LTC2164IUK#PBF [Linear]

LTC2164 - 16-Bit, 105Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: -40°C to 85°C;
LTC2164IUK#PBF
型号: LTC2164IUK#PBF
厂家: Linear    Linear
描述:

LTC2164 - 16-Bit, 105Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: -40°C to 85°C

转换器
文件: 总36页 (文件大小:713K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2165/LTC2164/LTC2163  
16-Bit, 125/105/80Msps  
Low Power ADCs  
FeaTures  
DescripTion  
The LTC®2165/LTC2164/LTC2163 are sampling 16-bit A/D  
converters designed for digitizing high frequency, wide  
dynamic range signals. They are perfect for demanding  
communications applications with AC performance that  
includes 76.8dB SNR and 90dB spurious free dynamic  
n
76.8dB SNR  
n
90dB SFDR  
n
Low Power: 194mW/163mW/108mW  
n
Single 1.8V Supply  
n
CMOS, DDR CMOS, or DDR LVDS Outputs  
n
range (SFDR). Ultralow jitter of 0.07ps  
amplingofIFfrequencieswithexcellentnoiseperformance.  
allows unders-  
Selectable Input Ranges: 1V to 2V  
RMS  
P-P  
P-P  
n
n
n
n
n
n
550MHz Full Power Bandwidth S/H  
Optional Data Output Randomizer  
Optional Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
DC specs include 2LSB INL (typ), 0.5LSB DNL (typ)  
and no missing codes over temperature. The transition  
noise is 3.4LSB  
.
RMS  
Serial SPI Port for Configuration  
48-Pin (7mm × 7mm) QFN Package  
The digital outputs can be either full rate CMOS, double  
data rate CMOS, or double data rate LVDS. A separate  
output power supply allows the CMOS output swing to  
range from 1.2V to 1.8V.  
applicaTions  
n
+
Communications  
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL, or  
CMOS inputs. An optional clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Cellular Base Stations  
n
Software Defined Radios  
n
Portable Medical Imaging  
n
Multichannel Data Acquisition  
n
Nondestructive Testing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
2-Tone FFT, fIN = 70MHz and 69MHz  
1.8V  
1.8V  
OV  
0
–10  
–20  
–30  
–40  
V
DD  
DD  
16-BIT  
ADC CORE  
ANALOG  
INPUT  
S/H  
–50  
–60  
–70  
D15  
D0  
CMOS, DDR  
CMOS OR  
DDR LVDS  
OUTPUTS  
OUTPUT  
DRIVERS  
–80  
–90  
125MHz  
CLOCK  
CLOCK  
CONTROL  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
2165 TA01b  
2165 TA01a  
GND  
OGND  
216543f  
1
LTC2165/LTC2164/LTC2163  
absoluTe MaxiMuM raTings (Notes 1, 2)  
Supply Voltages (V , O ) .......................0.3V to 2V  
Digital Output Voltage ................–0.3V to (OV + 0.3V)  
DD VDD  
DD  
+
Analog Input Voltage (A , A , PAR/SER, SENSE)  
Operating Temperature Range  
IN  
IN  
(Note 3) ................................... –0.3V to (V + 0.2V)  
LTC2165C, LTC2164C, LTC2163C............. 0°C to 70°C  
LTC2165I, LTC2164I, LTC2163I............–40°C to 85°C  
Storage Temperature Range...................–65°C to 150°C  
DD  
+
Digital Input Voltage (ENC , ENC , CS, SDI, SCK)  
(Note 4) ................................................ –0.3V to 3.9V  
SDO (Note 4) ............................................ –0.3V to 3.9V  
pin conFiguraTion  
FULL RATE CMOS OUTPUT MODE  
DOUBLE DATA RATE CMOS OUTPUT MODE  
TOP VIEW  
TOP VIEW  
V
1
2
3
36 D11  
35 D10  
34 D9  
CM  
V
1
2
3
36 D10_11  
35 DNC  
34 D8_9  
33 DNC  
CM  
+
+
A
A
IN  
A
A
IN  
IN  
IN  
GND 4  
REFH 5  
REFL 6  
REFH 7  
REFL 8  
33 D8  
GND 4  
REFH 5  
REFL 6  
REFH 7  
REFL 8  
32 OV  
DD  
32 OV  
DD  
31 OGND  
30 CLKOUT  
29 CLKOUT  
28 D7  
27 D6  
26 D5  
49  
GND  
31 OGND  
30 CLKOUT  
29 CLKOUT  
28 D6_7  
27 DNC  
49  
GND  
+
+
PAR/SER 9  
GND 10  
GND 11  
PAR/SER 9  
GND 10  
GND 11  
26 D4_5  
25 DNC  
V
DD  
12  
25 D4  
V
DD  
12  
UK PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC QFN  
UK PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC QFN  
T
= 150°C, θ = 29°C/W  
JA  
JMAX  
T
= 150°C, θ = 29°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 49) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 49) IS GND, MUST BE SOLDERED TO PCB  
216543f  
2
LTC2165/LTC2164/LTC2163  
pin conFiguraTion  
DOUBLE DATA RATE LVDS OUTPUT MODE  
TOP VIEW  
+
V
1
2
3
36 D10_11  
CM  
+
A
A
35 D10_11  
IN  
+
34 D8_9  
33 D8_9  
IN  
GND 4  
REFH 5  
32 OV  
DD  
REFL 6  
REFH 7  
REFL 8  
31 OGND  
49  
GND  
+
30 CLKOUT  
29 CLKOUT  
+
PAR/SER 9  
GND 10  
GND 11  
28 D6_7  
27 D6_7–  
+
26 D4_5  
V
DD  
12  
25 D4_5–  
UK PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC QFN  
T
= 150°C, θ = 29°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 49) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2165CUK#PBF  
LTC2165IUK#PBF  
LTC2164CUK#PBF  
LTC2164IUK#PBF  
LTC2163CUK#PBF  
LTC2163IUK#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2165UK  
LTC2165UK  
LTC2164UK  
LTC2164UK  
LTC2163UK  
LTC2163UK  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2165CUK#TRPBF  
LTC2165IUK#TRPBF  
LTC2164CUK#TRPBF  
LTC2164IUK#TRPBF  
LTC2163CUK#TRPBF  
LTC2163IUK#TRPBF  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
216543f  
3
LTC2165/LTC2164/LTC2163  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
LTC2165  
TYP  
LTC2164  
TYP  
LTC2163  
TYP  
PARAMETER  
CONDITIONS  
MIN  
16  
MAX  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Analog Input  
(Note 6)  
–6  
2
6
–6  
2
6
–6  
2
6
LSB  
l
l
Differential Linearity Error  
Offset Error  
Differential Analog Input  
(Note 7)  
–0.9  
–7  
0.5  
1.5  
0.9  
7
–0.9  
–7  
0.5  
1.5  
0.9  
7
–0.9  
–7  
0.5  
1.5  
0.9  
7
LSB  
mV  
Gain Error  
Internal Reference  
External Reference  
1.5  
–0.5  
1.5  
–0.5  
1.5  
–0.5  
%FS  
%FS  
l
–1.8  
0.7  
–1.8  
0.7  
–1.8  
0.7  
Offset Drift  
10  
10  
10  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
External Reference  
3.4  
3.5  
3.2  
LSB  
RMS  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1.7V < V < 1.9V  
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2  
Differential Analog Input (Note 8)  
External Reference Mode  
0.7  
V
CM  
1.25  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE  
Analog Input Common Mode Current  
0.625  
1.250  
1.300  
V
I
Per Pin, 125Msps  
Per Pin, 105Msps  
Per Pin, 80Msps  
200  
170  
130  
µA  
µA  
µA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A , A < V  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
DD  
0 < PAR/SER < V  
IN2  
DD  
SENSE Input Leakage Current  
0.625 < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
0
AP  
Single-Ended Encode  
Differential Encode  
0.07  
0.09  
ps  
ps  
JITTER  
RMS  
RMS  
CMRR  
BW-3B  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
80  
dB  
Figure 6 Test Circuit  
550  
MHz  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2165  
TYP  
LTC2164  
TYP  
LTC2163  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
76.8  
76.6  
76.3  
76.7  
76.5  
76  
77.1  
76.9  
76.4  
dBFS  
dBFS  
dBFS  
l
l
l
70MHz Input  
140MHz Input  
75  
75  
75.3  
SFDR  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd Harmonic  
90  
89  
84  
90  
89  
84  
90  
89  
84  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
80  
82  
80  
81  
82  
82  
Spurious Free Dynamic Range 5MHz Input  
3rd Harmonic  
90  
89  
84  
90  
89  
84  
90  
89  
84  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
216543f  
4
LTC2165/LTC2164/LTC2163  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2165  
TYP  
LTC2164  
TYP  
LTC2163  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
SFDR Spurious Free Dynamic Range 5MHz Input  
95  
95  
95  
95  
95  
95  
95  
95  
95  
dBFS  
dBFS  
dBFS  
l
l
4th Harmonic or Higher  
70MHz Input  
140MHz Input  
88  
89  
90  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
70MHz Input  
140MHz Input  
76.6  
76.2  
75.1  
76.5  
76.1  
75  
76.9  
76.5  
75.3  
dBFS  
dBFS  
dBFS  
74  
74.1  
74.6  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5•V  
MAX  
UNITS  
V
V
V
V
V
V
V
V
Output Voltage  
I
0.5•V – 25mV  
0.5•V + 25mV  
CM  
CM  
CM  
REF  
REF  
REF  
REF  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
25  
4
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
ENCODE INPUTS (ENC , ENC )  
DIFFERENTIAL ENCODE MODE (ENC NOT TIED TO GND)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
(Note 8)  
V
kΩ  
pF  
IN  
R
10  
IN  
IN  
C
Input Capacitance  
3.5  
SINGLE-ENDED ENCODE MODE (ENC TIED TO GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
0.6  
3.6  
DD  
+
ENC to GND  
(See Figure 11)  
(Note 8)  
V
R
30  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
3.5  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
DD  
V
DD  
V
IN  
= 1.8V  
1.3  
V
V
IH  
IL  
l
l
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
µA  
216543f  
5
LTC2165/LTC2164/LTC2163  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
Input Capacitance  
(Note 8)  
3
pF  
SDO OUTPUT (Serial Programming Mode. Open Drain Output. Requires 2kΩ Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
200  
3
Ω
µA  
pF  
OL  
DD  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL DATA RATE AND DOUBLE DATA RATE)  
OV = 1.8V  
DD  
l
l
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.750  
1.790  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
0.050  
OV = 1.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.488  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
OV = 1.2V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.185  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
350  
175  
454  
mV  
mV  
OD  
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.250  
1.250  
1.375  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2165  
TYP MAX MIN  
LTC2164  
TYP MAX MIN  
LTC2163  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
CMOS Output Modes: Full Data Rate and Double Data Rate  
l
l
l
V
Analog Supply Voltage (Note 10)  
Output Supply Voltage (Note 10)  
Analog Supply Current DC Input  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
69  
V
V
DD  
OV  
DD  
I
108  
110  
123  
91  
92  
103  
60  
61  
mA  
mA  
VDD  
Sine Wave Input  
I
Digital Supply Current Sine Wave Input, OV =1.2V  
5
4
3
mA  
OVDD  
DD  
l
P
Power Dissipation  
DC Input  
Sine Wave Input, OV =1.2V  
194  
204  
222  
163  
170  
186  
108  
113  
125  
mW  
mW  
DISS  
DD  
LVDS Output Mode  
Analog Supply Voltage (Note 10)  
l
l
V
DD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
OV  
Output Supply Voltage (Note 10)  
DD  
I
Analog Supply Current Sine Wave Input 1.75mA Mode  
3.5mA Mode  
112  
113  
94  
95  
62  
63  
mA  
mA  
VDD  
l
l
127  
47  
107  
47  
72  
46  
I
Digital Supply Current Sine Wave Input 1.75mA Mode  
22  
42  
22  
42  
22  
42  
mA  
mA  
OVDD  
(OV = 1.8V)  
3.5mA Mode  
DD  
216543f  
6
LTC2165/LTC2164/LTC2163  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2165  
MIN TYP MAX MIN  
LTC2164  
TYP MAX MIN  
LTC2163  
TYP MAX UNITS  
SYMBOL PARAMETER  
Power Dissipation  
CONDITIONS  
P
Sine Wave Input, 1.75mA Mode  
Sine Wave Input, 3.5mA Mode  
241  
279  
209  
247  
151  
189  
mW  
mW  
DISS  
l
314  
278  
213  
All Output Modes  
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
NAP  
10  
20  
10  
20  
10  
20  
Power Increase with Differential Encode Mode Enabled  
(No Increase for Nap or Sleep Modes)  
DIFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2165  
LTC2164  
LTC2163  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN TYP MAX MIN  
l
f
Sampling Frequency  
(Note 10)  
1
125  
1
105  
1
80  
MHz  
S
L
l
l
t
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
500  
500  
4.52 4.76  
4.76  
500  
500  
5.93 6.25  
6.25  
500  
500  
ns  
ns  
2
2
l
l
t
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
500  
500  
4.52 4.76  
500  
500  
5.93 6.25  
500  
500  
ns  
ns  
H
2
4.76  
2
6.25  
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
AP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL DATA RATE AND DOUBLE DATA RATE)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.7  
1.4  
0.3  
3.1  
2.6  
0.6  
ns  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
SKEW  
D
C
Full Data Rate Mode  
Double Data Rate Mode  
6
6.5  
Cycles  
Cycles  
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.8  
1.5  
0.3  
6.5  
3.2  
2.7  
0.6  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
ns  
SKEW  
D
C
Cycles  
SPI PORT TIMING (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
125  
SDO  
PULLUP  
216543f  
7
LTC2165/LTC2164/LTC2163  
elecTrical characTerisTics  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111 in 2’s complement output mode.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 8: Guaranteed by design, not subject to test.  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 9: V = 1.8V, f  
= 125MHz (LTC2165), 105MHz (LTC2164), or  
DD  
SAMPLE  
+
of greater than 100mA below GND or above V without latchup.  
DD  
80MHz (LTC2163), CMOS outputs, ENC = single-ended 1.8V square wave,  
ENC = 0V, input range = 2V with differential drive, 5pF load on each  
Note 4: When these pin voltages are taken below GND they will be  
P-P  
digital output unless otherwise noted.  
clamped by internal diodes. When these pin voltages are taken above V  
DD  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
Note 10: Recommended operating conditions.  
Note 5: V = OV = 1.8V, f  
(LTC2164), or 80MHz (LTC2163), LVDS outputs, differential ENC /ENC  
= 125MHz (LTC2165), 105MHz  
DD  
DD  
SAMPLE  
+
= 2V sine wave, input range = 2V with differential drive, unless  
P-P  
P-P  
otherwise noted.  
TiMing DiagraMs  
Full-Rate CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
D0–D15, OF  
t
C
+
CLKOUT  
CLKOUT  
2165 TD01  
216543f  
8
LTC2165/LTC2164/LTC2163  
TiMing DiagraMs  
Double Data Rate CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
D0_1  
D0  
N-6  
D1  
N-6  
D0  
N-5  
D1  
N-5  
D0  
N-4  
D1  
N-4  
D0  
N-3  
D1  
N-3  
D14_15  
OF  
D14  
D15  
D14  
D15  
D14  
D15  
D14  
D15  
N-3  
N-6  
N-6  
N-5  
N-5  
N-4  
N-4  
N-3  
OF  
OF  
OF  
OF  
N-3  
N-6  
N-5  
N-4  
t
t
C
C
+
CLKOUT  
CLKOUT  
2165 TD02  
Double Data Rate LVDS Output Mode Timing  
All Outputs are Differential and Have LVDS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
+
D0_1  
D0  
N-6  
D1  
N-6  
D0  
N-5  
D1  
N-5  
D0  
N-4  
D1  
N-4  
D0  
N-3  
D1  
N-3  
D0_1  
+
D14_15  
D14  
D15  
D14  
D15  
N-5  
D14  
D15  
D14  
D15  
N-3  
N-6  
N-6  
N-5  
N-5  
N-4  
N-4  
N-3  
D14_15  
+
OF  
OF  
OF  
OF  
OF  
N-3  
N-6  
N-4  
OF  
t
t
C
C
+
CLKOUT  
CLKOUT  
2165 TD03  
216543f  
9
LTC2165/LTC2164/LTC2163  
TiMing DiagraMs  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
2165 TD04  
HIGH IMPEDANCE  
216543f  
10  
LTC2165/LTC2164/LTC2163  
Typical perForMance characTerisTics  
LTC2165 Integral  
LTC2165 Differential  
Non-Linearity (DNL)  
LTC2165 64k Point FFT,  
Non-Linearity (INL)  
fIN = 5MHz, –1dBFS, 125Msps  
4.0  
3.0  
1.0  
0.8  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
2.0  
0.4  
1.0  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
0
20  
30  
40  
50  
60  
16384  
0
32768  
49152  
65536  
10  
16384  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
2165 G01  
2165 G02  
2165 G03  
LTC2165 64k Point FFT,  
fIN = 30MHz, –1dBFS, 125Msps  
LTC2165 64k Point FFT,  
fIN = 70MHz, –1dBFS, 125Msps  
LTC2165 64k Point FFT,  
fIN = 140MHz, –1dBFS, 125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2165 G04  
2165 G06  
2165 G05  
LTC2165 64k Point 2-Tone FFT,  
fIN = 70MHz, 69MHz, –7dBFS,  
125Msps  
LTC2165 SNR vs Input Frequency,  
–1dBFS, 2V Range, 125Msps  
LTC2165 Shorted Input Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
78  
77  
76  
75  
74  
73  
72  
71  
70  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
10  
0
50  
100  
150  
200  
250  
300  
32750  
32762 32768 32774  
OUTPUT CODE  
32756  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2165 G07  
2165 G09  
2165 G08  
216543f  
11  
LTC2165/LTC2164/LTC2163  
Typical perForMance characTerisTics  
LTC2165 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
2V Range, 125Msps  
LTC2165: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
125Msps, 1V Range  
LTC2165 SFDR vs Input Level,  
f
IN = 70MHz, 2V Range, 125Msps  
130  
120  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
dBFS  
3RD  
3RD  
80  
2ND  
dBc  
70  
2ND  
60  
50  
40  
30  
20  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2165 G12  
2165 G10  
2165 G11  
LTC2165 IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS,  
5pF on Each Data Output  
LTC2165 IVDD vs Sample Rate,  
LTC2165 SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
5MHz Sine Wave Input, –1dBFS  
120  
110  
100  
90  
50  
40  
30  
20  
10  
0
78  
77  
76  
75  
74  
73  
72  
71  
70  
3.5mA LVDS  
3.5mA LVDS OUTPUTS  
CMOS OUTPUTS  
1.75mA LVDS  
1.8V CMOS  
1.2V CMOS  
80  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
2165 G13  
2165 G14  
2165 G15  
LTC2164 Differential  
Non-Linearity (DNL)  
LTC2164 64k Point FFT,  
LTC2164 Integral Non-Linearity  
(INL)  
fIN = 5MHz, –1dBFS, 105Msps  
4.0  
3.0  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
0.8  
0.6  
2.0  
0.4  
0.2  
0
1.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
16384  
0
10  
20  
30  
40  
50  
0
32768  
49152  
65536  
16384  
OUTPUT CODE  
FREQUENCY (MHz)  
OUTPUT CODE  
2165 G16  
2165 G18  
2165 G17  
216543f  
12  
LTC2165/LTC2164/LTC2163  
Typical perForMance characTerisTics  
LTC2164 64k Point FFT,  
fIN = 30MHz, –1dBFS, 105Msps  
LTC2164 64k Point FFT,  
fIN = 70MHz, –1dBFS, 105Msps  
LTC2164 64k Point FFT,  
fIN = 140MHz, –1dBFS, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2165 G20  
2165 G19  
2165 G21  
LTC2164 64k Point 2-Tone FFT,  
fIN = 70MHz, 69MHz, –7dBFS,  
105Msps  
LTC2164 SNR vs Input Frequency,  
–1dBFS, 2V Range, 105Msps  
LTC2164 Shorted Input Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
78  
77  
76  
75  
74  
73  
72  
71  
70  
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
32790  
32802 32808 32814  
OUTPUT CODE  
32796  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2165 G22  
2165 G23  
2165 G24  
LTC2164 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
2V Range, 105Msps  
LTC2164: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
105Msps, 1V Range  
LTC2164 SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 105Msps  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
130  
120  
110  
100  
90  
dBFS  
3RD  
3RD  
80  
2ND  
dBc  
70  
2ND  
60  
50  
40  
30  
20  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2165 G26  
2165 G25  
2165 G27  
216543f  
13  
LTC2165/LTC2164/LTC2163  
Typical perForMance characTerisTics  
LTC2164 IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS,  
5pF on Each Data Output  
LTC2164 SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2164 IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
78  
77  
76  
75  
74  
73  
72  
71  
70  
3.5mA LVDS  
3.5mA LVDS OUTPUTS  
CMOS OUTPUTS  
1.75mA LVDS  
1.2V CMOS  
1.8V CMOS  
0
25  
50  
75  
100  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
25  
50  
75  
100  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
2165 G28  
2165 G30  
2165 G29  
LTC2163 64k Point FFT, fIN = 5MHz,  
–1dBFS, 80Msps  
LTC2163 Integral Non-Linearity  
(INL)  
LTC2163 Differential  
Non-Linearity (DNL)  
0
4.0  
3.0  
1.0  
0.8  
0.6  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2.0  
0.4  
0.2  
0
1.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
0
32768  
49152  
65536  
0
10  
20  
30  
40  
16384  
16384  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
2165 G33  
2165 G31  
2165 G32  
LTC2163 64k Point FFT,  
LTC2163 64k Point FFT,  
fIN = 70MHz, –1dBFS, 80Msps  
LTC2163 64k Point FFT,  
fIN = 140MHz, –1dBFS, 80Msps  
f
IN = 30MHz, –1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2165 G34  
2165 G36  
2165 G35  
216543f  
14  
LTC2165/LTC2164/LTC2163  
Typical perForMance characTerisTics  
LTC2163 64k Point 2-Tone FFT,  
fIN = 70MHz, 69MHz, –7dBFS,  
80Msps  
LTC2163 SNR vs Input Frequency,  
–1dBFS, 2V Range  
LTC2163 Shorted Input Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
78  
77  
76  
75  
74  
73  
72  
71  
70  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
0
10  
20  
30  
40  
0
50  
100  
150  
200  
250  
300  
32817  
32829  
32835  
32841  
32823  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
2165 G37  
2165 G39  
2165 G38  
LTC2163 2nd or 3rd Harmonic  
vs Input Frequency, 1dBFS,  
2V Range, 80Msps  
LTC2163 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
80Msps, 1V Range  
LTC2163 SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 80Msps  
130  
120  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
dBFS  
3RD  
3RD  
80  
2ND  
dBc  
70  
2ND  
60  
50  
40  
30  
20  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2165 G27  
2165 G40  
2165 G41  
LTC2163 IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTC2163 IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTC2163 SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
78  
77  
76  
75  
74  
73  
72  
71  
70  
3.5mA LVDS  
3.5mA LVDS OUTPUTS  
CMOS OUTPUTS  
1.75mA LVDS  
1.2V CMOS  
1.8V CMOS  
0
20  
40  
60  
80  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
20  
40  
60  
80  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
2165 G44  
2165 G43  
2165 G45  
216543f  
15  
LTC2165/LTC2164/LTC2163  
pin FuncTions  
(Pins That Are the Same for All Digital Output Modes)  
SCK (Pin 18): Serial Interface Clock Input. In serial  
programming mode, (PAR/SER = 0V), SCK is the serial  
interface clock input. In the parallel programming mode  
V
(Pin 1): Common Mode Bias Output. Nominally  
CM  
equal to V /2. V should be used to bias the common  
DD  
CM  
(PAR/SER = V ), SCK controls the digital output mode  
DD  
mode of the analog inputs. Bypass to ground with a 0.1µF  
ceramic capacitor.  
(see Table 2). SCK can be driven with 1.8V to 3.3V logic.  
SDI(Pin19):SerialInterfaceDataInput.Inserialprogram-  
ming mode, (PAR/SER = 0V), SDI is the serial interface  
data input. Data on SDI is clocked into the mode control  
registersontherisingedgeofSCK.Intheparallelprogram-  
+
A
A
(Pin 2): Positive Differential Analog Input.  
(Pin 3): Negative Differential Analog Input.  
IN  
IN  
GND (Pins 4, 10, 11, 14, 20, 43, Exposed Pad Pin 49):  
ADC Power Ground. The exposed pad must be soldered  
to the PCB ground.  
ming mode (PAR/SER = V ), SDI can be used together  
DD  
with SDO to power down the part (Table 2). SDI can be  
driven with 1.8V to 3.3V logic.  
REFH (Pins 5, 7): ADC High Reference. See the Applica-  
tions Information section for recommended bypassing  
circuits for REFH and REFL.  
OGND (Pin 31): Output Driver Ground. Must be shorted  
to the ground plane by a very low inductance path. Use  
multiple vias close to the pin.  
REFL(Pins6,8):ADCLowReference.SeetheApplications  
Information section for recommended bypassing circuits  
for REFH and REFL.  
OV (Pin 32): Output Driver Supply. Bypass to ground  
DD  
with a 0.1µF ceramic capacitor.  
SDO (Pin 44): Serial Interface Data Output. In serial pro-  
gramming mode, (PAR/SER = 0V), SDO is the optional  
serial interface data output. Data on SDO is read back  
from the mode control registers and can be latched on  
the falling edge of SCK. SDO is an open-drain NMOS  
output that requires an external 2kΩ pull-up resistor to  
1.8V – 3.3V. If readback from the mode control registers  
is not needed, the pull-up resistor is not necessary and  
SDO can be left unconnected. In the parallel programming  
PAR/SER(Pin9):ProgrammingModeSelectionPin. Con-  
nect to ground to enable the serial programming mode.  
CS, SCK, SDI, SDO become a serial interface that control  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, SCK, SDI, SDO  
become parallel logic inputs that control a reduced set of  
the A/D operating modes. PAR/SER should be connected  
directlytogroundorV andnotbedrivenbyalogicsignal.  
DD  
V
(Pins 12, 13, 47, 48): Analog Power Supply, 1.7V  
DD  
mode (PAR/SER = V ), SDO can be used together with  
DD  
to 1.9V. Bypass to ground with 0.1µF ceramic capacitors.  
SDI to power down the part (Table 2). When used as an  
input, SDO can be driven with 1.8V to 3.3V logic through  
a 1kΩ series resistor.  
Adjacent pins can share a bypass capacitor.  
+
ENC (Pin 15): Encode Input. Conversion starts on the  
rising edge.  
V
(Pin 45): Reference Voltage Output. Bypass to  
REF  
ground with a 2.2µF ceramic capacitor. The output voltage  
ENC (Pin 16): Encode Complement Input. Conversion  
is nominally 1.25V.  
starts on the falling edge. Tie to GND for single-ended  
encode mode.  
SENSE(Pin46): ReferenceProgrammingPin.Connecting  
SENSEtoV selectstheinternalreferenceanda 1Vinput  
CS (Pin 17): Serial Interface Chip Select Input. In serial  
programming mode (PAR/SER = 0V), CS is the serial in-  
terface chip select input. When CS is low, SCK is enabled  
for shifting data on SDI into the mode control registers.  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a 0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
input range of ±0.8 • V  
.
In the parallel programming mode (PAR/SER = V ),  
SENSE  
DD  
CS controls the clock duty cycle stabilizer (see Table 2).  
CS can be driven with 1.8V to 3.3V logic.  
216543f  
16  
LTC2165/LTC2164/LTC2163  
pin FuncTions  
FULL RATE CMOS OUTPUT MODE  
DOUBLE DATA RATE LVDS OUTPUT MODE  
All Pins Below Have CMOS Output Levels (OGND to  
VDD  
All Pins Below Have LVDS Output Levels. The Output  
Current Level is Programmable. There is an Optional  
Internal 100Ω Termination Resistor Between the Pins  
of Each LVDS Output Pair.  
O
)
D0 to D15 (Pins 21-28, 33-40): Digital Outputs. D15 is  
the MSB.  
+
+
D0_1 /D0_1 to D14_15 /D14_15 (Pins 21/22, 23/24,  
25/26, 27/28, 33/34, 35/36, 37/38, 39/40): Double Data  
Rate Digital Outputs. Two data bits are multiplexed onto  
each differential output pair. The even data bits (D0, D2,  
+
CLKOUT (Pin 29): Inverted version of CLKOUT .  
+
CLKOUT (Pin 30): Data Output Clock. The digital outputs  
normally transition at the same time as the falling edge  
+
+
+
of CLKOUT . The phase of CLKOUT can also be delayed  
relative to the digital outputs by programming the mode  
control registers.  
D4, D6, D8, D10, D12, D14) appear when CLKOUT is low.  
The odd data bits (D1, D3, D5, D7, D9, D11, D13, D15)  
+
appear when CLKOUT is high.  
+
DNC (Pin 41): Do not connect this pin.  
CLKOUT /CLKOUT (Pins 39/40): Data Output Clock.  
The digital outputs normally transition at the same time  
OF(Pin42):Overflow/UnderflowDigitalOutput.OFishigh  
when an overflow or underflow has occurred.  
+
as the falling and rising edges of CLKOUT . The phase of  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
by programming the mode control registers.  
DOUBLE DATA RATE CMOS OUTPUT MODE  
+
OF /OF (Pins41/42):Overflow/UnderflowDigitalOutput.  
OF is high when an overflow or underflow has occurred.  
+
All Pins Below Have CMOS Output Levels (OGND to  
O
VDD  
)
D0_1 to D14_15 (Pins 22, 24, 26, 28, 34, 36, 38, 40):  
Double Data Rate Digital Outputs. Two data bits are mul-  
tiplexed onto each output pin. The even data bits (D0,  
+
D2, D4, D6, D8, D10, D12, D14) appear when CLKOUT  
is low. The odd data bits (D1, D3, D5, D7, D9, D11, D13,  
+
D15) appear when CLKOUT is high.  
DNC (Pins 21, 23, 25, 27, 33, 35, 37, 39, 41): Do not  
connect these pins.  
+
CLKOUT (Pin 29): Inverted version of CLKOUT .  
+
CLKOUT (Pin 30): Data Output Clock. The digital outputs  
normally transition at the same time as the falling and ris-  
+
+
ing edges of CLKOUT . The phase of CLKOUT can also  
be delayed relative to the digital outputs by programming  
the mode control registers.  
OF(Pin42):Overflow/UnderflowDigitalOutput.OFishigh  
when an overflow or underflow has occurred.  
216543f  
17  
LTC2165/LTC2164/LTC2163  
FuncTional block DiagraM  
V
DD  
OV  
OF  
DD  
ANALOG  
INPUT  
16-BIT  
ADC CORE  
CORRECTION  
LOGIC  
S/H  
D15  
OUTPUT  
DRIVERS  
D0  
V
+
REF  
1.25V  
CLKOUT  
REFERENCE  
CLKOUT  
2.2µF  
RANGE  
SELECT  
OGND  
REFH  
REFL INTERNAL CLOCK SIGNALS  
REF  
BUF  
SENSE  
DIFF  
REF  
AMP  
CLOCK/DUTY  
CYCLE  
CONTROL  
MODE  
V
CONTROL  
CM  
V
/2  
DD  
REGISTERS  
0.1µF  
2165 BD  
REFH  
REFL  
GND  
2.2µF  
+
PAR/SER  
SCK SDI  
SDO  
ENC  
ENC  
CS  
0.1µF  
0.1µF  
Figure 1. Functional Block Diagram  
216543f  
18  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
CONVERTER OPERATION  
the V bypass capacitor should be increased to 2.2µF.  
With a single-ended input the harmonic distortion and INL  
willdegrade,butthenoiseandDNLwillremainunchanged.  
CM  
The LTC2165/LTC2164/LTC2163 are low power, 16-bit,  
125/105/80Msps A/D converters that are powered by a  
single 1.8V supply. The analog inputs should be driven  
differentially. The encode input can be driven differentially  
or single-ended for lower power consumption. The digital  
outputs can be CMOS, double data rate CMOS (to halve  
the number of output lines), or double data rate LVDS  
(to reduce digital noise in the system). Many additional  
features can be chosen by programming the mode control  
registers through a serial SPI port.  
INPUT DRIVE CIRCUITS  
Input filtering  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitryfromtheA/Dsample-and-holdswitching,andalso  
limits wideband noise from the drive circuitry. Figure 3  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
ANALOG INPUT  
The analog inputs are differential CMOS sample-and-hold  
circuits(Figure2).Theinputsshouldbedrivendifferentially  
Transformer Coupled Circuits  
around a common mode voltage set by the V output  
CM  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
pin, which is nominally V /2. For the 2V input range,  
DD  
the inputs should swing from V – 0.5V to V + 0.5V.  
CM  
CM  
tap is biased with V , setting the A/D input at its optimal  
CM  
Thereshouldbe180°phasedifferencebetweentheinputs.  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 through 6) has better bal-  
ance, resulting in lower A/D distortion.  
Single-Ended Input  
+
Forapplicationslesssensitivetoharmonicdistortion,theA  
IN  
inputcanbedrivensingle-endedwitha1V signalcentered  
P-P  
Amplifier Circuits  
aroundV .TheA inputshouldbeconnectedtoV and  
CM  
IN  
CM  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
LTC2165  
V
DD  
C
C
SAMPLE  
5pF  
R
ON  
10Ω  
10Ω  
15Ω  
+
A
IN  
IN  
C
1.8pF  
PARASITIC  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingle-ended,thenatransformercircuit(Figures4  
through 6) should convert the signal to differential before  
V
DD  
SAMPLE  
5pF  
R
ON  
15Ω  
A
C
1.8pF  
PARASITIC  
driving the A/D.  
V
50Ω  
DD  
V
CM  
0.1µF  
0.1µF  
T1  
1:1  
+
25Ω  
1.2V  
A
IN  
ANALOG  
INPUT  
LTC2165  
10k  
0.1µF  
25Ω  
25Ω  
+
ENC  
12pF  
25Ω  
A
IN  
ENC  
10k  
T1: MA/COM MABAES0060 RESISTORS,  
CAPACITORS ARE 0402 PACKAGE SIZE  
2165 F03  
1.2V  
2165 F02  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 2. Equivalent Input Circuit  
216543f  
19  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
50Ω  
V
CM  
0.1µF  
0.1µF  
+
12Ω  
A
ANALOG  
INPUT  
IN  
T2  
LTC2165  
T1  
0.1µF  
25Ω  
25Ω  
8.2pF  
0.1µF  
12Ω  
A
IN  
2165 F04  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1TL  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 4. Recommended Front End Circuit for  
Input Frequencies from 5MHz to 150MHz  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTC2165  
T1  
0.1µF  
25Ω  
25Ω  
1.8pF  
A
IN  
2165 F05  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1TL  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 5. Recommended Front End Circuit for  
Input Frequencies from 150MHz to 250MHz  
50Ω  
V
V
CM  
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
0.1µF  
A
200Ω 200Ω  
25Ω  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+
4.7nH  
+
A
IN  
IN  
ANALOG  
INPUT  
LTC2165  
LTC2165  
ANALOG  
INPUT  
T1  
12pF  
0.1µF  
4.7nH  
+
25Ω  
25Ω  
25Ω  
A
IN  
A
IN  
12pF  
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
2165 F06  
2165 F07  
Figure 6. Recommended Front End Circuit for  
Input Frequencies Above 250MHz  
Figure 7. Front End Circuit Using a  
High Speed Differential Amplifier  
216543f  
20  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
Reference  
LTC2165  
REFH  
REFL  
C3  
0.1µF  
The LTC2165/LTC2164/LTC2163 has an internal 1.25V  
voltage reference. For a 2V input range using the internal  
reference, connect SENSE to V . For a 1V input range  
C1  
2.2µF  
DD  
REFH  
using the internal reference, connect SENSE to ground.  
For a 2V input range with an external reference, apply a  
1.25V reference voltage to SENSE (Figure 9).  
C2  
REFL  
0.1µF  
2165 F08b  
CAPACITORS ARE 0402 PACKAGE SIZE  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
Figure 8b. Alternative REFH/REFL Bypass Circuit  
will then be 1.6 • V  
.
SENSE  
Figures 8c and 8d show the recommended circuit board  
layout for the REFH/REFL bypass capacitors. Note that in  
Figure 8c, every pin of the interdigitated capacitor (C1)  
is connected since the pins are not internally connected  
in some vendors’ capacitors. In Figure 8d, the REFH and  
REFL pins are connected by short jumpers in an internal  
layer. To minimize the inductance of these jumpers they  
can be placed in a small hole in the GND plane on the  
second board layer.  
The V , REFH and REFL pins should be bypassed as  
REF  
shown in Figure 8a. A low inductance 2.2µF interdigitated  
capacitor is recommended for the bypass between REFH  
and REFL. This type of capacitor is available at a low cost  
from multiple suppliers.  
At sample rates below 110Msps an interdigitated capaci-  
tor is not necessary for good performance and C1 can  
be replaced by a standard 2.2µF capacitor between REFH  
and REFL. The capacitor should be as close to the pins  
as possible (not on the back side of the circuit board).  
LTC2165  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
2.2µF  
0.625V  
Figure 8c. Recommended Layout for the REFH/REFL  
Bypass Circuit in Figure 8a  
RANGE  
DETECT  
AND  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.625V < V  
< 1.300V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
REFH  
REFL  
C2  
+
0.1µF  
Figure 8d. Recommended Layout for the REFH/REFL  
Bypass Circuit in Figure 8b  
+
0.8x  
C1  
DIFF AMP  
REFH  
REFL  
+
+
V
C3  
0.1µF  
REF  
2.2µF  
INTERNAL ADC  
LOW REFERENCE  
LTC2165  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1µF  
C1: 2.2µF LOW INDUCTANCE  
INTERDIGITATED CAPACITOR  
TDK CLLE1AX7S0G225M  
MURATA LLA219C70G225M  
AVX W2L14Z225M  
2165 F08  
2165 F09  
OR EQUIVALENT  
Figure 8a. Reference Circuit  
Figure 9. Using an External 1.25V Reference  
216543f  
21  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
Encode Input  
0.1µF  
0.1µF  
+
ENC  
LTC2165  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
T1  
50Ω  
50Ω  
100Ω  
ENC  
0.1µF  
2165 F12  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
LTC2165  
V
DD  
Figure 12. Sinusoidal Encode Drive  
DIFFERENTIAL  
COMPARATOR  
V
DD  
0.1µF  
+
ENC  
15k  
30k  
+
ENC  
PECL OR  
LTC2165  
LVDS  
CLOCK  
ENC  
0.1µF  
ENC  
2165 F13  
2165 F10  
Figure 13. PECL or LVDS Encode Drive  
Figure 10. Equivalent Encode Input  
Circuit for Differential Encode Mode  
+
to ground and ENC is driven with a square wave encode  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
DD  
+
LTC2165  
+
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
+
is 0.9V. For good jitter performance ENC should have fast  
1.8V TO 3.3V  
0V  
ENC  
rise and fall times.  
30k  
ENC  
CMOS LOGIC  
BUFFER  
If the encode signal is turned off or drops below approxi-  
mately 500kHz, the A/D enters nap mode.  
2165 F11  
Figure 11. Equivalent Encode Input  
Circuit for Single-Ended Encode Mode.  
Clock Duty Cycle Stabilizer  
For good performance the encode signal should have a  
50%( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency, the duty cycle stabilizer circuit  
requires one hundred clock cycles to lock onto the input  
clock. The duty cycle stabilizer is enabled by mode control  
register A2 (serial programming mode), or by CS (parallel  
programming mode).  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12, 13).  
The encode inputs are internally biased to 1.2V through  
10kΩ equivalent resistance. The encode inputs can be  
taken above V (up to 3.6V), and the common mode  
DD  
range is from 1.1V to 1.6V. In the differential encode  
mode, ENC should stay at least 200mV above ground to  
avoid falsely triggering the single-ended encode mode.  
+
For good jitter performance ENC and ENC should have  
fast rise and fall times.  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
216543f  
ThesingleendedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
22  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
to make the sampling clock have a 50%( 5%) duty cycle.  
The duty cycle stabilizer should not be used below 5Msps.  
When using double data rate CMOS at sample rates above  
100Msps, the SNR may degrade slightly, about 0.2dB to  
0.5dB depending on load capacitance and board layout.  
DIGITAL OUTPUTS  
Double Data Rate LVDS Mode  
Digital Output Modes  
In double data rate LVDS mode, two data bits are multi-  
plexedandoutputoneachdifferentialoutputpair.Thereare  
TheLTC2165/LTC2164/LTC2163canoperateinthreedigital  
output modes: full rate CMOS, double data rate CMOS (to  
halvethenumberofoutputlines),ordoubledatarateLVDS  
(to reduce digital noise in the system.) The output mode  
is set by mode control register A3 (serial programming  
mode), orbySCK(parallelprogrammingmode). Notethat  
double data rate CMOS cannot be selected in the parallel  
programming mode.  
+
+
eight LVDS output pairs (D0_1 /D0_1 through D14_15 /  
+
D14_15 ) for the digital output data. Overflow (OF /OF )  
+
and the data output clock (CLKOUT /CLKOUT ) each have  
an LVDS output pair.  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
Full Rate CMOS Mode  
In full rate CMOS mode the data outputs (D0 to D15),  
+
overflow (OF), and the data output clocks (CLKOUT ,  
The outputs are powered by OV and OGND which are  
DD  
CLKOUT ) have CMOS output levels. The outputs are  
isolated from the A/D core power and ground. In LVDS  
powered by OV and OGND which are isolated from the  
DD  
mode, OV must be 1.8V.  
DD  
A/D core power and ground. OV can range from 1.1V  
DD  
to 1.9V, allowing 1.2V through 1.8V CMOS logic outputs.  
Programmable LVDS Output Current  
For good performance, the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF, a digital buffer should be used.  
In LVDS mode, the default output driver current is 3.5mA.  
Thiscurrentcanbeadjustedbyseriallyprogrammingmode  
control register A3. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
Double Data Rate CMOS Mode  
Optional LVDS Driver Internal Termination  
In double data rate CMOS mode, two data bits are mul-  
tiplexed and output on each data pin. This reduces the  
number of digital lines by eight, simplifying board routing  
and reducing the number of input pins needed to receive  
thedata.Thedataoutputs(D0_1,D2_3,D4_5,D6_7,D8_9,  
D10_11, D12_13, D14_15), overflow (OF), and the data  
In most cases using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing.  
+
output clocks (CLKOUT , CLKOUT ) have CMOS output  
levels. TheoutputsarepoweredbyOV andOGNDwhich  
DD  
are isolated from the A/D core power and ground. OV  
DD  
can range from 1.1V to 1.9V, allowing 1.2V through 1.8V  
CMOS logic outputs.  
Overflow Bit  
For good performance, the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF, a digital buffer should be used.  
The overflow output bit outputs a logic high when the  
analog input is either overranged or underranged. The  
overflow bit has the same pipeline latency as the data bits.  
216543f  
23  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
Phase-Shifting the Output Clock  
The LTC2165/LTC2164/LTC2163 can also phase-shift the  
+
CLKOUT /CLKOUT signalsbyseriallyprogrammingmode  
control register A2. The output clock can be shifted by 0°,  
45°, 90°, or 135°. To use the phase-shifting feature the  
clock duty cycle stabilizer must be turned on. Another  
In full rate CMOS mode the data output bits normally  
+
change at the same time as the falling edge of CLKOUT ,  
+
so the rising edge of CLKOUT can be used to latch the  
output data. In double data rate CMOS and LVDS modes  
the data output bits normally change at the same time as  
+
control register bit can invert the polarity of CLKOUT and  
CLKOUT ,independentlyofthephase-shift.Thecombina-  
+
thefallingandrisingedgesofCLKOUT .Toallowadequate  
tion of these two features enables phase-shifts of 45° up  
to 315° (Figure 14).  
+
setup and hold time when latching the data, the CLKOUT  
signal may need to be phase-shifted relative to the data  
outputbits. MostFPGAshavethisfeature;thisisgenerally  
the best place to adjust the timing.  
+
ENC  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
0
CLKPHASE1 CLKPHASE0  
0°  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
0
0
0
1
1
1
1
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
2165 F14  
Figure 14. Phase-Shifting CLKOUT  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D15 – D0  
(OFFSET BINARY)  
D15 – D0  
(2’S COMPLEMENT)  
IN  
IN  
(2V RANGE)  
OF  
>1.000000V  
+0.999970V  
+0.999939V  
1
0
0
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1110  
0111 1111 1111 1111  
0111 1111 1111 1111  
0111 1111 1111 1110  
+0.000030V  
+0.000000V  
–0.000030V  
–0.000061V  
0
0
0
0
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1110  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
–0.999939V  
–1.000000V  
< –1.000000V  
0
0
1
0000 0000 0000 0001  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0001  
1000 0000 0000 0000  
1000 0000 0000 0000  
216543f  
24  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
DATA FORMAT  
PC BOARD  
FPGA  
CLKOUT  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
OF  
D13/D0  
D13  
D12  
D12/D0  
Digital Output Randomizer  
LTC2165  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
D2/D0  
D1/D0  
D2  
D1  
D0  
D0  
2165 F16  
The digital output is randomized by applying an exclusive-  
OR logic operation between the LSB and all other data  
output bits. To decode, the reverse operation is applied  
—an exclusive-OR operation is applied between the LSB  
and all other bits. The LSB, OF and CLKOUT outputs are  
not affected. The output randomizer is enabled by serially  
programming mode control register A4.  
Figure 16. Unrandomizing a Randomized Digital Output Signal  
Alternate Bit Polarity  
Anotherfeaturethatreducesdigitalfeedbackonthecircuit  
board is the alternate bit polarity mode. When this mode is  
enabled, all of the odd bits (D1, D3, D5, D7, D9, D11, D13,  
D15) are inverted before the output buffers. The even bits  
(D0, D2, D4, D6, D8, D10, D12, D14), OF and CLKOUT are  
not affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
CLKOUT  
CLKOUT  
OF  
OF  
When there is a very small signal at the input of the A/D  
thatiscenteredaroundmid-scale,thedigitaloutputstoggle  
between mostly 1’s and mostly 0’s. This simultaneous  
switchingofmostofthebitswillcauselargecurrentsinthe  
ground plane. By inverting every other bit, the alternate bit  
polarity mode makes half of the bits transition high while  
half of the bits transition low. This cancels current flow in  
the ground plane, reducing the digital noise.  
D15  
D15/D0  
D14/D0  
D14  
D2  
D2/D0  
D1/D0  
RANDOMIZER  
ON  
D1  
D0  
D0  
2165 F15  
Figure 15. Functional Equivalent of Digital Output Randomizer  
216543f  
25  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11, D13, D15.) The  
alternate bit polarity mode is independent of the digital  
output randomizer—either, both or neither function can  
be on at the same time. The alternate bit polarity mode is  
enabledbyseriallyprogrammingmodecontrolregisterA4.  
InnapmodetheA/Dcoreispowereddownwhiletheinternal  
referencecircuitsstayactive,allowingfasterwake-upthan  
from sleep mode. Recovering from nap mode requires at  
least 100 clock cycles. If the application demands very  
accurate DC settling then an additional 50µs should be  
allowed so the on-chip references can settle from the  
slight temperature shift caused by the change in supply  
current as the A/D leaves nap mode.  
Digital Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D15 to D0) to known values:  
Sleep mode and nap mode are enabled by mode control  
register A1 (serial programming mode), or by SDI and  
SDO (parallel programming mode).  
All 1s: all outputs are 1  
All 0s: all outputs are 0  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2165/LTC2164/LTC2163  
can be programmed by either a parallel interface or a  
simple serial interface. The serial interface has more flex-  
ibility and can program all available modes. The parallel  
interface is more limited and can only program some of  
the more commonly used modes.  
Alternating: outputs change from all 1s to all 0s on  
alternating samples.  
Checkerboard: outputs change from  
10101010101010101 to 01010101010101010  
on alternating samples.  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement, randomizer, alternate bit polarity.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
Output Disable  
can be tied to V or ground, or driven by 1.8V, 2.5V, or  
DD  
3.3V CMOS logic. When used as an input, SDO should be  
driven through a 1kΩ series resistor. Table 2 shows the  
modes set by CS, SCK, SDI and SDO.  
The digital outputs may be disabled by serially program-  
ming mode control register A3. All digital outputs includ-  
ing OF and CLKOUT are disabled. The high-impedance  
disabled state is intended for in-circuit testing or long  
periods of inactivity—it is too slow to multiplex a data  
bus between multiple converters at full speed. When the  
outputs are disabled the ADC should be put into either  
sleep or nap mode.  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
SCK  
Digital Output Mode Control Bit  
0 = Full Rate CMOS Output Mode  
Sleep and Nap Modes  
1 = Double Data Rate LVDS Output Mode  
(3.5mA LVDS Current, Internal Termination Off)  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire device is powered down,  
resulting in 1mW power consumption. The amount of  
time required to recover from sleep mode depends on  
SDI/SDO  
Power-Down Control Bits  
00 = Normal Operation  
01 = Not Used  
10 = Nap Mode  
11 = Sleep Mode (Entire Device Powered Down)  
the size of the bypass capacitors on V , REFH, and  
REF  
REFL. For the suggested values in Figure 8, the A/D will  
stabilize after 2ms.  
216543f  
26  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
Serial Programming Mode  
Diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The SDO pin is an open drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Table 3 shows a map of the mode control registers.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset SPI  
write command is complete, bit D7 is automatically set  
back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the Timing  
Table 3. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
Bits 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers are reset to 00h. The ADC is momentarily placed in sleep mode.  
This bit is automatically set back to zero at the end of the SPI write command.  
The reset register is write only. Data read back from the reset register will be random.  
Bits 6-0  
Unused, Don’t Care Bits  
REGISTER A1: POWER DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
PWROFF1  
PWROFF0  
Bits 7-2  
Unused, Don’t Care Bits  
Bits 1-0  
PWROFF1: PWROFF0  
00 = Normal Operation  
01 = Not Used  
Power Down Control Bits  
10 = Nap Mode  
11 = Sleep Mode  
216543f  
27  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, Don’t Care Bits  
Bit 3  
CLKINV  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (as shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1: CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (as shown in the Timing Diagrams)  
+
01 = CLKOUT /CLKOUT Delayed by 45° (Clock Period × 1/8)  
+
10 = CLKOUT /CLKOUT Delayed by 90° (Clock Period × 1/4)  
+
11 = CLKOUT /CLKOUT Delayed by 135° (Clock Period × 3/8)  
Note: If the CLKOUT phase delay feature is used, the clock duty cycle stabilizer must also be turned on.  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE1  
OUTMODE0  
Bit 7  
Unused, Don’t Care Bit  
Bits 6-4  
ILVDS2: ILVDS0  
LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 3  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS output driver current is 2x the current set by ILVDS2:ILVDS0.  
216543f  
28  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
Bit 2  
OUTOFF  
Output Disable Bit  
0 = Digital outputs are enabled.  
1 = Digital outputs are disabled and have high output impedance.  
Note: If the digital outputs are disabled the part should also be put in sleep mode or nap mode.  
Bits 1-0  
OUTMODE1: OUTMODE0  
Digital Output Mode Control Bits  
00 = Full Rate CMOS Output Mode  
01 = Double Data Rate LVDS Output Mode  
10 = Double Data Rate CMOS Output Mode  
11 = Not Used  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
X
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
RAND  
TWOSCOMP  
Bits 7-6  
Unused, Don’t Care Bits  
Bits 5-3  
OUTTEST2: OUTTEST0  
Digital Output Test Pattern Bits  
000 = Digital Output Test Patterns Off  
001 = All Digital Outputs = 0  
011 = All Digital Outputs = 1  
101 = Checkerboard Output Pattern. OF, D15-D0 alternate between 1 0101 0101 0101 0101 and 0 1010 1010 1010 1010.  
111 = Alternating Output Pattern. OF, D15-D0 alternate between 0 0000 0000 0000 0000 and 1 1111 1111 1111 1111.  
Note: Other bit combinations are not used.  
Bit 2  
Bit 1  
Bits 0  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On. Forces the output format to be Offset Binary.  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
216543f  
29  
LTC2165/LTC2164/LTC2163  
applicaTions inForMaTion  
GROUNDING AND BYPASSING  
the circuit board as the A/D, and as close to the device  
as possible. A low inductance interdigitated capacitor is  
suggested for REFH/REFL if the sampling frequency is  
greater than 110Msps.  
The LTC2165/LTC2164/LTC2163 requires a printed circuit  
board with a clean unbroken ground plane in the first  
layer beneath the ADC. A multilayer board with an internal  
ground plane is recommended. Layout for the printed  
circuit board should ensure that digital and analog signal  
lines are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
HEAT TRANSFER  
High quality ceramic bypass capacitors should be used at  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
Most of the heat generated by the LTC2165/LTC2164/  
LTC2163 is transferred from the die through the bottom-  
sideexposedpadandpackageleadsontotheprintedcircuit  
board. For good electrical and thermal performance, the  
exposed pad must be soldered to a large grounded pad  
on the PC board. This pad should be connected to the  
internal ground planes by an array of vias.  
capacitors must be located as close to the pins as pos-  
sible.Size0402ceramiccapacitorsarerecommended.The  
traces connecting the pins and bypass capacitors must  
be kept short and should be made as wide as possible.  
Of particular importance is the capacitor between REFH  
and REFL. This capacitor should be on the same side of  
216543f  
30  
LTC2165/LTC2164/LTC2163  
Typical applicaTions  
Silkscreen Top  
Top Side  
216543f  
31  
LTC2165/LTC2164/LTC2163  
Typical applicaTions  
Inner Layer 2  
Inner Layer 3  
216543f  
32  
LTC2165/LTC2164/LTC2163  
Typical applicaTions  
Inner Layer 4  
Inner Layer 5  
Bottom Side  
216543f  
33  
LTC2165/LTC2164/LTC2163  
Typical applicaTions  
C23  
2.2µF  
SDO  
SENSE  
V
DD  
C19  
0.1µF  
48 47 46 45 44 43 42 41 40 39 38 37  
SENSE V SDO GND OF DNC D15 D14 D13 D12  
C51  
0.1µF  
V
V
DD DD  
REF  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
V
D11  
CM  
+
A
A
D10  
D9  
A
A
+
IN  
IN  
3
IN  
IN  
4
GND  
D8  
C15  
0.1µF  
5
REFH  
REFL  
REFH  
REFL  
PAR/SER  
GND  
OV  
DD  
+
+
+
6
OGND  
0V  
DIGITAL  
OUTPUTS  
DD  
LTC2165  
CN1  
7
+
C37  
CLKOUT  
+
0.1µF  
8
CLKOUT  
C21  
0.1µF  
9
D7  
D6  
D5  
D4  
PAR/SER  
10  
11  
12  
GND  
V
DD  
V
DD  
+
V
GND ENC ENC CS SCK SDI GND D0 D1 D2 D3  
DD  
C18  
0.1µF  
13 14 15  
16  
17 18  
19 20 21  
22  
23 24  
2165 TA02  
C28  
0.1µF  
C32  
0.1µF  
R51  
100Ω  
ENCODE  
CLOCK  
216543f  
34  
LTC2165/LTC2164/LTC2163  
package DescripTion  
UK Package  
48-Lead Plastic QFN (7mm × 7mm)  
(Reference LTC DWG # 05-08-1704 Rev C)  
0.70 0.05  
5.15 0.05  
5.50 REF  
6.10 0.05 7.50 0.05  
(4 SIDES)  
5.15 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.10  
R = 0.115  
TYP  
7.00 0.10  
(4 SIDES)  
TYP  
47 48  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
5.15 0.10  
5.50 REF  
(4-SIDES)  
5.15 0.10  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
216543f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
35  
LTC2165/LTC2164/LTC2163  
Typical applicaTion  
1.8V  
V
1.8V  
OV  
2-Tone FFT, fIN = 70MHz and 69MHz  
DD  
DD  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
16-BIT  
ANALOG  
INPUT  
S/H  
ADC CORE  
D15  
D0  
CMOS, DDR  
CMOS OR  
DDR LVDS  
OUTPUTS  
OUTPUT  
DRIVERS  
–80  
–90  
–100  
–110  
–120  
125MHz  
CLOCK  
CLOCK  
CONTROL  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
2165 TA03a  
GND  
OGND  
2165 TA03  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2259-14/LTC2260-14/ 14-Bit, 80Msps/105Msps/125Msps  
89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-40  
LTC2261-14  
1.8V ADCs, Ultralow Power  
LTC2262-14  
14-Bit, 150Msps 1.8V ADC, Ultralow  
Power  
149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-40  
LTC2266-14/LTC2267-14/ 14-Bit, 80Msps/105Msps/125Msps  
LTC2268-14 1.8V Dual ADCs, Ultralow Power  
216mW/250mW/293mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2266-12/LTC2267-12/ 12-Bit, 80Msps/105Msps/125Msps  
216mW/250mW/293mW, 70.5dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2268-12  
1.8V Dual ADCs, Ultralow Power  
RF Mixers/Demodulators  
LTC5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LTC5557  
LTC5575  
400MHz to 3.8GHz High Linearity  
Downconverting Mixer  
23.7dBm IIP3 at 2.6GHz, 23.5dBm IIP3 at 3.5GHz, NF = 13.2dB, 3.3V Supply  
Operation, Integrated Transformer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz, 10dB Noise Figure,  
Variable Gain Amplifier  
4mm × 4mm QFN-24  
LTC6605-7/LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz  
Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
Pin-Programmable Gain, 6mm × 3mm DFN-22  
LTC6605-14  
Filters with ADC Drivers  
Signal Chain Receivers  
LTM9002  
14-Bit Dual Channel IF/Baseband  
Receiver Subsystem  
Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
216543f  
LT 0611 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
36  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2164IUK#TRPBF

LTC2164 - 16-Bit, 105Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2164_15

16-Bit, 125/105/80Msps Low Power ADCs
Linear

LTC2165

50Ω Gain Block IF Amplifier n 20MHz to 1700MHz Bandwidth
Linear

LTC2165CUK#PBF

LTC2165 - 16-Bit, 125Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2165IUK#PBF

LTC2165 - 16-Bit, 125Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2165IUK#TRPBF

LTC2165 - 16-Bit, 125Msps Low Power ADCs; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2165_15

16-Bit, 125/105/80Msps Low Power ADCs
Linear

LTC2170-12

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTC2170-12_15

12-Bit, 65Msps/40Msps/ 25Msps Low Power Quad ADCs
Linear

LTC2170-14

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTC2170-14_15

14-Bit, 65Msps/40Msps/ 25Msps Low Power Quad ADCs
Linear

LTC2170CUKG-12#PBF

LTC2170-12 - 12-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear