LTC3425EUH [Linear]

5A, 8MHz, 4-Phase Synchronous Step-Up DC/DC Converter; 5A ,为8MHz , 4相同步升压型DC / DC转换器
LTC3425EUH
型号: LTC3425EUH
厂家: Linear    Linear
描述:

5A, 8MHz, 4-Phase Synchronous Step-Up DC/DC Converter
5A ,为8MHz , 4相同步升压型DC / DC转换器

转换器
文件: 总24页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3425  
5A, 8MHz, 4-Phase  
Synchronous Step-Up  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
High Efficiency: Up to 95%  
The LTC®3425 is a synchronous, 4-phase boost converter  
with output disconnect capable of operation below 1V  
input. It includes four N-channel MOSFET switches and  
four P-channel synchronous rectifiers for an effective  
RDS(ON) of 0.045and 0.05, respectively. 4-phase  
operation greatly reduces peak inductor currents, and  
capacitor ripple current, and increases effective switching  
frequency, minimizing inductor and capacitor sizes. True  
output disconnect eliminates inrush current and allows  
zero load current in shutdown. External Schottky diodes  
arenotrequiredinmostapplications(VOUT <4.3V).Power  
saving Burst Mode operation can be user controlled or left  
in automatic mode.  
Up to 3A Continuous Output Current  
4-Phase Operation for Low Output Ripple  
and Tiny Solution Size  
Output Disconnect and Inrush Current Limiting  
Very Low Quiescent Current: 12µA  
0.5V to 4.5V Input Range  
2.4V to 5.25V Adjustable Output Voltage  
Adjustable Current Limit  
Adjustable, Fixed Frequency Operation from  
100kHz to 2MHz per Phase  
Synchronizable Oscillator with Sync Output  
Internal Synchronous Rectifiers  
Manual or Automatic Burst Mode® Operation  
Other features include 1µA shutdown current, program-  
mable frequency with sync in and out, programmable  
soft-start, antiringing control, thermal shutdown, adjust-  
able current limit, reference output and power good  
comparator.  
Power Good Comparator  
<1µA Shutdown Current  
Antiringing Control  
5mm × 5mm Thermally Enhanced QFN Package  
U
APPLICATIO S  
The LTC3425 is available in a small, thermally enhanced  
32-pin QFN package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
Handheld Computers  
Point-of-Load Regulators  
3.3V to 5V Conversion  
U
TYPICAL APPLICATIO  
V
IN  
2V TO 3V  
2.2µF  
2.7µH 2.7µH 2.7µH 2.7µH  
100  
90  
V
SWA  
SWB  
LTC3425  
GNDB  
SWC  
SWD  
IN  
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
SHDN  
OFF ON  
80  
Burst Mode FIXED  
REFOUT  
CCM  
OPERATION FREQUENCY  
MODE  
70  
60  
50  
40  
30  
20  
10  
0
V
3.3V  
2A  
OUT  
OUTD  
4.7µF  
×4  
REFEN  
SYNCIN  
BURST  
1M  
10k  
22pF  
FB  
COMP  
SS  
SYNCOUT  
PGOOD  
V
V
= 2.4V  
IN  
OUT  
0.01µF  
R
T
590k  
330pF  
= 3.3V  
f = 1MHz/PHASE  
I
LIM  
SGND  
15k  
75k  
L = 2.7µH  
33k  
GNDA  
GNDC GNDD  
0.1  
1
10  
100  
1000  
10000  
0.01µF  
20k  
LOAD CURRENT (mA)  
3425 TA01  
3425 TA02  
C
C
: TAIYO YUDEN JMK107BJ225MA  
OUT  
L1-L4: TDK RLF5018T-2R7M1R8  
IN  
: TAIYO YUDEN JMK212BJ475MG (×4)  
3425f  
1
LTC3425  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
VIN Voltage ................................................. 0.3V to 6V  
SWA-D Voltages ..........................................0.3V to 6V  
V
OUTA-D, VOUTS Voltages............................ 0.3V to 6V  
32 31 30 29 28 27 26 25  
BURST, SHDN, SS, REFEN, SYNCOUT, PGOOD,  
REFOUT, CCM, SYNCIN Voltages ............... 0.3V to 6V  
Operating Ambient Temperature Range  
(Note 5) .............................................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
GNDA  
GNDA  
SWA  
1
2
3
4
5
6
7
8
24 GNDD  
23 GNDD  
SWD  
22  
V
OUTA  
V
V
21  
20  
19  
OUTD  
OUTC  
33  
V
OUTB  
SWB  
SWC  
GNDB  
GNDB  
18 GNDC  
17 GNDC  
9
10 11 12 13 14 15 16  
UH PACKAGE  
32-LEAD (5mm × 5mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 40°C/W 1 LAYER BOARD,  
θJA = 35°C/W 4 LAYER BOARD, θJC = 1.1°C/W  
EXPOSED PAD IS GND (PIN 33) MUST BE SOLDERED TO PCB  
ORDER PART  
NUMBER  
UH PART  
MARKING  
3425  
LTC3425EUH  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V, RT = 15k, unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 0V, I  
MIN  
TYP  
MAX  
1
UNITS  
Minimum Start-Up Voltage  
Minimum Operating Voltage  
Output Voltage Adjust Range  
Feedback Regulation Voltage  
Feedback Input Current  
V
< 1mA  
LOAD  
0.88  
V
V
OUT  
(Note 3)  
0.5  
2.4  
5.25  
1.244  
50  
V
1.196  
1.220  
1
V
nA  
V
Quiescent Current—Burst Mode Operation  
BURST = 0V, REFEN = 0V, FB = 1.3V (Note 2)  
BURST = 0V, REFEN = 2V, FB = 1.3V (Note 2)  
12  
18  
25  
35  
µA  
µA  
OUT  
V
V
Quiescent Current—Shutdown  
SHDN = 0V, V  
= 0V, Not Including Switch Leakage  
0.1  
1.8  
1
3
µA  
mA  
µA  
µA  
IN  
OUT  
Quiescent Current—Active  
V = 0V, Nonswitching (Note 2)  
C
OUT  
NMOS Switch Leakage  
PMOS Switch Leakage  
NMOS Switch On Resistance  
PMOS Switch On Resistance  
NMOS Current Limit  
V
V
= 5V  
0.1  
5
SW  
SW  
= 5V, V  
= 0V  
0.1  
10  
OUT  
(Note 4)  
(Note 4)  
0.04  
0.05  
I
I
Resistor = 75k (Note 4)  
Resistor = 200k (Note 4)  
5.0  
1.8  
7.0  
2.7  
A
A
LIM  
LIM  
3425f  
2
LTC3425  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V, RT = 15k, unless otherwise noted.  
PARAMETER  
CONDITIONS  
CCM < 0.4V  
CCM > 1.4V  
MIN  
TYP  
–80  
0.6  
90  
MAX  
UNITS  
mA  
A
PMOS Turn-Off Current  
PMOS Reverse Current Limit  
Max Duty Cycle  
83  
97  
0
%
Min Duty Cycle  
%
Frequency Accuracy  
SHDN Input High  
R = 15k  
T
0.8  
1
1.2  
MHz  
V
V
= 0V (Initial Start-Up)  
> 2.4V  
1
0.65  
V
V
OUT  
OUT  
SHDN Input Low  
0.25  
1
V
SHDN Input Current  
V
V
= 5V or 0V  
= 2V  
0.01  
–0.50  
µA  
µA  
SHDN  
SHDN  
REFEN, CCM Input High  
REFEN, CCM Input Low  
REFEN, Input Current  
SYNCIN Input High  
SYNCIN Input Low  
SYNCIN Input Current  
CCM Input Current  
SYNC Input Pulse Width Range  
SYNC Out High  
1.4  
2.5  
V
V
0.4  
1
V
= 5V  
0.01  
µA  
V
REFEN  
(Note 7)  
(Note 7)  
0.5  
1
V
V
V
= 5V  
0.3  
2
µA  
µA  
µs  
V
SYNCIN  
= 5V  
4
CCM  
0.1  
3
SYNC Out Low  
0.4  
V
REFOUT  
REFEN > 1.4V, No Load  
1.190  
1.184  
1.220  
1.220  
50  
1.251  
1.252  
V
I
< 100µA, I  
< 10µA  
V
SOURCE  
SINK  
Error Amp Transconductance  
Error Amp Output High  
Error Amp Output Low  
PGOOD Threshold (Falling Edge)  
PGOOD Hysteresis  
µS  
V
I
Resistor = 75k  
2.2  
LIM  
0.15  
–11.4  
2.5  
V
Referenced to Feedback Voltage  
Referenced to Feedback Voltage  
–9.5  
1.5  
–13.5  
4
%
%
V
PGOOD Low Voltage  
I
= 1mA (10mA Max)  
0.12  
0.01  
2.7  
0.25  
1
SINK  
PGOOD Leakage  
V
V
= 5.5V  
µA  
µA  
V
PGOOD  
SS Current Source  
= 1V  
SS  
Burst Threshold Voltage  
Burst Threshold Hysteresis  
Falling Edge  
0.84  
0.94  
120  
1.04  
mV  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: The LTC3425E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 6: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 2: Current is measured into the V  
pin since the supply current is  
OUTS  
bootstrapped to the output. The current will reflect to the input supply by  
/(V • Efficiency). The outputs are not switching.  
V
OUT IN  
Note 3: Once the output is started, the IC is not dependent on the V  
IN  
supply.  
Note 4: Total with all four FETs in parallel.  
Note 7: The typical logic threshold for this input is: V /2  
OUT  
3425f  
3
LTC3425  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SW Pin and Inductor Current in  
Discontinous Mode. Antiring  
Circuit Eliminates High Frequency  
Ringing  
SWA, SWB, SWC, SWD  
at 1MHz/Phase  
SW Pin and Oscillator SYNCOUT  
IL  
SWA  
2V/DIV  
0.2A/DIV  
SWA TO SWD  
5V/DIV  
SYNCOUT  
2V/DIV  
SW  
2V/DIV  
250ns/DIV  
3425 G01  
250ns/DIV  
3425 G02  
VIN = 2.4V  
VOUT = 3.3V  
COUT = 220µF  
250ns/DIV  
3425 G03  
Output Voltage Ripple at 2.5A  
Output Voltage Ripple at 2.5A  
Load with Only Four 4.7µF  
Ceramic Capacitors  
Load with a 47µF Ceramic Bulk  
Transient Response 0.5A to 1.5A  
Fixed Frequency Mode Operation  
Capacitor  
VOUT AC  
100mV/DIV  
V
OUT AC  
VOUT AC  
10mV/DIV  
50mV/DIV  
LOAD  
CURRENT  
0.5A/DIV  
V
IN = 2.4V  
VOUT = 3.3V  
OUT = 220µF  
100µs/DIV  
3425 G04  
VIN = 2.4V  
500ns/DIV  
3425 G05  
VIN = 2.4V  
500ns/DIV  
3425 G06  
VOUT = 3.3V  
VOUT = 3.3V  
C
FREQUENCY = 1MHz/PHASE  
FREQUENCY = 1MHz/PHASE  
Soft-Start and Inrush Current  
Limiting  
Transient Response 10mA to 1A  
Automatic Burst Mode Operation  
Burst Mode Operation  
IOUT  
IIN  
1A/DIV  
0.5A/DIV  
SWA  
2V/DIV  
SS Pin  
1V/DIV  
BURST PIN  
1V/DIV  
V
OUT AC  
VOUT  
2V/DIV  
50mV/DIV  
VOUT AC  
200mV/DIV  
VIN = 2.4V  
500µs/DIV  
3425 G07  
VIN = 2.4V  
VOUT = 3.3V  
COUT = 220µF  
25µs/DIV  
3425 G08  
VIN = 2.4V  
1ms/DIV  
3425 G10  
VOUT = 3.3V  
VOUT = 3.3V  
CSOFTSTART = 0.015µF  
C
OUT = 220µF  
3425f  
4
LTC3425  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Converter Efficiency for 2-, 3- and  
4-Phase Operation  
Converter Efficiency  
for VOUT = 3.3V  
Converter Efficiency  
for VOUT = 5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
98  
96  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
V
= 25°C  
A
V
= 3.3V  
V
V
= 2.4V  
IN  
IN  
= 2.4V  
IN  
= 3.3V  
OUT  
= 2.4V  
= 3.3V  
94 1MHz/PHASE  
IN  
V
= 1.2V  
IN  
92  
90  
88  
86  
84  
82  
V
= 2.4V  
V
V
= 2.4V  
IN  
IN  
IN  
V
= 1.2V  
IN  
4 PHASE  
3 PHASE  
2 PHASE  
Burst Mode OPERATION  
1MHz/PHASE  
Burst Mode OPERATION  
1MHz/PHASE  
T
= 25°C  
T
= 25°C  
A
A
80  
100  
1000  
10000  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
LOAD (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3425 G13  
3425 G11  
3425 G12  
Efficiency Comparison of  
Efficiency Comparison of  
Discontinuous Mode and Forced  
Continuous Mode at Light Loads  
for VIN = 2.4V, VOUT = 3.3V  
Discontinuous Mode and Forced  
Continuous Mode at Light Loads  
for VIN = 3.3V, VOUT = 5V  
Converter No Load Input Current  
vs VIN (Burst Mode Operation)  
100  
90  
100  
140  
120  
100  
80  
T
= 25°C  
T = 25°C  
A
T
= 25°C  
A
A
1MHz/PHASE  
1MHz/PHASE  
90  
80  
70  
DISCONTINUOUS  
MODE  
80  
DISCONTINUOUS  
MODE  
70  
FORCED  
CONTINUOUS  
MODE  
V
OUT  
= 5V  
60  
50  
60  
50  
FORCED  
CONTINUOUS  
MODE  
60  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
OUT  
= 3.3V  
40  
20  
0
1
10  
100  
1000  
1
10  
100  
1000  
1.5  
3.0  
3.5  
4.0  
4.5  
2.0  
2.5  
V
CONVERTER OUTPUT CURRENT (mA)  
LOAD (mA)  
(V)  
IN  
3425 G14  
3425 G15  
3425 G16  
Oscillator Frequency  
Peak Current Limit  
Effective RDS(ON)  
10  
1.8  
1.6  
1.4  
1.2  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
PMOS  
NMOS  
1.0  
0.8  
0.6  
1
1
10  
100  
140  
RESISTOR (k)  
180 200  
60  
80 100 120  
160  
2.5  
3
3.5  
V
4
4.5  
5
R
T
(k)  
I
(V)  
LIM  
OUT  
3425 G17  
3425 G18  
3425 G19  
3425f  
5
LTC3425  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Output Current  
in Burst Mode Operation  
Maximum Start-Up Load vs VIN  
(Constant Current Load)  
Automatic Burst Mode Current  
Thresholds vs RBURST  
100  
10  
1
350  
300  
0.7  
0.6  
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
A
LEAVE  
Burst Mode  
OPERATION  
V
OUT  
= 3.3V  
V
OUT  
= 3.3V  
0.5  
0.4  
0.3  
0.2  
0.1  
250  
V
= 5V  
OUT  
ENTER  
Burst Mode  
OPERATION  
200  
150  
100  
50  
V
OUT  
= 5V  
0
0
1.3  
(V)  
1.5 1.6  
10  
100  
BURST RESISTOR (k)  
1000  
0.9 1.0  
1.1 1.2  
V
1.4  
2
2.5  
3
3.5  
5
1
1.5  
4
4.5  
V
IN  
(V)  
IN  
3425 G22  
3425 G21  
3425 G20  
Automatic Burst Mode Thresholds  
vs VIN  
Soft-Start Charging Current  
vs Temperature  
Shutdown Voltage vs Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
90  
80  
70  
60  
50  
40  
0.450  
0.425  
0.400  
0.375  
0.350  
0.325  
0.300  
V
= 5V  
OUT  
V
> 2.3V  
IN  
V
= 3.3V  
OUT  
LEAVE Burst Mode OPERATION  
ENTER Burst Mode OPERATION  
V
< 2.3V  
IN  
(START-UP MODE)  
V
= 3.3V  
V
OUT  
T
= 25°C  
BURST  
= 5V  
A
OUT  
R
= 33k  
–45  
–5 15 35 55 75 95 115  
–25  
1.5  
2
2.5  
3
3.5  
4
–45  
–5 15 35 55 75 95 115  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
IN  
3425 G24  
3425 G23  
3425 G25  
Minimum Start-Up Voltage  
vs Temperature  
PMOS Reverse Current in Forced  
CCM vs Temperature  
PGOOD Threshold vs Temperature  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11.0  
10.9  
10.8  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
–45  
–5 15 35 55 75 95 115  
–45  
–5 15 35 55 75 95 115  
–25  
–25  
–45  
–5 15 35 55 75 95 115  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3425 G27  
3425 G28  
3425 G26  
3425f  
6
LTC3425  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Peak Current Limit  
vs Temperature  
Oscillator Frequency  
vs Temperature  
Feedback Voltage vs Temperature  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
3
2
2.0  
1.5  
1.0  
1
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–1  
–2  
–3  
–45  
–5 15 35 55 75 95 115  
–45  
–5 15 35 55 75 95 115  
–45  
–5 15 35 55 75 95 115  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3425 G29  
3425 G30  
3425 G31  
Burst Mode VOUT Quiescent  
Current vs Temperature  
Error Amplifier gm  
vs Temperature  
20  
15  
10  
5
55  
50  
45  
40  
–45  
–5 15 35 55 75 95 115  
–45  
–5 15 35 55 75 95 115  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3425 G32  
3425 G33  
3425f  
7
LTC3425  
U
U
U
PI FU CTIO S  
GNDA–D (Pins 1, 2, 7, 8, 17, 18, 23, 24): Power Ground  
for the IC and the Four Internal N-channel MOSFETs.  
Connect directly to the power ground plane.  
COMP (Pin 13): Error Amp Output. A frequency compen-  
sation network is connected from this pin to ground to  
compensate the loop. See the section Closing the Feed-  
back Loop for guidelines.  
SWA–D (Pins 3, 6, 19, 22): Switch Pins. Connect induc-  
tors here. Minimize trace length to keep EMI to a mini-  
mum. For discontinuous inductor current, a controlled  
impedance is internally connected from SW to VIN to  
minimize EMI. For applications where VOUT > 4.3V, it is  
required to have Schottky diodes from SW to VOUT or a  
snubbercircuittostaywithinabsolutemaximumratingon  
the SW pins.  
BURST (Pin 14): Burst Mode Threshold Adjust Pin. A  
resistor/capacitor combination from this pin to ground  
programs the average load current at which automatic  
Burst Mode operation is entered.  
For manual control of Burst Mode operation, ground  
BURSTtoforceBurstModeoperationorconnectittoVOUT  
to force fixed frequency PWM mode. Note that BURST  
must not be pulled higher than VOUT  
.
V
OUTA–D (Pins 4, 5, 20, 21): Output of the Four Synchro-  
nous Rectifiers. Connect output filter capacitors to these  
pins. Connect one low ESR ceramic capacitor directly  
from each pin to the ground plane.  
REFOUT (Pin 15): Buffered 1.22V Reference Output. This  
pin can source up to 100µA and sink up to 10µA (only  
active when REFEN is pulled high). This pin must be  
decoupled with a 0.1µF capacitor for stability.  
REFEN (Pin 9): Pull this pin above 1.4V to enable the REF  
output. Grounding this pin turns the REF output off to  
reduce quiescent current.  
PGOOD (Pin 16): Open-Drain Output of the Power Good  
Comparator. This pin will go low when the output voltage  
drops 11% below its regulated value. Maximum sink  
current should be limited to 10mA.  
VOUTS (Pin10):VOUT SensePin. ConnectVOUTS directlyto  
an output filter capacitor. The top of the feedback divider  
network should also be tied to this point.  
SYNCOUT (Pin 25): Sync Output Pin. A clock is provided  
at the oscillator frequency, but phase-shifted 180 degrees  
to allow for synchronizing two devices for an 8-phase  
converter.  
SGND (Pin 11): Signal Ground Pin. Connect to ground  
plane, near the feedback divider resistor.  
FB(Pin12):FeedbackPin.ConnectFBtoaresistordivider,  
keeping the trace as short as possible. The output voltage  
can be adjusted according to the following formula:  
CCM (Pin 26):This pin is used to select forced continuous  
conduction mode. Normally this pin is grounded to allow  
CCM or DCM operation. To force continuous conduction  
mode, tie this pin to VOUT. In this mode, a reverse current  
of up to about 0.6A will be allowed before turning off the  
synchronous rectifier. This will prevent pulse skipping at  
light load when Burst Mode operation is disabled, and will  
also improve the large-signal transient response when  
going from a heavy load to a light load. For Burst Mode  
operation, CCM should be low.  
R1+R2  
VOUT = 1.22 •  
R1  
where R1 is connected from FB to SGND and R2 is  
connected from FB to VOUTS  
.
3425f  
8
LTC3425  
U
U
U
PI FU CTIO S  
ILIM (Pin 27): Current Limit Adjust Pin. Connect a resistor  
from ILIM to SGND to set the peak current limit threshold  
for the N-channel MOSFETs, according to the formula  
(note that this is the peak current in each inductor):  
SYNCIN (Pin 30): Oscillator Synchronization Pin. A clock  
pulse width of 100ns minimum is required to synchronize  
the internal oscillator. If not used, SYNCIN should be  
grounded. The typical logic threshold for this input is:  
130  
R
VOUT  
2
ILIM  
=
The SYNCIN is ignored in Burst Mode operation.  
where I is in Amps and R is in k. Do not use values less  
than 75k.  
SHDN (Pin 31): Shutdown Pin. Grounding SHDN (or  
pulling it below 0.25V) shuts down the IC. Pull pin up to  
1V to enable. Once enabled, the pin only needs to be  
0.65V.  
RT (Pin28):ConnectaresistorfromRT toSGND(orSGND  
plane) to program the oscillator frequency, according to  
the formula:  
SS (Pin 32): Soft-Start pin. Connect a capacitor from this  
pin to ground to set the soft-start time, according to the  
formula:  
60  
RT  
fOSC  
=
fOSC 15  
fSWITCH  
=
=
t(ms) = CSS (µF) • 320  
4
RT  
The nominal soft-start charging current is 2.5µA. The  
activerangeofSSisfrom0.8Vto1.6V. Notethatthisisthe  
rise time of SS. The actual rise time of VOUT will be a  
function of load and output capacitance.  
where fOSC is in MHz and RT is in k.  
VIN (Pin 29): Input Supply Pin. Connect this to the input  
supply and decouple with 1µF minimum low ESR  
ceramic capacitor.  
Exposed Pad (Pin 33): Additional Power Ground for the  
IC. Connect directly to the power ground plane.  
OPERATING MODE  
BURST PIN  
CCM PIN  
Low  
Automatic Burst (Operating Mode is Load Dependent)  
Forced Burst  
RC Network to Ground  
Low  
High  
High  
Low  
Forced Fixed Frequency with Pulse Skipping at Light Load  
Forced Fixed Frequency, Low Noise (No Pulse Skipping)  
Low  
High  
3425f  
9
LTC3425  
W
BLOCK DIAGRA  
1V TO 4.5V  
+
29  
3
6
19  
22  
V
IN  
SWA  
SWB SWC  
SWD  
1 OF 4  
V
OUT  
V
V
OUTA  
4
2.5V TO 5.25V  
+
OUTB  
FB  
5
ANTIRING  
V
OUTC  
20  
21  
PMOS  
P
0.8V  
ENABLE  
V
OUTD  
+
PWM LOGIC  
AND  
DRIVERS  
MODE CONTROL  
CCM  
N
26  
I/2000  
ZERO  
DIVIDER  
4-PHASE  
GEN  
V
10  
16  
OUTS  
+
+
4
4
CLK  
SLOPE  
Σ
+
+
R
T
PGOOD  
IOSC  
+
Σ
1.086/  
1.116  
+
OSC  
28  
SYNCIN  
30  
25  
SYNC  
4
4
4
1.22V  
+
+
MODE  
SLEEP  
FB  
Burst Mode  
CONTROL  
0.94V  
12  
13  
ERROR  
AMP  
BURST  
COMP  
SYNCOUT  
COMP  
THERMAL SHDN  
SHDN  
+
SHUTDOWN  
31  
9
OFF ON  
V
REF  
–3%  
UV  
REFEN  
OFF ON REFOUT  
V
REF  
1.22V  
+
+
REFOUT  
15  
START-UP,  
SOFT-START  
AND  
I
LIMIT  
I
3%  
OV  
THERMAL REG  
BURST  
14  
SS  
32  
GNDA  
GNDB  
GNDC  
17 18  
GNDD  
SGND  
11  
LIM  
1
2
7
8
23 24  
33  
27  
3425f  
10  
LTC3425  
U
OPERATIO  
5
4
3
2
1
0
DETAILED DESCRIPTION  
SINGLE  
PHASE  
The LTC3425 provides high efficiency, low noise power  
forhighcurrentboostapplicationssuchascellularphones  
and PDAs. The true output disconnect feature eliminates  
inrush current and allows VOUT to go to zero during  
shutdown. The current mode architecture with adaptive  
slope compensation provides ease of loop compensation  
FOUR PHASE  
with excellent transient load response. The low RDS(ON)  
,
low gate charge synchronous switches eliminate the need  
foranexternalSchottkyrectifier,andprovideefficienthigh  
frequency pulse width modulation (PWM) control. High  
efficiency is achieved at light loads when Burst Mode  
operation is entered, where the IC’s quiescent current is a  
1
1.5  
0
0.5  
TIME (µs)  
3425 F01  
Figure 1. Comparison of Output Ripple Current with Single  
Phase and 4-Phase Boost Converter in a 2A Load Application  
Operating at 50% Duty Cycle  
low 12µA typical on VOUT  
.
MULTIPHASE OPERATION  
Example:  
The LTC3425 uses a 4-phase architecture, rather than the  
conventional single phase of other boost converters. By  
having multiple phases equally spaced (90° apart), not  
only is the output ripple frequency increased by a factor of  
four, but the output capacitor ripple current is greatly  
reduced. Although this architecture requires four induc-  
tors, rather than a single inductor, there are a number of  
important advantages.  
The following example, operating at 50% duty cycle,  
illustrates the advantages of multiphase operation over a  
conventional single-phase design.  
VIN = 1.9V, VOUT = 3.6V, Efficiency = 90% (approx),  
IOUT = 2A, Frequency = 1MHz, L = 2.2µH  
Table 1  
SINGLE  
PHASE  
FOUR  
PHASE  
CHANGE FROM  
1 TO 4 PHASE  
PARAMETER  
• Much lower peak inductor current allows the use of  
smaller, lower cost inductors.  
Peak-Peak Output  
Ripple Current  
4.227A  
0.450A  
Reduced by 89%  
RMS Output Ripple Current  
Peak Inductor Current  
2.00A  
4.227A  
1MHz  
0.184A  
1.227A  
4MHz  
Reduced by 91%  
Reduced by 71%  
Increased by 4×  
• Greatly reduced output ripple current minimizes output  
capacitance requirement.  
Output Ripple Frequency  
• Higher frequency output ripple is easier to filter for low  
noise applications.  
With 4-phase operation, at least one of the phases will be  
delivering current to the load whenever VIN is greater than  
one quarter VOUT (duty cycles less than 75%). For lower  
duty cycles, there can be as many as two or three phases  
delivering load current simultaneously. This greatly re-  
duces both the output ripple current and the peak current  
ineachinductor, comparedwithasingle-phaseconverter.  
This is illustrated in the waveforms of Figures 2 and 3.  
• Input ripple current is also reduced for lower noise on  
VIN.  
The peak boost inductor current is given by:  
IO  
di  
2
ILPEAK  
=
+
(1D)•N  
Where IO is the average load current, D is the PWM duty  
cycle, N is the number of phases and di is the inductor  
ripple current. This relationship is shown graphically in  
Figure 1 using a single phase and a 4-phase example.  
Operation Using Only Two or Three Phases  
The LTC3425 can operate as a 2- or 3-phase converter by  
simplyeliminatingtheinductorfromtheunusedphase(s).  
3425f  
11  
LTC3425  
U
OPERATIO  
SWITCH A  
VOLTAGE  
SWITCH B  
VOLTAGE  
SWITCH C  
VOLTAGE  
SWITCH D  
VOLTAGE  
INDUCTOR A  
CURRENT  
INDUCTOR B  
CURRENT  
INDUCTOR C  
CURRENT  
INDUCTOR D  
CURRENT  
INPUT CURRENT  
RECTIFIER A  
CURRENT  
RECTIFIER B  
CURRENT  
RECTIFIER C  
CURRENT  
RECTIFIER D  
CURRENT  
OUTPUT RIPPLE  
CURRENT  
3425 F02  
Figure 2. Simplified Voltage and Current Waveforms  
for 4-Phase Operation at 50% Duty Cycle  
This approach can be used to reduce solution cost and  
board area in applications not requiring the full power  
capability of the LTC3425, or where peak efficiency may  
not be as important as cost and size. In this case, phase A  
should always be used, since this is the only phase active  
in Burst Mode operation and phase C is recommended as  
the second phase for the lowest output ripple, since it is  
180° out of phase with phase A. Figure 4 illustrates the  
efficiency differences with two, three and four phases in a  
typical 2-cell to 3.3V boost application. In this example,  
you can see that for maximum loads less than 1A, the  
efficiency penalty for using only two or three phases is  
fairly small. Keep in mind, however, that this penalty will  
grow larger as the input voltage drops. Output ripple will  
also increase with each phase that is eliminated.  
Low Voltage Start-Up  
The LTC3425 includes an independent start-up oscillator  
designedtostartupatinputvoltagesaslowas0.88V. The  
frequency and peak current limit during start-up are  
3425f  
12  
LTC3425  
U
OPERATIO  
SWITCH A  
VOLTAGE  
SWITCH B  
VOLTAGE  
SWITCH C  
VOLTAGE  
SWITCH D  
VOLTAGE  
INDUCTOR A  
CURRENT  
INDUCTOR B  
CURRENT  
INDUCTOR C  
CURRENT  
INDUCTOR D  
CURRENT  
INPUT CURRENT  
RECTIFIER A  
CURRENT  
RECTIFIER B  
CURRENT  
RECTIFIER C  
CURRENT  
RECTIFIER D  
CURRENT  
OUTPUT RIPPLE  
CURRENT  
3432 F03  
Figure 3. Simplified Voltage and Current Waveforms  
for 4-Phase Operation at 75% Duty Cycle  
internally controlled. The device can start up under some  
load (see the graph Start-Up Current vs Input Voltage).  
Soft-start and inrush current limiting is provided during  
start-up as well as normal mode. The same soft-start  
capacitor is used for each operating mode.  
input by 0.3V, the IC powers itself from VOUT instead of  
VIN. At this point the internal circuitry has no dependency  
on the VIN input voltage, eliminating the requirement for a  
large input capacitor. The input voltage can drop as low as  
0.5Vwithoutaffectingcircuitoperation.Thelimitingfactor  
fortheapplicationbecomestheabilityofthepowersource  
to supply sufficient energy to the output at the low volt-  
ages, andthemaximumdutycyclethatisclampedat90%.  
During start-up, all four phases switch in unison. When  
either VIN or VOUT exceeds 2.3V, the IC enters normal  
operating mode. Once the output voltage exceeds the  
3425f  
13  
LTC3425  
U
OPERATIO  
98  
T
V
V
= 25°C  
A
IN  
OUT  
60  
RT  
= 2.4V  
fOSC  
=
96  
= 3.3V  
94 1MHz/PHASE  
fOSC 15  
92  
90  
88  
86  
84  
82  
fSWITCH  
=
=
4
RT  
4 PHASE  
3 PHASE  
where fOSC is in MHz and RT is in k.  
2 PHASE  
The oscillator can be synchronized with an external clock  
appliedtoSYNCIN. Whensynchronizingtheoscillator, the  
free running frequency must be set to an approximately  
30% lower frequency than the desired synchronized fre-  
quency. SYNCOUT is provided for synchronizing two or  
more devices. The output sync pulse is 180° out of phase  
from the internal oscillator, allowing two devices to be  
synchronized to create an 8-phase converter. Note that in  
Burst Mode operation, the oscillator is turned off and  
SYNCOUT is driven low.  
80  
100  
1000  
LOAD (mA)  
10000  
3425 G13  
Figure 4. LTC3425 Efficiency vs  
Load for 2-, 3- and 4-Phase Operation  
Low Noise Fixed Frequency Operation  
Shutdown: The part is shut down by pulling SHDN below  
0.25V and made active by pulling the pin above 1V. Note  
that SHDN can be driven above VIN or VOUT, as long as it  
is limited to less than 5.5V.  
Infixedfrequencyoperation, theminimumon-timebefore  
pulse skipping occurs (at light load) is typically 110ns.  
Current Sensing: Lossless current sensing converts the  
peak current signal to a voltage to sum in with the internal  
slope compensation. This summed signal is compared to  
theerroramplifieroutputtoprovideapeakcurrentcontrol  
command for the PWM. The internal slope-compensation  
is adaptive to the input and output voltage, therefore the  
converterprovidestheproperamountofslopecompensa-  
tion to ensure stability, but not an excess to cause a loss  
of phase margin in the converter.  
Soft-Start: The soft-start time is programmed with an  
external capacitor to ground on SS. An internal current  
sourcechargesitwithanominal2.5µA(1µAwhileinstart-  
up mode when VIN and VOUT are both below 2.3V). The  
voltage on the soft-start pin (in conjunction with the  
externalresistorontheILIM pin)isusedtocontrolthepeak  
current limit until the voltage on the capacitor exceeds  
1.6V, at which point the external resistor sets the peak  
current. In the event of a commanded shutdown or a  
thermal shutdown, the capacitor is discharged automati-  
cally. Note that Burst Mode operation is inhibited during  
the soft-start time.  
Error Amp: The error amplifier is a transconductance  
amplifier with its positive input internally connected to the  
1.22V reference and its negative input connected to FB. A  
simple compensation network is placed from COMP to  
ground. Internal clamps limit the minimum and maximum  
error amp output voltage for improved large-signal tran-  
sient response. During Burst Mode operation, the com-  
pensationpinishighimpedance,howeverclampslimitthe  
voltageontheexternalcompensationnetwork,preventing  
the compensation capacitor from discharging to zero.  
t(ms) = CSS(µF) • 320  
Oscillator: The frequency of operation is set through a re-  
sistor from the RT pin to ground. An internally trimmed  
timing capacitor resides inside the IC. The internal  
oscillator frequency is then divided by four to generate the  
four phases, each phase shifted by 90°. The oscillator fre-  
quencyandresultingswitchingfrequencyofeachofthefour  
phases are calculated using the following formula:  
3425f  
14  
LTC3425  
U
OPERATIO  
CurrentLimit:Theprogrammablecurrentlimitcircuitsets  
the maximum peak current in the NMOS switches. The  
current limit level is programmed using a resistor to  
ground on the ILIM pin. Do not use values below 75k. In  
Burst Mode operation, the current limit is automatically  
set to a nominal value of 0.6A peak for optimal efficiency.  
the soft-start capacitor will be reset. The part will be  
enabled again when the die temperature has dropped  
about10°C. Note:Overtemperatureprotectionisintended  
to protect the device during momentary overload condi-  
tions. Continuous operation above the specified maxi-  
mum operating junction temperature may result in device  
degradation or failure.  
130  
ILIM  
=
per Phase  
Burst Mode Operation  
R
BurstModeoperationcanbeautomaticorusercontrolled.  
In automatic operation, the IC will automatically enter  
Burst Mode operation at light load and return to fixed  
frequency PWM mode for heavier loads. The user can  
program the average load current at which the mode  
transition occurs using a single resistor.  
where I is in Amps and R is in k.  
Synchronous Rectifier and Zero Current Amp: To pre-  
vent the inductor current from running away, the PMOS  
synchronous rectifier is only enabled when VOUT > (VIN +  
0.3V)andFBis>0.8V.Thezerocurrentamplifiermonitors  
the inductor current to the output and shuts off the  
synchronous rectifier once the current is below 50mA  
typical, preventing negative inductor current. If CCM is  
tied high, the amplifier will allow up to 0.6A of negative  
current in the synchronous rectifier.  
During Burst Mode operation, only Phase A is active and  
the other three phases are turned off, reducing quiescent  
current and switching losses by 75%. Note that the  
oscillator is also shut down in this mode, since the on time  
is determined by the time it takes the inductor current to  
reach a fixed peak current, and the off time is determined  
by the time it takes for the inductor current to return to  
zero.  
Antiringing Control: The antiringing control connects a  
resistor across the inductor to damp the ringing on SW in  
discontinuous conduction mode. The LCSW ringing (L =  
inductor, CSW = Capacitance on Switch pin) is low energy,  
but can cause EMI radiation.  
In Burst Mode operation, the IC delivers energy to the  
output until it is regulated and then goes into a sleep mode  
where the outputs are off and the IC is consuming only  
12µA of quiescent current. In this mode, the output ripple  
has a variable frequency component with load current and  
will be typically 2% peak-peak. This maximizes efficiency  
at very light loads by minimizing switching and quiescent  
losses. Burst Mode ripple can be reduced slightly by using  
more output capacitance (47µF or greater). This capacitor  
doesnotneedtobealowESRtypeiflowESRceramicsare  
also used. Another method of reducing Burst Mode ripple  
is to place a small feedforward capacitor across the upper  
resistor in the VOUT feedback divider network.  
Power Good: An internal comparator monitors the FB  
voltage. If FB drops 11.4% below the regulation value,  
PGOOD will pull low (sink current should be limited to  
10mA max). The output will stay low until the FB voltage  
is within 9.5% of the regulation voltage. A filter prevents  
noise spikes from causing nuisance trips.  
Reference Output: The internal 1.22V reference is buff-  
ered and brought out to REFOUT. It is active when REFEN  
is pulled high (above 1.4V). For stability, a minimum of  
0.1µF capacitor must be placed on REFOUT. The output  
cansourceupto100µAandsinkupto10µA.Forthelowest  
possible quiescent current in Burst Mode operation, the  
referenceoutputshouldbedisabledbygrounding REFEN.  
During Burst Mode operation, COMP is disconnected  
from the error amplifier in an effort to hold the voltage on  
the external compensation network where it was before  
entering Burst Mode operation. To minimize the effects of  
leakage current and stray resistance, voltage clamps limit  
the min and max voltage on COMP during Burst Mode  
Thermal Shutdown: An internal temperature monitor will  
start to reduce the programmed peak current limit if the  
die temperature exceeds 135°C. If the die temperature  
continues to rise and reaches 150°C, the part will go into  
thermal shutdown and all switches will be turned off and  
operation. This minimizes the transient experienced when  
3425f  
15  
LTC3425  
U
OPERATIO  
a heavy load is suddenly applied to the converter after  
being in Burst Mode operation for an extended period of  
time.  
to sink up to 2mA. Note that Burst Mode operation is  
inhibited during start-up and soft-start.  
Note that if VIN is raised to within 200mV or less below  
VOUT, the part will exit Burst Mode operation and the  
For automatic operation, an RC network should be con-  
nected from BURST to ground. The value of the resistor  
will control the average load current (IBURST) at which  
Burst Mode operation will be entered and exited (there is  
hysteresis to prevent oscillation between modes). The  
equation given for the capacitor on BURST is for the  
minimum value, to prevent ripple on BURST from causing  
the part to oscillate in and out of Burst Mode operation at  
the current where the mode transition occurs.  
synchronous rectifier will be disabled. It will remain in  
fixed frequency mode until VIN is at least 300mV below  
VOUT  
.
If the load applied during forced Burst Mode operation  
(BURST = GND) exceeds the current that can be supplied,  
the output voltage will start to droop and the part will  
automaticallycomeoutofBurstModeoperationandenter  
fixed frequency mode, raising VOUT. The part will then  
enter Burst Mode operation once again, the cycle will  
repeat, resulting in about 4% output ripple. The maximum  
current that can be supplied in Burst Mode operation is  
given by:  
2.75  
RBURST  
1.7  
IBURST  
IBURST  
=
=
to leave Burst Mode operation  
to enter Burst Mode operation  
RBURST  
0.60  
IO(MAX)  
=
in Amps  
where RBURST is in kand IBURST is in Amps. For load  
VOUT – V  
IN  
currents under 20mA, refer to the curve Automatic Burst  
2 • 1+  
V
IN  
Mode Thresholds vs RBURST  
.
COUT VOUT  
Output Disconnect and Inrush Limiting  
CBURST  
=
10,000  
The LTC3425 is designed to allow true output disconnect  
by eliminating body diode conduction of the internal  
PMOS rectifiers. This allows VOUT to go to zero volts  
during shutdown, drawing no current from the input  
source.Italsoallowsforinrushcurrentlimitingatturn-on,  
minimizing surge currents seen by the input supply. Note  
that to obtain the advantages of output disconnect, there  
cannot be any external Schottky diodes connected be-  
where CBURST(MIN) and COUT are in µF.  
When the voltage on BURST drops below 0.94V, the part  
will enter Burst Mode operation. When the BURST pin  
voltage is above 1.06V, it will be in fixed frequency mode.  
In the event that a sudden load transient causes the  
feedbackpintodropbymorethan4%fromtheregulation  
value, an internal pull-up is applied to BURST, forcing the  
part quickly out of Burst Mode operation. For optimum  
transient response when going between Burst Mode  
operationandPWMmode,themodeshouldbecontrolled  
manually by the host. This way PWM mode can be  
commanded before the load step occurs, minimizing  
output voltage droop. For manual control of Burst Mode  
operation, the RC network can be eliminated. To force  
fixedfrequencyPWMmode, BURSTshouldbeconnected  
toVOUT.ToforceBurstModeoperation,BURSTshouldbe  
grounded.ThecircuitconnectedtoBURSTshouldbeable  
tween the switch pins and VOUT  
.
Note: Board layout is extremely critical to minimize  
voltage overshoot on the switch pins due to stray induc-  
tance. Keep the output filter capacitors as close as  
possible to the VOUT pins, and use very low ESR/ESL  
ceramic capacitors tied to a good ground plane.  
ForapplicationswithVOUT over4.3V,Schottkydiodesare  
required to limit the peak switch voltage to less than 6V.  
These must also be very close to minimize stray induc-  
tance. See the section Applications Where VOUT > 4.3V.  
3425f  
16  
LTC3425  
W U U  
APPLICATIO S I FOR ATIO  
U
The inductor current ripple is typically set to 20% to 40%  
of the maximum inductor current.  
R
T
C
IN  
L1  
C
SS  
L4  
For high efficiency, choose an inductor with high fre-  
quency core material, such as ferrite to reduce core loses.  
The inductor should have low ESR (equivalent series  
resistance) to reduce the I2R losses, and must be able to  
handle the peak inductor current without saturating. To  
minimize radiated noise, use a shielded inductor. (Note  
that the inductance of shielded types will drop more as  
current increases, and will saturate more easily). See  
Table 2 for a list of inductor manufacturers.  
C
C
C
C
OUT  
OUT  
OUT  
OUT  
LTC3425  
L2  
L3  
Table 2. Inductor Vendor Information  
3425 F05  
SUPPLIER PHONE  
FAX  
WEB SITE  
Coilcraft  
Murata  
(847) 639-6400  
(847) 639-1469  
www.coilcraft.com  
www.murata.com  
Figure 5. Typical Board Layout  
USA:  
(814) 237-1431  
USA:  
(814) 238-0490  
Sumida  
USA:  
USA:  
www.japanlink.com/  
sumida  
LTC3425  
(847) 956-0666  
Japan:  
(847) 956-0702  
Japan:  
81-3-3607-5111 81-3-3607-5144  
3425 F06  
TDK  
(847) 803-6100  
(847) 803-6296  
www.component.  
tdk.com  
Figure 6. Example Board Layout for a 10W, 4-Phase Boost  
Converter. Total Area = 0.50in2 (with All Components Mounted  
on the Topside of Board)  
Some example inductor part types are:  
Coilcraft DO-1608, DS-1608 and DT-1608 series  
Murata LQH3C, LQH4C, LQH32C and LQN6C series  
COMPONENT SELECTION  
Inductor Selection  
Sumida CDRH3D16, CDRH4D18, CDRH4D28, CR32,  
CR43 series  
The high frequency, multiphase operation of the LTC3425  
allows the use of small surface mount inductors. The  
minimum inductance value is proportional to the operat-  
ing frequency and is limited by the following constraints:  
TDK RLF5018T and NLFC453232T series  
Output Capacitor Selection  
The output voltage ripple has three components to it. The  
bulk value of the capacitor is set to reduce the ripple due  
tochargeintothecapacitoreachcycle. Themaxrippledue  
to charge is given by:  
V
VOUT(MAX) – V  
IN(MIN)  
(
)
2
f
IN(MIN)  
L >  
and L >  
f Ripple • VOUT(MAX)  
where:  
f = Operating frequency in MHz (of each phase)  
IP • V  
COUT VOUT • f • 4  
IN  
VRBULK  
where:  
=
Ripple = Allowable inductor current ripple (amps  
peak-peak)  
VIN(MIN) = Minimum input voltage  
IP = peak inductor current  
VOUT(MAX) = Maximum output voltage  
f = switching frequency of one phase  
3425f  
17  
LTC3425  
W U U  
U
APPLICATIO S I FOR ATIO  
voltage from exceeding its maximum rating during the  
break-before-make time. Surface mount diodes, such as  
the MBR0520L or equivalent, must be used and must be  
locatedveryclosetothepinstominimizestrayinductance.  
Two example application circuits are shown in Figures 7  
and 8, one with output disconnect and one without.  
The ESR (equivalent series resistance) is usually the most  
dominant factor for ripple in most power converters. The  
ripple due to capacitor ESR is given by:  
V
RCESR = IP • CESR  
where CESR = Capacitor Series Resistance  
The ESL (equivalent series inductance) is also an impor-  
tant factor for high frequency converters. Using small,  
surface mount ceramic capacitors, placed as close as  
possible to the VOUT pins, will minimize ESL.  
Operating Frequency Selection  
T
here are several considerations in selecting the operat-  
ing frequency of the converter. The first is, which are the  
sensitive frequency bands that cannot tolerate any spec-  
tral noise? For example, in products incorporating RF  
communications, the 455kHz IF frequency is sensitive to  
any noise, therefore switching above 600kHz is desired.  
Some communications have sensitivity to 1.1MHz, and  
in that case, a 1.5MHz converter frequency may be  
employed.  
Low ESR/ESL capacitors should be used to minimize  
outputvoltageripple.Forsurfacemountapplications,AVX  
TPS Series tantalum capacitors, Sanyo POSCAP or X5R  
type ceramic capacitors are recommended.  
In all applications, a minimum of 1µF, low ESR ceramic  
capacitor should be placed as close to each of the four  
VOUT pins as possible, and grounded to a local ground  
plane.  
The second consideration is the physical size of the  
converter. As the operating frequency goes up, the induc-  
tor and filter capacitors go down in value and size. The  
trade off is in efficiency, since the switching losses in-  
crease proportionally with frequency.  
Input Capacitor Selection  
The input filter capacitor reduces peak currents drawn  
from the input source and reduces input switching noise.  
Since the IC can operate at voltages below 0.5V once the  
output is regulated (as long as SHDN is above 0.65V), the  
demandontheinputcapacitortolowerrippleismuchless.  
Taiyo Yuden offers very low ESR capacitors, for example  
the 2.2µF in a 0603 case (JMK107BJ22MA). See Table 3  
for a list of capacitor manufacturers for input and output  
capacitor selection.  
Thermal Considerations  
To deliver the power that the LTC3425 is capable of, it is  
imperative that a good thermal path be provided to dissi-  
pate the heat generated within the package. This can be  
accomplished by taking advantage of the large thermal  
pad on the underside of the IC. It is recommended that  
multiple vias in the printed circuit board be used to  
conductheatawayfromtheICandintoacopperplanewith  
as much area as possible. In the event that the junction  
temperature gets too high, the peak current limit will  
automatically be decreased. If the junction temperature  
continues to rise, the part will go into thermal shutdown,  
and all switching will stop until the temperature drops.  
Table 3. Capacitor Vendor Information  
SUPPLIER PHONE  
FAX  
WEB SITE  
AVX  
(803) 448-9411 (803) 448-1943 www.avxcorp.com  
(619) 661-6322 (619) 661-1055 www.sanyovideo.com  
(847) 803-6100 (847) 803-6296 www.component.tdk.com  
Sanyo  
TDK  
Murata  
USA:  
USA:  
www.murata.com  
(814) 237-1431 (814) 238-0490  
(800) 831-9172  
Taiyo Yuden (408) 573-4150 (408) 573-4159 www.t-yuden.com  
Closing the Feedback Loop  
The LTC3425 uses current mode control with internal  
adaptiveslopecompensation.Currentmodecontrolelimi-  
nates the 2nd order filter, due to the inductor and output  
capacitor exhibited in voltage mode controllers, and sim-  
plifies it to a single pole filter response. The product of the  
3425f  
Applications Where VOUT > 4.3V  
Due to the very high slew rates associated with the switch  
nodes, Schottky diode clamps are required in any applica-  
tion where VOUT can exceed 4.3V to prevent the switch  
18  
LTC3425  
W U U  
APPLICATIO S I FOR ATIO  
U
V
IN  
3.3V  
C
IN  
2.2µF  
L1  
L2  
L3  
L4  
2.7µH 2.7µH 2.7µH 2.7µH  
D1  
C
S
D2  
0.47µF  
×2  
D3  
D4  
V
SWA  
SWB  
LTC3425  
GNDB  
SWC  
SWD  
Q1  
IN  
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
SHDN  
REFOUT  
CCM  
V
OUT  
5V  
2.5A  
OUTD  
+
C
C
BULK  
OUT  
REFEN  
SYNCIN  
BURST  
R2  
R4  
100k  
4.7µF  
×4  
150µF  
309k  
6.3V  
FB  
COMP  
SS  
SYNCOUT  
PGOOD  
V
OUT  
R1  
C2  
R
T
100k  
220pF  
R
I
T
LIM  
R3  
100k  
PGOOD  
12.1k  
C
GNDA  
GNDC GNDD  
SGND  
R
LIM  
75k  
SS  
0.01µF  
3425 F07  
C
: TAIYO YUDEN JMK107BJ225MA  
D1 TO D4: MOTOROLA MBR0520L  
L1 TO L4: TDK RLF5018T-2R7M1R8  
Q1: ZETEX ZXM61P02F  
IN  
C : TAIYO YUDEN LMK107BJ474KA  
S
C
C
: TAIYO YUDEN JMK212BJ475MG (×4)  
: AVX TPSD157M006R0050  
OUT  
BULK  
Figure 7. Application Circuit for VOUT > 4.3V with Inrush Limiting and Output Disconnect  
V
IN  
3.3V  
C
IN  
2.2µF  
L1  
L2  
L3  
L4  
2.7µH 2.7µH 2.7µH 2.7µH  
D1  
D2  
D3  
D4  
V
SWA  
SWB  
LTC3425  
GNDB  
SWC  
SWD  
IN  
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
SHDN  
REFOUT  
CCM  
V
OUT  
5V  
OUTD  
+
C
C
BULK  
OUT  
2.5A  
REFEN  
SYNCIN  
BURST  
R2  
309k  
R4  
100k  
4.7µF  
×4  
150µF  
6.3V  
FB  
COMP  
SS  
SYNCOUT  
PGOOD  
V
OUT  
R1  
100k  
C2  
R
T
220pF  
R
I
T
LIM  
R3  
100k  
PGOOD  
12.1k  
C
GNDA  
GNDC GNDD  
SGND  
R
LIM  
75k  
SS  
0.01µF  
3425 F08  
C
C
C
: TAIYO YUDEN JMK107BJ225MA  
D1 TO D4: MOTOROLA MBR0520LT1  
L1 TO L4: TDK RLF5018T-2R7M1R8  
IN  
: TAIYO YUDEN JMK212BJ475MG (×4)  
OUT  
BULK  
: AVX TPSD157M006R0050  
Figure 8. Application Circuit for VOUT > 4.3V When Inrush Limiting and Output Disconnect are Not Required  
3425f  
19  
LTC3425  
W U U  
U
APPLICATIO S I FOR ATIO  
2
modulator control to output DC gain, and the error amp  
open-loop gain gives the DC gain of the system:  
V
IN  
FRHPZ  
=
2 • π IOUT L  
At heavy loads this gain increase with phase lag can occur  
at a relatively low frequency. The loop gain is typically  
rolled off before the RHP zero frequency.  
VREF  
VOUT  
GDC = GCONTROLOUTPUT •GEA  
8•V  
IOUT  
GCONTROL  
=
IN , GEA 5,000  
The typical error amp compensation is shown in Figure 9.  
The equations for the loop dynamics are as follows:  
The output filter pole is given by:  
1
IOUT  
π VOUT COUT  
FPOLE1  
FFILTERPOLE  
=
2 • π •100e6 CC1  
where COUT is the output filter capacitor.  
The output filter zero is given by:  
whichis extremely close toDC  
1
FZERO1  
=
1
2 • π RZ CC1  
1
FFILTERZERO  
=
2 • π RESR COUT  
FPOLE2  
=
where RESR is the output capacitor equivalent series  
resistance.  
2 • π RZ CC2  
V
OUT  
A troublesome feature of the boost regulator topology is  
the right half plane zero (RHP), and is given by:  
+
1.25V  
FB  
ERROR  
AMP  
R1  
R2  
V
C
C
C1  
R
Z
C
C2  
3425 F09  
Figure 9  
3425f  
20  
LTC3425  
U
TYPICAL APPLICATIO S  
Single or Dual Cell to 3.3V Boost with Automatic Burst Mode Operation  
V
= 1.1V TO 3V  
IN  
+
C
IN  
2.2µF  
L1  
L2  
L3  
L4  
2.2µH 2.2µH 2.2µH 2.2µH  
V
SWA  
SWB  
LTC3425  
GNDB  
SWC  
SWD  
IN  
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
R5  
10k  
C1  
SHDN  
REFOUT  
CCM  
22pF  
V
3.3V  
1A  
OUT  
OUTD  
C
+
C
OUT  
BULK  
REFEN  
SYNCIN  
BURST  
R2  
511k  
R5  
100k  
4.7µF  
×4  
150µF  
4V  
FB  
COMP  
SS  
C3  
R1  
301k  
C2  
R
T
0.056µF  
220pF  
SYNCOUT  
PGOOD  
R
I
T
LIM  
R3  
100k  
PGOOD  
15k  
R
LIM  
75k  
C
GNDA  
GNDC GNDD  
SGND  
SS  
0.01µF  
R4  
20k  
3425 TA03  
C
C
: AVX TPSD157M004R0050  
C
: TAIYO YUDEN JMK212BJ475MG (×4)  
BULK  
OUT  
: TAIYO YUDEN JMK107BJ225MA  
IN  
L1 TO L4: MURATA LQH4C2R2M04  
3425f  
21  
LTC3425  
U
TYPICAL APPLICATIO S  
Application with User Commanded Burst Mode Operation  
and Buffered Reference Output Enabled  
V
IN  
= 1.8V TO 3V  
+
C
IN  
2.2µF  
L1  
L2  
L3  
L4  
3.3µH 3.3µH 3.3µH 3.3µH  
V
SWA  
SWB  
LTC3425  
GNDB  
SWC  
SWD  
IN  
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
R4  
10k  
SHDN  
C3  
REFOUT  
CCM  
V
REF  
22pF  
V
3.3V  
2A  
OUT  
C1  
0.1µF  
OUTD  
C
OUT  
REFEN  
SYNCIN  
BURST  
V
OUT  
R2  
511k  
R4  
100k  
4.7µF  
×4  
FB  
COMP  
SS  
BURST PWM  
R1  
301k  
C2  
R
T
330pF  
SYNCOUT  
PGOOD  
R
I
T
LIM  
R3  
33k  
PGOOD  
30.1k  
C
GNDA  
GNDC GNDD  
SGND  
R
LIM  
75k  
SS  
0.01µF  
3425 TA04  
C
C
: TAIYO YUDEN JMK107BJ225MA  
IN  
: TAIYO YUDEN JMK212BJ475MG (×4)  
OUT  
L1 TO L4: SUMIDA CDRH4D28  
3425f  
22  
LTC3425  
U
PACKAGE DESCRIPTIO  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693)  
0.57 ±0.05  
5.35 ±0.05  
4.20 ±0.05  
3.45 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.23 ± 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
TYP  
0.75 ± 0.05  
0.40 ± 0.10  
5.00 ± 0.10  
(4 SIDES)  
31 32  
0.00 – 0.05  
PIN 1  
TOP MARK  
1
2
3.45 ± 0.10  
(4-SIDES)  
(UH) QFN 0102  
0.200 REF  
0.23 ± 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3425f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC3425  
U
TYPICAL APPLICATIO  
10MHz, High Current, Very Low Profile, 8-Phase Converter Using Two LTC3425s Operating  
in Fixed Frequency Mode with Forced CCM (Max Component Height = 1.6mm)  
V
IN  
2.5V  
C
C
IN1  
2.2µF  
IN2  
2.2µF  
L1  
1µH  
L2  
1µH  
L3  
1µH  
L4  
1µH  
L5  
1µH  
L6  
1µH  
L7  
1µH  
L8  
1µH  
V
SWA  
SWB  
SWC  
SWD  
V
SWA  
SWB  
SWC  
SWD  
IN  
IN  
V
V
V
V
V
V
V
V
V
V
OUTS  
OUTA  
OUTB  
OUTC  
OUTS  
OUTA  
OUTB  
OUTC  
SHDN  
SHDN  
REFOUT  
CCM  
REFOUT  
CCM  
V
3.3V  
5A  
OUT  
V
V
OUT  
OUT  
OUTD  
OUTD  
C
C
OUT2  
OUT1  
R
F4  
REFEN  
SYNCIN  
BURST  
REFEN  
SYNCIN  
BURST  
R
R4  
4.7µF  
×4  
F2  
4.7µF  
×4  
LTC3425  
LTC3425  
17.4k  
17.4k 100k  
FB  
COMP  
SS  
SYNCOUT  
PGOOD  
FB  
COMP  
SS  
SYNCOUT  
PGOOD  
R
F1  
10.2k  
C1  
R
T
R
T
330pF  
R
T1  
12.1k  
I
I
LIM  
LIM  
R3  
33k  
PGOOD  
C
SS  
0.022µF  
GNDA  
GNDB  
GNDC GNDD  
R
F3  
R
T2  
14.7k  
GNDA  
GNDB  
GNDC GNDD  
R5  
75k  
SGND  
R6  
75k  
SGND  
10.2k  
C
OUT  
: TAIYO YUDEN JMK107BJ225MA  
IN1,2  
C
: TAIYO YUDEN JMK212BJ475MG (×8)  
3425 TA05  
L1 TO L8: MURATA LQH32CN1R0M51  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1370/LT1370HV  
6A (I ) 500kHz, High Efficiency Step-Up DC/DC  
V : 2.7V to 30V, V  
: 35V/42V, I : 4.5mA, I : <12µA,  
OUT(MAX) Q SD  
SW  
IN  
Converters  
DD, TO220-7  
LT1371/LT1371HV  
LT1613  
3A (I ) 500kHz, High Efficiency Step-Up DC/DC  
V : 2.7V to 30V, V  
: 35V/42V, I : 4mA, I : <12µA,  
SW  
Converters  
IN  
OUT(MAX)  
Q
SD  
DD, TO220-7, S20  
550mA (I ) 1.4MHz, High Efficiency Step-Up DC/DC  
90% Efficiency, V : 0.9V to 10V, V  
: 34V, I : 3mA,  
Q
SW  
Converter  
IN  
OUT(MAX)  
OUT(MAX)  
I : <1µA, ThinSOT  
SD  
LT1618  
1.5A (I ) 1.25MHz, High Efficiency Step-Up DC/DC  
90% Efficiency, V : 1.6V to 18V, V  
: 35V, I : 1.8mA,  
Q
SW  
IN  
Converter  
I : <1µA, MS10  
SD  
LTC1700  
No R  
TM 530kHz, Synchronous Step-Up  
95% Efficiency, V : 0.9V to 5V, I : 200µA, I : <10µA, MS10  
IN Q SD  
SENSE  
DC/DC Controller  
LTC1871  
Wide Input Range, 1MHz, No R  
Flyback and SEPIC Controller  
Current Mode Boost, 92% Efficiency, V : 2.5V to 36V, I : 250µA, I : <10µA, MS10  
SENSE IN Q SD  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ) 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC High Efficiency, V : 2.6V to 16V, V  
: 34V, I : 4.2mA/5.5mA,  
OUT(MAX) Q  
SW  
Converters  
IN  
I
: <1µA, ThinSOT  
SD  
1.5A (I ) 1.2MHz/2.7MHz, High Efficiency Step-Up  
High Efficiency, V : 2.45V to 16V, V  
: 34V, I : 3.2mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I : <1µA, MS8  
SD  
1.5A (I ) 1.25MHz, High Efficiency Step-Up DC/DC  
90% Efficiency, V : 3V to 25V, V  
: 35V, I : 0.9mA,  
SW  
IN  
OUT(MAX) Q  
Converter  
I : 6µA, MS8E  
SD  
LTC3400/LTC3400B  
LTC3401/LTC3402  
LTC3701  
600mA (I ) 1.2MHz, Synchronous Step-Down DC/DC  
92% Efficiency, V : 0.85V to 5V, V  
SD  
: 5V, I : 19µA/300µA,  
OUT(MAX) Q  
SW  
IN  
Converters  
I : <1µA, ThinSOT  
1A/2A (I ) 3MHz, Synchronous Step-Up DC/DC  
97% Efficiency, V : 0.5V to 5V, V  
: 6V, I : 38µA, I : <1µA,  
OUT(MAX) Q SD  
SW  
IN  
Converters  
MS10  
2-Phase, 550kHz, Low Input Voltage, Dual Step-Down  
DC/DC Controller  
97% Efficiency, V : 2.5V to 10V, I : 460µA, I : <9µA, SSOP-16  
IN Q SD  
3425f  
LT/TP 0803 1K PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC3425EUH#TR

LTC3425 - 5A, 8MHz, 4-Phase Synchronous Step-Up DC/DC Converter; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3426

1.2MHz Step-Up DC/DC Converter in SOT-23
Linear

LTC3426ES6

1.2MHz Step-Up DC/DC Converter in SOT-23
Linear

LTC3426ES6#PBF

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3426ES6#TRM

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3426ES6#TRPBF

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
Linear

LTC3427EDC

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
Linear

LTC3427EDC#PBF

暂无描述
Linear

LTC3427EDC#TR

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRM

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRMPBF

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear