LTC4078XEDD-PBF [Linear]

Dual Input Li-Ion Battery Charger with Overvoltage Protection; 双输入锂离子电池充电器,具有过压保护
LTC4078XEDD-PBF
型号: LTC4078XEDD-PBF
厂家: Linear    Linear
描述:

Dual Input Li-Ion Battery Charger with Overvoltage Protection
双输入锂离子电池充电器,具有过压保护

电池
文件: 总16页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4078X  
Dual Input Li-Ion Battery  
Charger with Overvoltage Protection  
FEATURES  
DESCRIPTION  
The LTC®4078X is a standalone linear charger that is  
capable of charging a single-cell Li-Ion/Polymer battery  
from both wall adapter and USB inputs. The charger can  
detect power at the inputs and automatically select the  
appropriate power source for charging.  
22V Maximum Voltage for Wall Adapter and  
USB Inputs  
Charge Single-Cell Li-Ion Batteries from Wall  
Adapter and USB Inputs  
Automatic Input Power Detection and Selection  
Charge Current Programmable Up to 950mA from  
Wall Adapter Input  
Overvoltage Lockout for Wall Adapter and USB Inputs  
Battery Detection Input Disables Charger When No  
Battery is Present  
No External MOSFET, Sense Resistor or Blocking  
Diode Needed  
No external sense resistor or blocking diode is required  
for charging due to the internal MOSFET architecture.  
The LTC4078X features a maximum 22V rating for both  
wall adapter and USB inputs, although charging stops if  
the selected power source exceeds the overvoltage limit.  
Internal thermal feedback regulates the battery charge  
currenttomaintainaconstantdietemperatureduringhigh  
power operation or high ambient temperature conditions.  
The float voltage is fixed at 4.2V and the charge current  
is programmed with an external resistor. The LTC4078X  
terminatesthechargecyclewhenthechargecurrentdrops  
below the programmed termination threshold after the  
final float voltage is reached.  
Thermal Regulation Maximizes Charge Rate Without  
Risk of Overheating*  
Preset Charge Voltage with 0.ꢀ6 ꢁccuracy  
Programmable Charge Current Termination  
40µꢁ USB Suspend Current in Shutdown  
Charge Status Output  
ꢁutomatic Recharge  
Otherfeaturesincludebatterypresentdetection,automatic  
recharge,undervoltagelockout,chargestatusoutputs,and  
“powerpresentstatusoutputstoindicatethepresenceof  
wall adapter or USB power. The device is offered in a low  
profile (0.75mm) 3mm × 3mm 10-lead DFN package.  
No Trickle Charge  
ꢁvailable in a Thermally Enhanced, Low Profile  
(0.75mm) 10-Lead (3mm × 3mm) DFN Package  
APPLICATIONS  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All  
other trademarks are the property of their respective owners.  
*Protected by U.S. Patents including 6522118, 6700364.  
Cellular Telephones  
Handheld Computers  
Portable MP3 Players  
Digital Cameras  
Charger Current vs Supply Voltage  
TYPICAL APPLICATION  
900  
R
R
= 1.24k  
= 2k  
IDC  
IUSB  
High Voltage Dual Input Battery Charger  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 3.5V  
BAT  
BATDET  
for Li-Ion Battery Pack  
= 0V  
CHARGE FROM DCIN  
800mA (WALL)  
500mA (USB)  
LTC4078X  
WALL  
ADAPTER  
DCIN  
BAT  
USB  
USBIN BATDET  
IUSB  
4.2V  
+
CHARGE  
FROM USBIN  
PORT  
1µF  
2k  
3.9k  
Li-Ion  
BATTERY  
PACK  
IDC  
ITERM  
GND  
1µF  
1%  
1.24k  
1%  
2k  
1%  
2
3
4
5
6
7
8
19 20  
4078X TA01  
SUPPLY VOLTAGE (V)  
4078x TA01b  
4078xf  
1
LTC4078X  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Input Supply Voltage (DCIN, USBIN) ............–0.3 to 22V  
ENꢁBLE, CHRG, PWR, BꢁTDET, BꢁT...............–0.3 to ꢀV  
IDC, IUSB, ITERM Pin Current .................................1mꢁ  
DCIN, USBIN, BꢁT Pin Current....................................1ꢁ  
BꢁT Short-Circuit Duration............................Continuous  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Storage Temperature Range................... –ꢀ5°C to 125°C  
TOP VIEW  
USBIN  
IUSB  
1
2
3
4
5
10 DCIN  
9
8
7
6
BAT  
ITERM  
PWR  
11  
IDC  
BATDET  
ENABLE  
CHRG  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMꢁX  
= 125°C, θ = 40°C/W (Note 3)  
Jꢁ  
EXPOSED PꢁD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC4078XEDD#PBF  
LTC4078XEDD#TRPBF  
LCYP  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= 5V, V  
USBIN  
= 5V unless otherwise noted.  
A
DCIN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
V
Operating Supply Voltage  
Operating Supply Voltage  
DCIN Supply Current  
4.3  
V
V
DCIN  
USBIN  
DCIN  
4.3  
5.5  
I
Charge Mode (Note 4), R = 10k  
350  
70  
40  
70  
800  
120  
80  
µꢁ  
µꢁ  
µꢁ  
µꢁ  
IDC  
Standby Mode; Charge Terminated  
Shutdown Mode (ENꢁBLE = 5V)  
Overvoltage Mode (V  
= 10V)  
140  
DCIN  
I
USBIN Supply Current  
Charge Mode (Note 5), R  
= 10k, V  
= 0V  
DCIN  
= 0V  
DCIN  
350  
70  
40  
70  
23  
800  
120  
80  
140  
40  
µꢁ  
µꢁ  
µꢁ  
µꢁ  
µꢁ  
USBIN  
IUSB  
Standby Mode; Charge Terminated, V  
Shutdown (V  
= 0V, ENꢁBLE = 0V)  
DCIN  
Overvoltage Mode (V  
DCIN  
= 10V)  
USBIN  
V
> V  
USBIN  
V
Regulated Output (Float) Voltage  
BꢁT Pin Current  
I
I
= 1mꢁ  
4.185  
4.1ꢀ5  
4.2  
4.2  
4.215  
4.235  
V
V
FLOꢁT  
BꢁT  
BꢁT  
= 1mꢁ, 0°C < T < 85°C  
I
R
R
R
= 1.25k, Constant-Current Mode  
770  
455  
93  
800  
47ꢀ  
100  
–7.5  
–7.5  
–7.5  
830  
495  
107  
–12  
–12  
–12  
mꢁ  
mꢁ  
mꢁ  
µꢁ  
µꢁ  
µꢁ  
BꢁT  
IDC  
= 2.1k, Constant-Current Mode  
IUSB  
= 10k or R  
= 10k  
IDC  
IUSB  
Standby Mode, Charge Terminated  
Shutdown Mode (Charger Disabled)  
Sleep Mode (V  
= 0V, V  
= 0V)  
DCIN  
USBIN  
4078xf  
2
LTC4078X  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= 5V, V  
USBIN  
= 5V unless otherwise noted.  
A
DCIN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
V
V
IDC Pin Regulated Voltage  
IUSB Pin Regulated Voltage  
Charge Current Termination Threshold  
Constant-Current Mode  
Constant-Current Mode  
V
V
IDC  
1
IUSB  
I
R
ITERM  
R
ITERM  
R
ITERM  
R
ITERM  
= 1k  
90  
100  
50  
10  
5
110  
58  
12  
ꢀ.5  
mꢁ  
mꢁ  
mꢁ  
mꢁ  
TERMINꢁTE  
= 2k  
42  
= 10k  
= 20k  
8
3.5  
V
V
V
V
DCIN Undervoltage Lockout Voltage  
USBIN Undervoltage Lockout Voltage  
DCIN Overvoltage Lockout Voltage  
USBIN Overvoltage Lockout Voltage  
From Low to High  
Hysteresis  
4
4.15  
190  
4.3  
4.1  
ꢀ.2  
ꢀ.2  
V
UVDC  
mV  
From Low to High  
Hysteresis  
3.8  
5.8  
5.8  
3.95  
170  
V
mV  
UVUSB  
OVDC  
From Low to High  
Hysteresis  
185  
V
mV  
From Low to High  
Hysteresis  
185  
V
mV  
OVUSB  
V
V
V
– V Lockout Threshold  
V
V
from Low to High, V = 4.2V  
70  
10  
120  
40  
170  
70  
mV  
mV  
ꢁSD-DC  
DCIN  
BꢁT  
DCIN  
DCIN  
BꢁT  
from High to Low, V = 4.2V  
BꢁT  
V
– V Lockout Threshold  
V
USBIN  
V
USBIN  
from Low to High  
from High to Low  
70  
10  
120  
40  
170  
70  
mV  
mV  
ꢁSD-USB  
USBIN  
BꢁT  
V
ENꢁBLE Input Threshold Voltage  
ENꢁBLE Pulldown Resistance  
BꢁTDET Input Threshold Voltage  
BꢁTDET Pull-Up Current  
0.ꢀ  
1
0.9  
2
1.2  
3.5  
1.85  
V
MΩ  
V
ENꢁBLE  
R
ENꢁBLE  
BDET  
V
From Low to High  
1.ꢀ5  
2
1.75  
4
I
V = 0V  
BꢁTDET  
µꢁ  
V
BꢁTDET  
V
V
BꢁTDET Open Circuit Voltage  
V
= 5V, V  
= 5V  
USBIN  
4
4.2  
0.12  
4.4  
0.35  
BOC  
OL  
DCIN  
SINK  
Output Low Voltage  
(CHRG, PWR)  
I
= 5mꢁ  
V
ΔV  
Recharge Battery Threshold Voltage  
Recharge Comparator Filter Time  
Termination Comparator Filter Time  
V
V
– V  
, 0°C < T < 85°C  
90  
2.25  
1
125  
4.1  
1.ꢀ  
ꢀ00  
1ꢀ0  
ꢀ.75  
2.4  
mV  
ms  
RECHRG  
FLOꢁT  
RECHRG  
t
t
from High to Low  
RECHRG  
TERMINꢁTE  
BꢁT  
BꢁT  
I
Drops Below Termination Threshold  
ms  
R
Power FET “ON” Resistance  
(Between DCIN and BꢁT)  
mΩ  
ON-DC  
ON-USB  
LIM  
R
Power FET “ON” Resistance  
(Between USBIN and BꢁT)  
700  
120  
mΩ  
T
Junction Temperature in Constant-  
Temperature Mode  
°C  
Note 1: Stresses beyond those listed under ꢁbsolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any ꢁbsolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC4078X is guaranteed to meet the performance  
specifications from 0°C to 85°C. Specifications over the 40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: Failure to correctly solder the exposed backside of the package to  
the PC board will result in a thermal resistance much higher than 40°C/W.  
See Thermal Considerations.  
Note 4: Supply current includes IDC and ITERM pin current (approximately  
100µꢁ each) but does not include any current delivered to the battery  
through the BꢁT pin.  
Note 5: Supply current includes IUSB and ITERM pin current  
(approximately 100µꢁ each) but does not include any current delivered to  
the battery through the BꢁT pin.  
4078xf  
3
LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS T = 25°C, unless otherwise specified.  
A
Regulated Output (Float) Voltage  
vs Charge Current  
Regulated Output (Float) Voltage  
vs Temperature  
IDC Pin Voltage vs Temperature  
(Constant-Current Mode)  
4.220  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
4.26  
4.24  
4.22  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
V
= V  
= 5V  
USBIN  
V
= V  
= 5V  
USBIN  
V
= 5V  
DCIN  
DCIN  
DCIN  
R
= 1.24k  
IDC  
R
= R  
= 2k  
IUSB  
IDC  
–10  
10  
30  
50  
70  
90  
0
100 200 300 400 500 600 700 800 900  
(mA)  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
I
TEMPERATURE (°C)  
BAT  
4078x G02  
4078x G01  
4078x G03  
IUSB Pin Voltage vs Temperature  
(Constant-Current Mode)  
Charge Current  
Charge Current  
vs IDC Pin Voltage  
vs IUSB Pin Voltage  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 5V  
V
= 5V  
V
= 5V  
USBIN  
USBIN  
DCIN  
R
= 1.24k  
R
= 1.24k  
IUSB  
IDC  
R
= 2k  
IDC  
R
= 2k  
IUSB  
R
= 10k  
R
= 10k  
IUSB  
IDC  
–10  
10  
30  
50  
70  
90  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
TEMPERATURE (°C)  
V
V
(V)  
IUSB  
IDC  
4078x G04  
4078x G05  
4078x G06  
PWR Pin I-V Curve  
CHRG Pin I-V Curve  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= V  
= 5V  
V
= V  
= 5V  
USBIN  
DCIN  
USBIN  
DCIN  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
(V)  
V
(V)  
PWR  
CHRG  
4078x G07  
4078x G08  
4078xf  
4
LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS T = 25°C, unless otherwise specified.  
A
Charge Current  
vs Ambient Temperature  
Charge Current  
vs Supply Voltage  
Charge Current vs Battery Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
R
R
= 1.24k  
IDC  
IDC  
= R  
= 2k  
IUSB  
V
V
θ
= V  
= 4V  
= 30°C/W  
= 5V  
USBIN  
R
V
JA  
= 1.24k  
= 4V  
DCIN  
BAT  
JA  
V
= V  
= 5V  
USBIN  
IDC  
BAT  
= 30°C/W  
DCIN  
IDC  
R
= 1.24k  
θ
θ
= 30°C/W  
JA  
–10  
30  
50  
70  
90 110 130  
10  
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0  
(V)  
2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5  
(V)  
TEMPERATURE (°C)  
V
4078x G10  
V
BAT  
DCIN  
4078x G11  
4078x G12  
DCIN Power FET On-Resistance  
vs Temperature  
USBIN Power FET On-Resistance  
vs Temperature  
ENABLE Pin Threshold Voltage  
(On-to-Off) vs Temperature  
800  
750  
700  
650  
600  
550  
500  
1000  
980  
960  
940  
920  
900  
880  
860  
900  
850  
800  
750  
700  
650  
600  
V
I
= 4V  
= 200mA  
V
= V  
= 5V  
USBIN  
V
I
= 4V  
= 200mA  
BAT  
BAT  
DCIN  
BAT  
BAT  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4078x G13  
4078x G15  
4078x G14  
USBIN Shutdown Current  
vs Temperature  
DCIN Shutdown Current  
vs Temperature  
ENABLE Pin Pulldown Resistance  
vs Temperature  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
30  
25  
20  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
V
= 0V  
V
= 5V  
ENABLE  
ENABLE  
V
= 5V  
USBIN  
V
= 5V  
DCIN  
V
= 4.3V  
USBIN  
V
= 4.3V  
DCIN  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4078x G16  
4078x G17  
4078x G18  
4078xf  
5
LTC4078X  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, unless otherwise specified.  
A
Undervoltage Lockout Threshold  
vs Temperature  
Overvoltage Lockout Threshold  
vs Temperature  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
6.10  
6.05  
6.00  
5.95  
5.90  
5.85  
5.80  
DCIN UVLO  
USBIN OVLO  
DCIN OVLO  
USBIN UVLO  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4078x G19  
4078x G20  
Recharge Threshold Voltage  
vs Temperature  
Battery Drain Current  
vs Temperature  
4.11  
4.09  
4.07  
4.05  
4.03  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
V
= V  
= 5V  
USBIN  
V
V
= V  
= NOT CONNECTED  
USBIN  
DCIN  
DCIN  
BAT  
= 4.2V  
–10  
10  
30  
50  
70  
90  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4078x G21  
4078x G22  
BATDET Pin Threshold Voltage  
(On-to-Off) vs Temperature  
BATDET Voltage/Current  
vs Temperature  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
4.4  
4.3  
4.2  
4.1  
4.0  
6.00  
V
= V  
= 5V  
USBIN  
V
= V  
= 5V  
USBIN  
DCIN  
DCIN  
V
BOC  
5.25  
4.50  
3.75  
3.00  
I
BATDET  
–10  
10  
30  
50  
70  
90  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4078x G23  
4078x G24  
4078xf  
6
LTC4078X  
PIN FUNCTIONS  
USBIN (Pin 1): USB Input Supply Pin. This input provides  
an internal N-channel MOSFET. When the charge cycle is  
completed, CHRG becomes high impedance. This output  
is capable of driving an LED.  
power to the battery charger assuming a voltage greater  
than V  
and less than V  
is present (typically  
UVUSB  
OVUSB  
3.95V to ꢀV respectively). However, the DCIN input will  
take priority if a voltage greater than V is present at  
DCIN (typically 4.15V). The USBIN input allows charge  
currents up to 850mꢁ. This pin should be bypassed with  
a 1µF capacitor.  
ENABLE (Pin 6): Enable Input. When the LTC4078X is  
charging from the DCIN source, a logic low on this pin  
enables the charger. When the LTC4078X is charging  
from the USBIN source, a logic high on this pin enables  
the charger. If this input is left floating, an internal 2MΩ  
pulldown resistor defaults the LTC4078X to charge when  
a wall adapter is applied and to shut down if only the USB  
source is applied.  
UVDC  
IUSB (Pin 2): Charge Current Program for USB Power.  
The charge current is set by connecting a resistor, R  
,
IUSB  
to ground. When charging in constant-current mode, this  
pin servos to 1V. The voltage on this pin can be used to  
measure the battery current delivered from the USB input  
using the following formula:  
BATDET (Pin 7): Battery Detection Input. When the volt-  
age on this pin falls below V  
(typically 1.75V), the  
BDET  
charger is on and ready for charging a battery. If this  
input is left floating, an internal pull-up resistor will dis-  
able charging.  
V
RIUSB  
IUSB  
IBAT  
=
1000  
IDC (Pin 8): Charge Current Program for Wall ꢁdapter  
ITERM (Pin 3): Termination Current Threshold Program.  
Power. The charge current is set by connecting a resis-  
The termination current threshold, I  
, is set by  
is set  
tor, R , to ground. When charging in constant-current  
TERMINꢁTE  
IDC  
connecting a resistor, R  
, to ground. I  
mode, this pin servos to 1V. The voltage on this pin can  
be used to measure the battery current delivered from the  
DC input using the following formula:  
ITERM  
TERMINꢁTE  
by the following formula:  
100V  
RITERM  
ITERMINATE  
=
V
RIDC  
IDC  
IBAT  
=
1000  
When the battery current, I , falls below the termination  
BꢁT  
threshold, charging stops and the CHRG output becomes  
high impedance. This pin is internally clamped to approxi-  
mately 1.5V. Driving this pin to voltages beyond the clamp  
voltage should be avoided.  
BAT (Pin 9): Battery Charger Output. This pin provides  
charge current to the battery and regulates the final float  
voltage to 4.2V.  
DCIN (Pin 10): Wall ꢁdapter Input Supply Pin. This input  
PWR (Pin 4): Open-Drain Power Supply Status Output.  
WhentheDCINorUSBINpinvoltageisvalidtobegincharg-  
ing (i.e. when the supply is greater than the undervoltage  
lockoutthreshold,lessthantheovervoltagelockoutthresh-  
old and at least 120mV above the battery terminal), the  
PWR pin is pulled low by an internal N-channel MOSFET.  
Otherwise PWR is high impedance. This output is capable  
of driving an LED.  
provides power to the battery charger assuming a voltage  
greater than V  
and less than V  
is present (typi-  
UVDC  
OVDC  
cally4.15VtoVrespectively). validvoltageontheDCIN  
input will always take priority over the USBIN input. The  
DCIN input allows charge currents up to 950mꢁ. This pin  
should be bypassed with a 1µF capacitor.  
Exposed Pad (Pin 11): GND. The exposed backside of the  
packageisgroundandmustbesolderedtoPCboardground  
for electrical connection and maximum heat transfer.  
CHRG (Pin 5): Open-Drain Charge Status Output. When  
the LTC4078X is charging, the CHRG pin is pulled low by  
4078xf  
7
LTC4078X  
BLOCK DIAGRAM  
DCIN  
10  
BAT  
9
USBIN  
1
CC/CV  
REGULATOR  
CC/CV  
REGULATOR  
V
BOC  
DC_ENABLE  
CHARGER CONTROL  
DISABLE  
USB_ENABLE  
7
+
BATDET  
1.75V  
4
PWR  
+
+
3.95V  
BAT  
6V  
4.15V  
BAT  
6V  
DCIN UVLO  
DCIN OVLO  
RECHARGE  
USBIN UVLO  
+
+
+
+
USBIN OVLO  
T
6
ENABLE  
+
+
DIE  
2M  
120°C  
0.9V  
THERMAL  
REGULATION  
4.075V  
BAT  
+
0.1V  
CHRG  
5
+
I
/1000  
I
/1000  
I
/1000  
BAT  
BAT  
BAT  
TERMINATION  
GND  
11  
ITERM  
IDC  
IUSB  
3
8
2
4078X BD  
R
ITERM  
R
R
IUSB  
IDC  
4078xf  
8
LTC4078X  
OPERATION  
Charge current out of the BꢁT pin can be determined at  
any time by monitoring the IDC or IUSB pin voltage and  
applying the following equations:  
The LTC4078X is designed to efficiently manage charg-  
ing of a single-cell lithium-ion battery from two separate  
power sources: a wall adapter and USB power bus. Us-  
ing the constant-current/constant-voltage algorithm, the  
charger can deliver up to 950mꢁ of charge current from  
the wall adapter supply or up to 850mꢁ of charge current  
from the USB supply with a final float voltage accuracy of  
0.ꢀ6. The LTC4078X has two internal P-channel power  
MOSFETs and thermal regulation circuitry. No blocking  
diodes or external sense resistors are required.  
V
RIDC  
IDC  
IBAT  
IBAT  
=
=
1000,(charging from wall adapter)  
V
IUSB  
1000,(charging from USBsupply)  
RIUSB  
Battery Detection  
Power Source Selection  
By default, the BꢁTDET pin is pulled high with an internal  
resistor, disabling the charger. To enable the charger, the  
The LTC4078X can charge a battery from either the wall  
adapter input or the USB port input. The LTC4078X auto-  
matically senses the presence of voltage at each input. If  
both power sources are present, the LTC4078X defaults to  
the wall adapter source provided a valid voltage is present  
at the DCIN input. “Valid voltage” is defined as:  
BꢁTDET pin must be pulled below the V  
threshold  
BDET  
(typically 1.75V). ꢁn external resistor to ground less than  
100k (typically 3.9k) located in the battery pack is used to  
detect battery presence.  
Programming Charge Termination  
• Supply voltage is greater than the UVLO threshold  
and less than the OVLO threshold.  
The charge cycle terminates when the charge current  
falls below the programmed termination threshold level  
during constant-voltage mode. This threshold is set by  
• Supply voltage is greater than the battery voltage by  
40mV.  
connecting an external resistor, R , from the ITERM  
ITERM  
pin to ground. The charge termination current threshold  
(I ) is set by the following equation:  
The open-drain power status output (PWR) indicates  
which power source has been selected. Table 1 describes  
the behavior of this status output.  
TERMINꢁTE  
100V  
100V  
RITERM  
=
,ITERMINATE =  
ITERMINATE  
RITERM  
Programming and Monitoring Charge Current  
The charge current delivered to the battery from the wall  
adapter or USB supply is programmed using a single re-  
sistor from the IDC or IUSB pin to ground. Both program  
The termination condition is detected by using an internal  
filtered comparator to monitor the ITERM pin. When the  
ITERM pin voltage drops below 100mV* for longer than  
resistors and charge currents (I  
the following equations:  
) are calculated using  
t
(typically 1.ꢀms), charging is terminated. The  
CHRG  
TERMINꢁTE  
charge current is latched off and the LTC4078X enters  
standby mode.  
1000V  
ICHRGDC  
1000V  
1000V  
RIDC  
RIDC  
=
,ICHRGDC =  
When charging, transient loads on the BꢁT pin can cause  
the ITERM pin to fall below 100mV for short periods of  
time before the DC charge current has dropped below the  
1000V  
RIUSB  
RIUSB  
=
, ICHRGUSB =  
ICHRGUSB  
*ꢁny external sources that hold the ITERM pin above 100mV will prevent the LTC4078X from  
terminating a charge cycle.  
4078xf  
9
LTC4078X  
OPERATION  
programmed termination current. The 1.ꢀms filter time  
logiclowenablesthechargerandlogichighdisablesit(the  
pulldown defaults the charger to the charging state). The  
opposite is true when the USB input is supplying power;  
logic low disables the charger and logic high enables it  
(the default is the shutdown state).  
(t ) on the termination comparator ensures that  
TERMINꢁTE  
transient loads of this nature do not result in premature  
chargecycletermination.Oncetheaveragechargecurrent  
drops below the programmed termination threshold, the  
LTC4078Xterminatesthechargecycleandstopsproviding  
current out of the BꢁT pin. In this state, any load on the  
BꢁT pin must be supplied by the battery.  
The DCIN input draws 40µꢁ when the charger is in shut-  
downmode.TheUSBINinputdraws4duringshutdown  
if no voltage is applied to DCIN, but draws only 23µꢁ when  
V
provides valid voltage (see Table 1).  
DCIN  
Automatic Recharge  
Status Indicators  
In standby mode, the charger sits idle and monitors the  
batteryvoltageusingacomparatorwitha4.1msltertime  
The charge status open-drain output (CHRG) has two  
states: pulldown and high impedance. The pulldown state  
indicates that the LTC4078X is in a charge cycle. Once the  
charge cycle has terminated or the LTC4078X is disabled,  
the pin state becomes high impedance.  
(t  
). ꢁ charge cycle automatically restarts when the  
RECHRG  
battery voltage falls below 4.075V (which corresponds to  
approximately806to906batterycapacity).Thisensures  
that the battery is kept at, or near, a fully charged condi-  
tion and eliminates the need for periodic charge cycle  
initiations.  
The power supply status open-drain output (PWR) has  
two states: pulldown and high impedance. The pulldown  
state indicates that power is present at either DCIN or  
USBIN. This output is strong enough to drive an LED. If  
no valid voltage is applied at either pin, the PWR pin is  
high impedance, indicating that the LTC4078X lacks valid  
input voltage (see Table 1) to charge the battery.  
Manual Shutdown  
TheENꢁBLEpinhasa2MΩpulldownresistortoGND. The  
definitionofthispindependsonwhichsourceissupplying  
power. When the wall adapter input is supplying power,  
Table 1. Power Source Selection (V  
< 1.75V)  
BATDET  
V
USBIN  
< 3.95V or  
6V > V  
> 3.95V and  
22V > V  
> 6V  
USBIN  
USBIN  
USBIN  
V
< BAT + 50mV  
V
> BAT + 50mV  
USBIN  
ENABLE  
HIGH  
LOW or No Connect  
HIGH  
LOW or No Connect  
HIGH  
LOW or No Connect  
V
V
< 4.15V or  
No Charging.  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
Charging from  
USBIN source.  
PWR: LOW  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
DCIN  
DCIN  
< BꢁT + 50mV PWR: Hi-Z  
CHRG: Hi-Z  
CHRG: LOW  
ꢀV > V  
> 4.15V  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
Charging from DCIN No Charging.  
Charging from DCIN No Charging.  
Charging from DCIN  
source.  
DCIN  
and V  
> BꢁT +  
source.  
PWR: LOW  
CHRG: Hi-Z  
source.  
PWR: LOW  
CHRG: Hi-Z  
DCIN  
50mV  
PWR: LOW  
CHRG: LOW  
PWR: LOW  
CHRG: LOW  
PWR: LOW  
CHRG: LOW  
22V > V  
> ꢀV  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: LOW  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
No Charging.  
PWR: Hi-Z  
CHRG: Hi-Z  
DCIN  
4078xf  
10  
LTC4078X  
OPERATION  
Thermal Limiting  
ing the device. The charge current can be set according  
to typical (not worst-case) ambient temperature with the  
assurance that the charger will automatically reduce the  
current in worst case conditions. DFN package power  
considerations are discussed further in the ꢁpplications  
Information section.  
ninternalthermalfeedbackloopreducestheprogrammed  
charge current if the die temperature attempts to rise  
above a preset value of approximately 120°C. This feature  
protects the LTC4078X from excessive temperature and  
allows the user to push the limits of the power handling  
capability of a given circuit board without risk of damag-  
DCIN POWER REMOVED  
ENABLE = LOW  
USB POWER REMOVED  
NO POWER  
POWER APPLIED  
ENABLE = HIGH  
YES  
NO  
DCIN > 4.15V  
AND DCIN > BAT  
NO  
NO  
NO  
6V > DCIN > 4.15V  
AND DCIN > BAT  
6V > USBIN > 3.95V  
AND USBIN > BAT  
YES  
BATDET < 1.75V  
YES  
YES  
BATDET < 1.75V  
YES  
NO  
CHARGE MODE  
(DCIN)  
CHARGE MODE  
(USBIN)  
FULL CURRENT  
FULL CURRENT  
CHRG STATE: PULLDOWN  
CHRG STATE: PULLDOWN  
I
< I  
I
< I  
BAT TERMINATE  
BAT TERMINATE  
IN VOLTAGE MODE  
IN VOLTAGE MODE  
STANDBY MODE  
STANDBY MODE  
(DCIN)  
(USBIN)  
BAT < 4.075V  
BAT < 4.075V  
NO CHARGE CURRENT  
CHRG STATE: Hi-Z  
NO CHARGE CURRENT  
CHRG STATE: Hi-Z  
SHUTDOWN MODE  
(DCIN)  
SHUTDOWN MODE  
(USBIN)  
CHRG STATE: Hi-Z  
CHRG STATE: Hi-Z  
4078X F01  
Figure 1. LTC4078X State Diagram of a Charge Cycle  
4078xf  
11  
LTC4078X  
APPLICATIONS INFORMATION  
Using a Single Charge Current Program Resistor  
Stability Considerations  
TheLTC4078Xcanprogramthewalladapterchargecurrent  
andUSBchargecurrentindependentlyusingtwoprogram  
Theconstant-voltagemodefeedbackloopisstablewithout  
any compensation provided a battery is connected to the  
charger output. However, a 1µF capacitor with a 1Ω series  
resistor is recommended at the BꢁT pin to keep the ripple  
voltage low when the battery is disconnected.  
resistors, R and R  
. Figure 2 shows a charger circuit  
IDC  
IUSB  
that sets the wall adapter charge current to 800mꢁ and  
the USB charge current to 500mꢁ.  
In applications where the programmed wall adapter  
charge current and USB charge current are the same, a  
single program resistor can be used to set both charge  
currents. Figure 3 shows a charger circuit that uses one  
charge current program resistor.  
When the charger is in constant-current mode, the charge  
current program pin (IDC or IUSB) is in the feedback loop,  
not the battery. The constant-current mode stability is af-  
fectedbytheimpedanceatthechargecurrentprogrampin.  
With no additional capacitance on this pin, the charger is  
stable with program resistor values as high as 20k (I  
CHRG  
800mA (WALL)  
LTC4078X  
= 50mꢁ); however, additional capacitance on these nodes  
reduces the maximum allowed program resistor.  
500mA (USB)  
WALL  
ADAPTER  
DCIN  
BAT  
USB  
USBIN BATDET  
IUSB  
4.2V  
+
3.9k  
R4  
PORT  
C2, 1µF  
Li-Ion  
Power Dissipation  
BATTERY  
PACK  
R1  
2k  
1%  
IDC  
ITERM  
GND  
C1  
1µF  
R3  
2k  
1%  
Whendesigningthebatterychargercircuit, itisnotneces-  
sary to design for worst-case power dissipation scenarios  
because the LTC4078X automatically reduces the charge  
current during high power conditions. The conditions that  
cause the LTC4078X to reduce charge current through  
thermal feedback can be approximated by considering the  
power dissipated in the IC. Most of the power dissipation  
is generated from the internal charger MOSFET. Thus, the  
power dissipation is calculated to be:  
R2  
1.24k  
1%  
4078X F02  
Figure 2. Dual Input Charger with Independent Charge Currents  
LTC4078X  
WALL  
500mA  
ADAPTER  
DCIN  
BAT  
USB  
USBIN BATDET  
IUSB  
4.2V  
+
R4  
3.9k  
PORT  
C2, 1µF  
Li-Ion  
BATTERY  
PACK  
P = (V – V ) • I  
BꢁT  
D
IN  
BꢁT  
C1  
1µF  
IDC  
ITERM  
GND  
R3  
2k  
1%  
R1  
2k  
1%  
P is the dissipated power, V is the input supply volt-  
D
IN  
BꢁT  
age (either DCIN or USBIN), V  
is the battery voltage  
and I is the charge current. The approximate ambient  
BꢁT  
4078X F03  
temperature at which the thermal feedback begins to  
Figure 3. Dual Input Charger Circuit. The Wall Adapter  
Charge Current and USB Charge Current Are Both  
Programmed to Be 500mA  
protect the IC is:  
T = 120°C – P θ  
Jꢁ  
D
Inthiscircuit,theprogrammedchargecurrentfromboththe  
wall adapter supply is the same value as the programmed  
charge current from the USB supply:  
T = 120°C – (V – V ) • I θ  
Jꢁ  
IN  
BꢁT  
BꢁT  
Example: ꢁn LTC4078X operating from a 5V wall adapter  
(on the DCIN input) is programmed to supply 800mꢁ  
full-scale current to a discharged Li-Ion battery with a  
voltage of 3.3V.  
1000V  
ICHRGDC = ICHRGUSB  
=
RISET  
4078xf  
12  
LTC4078X  
APPLICATIONS INFORMATION  
ꢁssuming θ is 40°C/W (see Thermal Considerations),  
800mtoabatteryfroma5Vsupplyatroomtemperature.  
Withoutagoodbacksidethermalconnection, thisnumber  
would drop to much less than 500mꢁ.  
Jꢁ  
theambienttemperatureatwhichtheLTC4078Xwillbegin  
to reduce the charge current is approximately:  
T = 120°C – (5V – 3.3V) • (800mꢁ) • 40°C/W  
Input Capacitor Selection  
T = 120°C – 1.3ꢀW • 40°C/W = 120°C – 54.4°C  
When an input supply is connected to a portable product,  
the inductance of the cable and the high-Q ceramic input  
capacitorformanL-Cresonantcircuit.WhiletheLTC4078X  
is capable of withstanding input voltages as high as 22V,  
if the input cable does not have adequate mutual coupling  
or if there is not much impedance in the cable, it is pos-  
sible for the voltage at the input of the product to reach  
as high as 2x the input voltage before it settles out. To  
prevent excessive voltage from damaging the LTC4078X  
during a hot insertion, it is best to have a low voltage coef-  
ficient capacitor at the input pins to the LTC4078X. This is  
achievable by selecting an X5R or X7R ceramic capacitor  
that has a higher voltage rating than that required for the  
application. For example, if the maximum expected input  
voltage is 15V, a 25V X5R 1µF capacitor would be a better  
choice than the smaller 1ꢀV X5R capacitor. Note that no  
charging will occur with 15V in.  
T = ꢀ5.ꢀ°C  
The LTC4078X can be used above ꢀ5.ꢀ°C ambient, but  
the charge current will be reduced from 800mꢁ. The ap-  
proximate current at a given ambient temperature can be  
approximated by:  
120°C – TA  
IBAT  
=
(V – VBAT) θJA  
IN  
Using the previous example with an ambient temperature  
of 75°C, the charge current will be reduced to approxi-  
mately:  
120°C – 75°C  
(5V – 3.3V) • 40°C / W 68°C / A  
45°C  
IBAT  
=
=
Using a tantalum capacitor or an aluminum electrolytic  
capacitorforinputbypassing,orparallelingwithaceramic  
capacitor will also reduce voltage overshoot during a hot  
insertion. Ceramic capacitors with Y5V or Z5U dielectrics  
are not recommeded.  
IBAT = 662mA  
ItisimportanttorememberthatLTC4078Xapplicationsdo  
notneedtobedesignedforworst-casethermalconditions,  
since the IC will automatically reduce power dissipation  
when the junction temperature reaches approximately  
120°C.  
ꢁlternatively, the following soft connect circuit can be  
employed (as shown in Figure 4).  
Thermal Considerations  
In order to deliver maximum charge current under all  
conditions, it is critical that the exposed metal pad on the  
backside of the LTC4078X DFN package is properly sol-  
dered to the PC board ground. When correctly soldered to  
DCIN/USBIN  
R1  
+15V  
INPUT  
40k  
C1  
1µF  
INPUT CABLE  
LTC4078X  
C2  
100nF  
MN1  
2
a2500mm doublesided1ozcopperboard,theLTC4078X  
GND  
4078X F04  
has a thermal resistance of approximately 40°C/W. Failure  
to make thermal contact between the exposed pad on the  
backside of the package and the copper board will result  
in thermal resistances far greater than 40°C/W. ꢁs an  
example, a correctly soldered LTC4078X can deliver over  
Figure 4. Input Soft Connect Circuit  
4078xf  
13  
LTC4078X  
APPLICATIONS INFORMATION  
supply voltage, a series blocking diode can be used. In  
other cases where the voltage drop must be kept low, a  
P-channel MOSFET can be used (as shown in Figure 5).  
In this circuit, capacitor C2 holds MN1 off when the cable  
isrstconnected. EventuallyC2beginstochargeuptothe  
USB input voltage applying increasing gate drive to MN1.  
The long time constant of R1 and C1 prevent the current  
from rapidly building up in the cable, thus dampening out  
any resonant overshoot.  
DRAIN-BULK  
DIODE OF FET  
LTC4078X  
WALL  
ADAPTER  
DCIN  
Reverse Polarity Input Voltage Protection  
4078X F05  
In some applications, protection from reverse polarity  
voltage on the input supply pins is desired. With sufficient  
Figure 5. Low Loss Reverse Polarity Protection  
4078xf  
14  
LTC4078X  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1ꢀ99)  
R = 0.115  
0.38 0.10  
TYP  
6
10  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
PACKAGE  
OUTLINE  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
2.38 0.10  
(2 SIDES)  
2.38 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
4078xf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC4078X  
TYPICAL APPLICATION  
Full Featured Li-Ion Charger  
800mA (WALL)  
475mA (USB)  
LTC4078X  
WALL  
ADAPTER  
BAT  
DCIN  
USB  
POWER  
1k  
1k  
USBIN  
1µF  
1µF  
PWR  
CHRG  
BATDET  
4.2V Li-Ion  
BATTERY  
PACK  
IUSB  
IDC  
+
3.9k  
ITERM  
GND  
2.1k  
1%  
1.24k  
1%  
1k  
1%  
4078X TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3455  
Dual DC/DC Converter with USB Power  
Management and Li-Ion Battery Charger  
Efficiency >9ꢀ6, ꢁccurate USB Current Limiting (500mꢁ/100mꢁ), 4mm × 4mm  
QFN-24 Package  
LTC4053  
USB Compatible Monolithic Li-Ion Battery  
Charger  
Standalone Charger with Programmable Timer, Up to 1.25ꢁ Charge Current  
LTC4054/LTC4054X Standalone Linear Li-Ion Battery Charger with  
Integrated Pass Transistor in ThinSOT™  
Thermal Regulation Prevents Overheating, C/10 Termination, C/10 Indicator,  
Up to 800mꢁ Charge Current  
LTC4055  
USB Power Controller and Battery Charger  
Charges Single-Cell Li-Ion Batteries Directly from USB Port, Thermal Regulation,  
4mm × 4mm QFN-1ꢀ Package  
LTC4058/LTC4058X Standalone 950mꢁ Lithium-Ion Charger in DFN C/10 Charge Termination, Battery Kelvin Sensing, 76 Charge ꢁccuracy  
LTC40ꢀ1  
Standalone Li-Ion Charger with Thermistor  
Interface  
4.2V, 0.356 Float Voltage, Up to 1ꢁ Charge Current  
LTC40ꢀꢀ  
USB Power Controller and Li-Ion Linear Battery Seamless Transition Between Input Power Sources: Li-Ion Battery, USB and Wall  
Charger with Low-Loss Ideal Diode  
ꢁdapter, Low Loss (50mΩ) Ideal Diode, 4mm × 4mm QFN-24 Package  
LTC40ꢀ8/LTC40ꢀ8X Standalone Linear Li-Ion Battery Charger with  
Programmable Termination  
Charge Current Up to 950mꢁ, Thermal Regulation, 3mm × 3mm DFN-8 Package  
LTC4075/  
LTC4075HVX  
Dual Input Standalone Li-Ion Battery Charger  
Dual Input Standalone Li-Ion Battery Charger  
Dual Input Standalone Li-Ion Battery Charger  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination, USB  
Charge Current Set Via Resistor, 3mm × 3mm DFN Package; LTC4075HVX Has  
22V Input Protection.  
LTC407ꢀ  
LTC4077  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination,  
Fixed C or C/5 USB Charge Current for Low Power USB Operation, 3mm × 3mm  
DFN Package  
950mꢁ Charger Current, Thermal Regulation, C/X Charge Termination,  
Programmable C or C/x USB Charge Current for Low Power USB Operation,  
Fixed C/10 Wall ꢁdapter and C/10 or C/2 Charge Current Termination,  
3mm × 3mm DFN Package  
LTC4085  
USB Power Manager with Ideal Diode Controller Charges Single-Cell Li-Ion Batteries Directly from USB Port, Thermal Regulation,  
and Li-Ion Charger 200mΩ Ideal Diode with <50mΩ Option, 4mm × 3mm DFN-14 Package  
USB Power Manager with Ideal Diode Controller High Efficiency 1.2ꢁ Charger from ꢀV to 3ꢀV (40V Max) Input Charges Single-Cell  
LTC4089/  
LTC4089-5  
and High Efficiency Li-Ion Battery Charger  
Li-Ion Batteries Directly from USB Port, Thermal Regulation, 200mΩ Ideal Diode  
with <50mΩ Option, Bat-Track ꢁdaptive Output Control (LTC4089), Fixed 5V  
Output (LTC4089-5), 4mm × 3mm DFN-14 Package  
LTC4411/LTC4412 Low Loss PowerPath™ Controller in ThinSOT  
ꢁutomatic Switching Between DC Sources, Load Sharing, Replaces ORing Diodes  
ThinSOT and PowerPath are trademarks of Linear Technology Corporation.  
4078xf  
LT 0907 • PRINTED IN USA  
LinearTechnology Corporation  
1ꢀ30 McCarthy Blvd., Milpitas, Cꢁ 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FꢁX: (408) 434-0507 www.linear.com  

相关型号:

LTC4078XEDD-TRPBF

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4078X_15

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4078_15

Dual Input Li-Ion Battery Charger with Overvoltage Protection
Linear

LTC4079EDD#PBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4079EDD#TRPBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4079IDD#PBF

LTC4079 - 60V, 250mA Linear Charger with Low Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear

LTC4080EDD#PBF

LTC4080 - 500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080EDD#TRPBF

LTC4080 - 500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4080EDD-PBF

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear

LTC4080EDD-TRPBF

500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck
Linear

LTC4080EMSE#PBF

LTC4080 - 500mA Standalone Li-Ion Charger with Integrated 300mA Synchronous Buck; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear