LTC3426ES6#TRM [Linear]

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3426ES6#TRM
型号: LTC3426ES6#TRM
厂家: Linear    Linear
描述:

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总12页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3426  
1.2MHz Step-Up DC/DC  
Converter in SOT-23  
U
FEATURES  
DESCRIPTIO  
The LTC®3426 step-up switching regulator generates an  
output voltage of up to 5.5V from an input voltage as low  
as 1.6V. Ideal for applications where space is limited, it  
switches at 1.2MHz, allowing the use of tiny, low cost and  
low profile external components. Its internal 2A, 100m  
NMOS switch provides high efficiency even at heavy load,  
while the constant frequency, current mode architecture  
resultsinlow,predictableoutputnoisethatiseasytofilter.  
Internal 2A MOSFET Switch  
1.2MHz Switching Frequency  
Integrated Soft-Start  
Low 1.6V VIN Operation  
Low RDS(ON) Switch: 100mat 5V Output  
Delivers 5V at 800mA from a 3.3V Input  
Delivers 3.3V at 800mA from a 2.5V Input  
Uses Small, Low Profile External Components  
Low Profile (1mm) SOT-23 (ThinSOTTM) Package  
Antiringing circuitry reduces EMI concerns by damping  
the inductor while in discontinuous mode, and internal  
soft-starteasesinrushcurrentworries. Internalfrequency  
compensation is designed to accommodate ceramic out-  
putcapacitors,furtherreducingnoise.Thedevicefeatures  
very low shutdown current of 0.5µA.  
U
APPLICATIO S  
White LED Driver Supply  
Local 3.3V or 5V Supply  
Battery Back-Up  
The LTC3426 is available in the 6-lead SOT-23 package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 6498466, 6611131  
U
TYPICAL APPLICATIO  
3.3V to 5V Boost Converter  
Efficiency  
100  
2.2µH  
V
V
= 3.3V  
OUT  
IN  
V
IN  
95  
90  
85  
= 5V  
3.3V  
SW  
V
OUT  
V
V
5V  
IN  
OUT  
80  
75  
800mA  
10µF  
LTC3426  
SHDN  
GND  
22µF  
OFF ON  
FB  
70  
65  
60  
55  
50  
3426 TA01  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA01b  
3426fa  
1
LTC3426  
W W W  
U
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VIN Voltage ................................................. –0.3V to 6V  
SW Voltage .................................................. –0.3V to 6V  
SHDN, FB Voltage ....................................... –0.3V to 6V  
VOUT ........................................................... –0.3V to 6V  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
TOP VIEW  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
OUT  
4 SHDN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 165°C/W, θJC = 102°C/W  
ORDER PART NUMBER  
S6 PART NUMBER  
LTAJT  
LTC3426ES6  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 1.8V, V  
= 3.3V, unless otherwise specified.  
A
IN  
OUT  
PARAMETER  
CONDITIONS  
MIN  
1.6  
TYP  
MAX  
UNITS  
V
Input Voltage Range  
Output Voltage Adjust Range  
Feedback Voltage  
SHDN = V  
IN  
2.25  
1.173  
5
1.247  
0.1  
V
1.22  
V
Feedback Input Current  
Quiescent Current (Shutdown)  
Quiescent Current  
V
V
= 1.23V  
µA  
µA  
µA  
µA  
FB  
= 0V, Not Including Switch Leakage  
1
SHDN  
SHDN = V , Not Switching  
600  
0.2  
1000  
10  
IN  
Switch Leakage  
V
SW  
= 5V  
Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.11  
0.10  
Current Limit  
2
80  
0.85  
1
2.3  
85  
A
%
Maximum Duty Cycle  
Switching Frequency  
SHDN Input High  
SHDN Input Low  
SHDN Input Current  
V
= 1.15V  
FB  
1.2  
1.5  
MHz  
V
0.4  
1
V
SHDN = 5.5V  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3426 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature are assured by design, characterization and correlation with  
statistical process controls.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3426fa  
2
LTC3426  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency  
vs Temperature  
Efficiency vs V  
I vs V  
OUT(MAX) IN  
IN  
1.3  
1.1  
0.9  
0.7  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
1.40  
1.3  
FIGURE 1 CIRCUIT  
FIGURE 1 CIRCUIT  
T
I
= 25°C  
T
= 25°C  
A
A
OUT  
OUT  
L = 2.2µH  
= 150mA  
= 5V  
V
C
= 5V  
LOAD  
V
OUT  
OUT  
= 22µF  
C
= 22µF  
L = 2.2µH  
1.2  
1.1  
0.5  
0.3  
1.0  
1.8  
2.2  
3
3.4  
3.8  
4.2  
1.8  
2.6  
3
3.4  
3.8  
4.2  
2.6  
2.2  
–50 –30 –10 10  
30  
50  
70  
90  
V
IN  
(V)  
V
(V)  
IN  
TEMPERATURE (°C)  
LT1108 • TPC12  
3426 G03  
3426 G01  
R
vs Temperature  
FB Pin Voltage  
Switching Waveforms  
DS(ON)  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
V
OUT  
500mV/DIV  
V
OUT  
= 2.5V  
SW  
2V/DIV  
V
OUT  
= 5V  
I
L
V
OUT  
= 3.3V  
200mA/DIV  
3426 G06  
V
V
C
= 1.8V  
100ns/DIV  
IN  
= 3.3V  
OUT  
OUT  
= 22µF  
L = 2.5µH  
–50  
0
25  
50  
75  
100  
–25  
–50  
–25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3426 G05  
3426 G04  
V
OUT  
Transient Response  
SW Pin Antiringing Operation  
V
OUT  
500mV/DIV  
SW  
1V/DIV  
500mA  
I
OUT  
250mA  
200mA/DIV  
I
L
50mA/DIV  
I
L
500mA/DIV  
3426 G08  
3426 G07  
V
= 1.8V  
40µs/DIV  
V
V
= 1.8V  
100ns/DIV  
IN  
IN  
OUT  
V
C
= 3.3V  
= 3.3V  
OUT  
OUT  
= 22µF  
L = 2.5µH  
3426fa  
3
LTC3426  
U
U
U
PI FU CTIO S  
SW(Pin1):SwitchPin.ConnectinductorbetweenSWand  
SHDN (Pin 4): Logic Controlled Shutdown Input.  
SHDN = High: Normal free running operation  
SHDN = Low: Shutdown, quiescent current < 1µA  
VIN. A Schottky diode is connected between SW and VOUT  
.
Keep these PCB trace lengths as short and wide as  
possible to reduce EMI and voltage overshoot. If the  
inductor current falls to zero, an internal 100antiringing  
switch is connected from SW to VIN to minimize EMI.  
Typically, SHDN should be connected to VIN through a 1M  
pull-up resistor.  
GND (Pin 2): Signal and Power Ground. Provide a short  
directPCBpathbetweenGNDandthe()sideoftheoutput  
capacitor(s).  
VOUT (Pin 5): Output Voltage Sense Input. The NMOS  
switch gate drive is derived from the greater of VOUT and  
VIN.  
FB (Pin 3): Feedback Input to the gm Error Amplifier.  
Connect resistor divider tap to this pin. The output voltage  
can be adjusted from 2.5V to 5V by:  
VIN (Pin 6): Input Supply. Must be locally bypassed.  
R1  
R2  
VOUT = 1.22 • 1+  
W
BLOCK DIAGRA  
V
OUT  
5
V
IN  
SW  
1
6
COMPARATOR  
1.22V  
REFERENCE  
+
A1  
PWM LOGIC  
AND DRIVER  
R
C
A2  
+
C
C
3
FB  
+
V
OUT  
0.02  
Σ
R1 (EXTERNAL)  
FB  
RAMP  
GENERATOR  
R2 (EXTERNAL)  
SHDN  
4
1.2MHz  
OSCILLATOR  
SHUTDOWN AND  
SOFT-START  
2
3426 F01  
GND  
Figure 1  
3426fa  
4
LTC3426  
U
OPERATIO  
The LTC3426 is a monolithic 1.2MHz boost converter  
housed in a 6-lead SOT-23 package. The device features  
fixed frequency, current mode PWM control for excellent  
line and load regulation. The low RDS(ON) NMOS switch  
enables the device to maintain high efficiency over a wide  
range of load current. Operation of the feedback loop  
which sets the peak inductor current to keep the output in  
regulationcanbebestunderstoodbyreferringtotheBlock  
Diagram in Figure 1. At the start of each clock cycle a latch  
in the PWM logic is set and the NMOS switch is turned on.  
The sum of a voltage proportional to the switch current  
and a slope compensating voltage ramp is fed to the  
positive input to the PWM comparator. When this voltage  
exceeds either a voltage proportional to the 2A current  
limit or the PWM control voltage, the latch in the PWM  
logic is reset and NMOS switch is turned off. The PWM  
control voltage at the output of the error amplifier is the  
amplified and compensated difference between the feed-  
back voltage on the FB pin and the internal reference  
voltage of 1.22V. If the control voltage increases, more  
currentisdeliveredtotheoutput.Whenthecontrolvoltage  
exceeds the ILIMIT reference voltage, the peak current is  
limitedtoaminimumof2A. Thecurrentlimithelpsprotect  
the LTC3426 internal switch and external components  
connected to it. If the control voltage decreases, less  
current is delivered to the output. During load transients  
control voltage may decrease to the point where no  
switching occurs until the feedback voltage drops below  
the reference. The LTC3426 has an integrated soft-start  
feature which slowly ramps up the feedback control node  
from 0V. The soft-start is initiated when SHDN is pulled  
high.  
W U U  
U
APPLICATIO S I FOR ATIO  
Setting the Output Voltage  
to reduce the I2R power losses, and must be able to  
handle the peak inductor current without saturating.  
The output voltage, VOUT, is set by a resistive divider from  
VOUT to ground. The divider tap is tied to the FB pin. VOUT  
is set by the formula:  
Several inductor manufacturers are listed in Table 1.  
Table 1. Inductor Manufacturers  
TDK  
www.tdk.com  
www.sumida.com  
www.murata.com  
R1  
R2  
Sumida  
Murata  
VOUT = 1.22 • 1+  
Inductor Selection  
Output and Input Capacitor Selection  
The LTC3426 can utilize small surface mount inductors  
due to its 1.2MHz switching frequency. A 1.5µH or 2.2µH  
inductor will be the best choice for most LTC3426 appli-  
cations. Larger values of inductance will allow greater  
output current capability by reducing the inductor ripple  
current. Increasing the inductance above 3.3µH will in-  
crease component size while providing little improve-  
ment in output current capability. The inductor current  
ripple is typically set for 20% to 40% of the maximum  
inductor current (IP). High frequency ferrite core inductor  
materialsreducefrequencydependentpowerlossescom-  
pared to cheaper powdered iron types, improving effi-  
ciency.TheinductorshouldhavelowDCR(DCresistance)  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints. A  
15µF to 30µF output capacitor is sufficient for most  
applications. X5R and X7R dielectric materials are pre-  
ferred for their ability to maintain capacitance over wide  
voltage and temperature ranges.  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the input supply.  
It follows that ceramic capacitors are also a good choice  
for input decoupling and should be located as close as  
3426fa  
5
LTC3426  
W U U  
U
APPLICATIO S I FOR ATIO  
possible to the device. A 10µF input capacitor is sufficient  
for most applications. Table 2 shows a list of several  
ceramic capacitor manufacturers. Consult the manufac-  
turers for detailed information in their entire selection of  
ceramic parts.  
PCB Layout Guidelines  
ThehighspeedoperationoftheLTC3426demandscareful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 2 shows the  
recommended component placement. A large ground pin  
copper area will help to lower the chip temperature.  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
Murata  
www.t-yuden.com  
www.murata.com  
TDK  
www.component.tdk.com  
V
IN  
Diode Selection  
1
2
3
SW  
V
6
5
4
IN  
ASchottkydiodeisrecommendedforusewiththeLTC3426.  
Use of a low forward voltage diode such as the ON  
Semiconductor MBRA210LT3 is recommended. A Schot-  
tky diode rated at 2A is recommended for use with the  
LTC3426.  
GND  
V
OUT  
FB SHDN  
V
OUT  
3426 F02  
Figure 2. Recommended Component Placement  
for Single Layer Board  
3426fa  
6
LTC3426  
U
TYPICAL APPLICATIO S  
Efficiency  
L1  
2.2µH  
100  
95  
D1  
V
IN  
3.3V  
90  
SW  
85  
V
OUT  
V
V
5V  
IN  
LTC3426  
SHDN  
GND  
OUT  
80  
75  
R1  
95.3k  
1%  
800mA  
C1  
C2  
10µF  
22µF  
OFF ON  
FB  
70  
65  
60  
55  
50  
R2  
30.9k  
1%  
C1: TAIYO YUDEN X5R JMK212BJ475ML  
C2: TAIYO YUDEN X5R JMK316BJ226ML  
D1: ON SEMICONDUCTOR MBRA210LT3  
L1: COILCRAFT D03316P-222  
3426 TA02a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA02b  
Efficiency  
L1  
100  
90  
80  
70  
60  
50  
D1  
1.5µH  
V
IN  
1.8V  
SW  
V
OUT  
V
V
2.5V  
IN  
OUT  
R1  
64.9k  
1%  
800mA  
C1  
LTC3426  
SHDN  
GND  
10µF  
C2  
22µF  
OFF ON  
FB  
R2  
61.9k  
1%  
C1: TDK C1608X5R0J106M  
C2: TAIYO YUDEN JMK316BJ226ML  
D1: ON SEMICONDUCTOR MBRM120LT3  
L1: TDK RLF7030T-1R5N6R1  
3426 TA03a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA03b  
3426fa  
7
LTC3426  
U
TYPICAL APPLICATIO S  
Efficiency  
100  
95  
L1  
2.2µH  
D1  
V
IN  
3V TO 4.2V  
90  
V
IN  
= 4.2V  
SW  
85  
V
OUT  
V
V
5V  
IN  
OUT  
80  
75  
R1  
95.3k  
1%  
750mA AT 3V  
V
= 3V  
C1  
IN  
LTC3426  
SHDN  
GND  
10µF  
C2  
22µF  
70  
65  
60  
55  
50  
OFF ON  
FB  
R2  
30.9k  
1%  
C1: TDK C1608X5R0J475M  
C2: TAIYO YUDEN JMK316BJ226ML  
D1: ON SEMICONDUCTOR MBR120VLSFT1  
L1: SUMIDA CDRH4D28-2R2 2  
3426 TA04a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA04b  
Efficiency  
100  
90  
80  
70  
60  
50  
L1  
D1  
2.5µH  
V
IN  
2.5V  
SW  
V
OUT  
V
V
3.3V  
IN  
OUT  
R1  
75k  
1%  
800mA  
C1  
LTC3426  
SHDN  
GND  
10µF  
C2  
22µF  
OFF ON  
FB  
R2  
44.2k  
1%  
C1: TDK C1608X5R0J106  
C2: TAIYO YUDEN JMK316BJ266  
D1: ON SEMICONDUCTOR MBRM120LT3  
L1: SUMIDA CDRH5D28-2R5 2  
3426 TA05a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA05b  
3426fa  
8
LTC3426  
U
TYPICAL APPLICATIO S  
Efficiency  
100  
90  
80  
70  
60  
50  
L1  
D1  
1.5µH  
V
IN  
1.8V  
SW  
V
OUT  
V
V
3.3V  
IN  
OUT  
R1  
75k  
1%  
540mA  
C1  
LTC3426  
SHDN  
GND  
10µF  
C2  
22µF  
OFF ON  
FB  
R2  
44.2k  
1%  
C1: TDK C1608X5R0J106M  
C2: TAIYO YUDEN JMK316BJ226ML  
D1: ON SEMICONDUCTOR MBRM120LT3  
L1: TDK RLF7030T-1R5N6R1  
3426 TA06a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA06b  
Efficiency  
90  
80  
70  
60  
50  
40  
L1  
D1  
2.2µH  
V
IN  
1.8V  
SW  
V
OUT  
V
V
5V  
IN  
LTC3426  
SHDN  
GND  
OUT  
R1  
95.3k  
1%  
400mA  
C1  
10µF  
C2  
22µF  
OFF ON  
FB  
R2  
30.9k  
1%  
C1: TDK C1608X5R0J475M  
C2: TAIYO YUDEN JMK316BJ226ML  
D1: ON SEMICONDUCTOR MBR120VLSFT1  
L1: SUMIDA CDRH4D28-2R2 2  
3426 TA07a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA07b  
3426fa  
9
LTC3426  
U
TYPICAL APPLICATIO S  
Efficiency  
100  
90  
80  
70  
60  
50  
L1  
D1  
2.5µH  
V
IN  
2.5V  
SW  
V
OUT  
V
V
5V  
IN  
OUT  
R1  
95.3k  
1%  
550mA  
C1  
LTC3426  
SHDN  
GND  
10µF  
C2  
22µF  
OFF ON  
FB  
R2  
30.9k  
1%  
C1: TDK C1608X5R0J106  
C2: TAIYO YUDEN JMK316BJ266  
D1: ON SEMICONDUCTOR MBRM120LT3  
L1: SUMIDA CDRH5D28-2R5  
3426 TA08a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3426 TA08b  
3426fa  
10  
LTC3426  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636 Rev B)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3426fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3426  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
90% Efficiency, V : 0.9V to 10V, V  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up  
DC/DC Converter  
= 34V, I = 3mA,  
OUT(MAX) Q  
SW  
IN  
I
< 1µA, ThinSOT  
SD  
LT1946/LT1946A  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up  
High Efficiency, V : 2.45V to 16V, V  
= 34V, I = 3.2mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter  
I
< 1µA, MS8  
SD  
LTC3400/LTC3400B 600mA (I ), 1.2MHz, Synchronous Step-Up  
92% Efficiency, V : 0.5V to 5V, V  
= 5V, I = 19µA/300µA,  
Q
SW  
IN  
OUT(MAX)  
DC/DC Converter  
I
< 1µA, ThinSOT  
SD  
LTC3401/LTC3402  
LTC3421  
1A/2A (I ), 3MHz, Synchronous Step-Up DC/DC  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
Converter  
IN  
OUT(MAX)  
I
< 1µA, MS10  
SD  
3A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
with Output Disconnect  
I
< 1µA, QFN24  
SD  
LTC3425  
5A (I ), 8MHz, 4-Phase Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1µA, QFN32  
SD  
LTC3429  
600mA (I ), 550kHz, Synchronous Step-Up  
90% Efficiency, V : 0.5V to 4.3V, V  
= 5V, I = 20µA,  
Q
SW  
IN  
DC/DC Converter with Soft-Start/Output Disconnect  
I
< 1µA, ThinSOT  
SD  
LTC3436  
3A (I ), 1MHz, High Efficiency Step-Up DC/DC Converter V : 3V to 25V, V  
= 34V, I = 0.9mA, I < 6µA, TSSOP16E  
OUT(MAX) Q SD  
SW  
IN  
LTC3459  
75mA (I ), 10V Micropower Synchronous Boost  
V : 1.5V to 5.5V, V  
= 10V, I = 10µA, I < 1µA, ThinSOT  
Q SD  
SW  
IN  
OUT(MAX)  
= 34V, I = 25µA, I < 1µA, ThinSOT  
OUT(MAX) Q SD  
Converter in ThinSOT  
LTC3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter  
V : 2.3V to 10V, V  
IN  
SW  
with Schottky and PNP Disconnect  
3426fa  
LT 0307 REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3426ES6#TRPBF

LTC3426 - 1.2MHz Step-Up DC/DC Converter in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
Linear

LTC3427EDC

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
Linear

LTC3427EDC#PBF

暂无描述
Linear

LTC3427EDC#TR

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRM

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRMPBF

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3428

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3428EDD

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3428EDD#TRPBF

LTC3428 - 4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm x 3mm DFN; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3429

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3429B

600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect
Linear