LTC2053CMS8#30495 [Linear]

IC INSTRUMENTATION AMPLIFIER, 10 uV OFFSET-MAX, PDSO8, PLASTIC, MSOP-8, Instrumentation Amplifier;
LTC2053CMS8#30495
型号: LTC2053CMS8#30495
厂家: Linear    Linear
描述:

IC INSTRUMENTATION AMPLIFIER, 10 uV OFFSET-MAX, PDSO8, PLASTIC, MSOP-8, Instrumentation Amplifier

放大器 光电二极管
文件: 总4页 (文件大小:40K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2053 SL30495  
Pre c isio n, Ra il-to -Ra il,  
Ze ro -Drift Instrum e nta tio n Am p lifie r  
with Re sisto r-Pro g ra m m a b le Ga in  
U
DESCRIPTIO  
FEATURES  
The LTC®2053 SL30495 is a high precision instrumenta-  
tion amplifier. It uses a charge balanced switched capaci-  
tor technique to convert a differential input voltage into a  
single ended signal that is in turn amplified by a zero-drift  
operational amplifier. The LTC2053 SL30495 is easy to  
use; the gain is adjustable with two external resistors, like  
a traditional op amp.  
MS8 Package  
Resistor Programmable Gain  
Rail-to-Rail Output  
Maximum Offset Voltage: 10µV  
Maximum Offset Voltage Drift: 50nV/°C  
Supply Operation: 2.7V to 5V  
Typical Noise: 2.5µVp-p (0.01Hz to 10Hz)  
Typical Supply Current: 0.8mA  
The single-ended output swings from rail-to-rail.  
The LTC2053 SL30495 is used in 5V single supply  
applications.  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
TEC Controllers  
U
TYPICAL APPLICATIO  
Detailed Schematic of TEC Temperature Controller Includes A1 Thermistor Bridge Amplifier, LTC1923 Switched Mode  
Controller and Power Output H-Bridge. DAC Establishes Temperature Setpoint. Gain Adjust and Compensation  
Capacitor Optimize Loop Gain Bandwidth. Various LTC1923 Outputs Permit Monitoring TEC Operating Conditions  
0.1µF  
10k  
* = SUGGESTED VALUES  
PLLLPF  
LTC1923  
R
T
L1, L2: SUMIDA CDRH8D28-100NC, 10µH  
Q1, Q2: Si9801DY N-P DUAL  
330pF  
TO 2.5V AT LTC1923  
REF  
82k  
5V  
R
SLEW  
C
T
10k  
0.1%  
TEC-R  
ARE PART OF LASER MODULE.  
THERMISTOR  
3
2
SDSYNC  
V
REF  
2.5V  
REF  
+
R
IS TYPICALLY 10kAT 25°C.  
THERMISTOR  
REFIN  
A1  
10k  
1µF  
7
+
CLK  
LTC2053  
#30495  
EAIN  
0.1µF  
FILM  
D
IN  
LTC1658  
9k  
6
PDRVB  
NDRVB  
5
CS/LD  
EAOUT  
LOOP GAIN  
1k*  
4.7µF*  
TANTALUM  
0.1µF  
+
10M  
5V  
V
DD  
FILM  
5V  
EAIN  
1µF  
100k  
LOOP  
AGND  
SS  
PGND  
+
22µF  
BANDWIDTH  
TEC  
PDRVA  
NDRVA  
L1  
L2  
1µF  
CERAMIC  
Q1  
Q2  
I
LIM  
10k  
+
17.8k  
CS  
0.1Ω  
22µF  
22µF  
0.1µF  
CS  
2.5V  
REF  
TO 2.5V  
REF  
V
SET  
FAULT  
V
I
TEC  
THERM  
H/C  
+
2.2µF  
TEC  
R
THERMAL FEEDBACK  
THERMISTOR  
V
TEC  
TEC  
2053 TA01  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
1
LTC2053 SL30495  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
Total Supply Voltage (V+ to V ) ................................. 6V  
TOP VIEW  
ORDER PART NUMBER  
LTC2053CMS8#30495  
Input Current ...................................................... ±10mA  
Output Short Circuit Duration .......................... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V
+
8 V  
1
IN 2  
7 OUT  
6 RG  
5 REF  
+IN 3  
V
4
MS8 PART MARKING  
LTMW  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
TJMAX = 110°C, θJA = 120°C/W  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, REF = 2.5V.  
PARAMETER  
CONDITIONS  
A = 1  
MIN  
TYP  
0.001  
3
MAX  
0.01  
10  
UNITS  
%
Gain Error  
V
Gain Nonlinearity  
Input Offset Voltage  
Average Input Offset Drift  
Input Bias Current  
Input Offset Current  
Input Noise Voltage  
Output Voltage Swing High  
A = 1  
V
ppm  
µV  
V
CM  
= 2.5V (Note 1)  
10  
(Note 1)  
±50  
nV/°C  
nA  
V
= 1V  
= 1V  
4
1
CM  
V
CM  
nA  
DC to 10Hz  
2.5  
µV  
P-P  
R = 2k to V  
4.85  
4.95  
4.94  
4.98  
V
V
L
R = 10k to V  
L
Output Voltage Swing Low  
Supply Current  
20  
mV  
mA  
kHz  
No Load  
0.85  
2.5  
1.2  
Internal Sampling Frequency  
Note 1: These parameters are guaranteed by design. Thermocouple effects  
preclude the measurements of these voltage levels during automated  
testing.  
2
LTC2053 SL30495  
U
U
U
PI FU CTIO S  
V (Pins 1, 4): Negative Supply. Both pins must be con-  
RG (Pin 6): Inverting Input of Internal Op Amp. With a  
resistor, R2, connected between the OUT pin and the RG  
pinandaresistor, R1, betweentheRGpinandtheREFpin,  
the DC gain is given by 1 + R2 / R1.  
nected to the negative supply for proper device operation.  
–IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
REF (Pin 5): Ground Reference for Output.  
OUT (Pin 7): Amplifier Output.  
V+ (Pin 8): Positive Supply.  
W
BLOCK DIAGRA  
8
+
LTC2053 SL30495  
V
ZERO-DRIFT  
OP AMP  
+IN  
3
+
OUT  
7
C
S
C
H
IN  
2
REF  
RG  
V
V
5
6
1
4
2053 BD  
3
LTC2053 SL30495  
U
W
U U  
APPLICATIO S I FOR ATIO  
Theory of Operation  
Input Current  
The LTC2053 SL30495 uses an internal capacitor (CS) to  
sample a differential input signal riding on a DC common  
modevoltage(seeBlockDiagram).This capacitors charge  
is transferred to a second internal hold capacitor (CH)  
translating the common mode of the input differential  
signal to that of the REF pin. The resulting signal is  
amplified by a zero-drift op amp in the noninverting  
configuration. The RG pin is the negative input of this op  
amp and allows external programmability of the DC gain.  
Simple filtering can be realized by using an external  
capacitor across the feedback resistor.  
Whenever the differential input V changes, CH must be  
charged up to the new input voltage via CS. This results in  
an input charging current during each input sampling  
IN  
period. Eventually, CH and CS will reach V and, ideally,  
IN  
the input current would go to zero for DC inputs.  
In reality, there are additional parasitic capacitors which  
disturb the charge on CS every cycle even if V is a DC  
IN  
voltage. For example, the parasitic bottom plate capacitor  
on CS must be charged from the voltage on the REF pin to  
the voltage on the –IN pin every cycle. The resulting input  
charging current decays exponentially during each input  
samplingperiodwithatimeconstantequaltoRSCS,where  
RS is the source resistance between +IN and IN. If the  
voltage disturbance due to these currents settles before  
the end of the sampling period, there will be no errors due  
to source resistance or the source resistance mismatch  
between –IN and +IN. With RS less than 20k, no DC  
errors occur due to this input current.  
Settling Time  
The sampling rate is 2.5kHz and the input sampling period  
during which CS is charged to the input differential voltage  
V is approximately 180µs. First assume that on each  
IN  
input sampling period, CS is charged fully to V . Since  
IN  
CS = CH (=1000pF), a change in the input will settle to N  
bits of accuracy at the op amp noninverting input after N  
clock cycles or 400µs(N). The settling time at the OUT pin  
is alsoaffectedbythesettlingoftheinternalopamp. Since  
the gain bandwidth of the internal op amp is typically  
200kHz, its settling time alone to N bits would be approxi-  
Grounding and Bypassing  
TheLTC2053SL30495uses asampleddatatechniqueand  
therefore contains some clocked digital circuitry. It is  
therefore sensitive to supply bypassing. A 0.1µF ceramic  
capacitormustbeconnectedbetweenPin8(V+)andPin 4  
(V) with leads as short as possible.  
mately 0.5µs • N • A ; where A is the closed-loop gain  
CL  
CL  
of the op amp. For gains below 100, the settling time is  
dominated by the switched capacitor front end.  
If the input source resistance between +IN and –IN (RS) is  
large, CS may not reach V during each input sampling  
IN  
period. The voltage across CH and CS will eventually reach  
V but the settling time would be larger than described  
IN  
above. If RS is less than 20k, then the approximation  
described above is accurate.  
1001 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
4
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC2053CMS8#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2053CMS8#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2053CMS8-SYNC

Precision, Rail-to-Rail,Zero-Drift, Resistor-Programmable Instrumentation Amplifier
Linear

LTC2053CMS8-SYNC#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2053CMS8-SYNC#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2053HDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LTC2053HMS8

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HMS8#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LTC2053IDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053IDD#TR

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC2053IDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear