/LTC4078X  
to charge when a wall adapter is applied and to shut down  
if only the USB source is applied.  
UVDC  
IUSB (Pin 2): Charge Current Program for USB Power.  
The charge current is set by connecting a resistor, R  
,
IUSB  
to ground. When charging in constant-current mode, this  
pin servos to 1V. The voltage on this pin can be used to  
measure the battery current delivered from the USB input  
using the following formula:  
BATDET (Pin 7): Battery Detection Input. When the volt-  
age on this pin falls below V  
(typically 1.75V), the  
BDET  
charger is on and ready for charging a battery. If this  
input is left floating, an internal pull-up resistor will dis-  
able charging.  
V
RIUSB  
IUSB  
IBAT  
=
1000  
IDC (Pin 8): Charge Current Program for Wall ꢁdapter  
ITERM (Pin 3): Termination Current Threshold Program.  
Power. The charge current is set by connecting a resis-  
The termination current threshold, I , is set by  
TERMINꢁTE  
tor, R , to ground. When charging in constant-current  
IDC  
connecting a resistor, R  
, to ground. I  
is set  
ITERM  
TERMINꢁTE  
mode, this pin servos to 1V. The voltage on this pin can  
be used to measure the battery current delivered from the  
DC input using the following formula:  
by the following formula:  
100V  
RITERM  
ITERMINATE  
=
V
RIDC  
IDC  
IBAT  
=
1000  
When the battery current, I , falls below the termination  
BꢁT  
threshold, charging stops and the CHRG output becomes  
high impedance. This pin is internally clamped to approxi-  
mately 1.5V. Driving this pin to voltages beyond the clamp  
voltage should be avoided.  
BAT (Pin 9): Battery Charger Output. This pin provides  
charge current to the battery and regulates the final float  
voltage to 4.2V.  
DCIN (Pin 10): Wall ꢁdapter Input Supply Pin. This input  
PWR (Pin 4): Open-Drain Power Supply Status Output.  
WhentheDCINorUSBINpinvoltageisvalidtobegincharg-  
ing (i.e. when the supply is greater than the undervoltage  
lockoutthreshold,lessthantheovervoltagelockoutthresh-  
old and at least 120mV above the battery terminal), the  
PWR pin is pulled low by an internal N-channel MOSFET.  
Otherwise PWR is high impedance. This output is capable  
of driving an LED.  
provides power to the battery charger assuming a voltage  
greater than V  
and less than V  
is present (typi-  
UVDC  
OVDC  
cally4.15VtoVrespectively). validvoltageontheDCIN  
input will always take priority over the USBIN input. The  
DCIN input allows charge currents up to 950mꢁ. This pin  
should be bypassed with a 1μF capacitor.  
Exposed Pad (Pin 11): GND. The exposed backside of the  
packageisgroundandmustbesolderedtoPCboardground  
for electrical connection and maximum heat transfer.  
CHRG(Pin5):Open-DrainChargeStatusOutput.Whenthe  
LTC4078/LTC4078X are charging, the CHRG pin is pulled  
4078xfb  
7
LTC4078/LTC4078X  
BLOCK DIAGRAM  
DCIN  
10  
BꢁT  
9
USBIN  
1
CC/CV  
REGULꢁTOR  
CC/CV  
REGULꢁTOR  
V
BOC  
TRICKLE  
DC_ENꢁBLE  
CHꢁRGER CONTROL  
TRICKLE DISꢁBLE  
USB_ENꢁBLE  
CHꢁRGE*  
7
+
BꢁTDET  
+
2.9V  
1.75V  
BꢁT  
4
PWR  
+
+
3.95V  
BꢁT  
ꢀV  
4.15V  
BꢁT  
ꢀV  
DCIN UVLO  
DCIN OVLO  
RECHꢁRGE  
USBIN UVLO  
+
+
+
+
USBIN OVLO  
T
ENꢁBLE  
+
+
DIE  
2M  
120°C  
0.9V  
THERMꢁL  
REGULꢁTION  
4.075V  
BꢁT  
+
0.1V  
CHRG  
5
+
I
/1000  
I
/1000  
I
/1000  
BꢁT  
BꢁT  
BꢁT  
TERMINꢁTION  
GND  
11  
ITERM  
IDC  
IUSB  
3
8
2
4078X BD  
R
R
R
IUSB  
ITERM  
IDC  
*TRICKLE CHꢁRGE DISꢁBLED ON THE LTC4078X  
4078xfb  
8
LTC4078/LTC4078X  
OPERATION  
Charge current out of the BꢁT pin can be determined at  
any time by monitoring the IDC or IUSB pin voltage and  
applying the following equations:  
The LTC4078/LTC4078X are designed to efficiently man-  
age charging of a single-cell lithium-ion battery from two  
separatepowersources:awalladapterandUSBpowerbus.  
Usingtheconstant-current/constant-voltagealgorithm,the  
charger can deliver up to 950mꢁ of charge current from  
the wall adapter supply or up to 850mꢁ of charge current  
from the USB supply with a final float voltage accuracy of  
0.ꢀ6.TheLTC4078/LTC4078XhavetwointernalP-chan-  
nel power MOSFETs and thermal regulation circuitry. No  
blocking diodes or external sense resistors are required.  
V
IDC  
IBAT  
IBAT  
=
=
1000,(charging from wall adapter)  
RIDC  
V
IUSB  
1000,(charging fromUSBsupply)  
RIUSB  
Battery Detection  
By default, the BꢁTDET pin is pulled high with an internal  
resistor, disabling the charger. To enable the charger, the  
Power Source Selection  
The LTC4078/LTC4078X can charge a battery from ei-  
ther the wall adapter input or the USB port input. The  
LTC4078/LTC4078X automatically sense the presence of  
voltage at each input. If both power sources are present,  
the LTC4078/LTC4078X default to the wall adapter source  
providedavalidvoltageispresentattheDCINinput. “Valid  
voltage” is defined as:  
BꢁTDET pin must be pulled below the V  
threshold  
BDET  
(typically 1.75V). ꢁn external resistor to ground less than  
100k (typically 3.9k) located in the battery pack is used to  
detect battery presence.  
Programming Charge Termination  
The charge cycle terminates when the charge current  
falls below the programmed termination threshold level  
during constant-voltage mode. This threshold is set by  
• Supply voltage is greater than the UVLO threshold  
and less than the OVLO threshold.  
connecting an external resistor, R , from the ITERM  
ITERM  
• Supply voltage is greater than the battery voltage by  
40mV.  
pin to ground. The charge termination current threshold  
(I ) is set by the following equation:  
TERMINꢁTE  
Theopen-drainpowerstatusoutput(PWR)indicateswhich  
power source has been selected. Table 1 describes the  
behavior of this status output.  
100V  
ITERMINATE  
100V  
RITERM  
RITERM  
=
,ITERMINATE =  
Programming and Monitoring Charge Current  
The termination condition is detected using an internal  
filtered comparator to monitor the ITERM pin. When the  
ITERM pin voltage drops below 100mV* for longer than  
The charge current delivered to the battery from the wall  
adapter or USB supply is programmed using a single re-  
sistor from the IDC or IUSB pin to ground. Both program  
t
(typically 1.ꢀms), charging is terminated. The  
TERMINꢁTE  
charge current is latched off and the LTC4078/LTC4078X  
enter standby mode.  
resistors and charge currents (I  
the following equations:  
) are calculated using  
CHRG  
When charging, transient loads on the BꢁT pin can cause  
the ITERM pin to fall below 100mV for short periods of  
time before the DC charge current has dropped below the  
1000V  
ICHRGDC  
1000V  
1000V  
RIDC  
RIDC  
=
,ICHRGDC =  
1000V  
RIUSB  
*ꢁny external sources that hold the ITERM pin above 100mV will prevent the LTC4078X from  
terminating a charge cycle.  
RIUSB  
=
, ICHRGUSB =  
ICHRGUSB  
4078xfb  
9
LTC4078/LTC4078X  
OPERATION  
programmed termination current. The 1.ꢀms filter time  
battery voltage falls below 4.075V (which corresponds to  
approximately806to906batterycapacity).Thisensures  
that the battery is kept at, or near, a fully charged condi-  
tion and eliminates the need for periodic charge cycle  
initiations.  
(t ) on the termination comparator ensures that  
TERMINꢁTE  
transient loads of this nature do not result in premature  
chargecycletermination.Oncetheaveragechargecurrent  
drops below the programmed termination threshold, the  
LTC4078/LTC4078X terminate the charge cycle and stops  
providing current out of the BꢁT pin. In this state, any load  
on the BꢁT pin must be supplied by the battery.  
Manual Shutdown  
TheENꢁBLEpinhasa2MΩpulldownresistortoGND. The  
definitionofthispindependsonwhichsourceissupplying  
power. When the wall adapter input is supplying power,  
logiclowenablesthechargerandlogichighdisablesit(the  
pulldown defaults the charger to the charging state). The  
opposite is true when the USB input is supplying power;  
logic low disables the charger and logic high enables it  
(the default is the shutdown state).  
Low-Battery Charge Conditioning (Trickle Charge)  
Thisfeatureensuresthatnear-deadbatteriesaregradually  
charged before applying full charge current. If the BꢁT pin  
voltageisbelow2.9V,theLTC4078supply1/10thofthefull  
charge current to the battery until the BꢁT pin rises above  
2.9V. For example, if the charger is programmed to charge  
at 800mꢁ from the wall adapter input and 500mꢁ from  
the USB input, the charge current during trickle charge  
mode would be 80mꢁ and 50mꢁ, respectively.  
TheDCINinputdraws4whenthechargerisinshutdown  
mode. The USBIN input draws 40μꢁ during shutdown if  
no voltage is applied to DCIN, but draws only 23μꢁ when  
V
DCIN  
provides valid voltage (see Table 1).  
The LTC4078X does not include the trickle charge feature;  
it outputs full charge current to the battery when the  
BꢁT pin voltage is below 2.9V. The LTC4078X are useful  
in applications where the trickle charge current may be  
insufficient to supply a load during low-battery voltage  
conditions.  
Status Indicators  
Thechargestatusopen-drainoutput(CHRG)hastwostates:  
pulldownandhighimpedance.Thepulldownstateindicates  
thattheLTC4078/LTC4078Xareinachargecycle.Oncethe  
chargecyclehasterminatedortheLTC4078/LTC4078Xare  
disabled, the pin state becomes high impedance.  
Automatic Recharge  
Thepowersupplystatusopen-drainoutput(PWR)hastwo  
states: pulldown and high impedance. The pulldown state  
indicates that power is present at either DCIN or USBIN.  
In standby mode, the charger sits idle and monitors the  
batteryvoltageusingacomparatorwitha4.1msltertime  
(t  
). ꢁ charge cycle automatically restarts when the  
RECHRG  
Table 1. Power Source Selection (VBATDET < 1.75V)  
V
USBIN  
< 3.95V or  
6V > V  
> 3.95V and  
USBIN  
USBIN  
V
< BAT + 50mV  
V
> BAT + 50mV  
22V > V  
> 6V  
USBIN  
USBIN  
ENABLE  
HIGH  
LOW or No Connect  
HIGH  
LOW or No Connect  
HIGH  
LOW or No Connect  
V
V
< 4.15V or  
No Charging.  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
Charging from  
USBIN source.  
PWR: LOW  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
DCIN  
DCIN  
< BꢁT + 50mV PWR: Hi-Z  
CHRG: Hi-Z  
CHRG: LOW  
ꢀV > V  
> 4.15V  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
Charging from DCIN No Charging.  
Charging from DCIN No Charging.  
Charging from DCIN  
source.  
DCIN  
and V  
> BꢁT +  
source.  
PWR: LOW  
CHRG: Hi-Z  
source.  
PWR: LOW  
CHRG: Hi-Z  
DCIN  
50mV  
PWR: LOW  
CHRG: LOW  
PWR: LOW  
CHRG: LOW  
PWR: LOW  
CHRG: LOW  
22V > V  
> ꢀV  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
DCIN  
4078xfb  
10  
LTC4078/LTC4078X  
OPERATION  
This output is strong enough to drive an LED. If no valid  
voltage is applied at either pin, the PWR pin is high im-  
pedance, indicating that the LTC4078/LTC4078X lack valid  
input voltage (see Table 1) to charge the battery.  
the LTC4078/LTC4078X from excessive temperature and  
allows the user to push the limits of the power handling  
capability of a given circuit board without risk of damag-  
ing the device. The charge current can be set according  
to typical (not worst-case) ambient temperature with the  
assurance that the charger will automatically reduce the  
current in worst case conditions. DFN package power  
considerations are discussed further in the ꢁpplications  
Information section.  
Thermal Limiting  
ninternalthermalfeedbackloopreducestheprogrammed  
chargecurrentifthedietemperatureattemptstoriseabove  
apresetvalueofapproximately120°C.Thisfeatureprotects  
DCIN POWER REMOVED  
ENꢁBLE = LOW  
USB POWER REMOVED  
NO POWER  
POWER ꢁPPLIED  
ENꢁBLE = HIGH  
YES  
NO  
DCIN > 4.15V  
ꢁND DCIN > BꢁT  
NO  
NO  
NO  
ꢀV > DCIN > 4.15V  
ꢁND DCIN > BꢁT  
ꢀV > USBIN > 3.95V  
ꢁND USBIN > BꢁT  
YES  
YES  
NO  
BꢁTDET < 1.75V  
BꢁTDET < 1.75V  
YES  
YES  
FULL CURRENT (BꢁT > 2.9V)  
FULL CURRENT (BꢁT > 2.9V)  
1/10TH FULL CURRENT  
(BꢁT < 2.9V)*  
1/10TH FULL CURRENT  
(BꢁT < 2.9V)*  
CHRG STꢁTE: PULLDOWN  
CHRG STꢁTE: PULLDOWN  
I
< I  
I
< I  
BꢁT TERMINꢁTE  
BꢁT TERMINꢁTE  
IN VOLTꢁGE MODE  
IN VOLTꢁGE MODE  
STꢁNDBY MODE  
STꢁNDBY MODE  
(DCIN)  
(USBIN)  
BꢁT < 4.075V  
BꢁT < 4.075V  
NO CHꢁRGE CURRENT  
CHRG STꢁTE: Hi-Z  
NO CHꢁRGE CURRENT  
CHRG STꢁTE: Hi-Z  
SHUTDOWN MODE  
(DCIN)  
SHUTDOWN MODE  
(USBIN)  
CHRG STꢁTE: Hi-Z  
CHRG STꢁTE: Hi-Z  
4078X F01  
*LTC4078 ONLY  
Figure 1. LTC4078 State Diagram of a Charge Cycle  
4078xfb  
11  
LTC4078/LTC4078X  
APPLICATIONS INFORMATION  
Using a Single Charge Current Program Resistor  
Stability Considerations  
The LTC4078/LTC4078X can program the wall adapter  
chargecurrentandUSBchargecurrentindependentlyusing  
Theconstant-voltagemodefeedbackloopisstablewithout  
any compensation provided a battery is connected to the  
charger output. However, a 1μF capacitor with a 1Ω series  
resistor is recommended at the BꢁT pin to keep the ripple  
voltage low when the battery is disconnected.  
two program resistors, R and R  
. Figure 2 shows a  
IDC  
IUSB  
charger circuit that sets the wall adapter charge current  
to 800mꢁ and the USB charge current to 500mꢁ.  
In applications where the programmed wall adapter  
charge current and USB charge current are the same, a  
single program resistor can be used to set both charge  
currents. Figure 3 shows a charger circuit that uses one  
charge current program resistor.  
When the charger is in constant-current mode, the charge  
current program pin (IDC or IUSB) is in the feedback loop,  
not the battery. The constant-current mode stability is af-  
fectedbytheimpedanceatthechargecurrentprogrampin.  
With no additional capacitance on this pin, the charger is  
stable with program resistor values as high as 20k (I  
CHRG  
800mꢁ (WꢁLL)  
LTC4078  
= 50mꢁ); however, additional capacitance on these nodes  
reduces the maximum allowed program resistor.  
500mꢁ (USB)  
WꢁLL  
ꢁDꢁPTER  
DCIN  
BꢁT  
USB  
USBIN BꢁTDET  
IUSB  
4.2V  
+
3.9k  
R4  
PORT  
C2, 1μF  
Li-Ion  
Power Dissipation  
BꢁTTERY  
PꢁCK  
R1  
2k  
16  
IDC  
ITERM  
GND  
C1  
1μF  
R3  
2k  
16  
When designing the battery charger circuit, it is not  
necessary to design for worst-case power dissipation  
scenarios because the LTC4078/LTC4078X automatically  
reduce the charge current during high power conditions.  
The conditions that cause the LTC4078/LTC4078X to  
reduce charge current through thermal feedback can be  
approximated by considering the power dissipated in the  
IC. Most of the power dissipation is generated from the  
internal charger MOSFET. Thus, the power dissipation is  
calculated to be:  
R2  
1.24k  
16  
4078X F02  
Figure 2. Dual Input Charger with Independent Charge Currents  
LTC4078  
WꢁLL  
500mꢁ  
ꢁDꢁPTER  
DCIN  
BꢁT  
USB  
USBIN BꢁTDET  
IUSB  
4.2V  
+
R4  
3.9k  
PORT  
C2, 1μF  
Li-Ion  
BꢁTTERY  
PꢁCK  
C1  
1μF  
IDC  
ITERM  
GND  
P = (V – V ) • I  
BꢁT  
R3  
2k  
16  
D
IN  
BꢁT  
R1  
2k  
16  
P is the dissipated power, V is the input supply volt-  
D
IN  
BꢁT  
age (either DCIN or USBIN), V  
is the battery voltage  
4078X F03  
and I is the charge current. The approximate ambient  
BꢁT  
Figure 3. Dual Input Charger Circuit. The Wall Adapter  
Charge Current and USB Charge Current Are Both  
Programmed to Be 500mA  
temperature at which the thermal feedback begins to  
protect the IC is:  
T = 120°C – P θ  
Jꢁ  
D
Inthiscircuit,theprogrammedchargecurrentfromboththe  
wall adapter supply is the same value as the programmed  
charge current from the USB supply:  
T = 120°C – (V – V ) • I θ  
Jꢁ  
IN  
BꢁT  
BꢁT  
Example: ꢁn LTC4078/LTC4078X operating from a 5V wall  
adapter (on the DCIN input) is programmed to supply  
800mꢁ full-scale current to a discharged Li-Ion battery  
with a voltage of 3.3V.  
1000V  
ICHRGDC = ICHRGUSB =  
RISET  
4078xfb  
12  
LTC4078/LTC4078X  
APPLICATIONS INFORMATION  
LTC4078/LTC4078X can deliver over 800mꢁ to a battery  
from a 5V supply at room temperature. Without a good  
backside thermal connection, this number would drop to  
much less than 500mꢁ.  
ꢁssumingθ is40°C/W(seeThermalConsiderations),the  
Jꢁ  
ambienttemperatureatwhichtheLTC4078/LTC4078Xwill  
begin to reduce the charge current is approximately:  
T = 120°C – (5V – 3.3V) • (800mꢁ) • 40°C/W  
Input Capacitor Selection  
T = 120°C – 1.3ꢀW • 40°C/W = 120°C – 54.4°C  
When an input supply is connected to a portable product,  
the inductance of the cable and the high-Q ceramic input  
capacitorformanL-Cresonantcircuit.WhiletheLTC4078/  
LTC4078X are capable of withstanding input voltages as  
high as 22V, if the input cable does not have adequate  
mutual coupling or if there is not much impedance in  
the cable, it is possible for the voltage at the input of the  
product to reach as high as 2x the input voltage before it  
settles out. To prevent excessive voltage from damaging  
the LTC4078/LTC4078X during a hot insertion, it is best to  
have a low voltage coefficient capacitor at the input pins  
to the LTC4078/LTC4078X. This is achievable by select-  
ing an X5R or X7R ceramic capacitor that has a higher  
voltage rating than that required for the application. For  
example, if the maximum expected input voltage is 15V,  
a 25V X5R 1μF capacitor would be a better choice than  
the smaller 1ꢀV X5R capacitor. Note that no charging will  
occur with 15V in.  
T = ꢀ5.ꢀ°C  
The LTC4078/LTC4078X can be used above 70.ꢀ°C ambi-  
ent, but the charge current will be reduced from 800mꢁ.  
The approximate current at a given ambient temperature  
can be approximated by:  
120°C – TA  
IBAT  
=
(V – VBAT) JA  
IN  
Using the previous example with an ambient temperature  
of 75°C, the charge current will be reduced to approxi-  
mately:  
120°C – 75°C  
(5V – 3.3V)40°C / W 68°C / A  
BAT = 662mA  
45°C  
IBAT  
=
=
I
It is important to remember that LTC4078/LTC4078X  
applications do not need to be designed for worst-case  
thermal conditions, since the IC will automatically reduce  
power dissipation when the junction temperature reaches  
approximately 120°C.  
Using a tantalum capacitor or an aluminum electrolytic  
capacitorforinputbypassing,orparallelingwithaceramic  
capacitor will also reduce voltage overshoot during a hot  
insertion. Ceramic capacitors with Y5V or Z5U dielectrics  
are not recommeded.  
Thermal Considerations  
In order to deliver maximum charge current under all  
conditions, it is critical that the exposed metal pad on  
the backside of the LTC4078/LTC4078X DFN package is  
properly soldered to the PC board ground. When cor-  
ꢁlternatively, the following soft connect circuit can be  
employed (as shown in Figure 4).  
DCIN/USBIN  
R1  
2
rectly soldered to a 2500mm double sided 1oz copper  
+15V  
INPUT  
40k  
C1  
1μF  
board, the LTC4078/LTC4078X has a thermal resistance  
of approximately 40°C/W. Failure to make thermal contact  
between the exposed pad on the backside of the package  
and the copper board will result in thermal resistances far  
greater than 40°C/W. s an example, a correctly soldered  
INPUT CꢁBLE  
LTC4078  
C2  
100nF  
MN1  
GND  
4078X F04  
Figure 4. Input Soft Connect Circuit  
4078xfb  
13  
LTC4078/LTC4078X  
APPLICATIONS INFORMATION  
supply voltage, a series blocking diode can be used. In  
other cases where the voltage drop must be kept low, a  
P-channel MOSFET can be used (as shown in Figure 5).  
In this circuit, capacitor C2 holds MN1 off when the cable  
isrstconnected. EventuallyC2beginstochargeuptothe  
USB input voltage applying increasing gate drive to MN1.  
The long time constant of R1 and C1 prevent the current  
from rapidly building up in the cable, thus dampening out  
any resonant overshoot.  
DRꢁIN-BULK  
DIODE OF FET  
LTC4078  
WꢁLL  
ꢁDꢁPTER  
DCIN  
Reverse Polarity Input Voltage Protection  
4078X F05  
In some applications, protection from reverse polarity  
voltage on the input supply pins is desired. With sufficient  
Figure 5. Low Loss Reverse Polarity Protection  
4078xfb  
14  
LTC4078/LTC4078X  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1ꢀ99)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
4078xfb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC4078/LTC4078X  
TYPICAL APPLICATION  
Full Featured Li-Ion Charger  
800mꢁ (WꢁLL)  
475mꢁ (USB)  
LTC4078  
WꢁLL  
ꢁDꢁPTER  
BꢁT  
DCIN  
USB  
POWER  
1k  
1k  
USBIN  
1μF  
1μF  
PWR  
CHRG  
BꢁTDET  
4.2V Li-Ion  
BꢁTTERY  
PꢁCK  
IUSB  
IDC  
+
3.9k  
ITERM  
GND  
2.1k  
16  
1.24k  
16  
1k  
16  
4078X Tꢁ02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3455  
Dual DC/DC Converter with USB Power  
Management and Li-Ion Battery Charger  
Efficiency >9ꢀ6, ꢁccurate USB Current Limiting (500mꢁ/100mꢁ), 4mm × 4mm  
QFN-24 Package  
LTC4053  
USB Compatible Monolithic Li-Ion Battery  
Charger  
Standalone Charger with Programmable Timer, Up to 1.25ꢁ Charge Current  
LTC4054/LTC4054X Standalone Linear Li-Ion Battery Charger with  
Integrated Pass Transistor in ThinSOT™  
Thermal Regulation Prevents Overheating, C/10 Termination, C/10 Indicator,  
Up to 800mꢁ Charge Current  
LTC4055  
USB Power Controller and Battery Charger  
Charges Single-Cell Li-Ion Batteries Directly from USB Port, Thermal Regulation,  
4mm × 4mm QFN-1ꢀ Package  
LTC4058/LTC4058X Standalone 950mꢁ Lithium-Ion Charger in DFN C/10 Charge Termination, Battery Kelvin Sensing, 76 Charge ꢁccuracy  
LTC40ꢀ1  
Standalone Li-Ion Charger with Thermistor  
Interface  
4.2V, 0.356 Float Voltage, Up to 1ꢁ Charge Current  
LTC40ꢀꢀ  
USB Power Controller and Li-Ion Linear Battery Seamless Transition Between Input Power Sources: Li-Ion Battery, USB and Wall  
Charger with Low-Loss Ideal Diode  
ꢁdapter, Low Loss (50mΩ) Ideal Diode, 4mm × 4mm QFN-24 Package  
LTC40ꢀ8/LTC40ꢀ8X Standalone Linear Li-Ion Battery Charger with  
Programmable Termination  
Charge Current Up to 950mꢁ, Thermal Regulation, 3mm × 3mm DFN-8 Package  
LTC4075/  
Dual Input Standalone Li-Ion Battery Charger  
Dual Input Standalone Li-Ion Battery Charger  
Dual Input Standalone Li-Ion Battery Charger  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination, USB  
Charge Current Set Via Resistor, 3mm × 3mm DFN Package; LTC4075HVX Has  
22V Input Protection.  
LTC4075HVX  
LTC407ꢀ  
LTC4077  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination,  
Fixed C or C/5 USB Charge Current for Low Power USB Operation, 3mm × 3mm  
DFN Package  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination,  
Programmable C or C/x USB Charge Current for Low Power USB Operation,  
Fixed C/10 Wall ꢁdapter and C/10 or C/2 Charge Current Termination,  
3mm × 3mm DFN Package  
LTC4085  
USB Power Manager with Ideal Diode Controller Charges Single-Cell Li-Ion Batteries Directly from USB Port, Thermal Regulation,  
and Li-Ion Charger 200mΩ Ideal Diode with <50mΩ Option, 4mm × 3mm DFN-14 Package  
LTC4089/  
LTC4089-5  
USB Power Manager with Ideal Diode Controller High Efficiency 1.2ꢁ Charger from ꢀV to 3ꢀV (40V Max) Input Charges Single-Cell  
and High Efficiency Li-Ion Battery Charger  
Li-Ion Batteries Directly from USB Port, Thermal Regulation, 200mΩ Ideal Diode  
with <50mΩ Option, Bat-Track ꢁdaptive Output Control (LTC4089), Fixed 5V  
Output (LTC4089-5), 4mm × 3mm DFN-14 Package  
LTC4411/LTC4412 Low Loss PowerPath™ Controller in ThinSOT  
ꢁutomatic Switching Between DC Sources, Load Sharing, Replaces ORing Diodes  
ThinSOT and PowerPath are trademarks of Linear Technology Corporation.  
4078xfb  
LT 0308 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4078XEDD-PBF

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4078XEDD-TRPBF

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4078X_15

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4078_15

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4079EDD#PBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4079EDD#TRPBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4079IDD#PBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear

LTC4080EDD#PBF

LTC4080 - 500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080EDD#TRPBF

LTC4080 - 500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080EDD-PBF

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear

LTC4080EDD-TRPBF

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear